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Irregular conduits, complex surfaces, and porous media often manifest more than one
geometric wetting condition for spontaneous capillary flows. As a result, different
regions of the flow exhibit different rates of flow, all the while sharing common
dynamical capillary pressure boundary conditions. The classic problem of sudden
capillary rise in tubes with interior corners is revisited from this perspective and
solved numerically in the self-similar ∼t1/2 visco-capillary limit à la Lucas–Washburn.
Useful closed-form analytical solutions are obtained in asymptotic limits appropriate
for many practical flows in conduits containing one or more interior corner. The
critically wetted corners imbibe fluid away from the bulk capillary rise, shortening the
viscous column length and slightly increasing the overall flow rate. The extent of the
corner flow is small for many closed conduits, but becomes significant for flows along
open channels and the method is extended to approximate hemiwicking flows across
triangular grooved surfaces. It is shown that an accurate application of the method
depends on an accurate a priori assessment of the competing viscous cross-section
length scales, and the expedient Laplacian scaling method is applied herein toward this
effect.

Key words: capillary flows, channel flow, porous media

1. Introduction
The classic problem of capillary rise is sketched in figure 1(a) for flow in a right

circular cylindrical tube. The wetting fluid with contact angle θ < π/2 creates an
under-pressure at the interface which draws the fluid up the tube as measured by
column length l(t). The impact of gravity is negligible if the tube diameter and
rise height are small enough. The same flow is sketched in figure 1(b), but for
capillary rise in a right square tube. In this situation, if the contact angle satisfies a
second condition θ < π/2 − α, as described by Concus & Finn (1969) where α is
the half-angle of the included corner angle, the liquid ‘wets’ the interior corners of
the container and advances ahead of the bulk meniscus. In effect, there are thus two
wetting conditions resulting in what is referred to as a compound capillary flow. In
the absence of bulk flow, the corner flows act to drain the bulk region by imbibing
the fluid into and along the interior corners of the container, as measured by the
corner flow column length L (t) and sketched in figure 1(c). The compound flow of
figure 1(b) is just a combination of bulk and corner flows.

A simple drop tower experiment for studying capillary rise in square tubes is
depicted schematically in figure 2(a). In this test, following release of the experiment
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FIGURE 1. (Colour online) Sketches of (a) classical capillary rise in a right circular cylinder
with wetting fluid of contact angle θ , (b) compound capillary rise in a right square tube with
interior corner flow, and (c) pure interior corner flow (imbibition) with inlet flow Q= 0. Note
that l(t) < 0 in (c), which might also be considered a compound capillary flow as the corner
flows draw down the bulk meniscus.

into free fall, the sudden capillary rise induced in a 3.5 mm diameter square tube
partially immersed in a reservoir of perfectly wetting 0.65 cS polydimethylsiloxane is
imaged by video camera at 60 fps. Selected frames are presented in figure 2(b) for the
2.13 s reduced acceleration period of the 22 m drop (.10−4go, where go = 9.8 m s−2).
See Wollman (2012) for further drop tower details. The images show transitions
from low-g interface formation and high-speed inertial and viscous corner flows
(images 1–2), to one or more bulk meniscus inertial regimes (images 1–5), before
establishment of the fully developed viscous compound capillary flow (images 5–13).
The bulk flow and corner flow lengths l(t) and L (t) are approximated on the figure,
where both are found to lengthen with t1/2 at long times. Quantifying the ratio of
these lengths is an objective of this primarily analytical work. A detailed experimental
verification will await a subsequent publication.

Both bulk and corner flows have been studied thoroughly, but separately. Bulk flow
was addressed originally by Lucas (1918), Washburn (1921) and others, receiving
perhaps its final treatments by Quéré (1997) and Stange, Dreyer & Rath (2003). The
corner flow problem was first solved by Dong & Chatzis (1995) with later attention
given by Romero & Yost (1996), Weislogel & Lichter (1998) and others. These
solutions will be briefly reviewed as a means to introduce both the notation and
the primary assumptions for the new compound solutions. The atypical Laplacian
scaling method of Weislogel, Chen & Bolledulla (2008) is employed to generalize
the presentation. The final result is a simple numerical similarity solution with well-
established asymptotic limits. Closed-form analytic expressions are found in widely
applicable limiting regimes. The general approach is useful for explaining observations
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FIGURE 2. (Colour online) (a) Schematic of a simple drop tower experiment rig with 3.5 mm
square tube test cell (not to scale). The experiment rig is released in an aerodynamically
shielded chamber and falls 22 m (2.13 s). (b) Selected images at 0.167 s intervals during the
compound capillary rise (frame 1 at t = 0 s, frame 13 at t = 2 s). Approximate advancing bulk
and corner flow locations l(t) and L (t) are identified on the right.

of more complex flows, as well as guiding the geometric design of wetting systems
including wicking flows over complex surfaces.

2. Review and notation
In the visco-capillary limit, capillary flows along conduits are governed by Laplace’s

equation

Pz = µ1w, (2.1)

where Pz is the capillary pressure gradient along the conduit z-direction, µ is the fluid
dynamic viscosity, 1 is the Laplacian operator, and w = w(x, y, t) is the z-component
of velocity. Application of (2.1) assumes the quasi-steady fully developed laminar flow
of a slender column of fluid and ignores complicating effects of three-dimensional
flows in the vicinity of moving menisci, entrance regions, and the properties of the
displaced fluid. Further complications are avoided by assuming flows slow enough
such that changes in dynamic interface curvature may be neglected, as well as other
issues associated with the moving contact line boundary condition, Kistler (1993).
Often just for scaling purposes, but employed here for rather quantitative results, for
convex conduit cross-sections, (2.1) may be ‘solved’ algebraically for the average
velocity

〈w〉 = −Fi
Pz

µ1s
, (2.2)

where

1s ≡ 1
x2

s

+ 1
y2

s

∼1≡ ∂2

∂x2
+ ∂2

∂y2
, (2.3)
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FIGURE 3. Selection of applicable convex conduit sections where the Laplacian scaling
method is particularly useful: (a) rectangles, (b) rhombi, blunt (c) rhombi and (d) rectangles,
and (e) ellipses. The shaded upper right region of each section identifies the ‘quadrant
area’ Aq, and the x and y length scales for the sections are noted.

and is called the scaled Laplacian operator, with xs and ys being the conduit section
length scales as identified in figure 3. The negative sign in (2.2) is included to ensure
that negative pressure gradients produce positive average velocities 〈w〉. If 1 is scaled
well, Fi is an O(1) viscous resistance coefficient to be determined numerically for
complex sections. However, for conduit sections of general convex shape, a sample of
which are provided in figure 3, the Laplacian scaling approach of (2.2) is significantly
more quantitative than other scaling methods such as the hydraulic diameter approach,
and it can be shown that for many geometry types

Fi ≡ Fn

3
Aq

xsys
, (2.4)

where Aq is the quadrant section area (see shaded regions in figure 3), and Fn ≈ 1± 0.1
(Weislogel et al. 2008). An exact analytic or numeric value for Fn (or Fi) may always
be employed if higher accuracy is demanded, but in many cases (2.4) is suitable for
efficient design and analysis. In any case, the fact that Fn (or Fi) is nearly an O(1)
constant implies that a quantitative geometric dependence of 〈w〉 is captured by 1s

in (2.2).

2.1. Bulk rise: Lucas–Washburn

For the pure bulk fluid capillary rise flow sketched in figure 1(a), ignoring capillary
effects outside the tube, the pressure gradient term of (2.2) may be written as
Pz =−2H σ/l, where 2H is twice the constant mean curvature of the free surface, σ
is the surface tension, and l = l(t) is the transient column length. Rewriting (2.2), the
area-averaged velocity is

〈w〉 = Fi
2H σ

lµ1s
. (2.5)

For a conduit of section area Ab, where subscript b denotes a bulk flow quantity, the
well-known Lucas–Washburn diffusive power law solution is obtained by integrating
(2.5), noting that 〈w〉 = dl/dt and l(0) = 0, to obtain the long-time transient advancing
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FIGURE 4. (Colour online) Sketch of capillary rise and cross-section in an interior corner
with most of the pertinent notation. (Note that xs = h, ys = h tanα, and R = fh, where
f = sinα/(cos θ − sinα).)

bulk meniscus location and flow rate

l=√2
(

Fi
2H σ

µ1s

)1/2

b

t1/2, Ql = Ab√
2

(
Fi

2H σ

µ1s

)1/2

b

t−1/2. (2.6)

For the special case of a circular cylindrical tube of radius r, 2H = 2 cos θ/r, and
for this representation, it may be shown that the exact analytic solution requires
Fi/1s = r2/8, i.e. Lucas–Washburn. Using (2.4) with Aq = πr2/4, xs = ys = r, and
Fn ≈ 1, one estimates Fi/1s ≈ πr2/24. For calculating the bulk meniscus location
l(t) and flow rate Ql, the error between the exact and Laplacian scaling solutions is
2 %. Again, exact viscous resistances may always be employed if greater precision is
required, but the Laplacian scaling method does well to quickly capture the geometry-
dependent viscous resistance of such flows, particularly as the geometric complexity
increases.

2.2. Corner rise

For the pure interior corner capillary rise flow sketched in figure 1(c), slender
columns of fluid rise along the interior corners, again enabling the quasi-steady
flow approximation w = w(x, y, t). An isolated corner flow cross-section is sketched
in figure 4 for a corner of interior half-angle α, constant local radius of curvature
R= R(z, t), curvature angle δ ≡ π/2−α− θ , and meniscus centreline height h= h(z, t).
Again, (2.2) may be employed to quickly establish the form of the governing equation
for such flow.

In this case, P = 2H σ = −σ/R = −σ/fh, where the interface curvature function
f = sinα/(cos θ − sinα). Thus,

Pz = σ

fh2
hz. (2.7)
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Choosing local scales xs = h and ys = h tanα, it is found for the corner flow that

1s = 1
h2
+ 1

h2tan2α
= 1

h2sin2α
. (2.8)

Substituting (2.7) and (2.8) into (2.2) yields

〈w〉 = −Fi
σ sin2α

µf
hz, (2.9)

and from (2.4),

Fi ≡ Fn

3
Aq

xsys
= Fn

3
FAh2

2h2 tanα
= Fn

6
FA

tanα
, (2.10)

where FA is the corner flow geometric cross-section area function such that

Ac = FAh2, FA = f 2

(
cos θ sin δ

sinα
− δ
)
, (2.11)

where subscript c denotes a corner flow quantity. But Fn ≈ 1 and FA/ tanα ∼ 1 and
from (2.10), Fi ≈ 1/6. This value agrees favourably with the exact numerical solution
of (2.1) for the corner flows, which yields 1/8 . Fi(α, θ) 6 1/6. Blindly applying a
constant value Fi ≈ 1/7 results in prediction errors of less than ±7 % for all α and
θ satisfying θ < π/2 − α. To repeat, the exact numerical value for Fi may always
be applied if greater accuracy is desired, but the fact that Fi (or Fn) is such a weak
function implies that the geometry of the cross-flow viscous resistance is correctly
captured by length 1−1/2

s = h sinα.
The local average velocity (2.9) may be substituted into a local volume balance

equation (Ac)t = − (Ac〈w〉)z, which after applying (2.11) yields the evolution equation
for the corner flow meniscus height h(z, t):

(
h2
)

t
= σFisin2α

µf
(h2hz)z . (2.12)

This form is applied in Weislogel & Lichter (1998), where the full details of the
development may be found. The boundary conditions for (2.12) are the zero height
condition at the advancing front where h(z = L , t) = 0 and the constant height
condition at the origin where h(z = 0, t) = H. The latter condition devolves from a
constant pressure condition that is assumed at the origin and approximated using the
explicit static zero-gravity equilibrium capillary curvature for such containers given by
de Lazzer et al. (1996),

R(zb, t)=
(

1
2H

)∣∣∣∣
z=zb

= Pb cos θ
2Σ

(
1−

(
1− 4ΣAb

P2
bcos2θ

)1/2
)
≡ fH, (2.13)

where in this case Pb is the perimeter of the container section, Ab is the container’s
cross-sectional area, and Σ = mFA/f 2 is the total R-based corner flow area function
(i.e. Ac = FAR2/f 2). Σ in (2.13) is written here specifically for containers with
m identically wetted interior corners; a variety of such containers is illustrated in
figure 5(a–g). These containers are dubbed m-regular containers, but the analysis holds
for irregular sections such as the section of figure 5(h) as addressed in Weislogel
(2001). The limitations of the use of the equilibrium (2.13) are given by Finn & Neel
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(a) (b) (d ) ( f ) (g) (h)(e)(c)

FIGURE 5. (Colour online) Selection of applicable container sections: (a) n-regular polygons,
(b) rectangles, (c) combined rounded rectangles, (d) selective but equal-edge wetting sections,
(e) m = 1 sections, (f ) certain re-entrant sections, (g) vane structures, and (h) irregular
polygonal sections. Sections (a–g) depict m-regular corner wetting geometries.

(1999), but its applicability as a boundary condition in dynamic flow problems is
perhaps best demonstrated experimentally by Weislogel, Baker & Jenson (2011).

The numerical solution to (2.12) and boundary conditions determines the respective
Lucas–Washburn-like transient length and flow rate of the corner flows:

L = 1.702
(

Fi
2H σ

µ1s

)1/2

c

t1/2, QL = 0.349mAc

(
Fi

2H σ

µ1s

)1/2

c

t−1/2, (2.14)

where Ac, 2H and 1s are evaluated at the origin where z = zb = 0 and h(0, t) = H.
Equation (2.14) agrees with experiments well within ±6 % (see Weislogel & Lichter
1998 and Weislogel 2001).

Presented in this manner, (2.6) and (2.14) are clearly similar forms and suggest
that the common t1/2-dependence will also allow for solutions when such flows are
combined. The corner flow results reviewed here apply under the primary global
constraint of slender columns (H/L)2� 1, but further discussion is required to justify
capillary pressure boundary conditions that might apply for the combined flow.

3. Model assumptions
In a recent work on quasi-steady capillary flows by Weislogel et al. (2011) it is

re-demonstrated that for low capillary number flows (Ca = µ〈w〉/σ � 1) dynamic
interface deflections are small and the bulk meniscus rapidly establishes a constant
curvature that agrees well with that predicted by de Lazzer et al. (1996): see
(2.13). It is argued that this constant curvature leads to a bulk meniscus region of
fixed length. As the flow domain lengthens over time, i.e. L ∼ ta where a > 0, the
fixed length bulk meniscus region compresses to a line. This scenario is sketched
in figure 6 for compound capillary rise in a square tube. In figure 6(a) the bulk
meniscus centreline is denoted by zcl, the location where the constant height location
applies for the corner flow is denoted by zb, and the tip of the advancing corner
flow by ztip. The present model for the flow is suggested in figure 6(b), where for
slender flows zcl ≈ zb ≈ l(t) and ztip − l(t) ≡ L (t). The model of figure 6(b) leads
directly to solutions for the compound flow provided that a variety of assumptions
are satisfied. For example, for the bulk meniscus scaled by characteristic radius r,
the flow must be sufficiently slender (r/l)2 � 1 to neglect inertia Su (r2/Hl)2 /f � 1
(Suratman number Su ≡ ρσH/µ2, where ρ is the liquid density), the volume of
gas Vb in the bulk meniscus curvature region must be small, Vb/lAb � 1 and
Vb/L Ab � 1, and the method of de Lazzer et al. must be applied to compute
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FIGURE 6. (Colour online) (a) Sketch of compound capillary rise in a square tube and (b)
depiction of the model where the bulk interface region dimensions are neglected, but also
where the static equilibrium capillary curvature and pressure conditions are applied.

the capillary curvature at the flat bulk meniscus h(l(t)) = H, (2.13). For the corner
flow, the column too should be sufficiently slender, (H/L )

2 � 1, and possess
low inertia, Su (H/L )

2 sin4α/f � 1, and low streamwise free surface curvature,
(H/L )

2 f � 1. Viscous normal stresses must be negligible for the bulk meniscus
flow, Cab ∼ (r2/Hl)/f � 1, and the corner flows, Cac ∼ (H/L )

2 sin2α � 1. As a
result, the static contact angle boundary condition θ may be applied everywhere.
Gravity effects in all directions are neglected at present: Bozl ≡ f1ρgzHl/σ � 1,
BozL ≡ f1ρgzHL /σ � 1, and Boxy ≡ f1ρgxyH2/σ � 1, where Bo is the Bond
number, gi denotes gravity in the i-direction or plane, and 1ρ is the density difference
between the displacing and displaced fluids. It is understood that if there is any finite
negative acceleration component along the z-axis of the tube the bulk meniscus will
ultimately achieve a fixed height where Bozl ≈ 1. However, the corner flow(s) will
continue to advance because of the ever-increasing capillary driving force as the corner
is approached. In fact, the corner flow capillary pressure at the leading tip will balance
the hydrostatic head such that σ/fHL ∼ ρgzL , which establishes an L -dependent
corner flow scale, HL ∼ σ/fρgzL . Substitution of this scale into the visco-capillary
balance of (2.9) for the corner flow, where 〈w〉 ∼L /t and hz ∼ HL /L , yields

L ∼
(
σ 2

µρgz

Fisin2α

f 2
t

)1/3

∼
(
σ 2

µρgz
(cos θ − sinα)2 t

)1/3

, (3.1)
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as recently shown by Ponomarenko, Clanet & Quéré (2011), the right-hand term using
(2.4). Therefore, L ∼ t1/2 for the viscous advance when BozL � 1, but L ∼ t1/3

when BozL � 1. The former is the focus of this work. All assumption criteria are
readily assessed a posteriori, and most constraints are increasingly satisfied as the
flows become increasingly slender with time.

4. Formulation
For a tube of cross-section Ab, in the Lucas–Washburn visco-capillary limit, a

volume balance requires that the liquid volume flowing into the conduit is equal to the
volume of the bulk flow plus the corner flows. For the model sketched in figure 6(b),
this suggests that ∫ t

0
Q dt̂ = Abl+ m

∫ l+L

l
Ac dz, (4.1)

where Q is the flow rate into the conduit, l = l(t) is the length of the fluid column
to the bulk meniscus, L = L (t) is the length of the fluid column from the bulk
meniscus to the advancing tip of the corner flow, and Ab and Ac are the total conduit
and local corner flow section areas, respectively. The flow rate into the conduit
is controlled by the bulk flow capillary pressure such that Q = Ab 〈w〉, with 〈w〉
determined from (2.5). Applying (2.11), (4.1) may be written as

Ab

(
Fi

2H σ

µ1s

)
b

∫ t

0
l−1 dt̂ = Abl+ mFA

∫ l+L

l
h2 dz, (4.2)

which is expressed and addressed in differential form in the Appendix. There is
no length scale for the capillary rise problem in the zero-gravity limit. However,
anticipating the t1/2 power law, by choosing L∼ l+L and employing (2.6) and (2.14),
the relation

L∼
[(

Fi
2H σ

µ1s

)1/2

b

+
(

Fi
2H σ

µ1s

)1/2

c

]
t1/2 ≡ (C′b + C′c)t

1/2 (4.3)

may be used to determine a suitable time scale ts. Choosing scales

z∼ L, l∼ L, h∼ H, ts ∼ L2/ (C′b + C′c)
2
, (4.4)

and introducing dimensionless variables

z∗ = z/L, l∗ = l/L, L ∗ =L /L, h∗ = h/H, t∗ = t/ts, (4.5)

(4.2) may be rewritten as

1

(1+ φ)2
∫ t∗

0
l∗−1 dt̂∗ = l∗ + β

∫ l∗+L ∗

l∗
h∗2 dz∗, (4.6)

where

φ ≡ C′c/C
′
b, β ≡ mFAH2/Ab. (4.7)

The parameter φ is a ratio of corner flow to bulk flow viscous resistances and
the parameter β is the corner flow saturation at the bulk meniscus. The conditions
φ� 1 and φ� 1 appear to signal pure bulk and pure corner flow limits, respectively.
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From (4.3) and (4.7),

φ ≡ C′c
C′b
≡
(

2H σFi

µ1s

)1/2

c

(
µ1s

2H σFi

)1/2

b

. (4.8)

But both flows are coupled by the shared capillary pressure at the bulk meniscus. Thus,
Hb =Hc and (4.8) reduces to

φ =
[(

Fi

1s

)
c

(
1s

Fi

)
b

]1/2

=
[(

Aq

xsys1s

)
c

(
xsys1s

Aq

)
b

]1/2

, (4.9)

where (2.4) with Fn = 1 has been applied to (4.9) in the rightmost term.
Equation (4.9) conveys that φ is the ratio of viscous cross-section length scales for

the corner flow to the bulk flow, and since Aq ∼ xsys, it may be shown that

φ ∼
(
1sb

1sc

)1/2

∼
(

Ac

Ab

)1/2

∼ β1/2, (4.10)

where 0 6 β 6 1. For the time being φ and β will be treated as independent
parameters. However, it is clear from (4.10) that they are not for these compound
capillary rise flows. Instead, from (4.9) it is observed that the corner flow section
viscous length scale (i.e. xsc = H) will depend on the bulk flow section viscous length
scale (i.e. xsb = ysb = r), where the latter is presumably larger than the former, ensuring
φ 6 1 and suggesting that conditions where φ > 1 are non-physical for capillary rise
as modelled by (4.2). Example flows in m-regular polygons and highly acute rhombic
cylinders are invoked in § 8 to explore this point. An alternative flow rate formulation
is employed in § 6 to pursue flows where in effect φ > 1.

In terms of the (4.5) quantities the dimensionless corner flow equation (2.12)
becomes

(h∗2)t∗ =
φ2

(1+ φ)2 (h
∗2h∗z∗)z∗, (4.11)

subject to h∗(l∗) = 1 and h∗(l∗ + L ∗) = 0. For known values of φ and β, (4.6) and
(4.11) may be solved simultaneously for h∗(z∗, t∗), l∗(t∗) and L ∗(t∗).

5. Similarity solution: capillary rise
For the boundary conditions of the present model, namely h∗(l∗) = 1, (4.6) and

(4.11) yield to similarity under the diffusive power law transformation

h∗ = F(η), η = z∗t∗−1/2, l∗ = Cbt∗1/2, L ∗ = Cct
∗1/2, (5.1)

where F and η are dimensionless similarity variables and Cb and Cc are unknown
dimensionless transport coefficients for the bulk and corner flows, respectively (refer
to the Appendix for details concerning coefficients Cb and Cc). Upon back-substitution,
and defining F′ = dF/dη, the local corner flow equation (4.11) becomes

φ2

(1+ φ)2
(
F2F′

)′ + ηFF′ = 0, (5.2)

subject to boundary conditions

F(Cb)= 1, F(Cb + Cc)= 0, F′(Cb + Cc)=− (Cb + Cc)

2
(1+ φ)2
φ2

. (5.3)
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The third boundary condition is the tip slope condition, which is derived from (5.2)
employing F(Cb+Cc)= 0. Under these transforms the volume balance of (4.6) reduces
to

2

Cb (1+ φ)2
= Cb + β

∫ Cb+Cc

Cb

F2 dη. (5.4)

The similarity system of equations (5.2)–(5.4) is solved by any number of methods
to compute F(η) and coefficients Cb and Cc. However, a slope discontinuity arises at
the advancing front where F→ 0 and may cause difficulties. As in Romero & Yost
(1996) and Weislogel & Lichter (1998), the solution method adopted here exploits the
invariant nature of the corner flow equation, whereby introducing

F = λ2F+, η = λη+, (5.5)

and defining

λ= Cb + Cc, (5.6)

the transformed similarity corner flow equation (5.2) may be solved using a single
backwards integration method from the tip where η+L = 1 and F+(η+L = 1) = ε→ 0.
Defining F+′ = dF+/dη+, the unchanged invariant version of (5.2) becomes

φ2

(1+ φ)2
(
F+2F+′

)′ + η+F+F+′ = 0, (5.7)

subject to boundary conditions

F+(1)= ε→ 0, F+′(1)=−1
2
(1+ φ)2
φ2

. (5.8)

The invariant version of the first boundary condition listed in (5.3) may be used to find

Cb + Cc = 1

[F+(η+b )]1/2
, (5.9)

where F+ > 0 is noted and η+b is the value of η+ at the advancing bulk meniscus.
Employing (5.9), the invariant version of the volume balance equation (5.4) becomes

2

(1+ φ)2
[
F+(η+b )

]3

η+b
= η+b

[
F+(η+b )

]2 + β
∫ 1

η+b
F+2 dη+. (5.10)

The procedure of the present method of solution is to set ε . O(10−6) and select
desired values for φ and β. Equation (5.7) is then solved for F+(η+). We then guess
η+b , after which F+(η+b ) is evaluated and substituted into the volume balance equation
(5.10). The value for η+b is adjusted and (5.10) is re-solved until satisfied to a desired
convergence criterion, typically ∼O(ε). Converged values for η+b are used to compute

Cb = η+b
[F+(η+b )]1/2

, Cc = 1− η+b
[F+(η+b )]1/2

, (5.11)

from which η+b = (1+ Cc/Cb)
−1 and the dimensional results for l, L , and total flow

rate Q are determined:

l= Cb(C
′
b + C′c)t

1/2 = Cb(1+ φ)C′bt1/2, (5.12)
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FIGURE 7. Numerical values for F+(η+) and F(η) as functions of φ and β. (a) The
advancing corner flow profiles meet at η+ = 1 for the selected values of φ indicated. The
lower terminus of the corner flow region (η+ = η+b ) and the location of the advancing bulk
meniscus are identified by the three dashed curves for selected values of β. The 4-term
approximation of (7.2) is essentially coincident with all F+ curves and the dotted lines shown
in (a) display where the 2-term approximation is not coincident with the numerical results. (b)
For β = 1, a pure (flat interface) bulk flow is observed for φ = 0.001, where η = √2, and a
pure corner flow is observed for φ = 1000, where F(η = 1.702)≈ 0.

L = Cc(C
′
b + C′c)t

1/2 = Cc(1+ φ)C′bt1/2, (5.13)

Q= AbC′b
Cb

t−1/2. (5.14)

Despite suspicions that β1/2 . φ 6 1 for compound capillary rise, numerical solutions
for F+(η+) and F(η) for a selection of φ and β values are presented in figure 7
treating φ and β as independent parameters for 0 6 β 6 1 and 0 6 φ 6∞. Because
(5.7) is independent of β, the F+(η+;φ) profiles in figure 7 are independent of β. But
β does affect the range of the F+ curves, as indicated by the three dashed lines drawn
for specific values of β = 0, 0.5, and 1, where F+ = F+(η+; η+b , β). The increased
linearity of the curves for F+ and F for decreasing φ is evident in figure 7.

Numerical values for Cb, Cc, and Cb + Cc are presented in figure 8 as functions
of η+b . It is clear from figures 7(b) and 8 that Cb + Cc ∼ Cb ≈

√
2 for φ � 1 and

Cb + Cc ∼ Cc ≈ 1.702 for φ � 1. These are the expected asymptotic limits for pure
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FIGURE 8. Numerical values for Cb, Cc, and Cb + Cc. (a) These coefficients are presented
as a function of 0.001 6 φ � 1000 for the three values of β noted. (b) The coefficients are
presented as functions of η+b also for the values of β noted. Where not coincident, the limiting
asymptotic behaviour of (7.3)–(7.5) is provided as truncated curves for reference. Excellent
agreement is achieved in the limits of large and small φ.

bulk flow equation (2.6) and pure corner flow equation (2.14), respectively. Following
an alternative derivation for (5.10), these limits will be briefly explored before further
discussion and application.

6. Alternative similarity solution: forced flow
An alternative approach to the above similarity solution assumes a diffusive power

law form Q = Qot−1/2 in (4.1) for what might be considered a forced or otherwise
regulated flow at the tube inlet (refer to figures 1 and 6). With this choice, Q is
independent of l. Choosing identical scales but replacing C′b with C′o ≡ Qo/Ab, the
volume balance of (4.6) may be rewritten as

2
(1+ φo)

t∗1/2 = l∗ + β
∫ l∗+L ∗

l∗
h∗2 dz∗, (6.1)

where φo ≡ C′c/C
′
o. In invariant similarity form, (6.1) becomes

2
(1+ φo)

[
F+(η+b )

]5/2 = η+b
[
F+(η+b )

]2 + β
∫ 1

η+b
F+2 dη+, (6.2)
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and compares with (5.10) for φo . O(1), where η+b > 0. For cases where η+b 6 0,
the forced inlet flow rate Q is less than or equal to the corner flow rate and the
bulk meniscus recedes or remains stationary. For this situation the flow domain is
dominated by the corner flow time scale, C′b = 0, and for φo & O(1), when η+b 6 0 one
derives

2
φo

t∗1/2 = l∗ + β
∫ l∗+L ∗

l∗
h∗2 dz∗. (6.3)

Equation (6.3) is solved along with (5.7) setting φ→∞. For these receding flows
l 6 0, L > 0, Cc = 1/F+1/2(0), and Cb = η+b Cc.

In this way, from (6.2) and (6.3) similarity solutions are possible by control of Qo

via φo and are not restricted by the natural bulk meniscus capillary rise rate modelled
by (4.1), which is singular at l = 0 (where l∗ = 0, Cb = 0, and η+b = 0). Equation (6.2)
and (5.10) are equivalent when

φo = (1+ φ)
2 η+b

[F+(η+b )]1/2
− 1. (6.4)

The compound capillary rise solutions employing (5.10) are seen as a special case
of more general solutions employing (6.2) and (6.3). The corner flow equation (5.7)
subject to (5.8) remains unchanged with only φo replacing φ in the case of (6.2) and
setting φ→∞ in the case of (6.3). As in figure 7, numerical solutions to (5.7)–(5.8)
and (6.2) for φo > 0 are presented in figure 9 for F+(η+) and F(η), the difference
being that the bulk meniscus can establish negative values in cases where the corner
flow rates exceed those of the bulk meniscus.

7. Limit behavior of similarity solution
7.1. Low corner flow limit, φ4� 1

When the corner flow is small compared to the bulk meniscus flow, φ is small, η+b
approaches 1, and it can be shown from (5.7) as it is observed from figure 7 that the
advancing corner flow achieves a nearly linear profile. As demonstrated by Romero
& Yost (1996), this profile may be approximated by an asymptotic analysis, and by
rescaling (5.7) near η+b → 1, the naive expansion

F+ = (1+ φ)
2

φ2
[(1− η+)F+0 + (1− η+)2 F+1 + (1− η+)3 F+2 + · · ·] (7.1)

is used to solve (5.7) and boundary conditions (5.8) to find

F+ = (1+ φ)
2

φ2

[
(1− η+)

2
− (1− η

+)2

6
+ (1− η

+)3

108

+ 7 (1− η+)4
3240

+ O (1− η+)5
]
. (7.2)

Higher-order solutions may be obtained using the suggested form F+ =
((1+ φ)/φ)2∑∞i=1Ki (1− η+)i. This is fortunate because (7.2) for F+(η+;φ) is
essentially coincident with the numerical results shown in figure 7 for all η+ with
maximum discrepancies of . 0.1 %. Retaining only the first two terms in (7.2),
F+(η+;φ) is plotted in figure 7 using dotted lines. The curves are essentially
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FIGURE 9. Numerical values for F+(η+) and F(η) as functions of φo and β for weakly
forced flows. (a) The advancing corner flow profiles meet at η+ = 1 for the selected values
of φo indicated. The lower terminus of the corner flow region (η+ = η+b ) and the location of
the advancing bulk meniscus are identified by the three dashed curves for selected values of
β. Negative values for η+b indicate a receding bulk meniscus and arise for φo > 2.8641 when
β = 1. F(η) is presented in (b) where F(Cb) = 1 only when Cb > 0. When Cb < 0, only the
condition F(0)= 1 is applied. F(−∞)→ 1.349 as φo→∞.

coincident for φ . 1, with discrepancies increasing with further increases in φ, but
remaining limited to .3 % even as φ→∞ (despite the initial expectation of φ4� 1).
Thus the 2-term asymptotic expansion captures much of the parabolic nature of the
corner flow profile and may be used to approximate F+ for analytic solutions of η+b .

For example, substitution of the 2-term form of (7.2) for F+ into the invariant
volume balance equation (5.10) leads to a quartic equation for η+b . Only one root is
positive and its cumbersome form is reduced significantly for small φ, producing

η+b ≈ 1− φ2 + (5− β)φ
4

3
+ O(φ6), (7.3)

which from (5.11) yields

Cb ≈
√

2(1− φ + φ2 − φ3)− βφ3

3
√

2
+ O(φ4), (7.4)

Cc ≈
√

2(φ2 − φ3)+ O(φ4). (7.5)
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The approximate equations (7.3)–(7.5) are represented by the nearly coincident
truncated lines in figure 8 for φ . 0.4. This ‘low corner flow limit’ yields β-
independent solutions to O(φ2), as is observed by the collapsing curves in figure 8(a)
for small φ and in figure 8(b) as η+b approaches 1. The results of (7.2)–(7.5) are
accurate to .4 % for φ . 0.4. This outcome is significant as will be discussed shortly.
The generalized similarity solution of § 6 will not be pursued in this limit here.

7.2. Low bulk flow limit, φ� 1

When the flow rate is dominated by the corner flows, φ is large, η+b is small, and,
in general, several limiting solutions are available. First, a useful zeroth-order solution
is obtained in the small bulk flow limit where Q→ 0. This is the pure and complete
corner rise flow addressed by Weislogel & Lichter (1998) and Weislogel (2001), but it
is interpreted here as a compound capillary flow where the corner flows remove liquid
from a receding bulk meniscus; see also Weislogel et al. (2011). From (5.10), provided
that η+2

b φ
2� 1, one observes

η+b
[
F+(η+b )

]2 + β
∫ 1

η+b
F+2 dη+ ≈ 0. (7.6)

When φ is large, F+ takes a largely parabolic form and may be approximated by
the 2-term parabolic (7.2) (see curve for φ = 1000, figure 7). For improved accuracy,
however, the zeroth-order fit for φ→∞,

F+ ≈ 0.3463− 0.2013η+ − 0.1437η+2, (7.7)

may be used, which does well to satisfy all boundary conditions in (5.3) and is
accurate for −0.2 6 η+b 6 1 with errors .±1 %. For solutions to (7.6), η+b ∼ −β, and
often β� 1, and by applying F+ of (7.7) to (7.6), it is found that

η+b =−0.4097β − 0.2145β2 + O(β3). (7.8)

This zero bulk flow condition was sketched in figure 1(c), where the bulk meniscus
recedes with t1/2.

A second useful solution in the low bulk flow limit may be obtained for a stationary
bulk meniscus, where just enough fluid is pumped into the tube to balance the corner
flow rate. In this situation η+b = 0. But the left-hand side of (5.10) is singular in this
limit unless it is observed that φ ∼ [F+(η+b )]1/2 /η+b , which is not obvious unless the
equivalent (6.1) is invoked to allow for Q values that are independent of l. In this case
η+b = 0, and (6.2) reduces to

2
φo

[
F+(0)

]5/2 ≈ β
∫ 1

0
F+2 dη+. (7.9)

The solution to (5.7) with φ → φo → ∞ gives β
∫ 1

0 F+2 dη+ = 0.04888β and
F+(0)= 0.3451, which when substituted into (7.9) yields the zeroth-order expression

φo ≈ 2
[
F+(0)

]5/2

β

∫ 1

0
F+2 dη+

= 2.8641
β
= 1

0.349β
, (7.10)

from which the stationary bulk meniscus flow rate may be determined from
Qo = AbC′o = AbC′c/φo. Equation (7.10) recovers the exact solution of (2.14) for Qo.
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Lastly, for the capillary rise flow, substituting (7.7) into (5.10) and solving for
η+b � 1, it can be shown that

η+b ≈
1.671
βφ2

+ O (βφ2)
−2
. (7.11)

Expanding (5.11) for η+b � 1 yields

Cb ≈ 1.700η+b + O(η+2
b ), (7.12)

Cc ≈ 1.700− 1.228η+b + O(η+2
b ), (7.13)

where the parabolic curve fit error using F+ from (7.7) produces a coefficient 1.700
compared to the numerical value 1.702. Thus, from (7.11) the low bulk flow limit
solution is significantly more restrictive than the low corner flow limit solution
requiring η+b � 1, and arising when 1/βφ2 � 1. For example, discrepancies of .3 %
are maintained in (7.12)–(7.13) for φ & 30 (β = 0.5). Nevertheless, unless φ→∞, the
condition φ > 1 may prove non-physical for compound capillary rise, as is addressed
next for m-regular polygons and highly acute rhombic cylinders.

8. Discussion
The solutions presented in figures 7 and 8 are useful for quantitative assessment of

the relative impacts of both bulk and corner flows for the compound capillary rise. The
presence of the corner flow depletes the bulk flow in a way that appears to slow the
advance of the bulk meniscus l(t) as manifested through a reduced Cb value (see (5.12)
and figure 8): l∼ Cb. However, the shorter column length of the bulk fluid reduces the
bulk flow viscous resistance of the column, and the total flow rate into the conduit is
increased by the combined flows as observed by inspection of the flow rate expression
(5.14): Q∼ C−1

b .

8.1. n-regular polygons: n= 3, 4, 5 . . .
For n-regular polygonal conduits where each interior corner is wetted by the fluid,
m = n and α = π(m − 2)/2m. An advancing bulk flow arises when θ < π/2 and
m corner flows arise when θ < π/m. When corner flows are present, Aqc = FAH2/2,
xsc = H and ysc = H tanα. For the bulk flow Aqb = Ab/4 and xsb = ysb. Recalling that
β = mFAnR2/Ab and for regular polygons Ab = P2

b/4m tan(π/m), substitution of these
quantities into (4.9) reveals that

φ =
(

2
m
β sin

(
2π
m

))1/2

. (8.1)

Thus, φ depends on β which, from the definition of H from (2.13), may be computed
for such sections as

β = cos2θ

FAn cot(π/m)

[
1−

(
1− FAn cot(π/m)

cos2θ

)1/2
]2

, (8.2)

where FAn ≡ FA/f 2. For θ = 0, values for β and φ are computed for selected values of
m and listed in table 1, where it is observed that β < φ for all cases. For the square
(m = 4), values are also computed and listed for selected values of the contact angle
θ . Because φ4� 1 and βφ3� 1 are readily satisfied for such sections (see § 7.1), the
advancing flows satisfy the conditions of the low corner flow limit, with (7.2)–(7.5)
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m θ β φ φ2 η+b Cb Cc Cc/Cb

3 0 0.12514 0.26879 0.07225 0.93523 1.11299 0.07708 0.06925
4 0 0.06032 0.17366 0.03016 0.97126 1.20460 0.03565 0.02959
5 0 0.03630 0.11751 0.01381 0.98650 1.26541 0.01732 0.01369
6 0 0.02443 0.08397 0.00705 0.99303 1.30462 0.00916 0.00702
8 0 0.01333 0.04855 0.00235 0.99765 1.34872 0.00317 0.00235

10 0 0.00842 0.03146 0.00099 0.99901 1.37108 0.00136 0.00099
100 0 0.00008 0.00032 0.00000 1.00000 1.41383 0.00000 0.00000

4 0 0.06032 0.17366 0.03016 0.97126 1.20460 0.03565 0.02959
4 10 0.05381 0.16403 0.02690 0.97423 1.21465 0.03213 0.02645
4 20 0.03824 0.13827 0.01912 0.98146 1.24227 0.02346 0.01889
4 30 0.01911 0.09774 0.00955 0.99060 1.28826 0.01223 0.00949
4 40 0.00307 0.03916 0.00153 0.99847 1.36093 0.00208 0.00153
4 44 0.00015 0.00853 0.00007 0.99993 1.40225 0.00010 0.00007
4 44.5 0.00004 0.00431 0.00002 0.99998 1.40810 0.00003 0.00002

TABLE 1. Selection of values for φ = φ(β;m, θ) and accompanying computed results for
η+b , Cb, and Cc from (5.7)–(5.11). All cases for n-regular polygons with m wetted interior
corners (n= m). For all cases φ4� 1, and predictions using (7.3)–(7.5) are accurate mostly
to within 1 % (i.e. φ2 ≈ Cc/Cb). θ is in degrees.

comparing well to the numerical solutions for η+b and Cb with errors .1 %, and for Cc

with errors .3 %. Thus, closed-form analytical solutions are available for such flows
from (5.12)–(5.14), with φ and β determined from (8.1) and (8.2), and with Cb and
Cc determined from (7.4) and (7.5). Useful closed-form results for φ4 � 1 may be
expressed as

l≈√2
(

2H σFi

µ1s

)1/2

b

t1/2, (8.3)

L ≈√2 φ2

(
2H σFi

µ1s

)1/2

b

t1/2, (8.4)

L= l+L ≈√2(1+ φ2)

(
2H σFi

µ1s

)1/2

b

t1/2, (8.5)

Q≈ Ab√
2

(
2H σFi

µ1s

)1/2

b

t−1/2. (8.6)

It is noteworthy that in this limit (8.3) and (8.6) are unchanged from their
Lucas–Washburn pure bulk flow forms in (2.6), despite the presence of corner flows of
observable extent. Despite their rapid advance, the corner flows represent a relatively
low liquid volume which may be neglected with respect to the bulk flow in such
situations. As observed from (8.3) and (8.4), the ratio of corner to bulk flow lengths
is L /l ≈ φ2 in this limit. For comparison, φ2 is listed with the exact numerical
value of L /l = Cc/Cb in table 1. Disagreement is at worst .4 % for the equilateral
triangle and diminishes quickly to zero for increasing m. The corner flows decrease
in significance as m increases, and for all cases, as θ → π/m, η+b → 1, Cb →

√
2,

Cc → 0, and the flow reverts to one of pure bulk capillary rise. Flow length ratios
determined using L /l = Cc/Cb are quite small for n-regular sections, such as 0.0692
for the triangle and 0.0296 for the square, both for θ = 0. It is not surprising that the



640 M. M. Weislogel

compound nature of such flows for, say, rectangular tubes goes unnoticed, since the
corner flows extend only 3 % the distance of the bulk flow (Ichikawa, Hosokawa &
Maeda 2004).

8.2. Highly acute rhombi

Thus, for m-regular polygon sections, φ may be computed to find that φ4 =
((2/m)β sin(2π/m))2� 1, which yields nearly linear corner flow interface profiles. As
was found for pure corner flows by Weislogel (2001), compared to regular polygonal
sections, acute sections produce significantly higher corner flow imbibition rates. In
fact, due to increases in β, over 20-fold increases in imbibition are predicted for highly
acute rhombic sections when compared to square sections of the same cross-sectional
area. To observe the nature of the compound flows for sections yielding higher values
of both β and φ, such rhombic sections are briefly investigated here. Depending on
the contact angle, corner flows in the highly obtuse corners are only present if the
Concus–Finn condition θ < α is also satisfied. Further, the volume of fluid in those
corners is small, and is neglected for brevity in the present discussion. Otherwise,
such flows would exhibit three different wetting conditions: θ < π/2 for bulk flow,
θ < π/2− α for acute corner flow, and θ < α for obtuse corner flow.

A sketch of the corner flow rhombic section of side length a is provided in
figures 3(b) and 5(d). φ for the flow is again defined by (4.9), where for the bulk
flow Aqb = (a2/4) sin 2α, xsb = a sinα, and ysb = a cosα. For these m = 2 acute corner
flows Aqc = FAH2/2, where again xsc = H and ysc = H tanα. Substitution of these
quantities into (4.9) reveals that

φ = β1/2 (8.7)

and

β = cos2θ

FAn sin(2α)

[
1−

(
1− FAn sin(2α)

2cos2θ

)1/2
]2

. (8.8)

For θ = 0, (5.7)–(5.11) are solved numerically for decreasing values of α and the
results are listed in table 2. Despite the extremely acute limits where β approaches
1, φ remains .O(1) and the corner flows never dominate to the extent that the
flow would be considered in the ‘low bulk flow limit’ of § 7.2. From the Laplacian
scaling perspective this is clear, since the corner flow section viscous length can never
be larger than the bulk flow section viscous length. Thus 0 6 β < φ < 1, and it is
conjectured for capillary rise that the only time φ is greater than unity is when φ =∞
for the pure corner flow case. As θ → π/2 − α, both β and φ decrease significantly,
and the numerical coefficients approach their low corner flow limits, namely β→ 0,
φ → 0, η+b → 1, Cb →

√
2, and Cc → 0. The θ -dependence is illustrated by the

numerical values listed in table 2 for the α = 10◦ rhombus.

9. Extension of method to hemiwicking in triangular grooves
Hemiwicking is a term employed by Quéré (2008) to categorize nearly all dynamic

wetting across textured surfaces. Many such flows may be viewed as compound
capillary flows and treated quantitatively by the present method. For a convenient
example, capillary rise along grooved surfaces is a frequently studied problem, and a
sample sketch of a triangular grooved surface is provided in figure 10 with groove
depth d and width 2g; see also Rye, Mann & Yost (1996) and more recently Liu et al.
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α θ β φ φ2 η+b Cb Cc Cc/Cb

30 0 0.08771 0.29616 0.08771 0.92311 1.08973 0.09077 0.08329
20 0 0.16694 0.40858 0.16694 0.86748 0.99966 0.15272 0.15277
10 0 0.31702 0.56304 0.31702 0.78392 0.89140 0.24570 0.27563
5 0 0.46057 0.67865 0.46057 0.72022 0.81711 0.31742 0.38846
2 0 0.62066 0.78782 0.62066 0.66081 0.74984 0.38488 0.51329
1 0 0.71591 0.84612 0.71591 0.62917 0.71422 0.42095 0.58938
0.5 0 0.79039 0.88904 0.79039 0.60589 0.68798 0.44750 0.65046
0.1 0 0.90049 0.94894 0.90049 0.57337 0.65123 0.48456 0.74406

10 0 0.31702 0.56304 0.31702 0.78392 0.89140 0.24570 0.27563
10 10 0.31139 0.55802 0.31139 0.78668 0.89472 0.24261 0.27116
10 20 0.29590 0.54397 0.29590 0.79440 0.90407 0.23399 0.25881
10 30 0.27178 0.52133 0.27178 0.80682 0.91934 0.22013 0.23944
10 40 0.23910 0.48897 0.23910 0.82447 0.94159 0.20047 0.21291
10 50 0.19666 0.44346 0.19666 0.84901 0.97392 0.17320 0.17784
10 60 0.14172 0.37645 0.14172 0.88409 1.02420 0.13429 0.13111
10 70 0.07009 0.26475 0.07009 0.93704 1.11729 0.07507 0.06719
10 75 0.02880 0.16971 0.02880 0.97250 1.20886 0.03418 0.02828
10 79 0.00203 0.04508 0.00203 0.99797 1.35320 0.00275 0.00203
10 79.5 0.00056 0.02358 0.00056 0.99944 1.38164 0.00077 0.00056

TABLE 2. Values of φ = φ(β;α, θ) and accompanying computed results for η+b , Cb, and Cc

from (5.7)–(5.11). These cases are for highly acute rhombi where α 6 30◦, that yield large
values for φ. The results ignore corner flows in the obtuse corners of the rhombi. α and φ
are listed in degrees.

(2011). When the surface is partially immersed in a wetting liquid, the fluid is drawn
into and along the grooves in much the same manner as for the capillary rise in a tube:
after sufficient time, the bulk meniscus establishes a constant curvature region of fixed
length.

For the present analysis, the pivotal assumption requires that the fixed-length bulk
meniscus region compresses to a line as time increases as illustrated in the model
sketch in figure 10(d), as similarly modelled in figure 6(b). If this is the case, the
bulk and corner flows are scaled by the same capillary pressure and the flow may be
approximated by the present compound capillary flow method.

For these grooves the shared capillary pressure condition occurs where the interface
just de-pins from the outer edge of the groove satisfying the contact angle condition,
as depicted in the top views of figures 10(b) and 10(d). In this case, in like manner to
the acute rhombic tubes, it may be shown again that φ = β1/2, since R= g/ sin δ, and

β = FAn tanα/sin2δ. (9.1)

Despite large values for β for such flows, the fact that β < 1 ensures φ < 1.
Romero & Yost (1996) analysed capillary flows in such open triangular grooves.

Their analysis considers the pinned contact line up to the point where it detaches
from the groove edge, becoming a free contact line corner flow from that point.
A slope discontinuity at the junction between these regimes is a by-product of the
solution, which is found to be Lucas–Washburn-like and yields to the ∼t1/2 similarity
transformation. From the compound capillary flow perspective the bulk flow instead
maintains a constant cross-sectional area. Calculations for a variety of triangular
grooves are performed using (5.7)–(5.10), and listed in table 3 for comparison



642 M. M. Weislogel

2w

Contact line
de-pinning

Reservoir
level

2
2g

d

L

zb

ztip

g

d

l

d

zz

h

z

h

(a) (b) (c) (d )

FIGURE 10. (Colour online) (a) Schematic of hemiwicking capillary rise along triangular
grooves from the compound capillary flow perspective. (b) Free surface view of single groove
flow with top view, (c) profile view, and (d) flow model profile view with top view and labels
for bulk flow l(t) and corner flow L (t).

with mostly limiting values determined from Romero and Yost (RY). In terms of
the present analysis, ηoRY compares to (Cb + Cc)(1 + φ−1) ≡ η∗o and δRY compares
to (1+ Cc/Cb)

−1 ≡ η+b , where ηoRY is related to l + L and δRY is related to l.
Discrepancies between the methods are typically <2 %, as seen by comparison of η∗o
with ηoRY and η+b with δRY in table 3. It is clear from ratios Cc/Cb in table 3 compared
to those listed in tables 1 and 2 that the corner flow comprises a larger proportion
of the total compound flow length in open grooves compared to flows in closed
conduits. For example, for α = 30◦, θ = 0◦, Cc/Cb values for an equilateral triangle,
acute rhombus, and triangular groove are 0.0692, 0.0833, and 0.440, respectively. The
highest values for Cc/Cb reported in table 3 are 0.833.

10. Compound capillary rise
From the specific calculations of the compound capillary rise in conduits of n-

regular and acute rhombic section, and for the hemiwicking flows in triangular
channels, it is clear that φ = φ(β), where β < 1 and 0 6 β < φ < 1, and thus the
results of figures 7 and 8 for φ > 1 are not currently imaginable for the combined
flows. As a result, the form of solutions in (5.12) and (5.13) suggests that Cb(1 + φ)
and Cc(1+ φ) are preferred coefficients which are re-plotted against φ in figure 11 for
the stated conduits and open channels. The data reside along single curves representing
the wide variations in container dimensions and contact angles.
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α θ β φ η+b Cb Cc η∗o ηoRY δRY

15 0 0.69588 0.83420 0.63563 0.72149 0.41359 2.50 2.49 0.633
15 37.5 0.87598 0.93594 0.58044 0.65922 0.47651 2.35 2.34 0.579
15 75 1.00000 1.00000 0.54557 0.61970 0.51618 2.27 2.27 0.547
30 0 0.52721 0.72609 0.69440 0.78780 0.34660 2.70 2.68 0.689
30 30 0.79080 0.88927 0.60576 0.68783 0.44765 2.41 2.41 0.604
30 60 0.99999 1.00000 0.54557 0.61970 0.51618 2.27 2.27 0.547
45 0 0.42921 0.65514 0.73330 0.83210 0.30250 2.87 2.83 0.726
45 22.5 0.73269 0.85598 0.62382 0.70818 0.42706 2.46 2.46 0.622
45 45 0.99999 0.99999 0.54557 0.61970 0.51618 2.27 2.27 0.547
60 0 0.37240 0.61025 0.75798 0.86066 0.27480 3.00 2.95 0.749
60 15 0.69490 0.83361 0.63595 0.72185 0.41322 2.50 2.49 0.634
60 30 0.99998 0.99999 0.54557 0.61970 0.51618 2.27 2.27 0.547
75 0 0.34262 0.58534 0.77166 0.87677 0.25945 3.07 3.02 0.765
75 7.5 0.67355 0.82070 0.64295 0.72973 0.40524 2.52 2.51 0.642
75 15 0.99996 0.99998 0.54557 0.61970 0.51618 2.27 2.27 0.547
90 0 0.33467 0.57850 0.77542 0.88124 0.25523 3.10 3.04 0.764
90 0 0.66599 0.81608 0.64546 0.73255 0.40238 2.52 2.52 0.643
90 0 1.00000 1.00000 0.54557 0.61970 0.51618 2.27 2.27 0.547

TABLE 3. Computed values for hemiwicking in triangular grooves. Values from Romero
& Yost (1996) denoted by RY are included for comparison. Note that α and θ are listed
in degrees, and that agreement with the RY values is assessed by comparing ηoRY with
η∗o ≡ (Cb + Cc)(1+ φ−1) and δRY with η+b .

The φ4 � 1 asymptotic solutions of § 7.1 begin to fail by φ & 0.4, but a semi-
analytic fit for the full domain 0 6 φ 6 1 is suggested by the third-order polynomial
functions of (7.4) and (7.5), which when applied to the numerical data set of
figure 11 yield curves that exactly satisfy the analytical solution as φ→ 0 and are
indistinguishable from the data with coefficients of determination equal to one. The fits
show that

Cb =
√

2
1+ φ (1− 0.0134φ + 0.0904φ2 − 0.2003φ3), (10.1)

Cc =
√

2φ2

1+ φ (1− 0.2733φ), (10.2)

which implicitly account for β since φ = φ(β). Such accurate fits arise from the single
parameter φ, which is determined by a simple ratio of viscous cross-section length
scales for the compound flow: see (4.9).

11. Summary
The corner flow solution of Weislogel & Lichter (1998) is combined with the

classical Lucas–Washburn solution to describe capillary rise in tubes with interior
corners. The solution is enabled by application of a constant curvature approximation
in the overlap region between the bulk and corner flows. It is argued that this region
is of fixed length which effectively shrinks to zero thickness as the flow lengthens
with time. The model adds a volume balance equation to the corner flow equation, and
through scaling identifies two parameters φ and β that may be determined a priori
for a given system: φ is the ratio of viscous cross-section length scales between
the corner and bulk flows and β is the corner flow saturation parameter at the bulk
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FIGURE 11. Coefficients Cb(1 + φ) and Cc(1 + φ) from (5.12) and (5.13) as a function of φ
for compound capillary flow in conduits with n-regular polygonal and acute rhombic sections,
and along grooved hemiwicking surfaces of triangular shape. All exact numerical solutions
from tables 1–3 are shown (symbols) along with asymptotic solutions (truncated dashed lines).
The semi-analytic fits agree with the data over the full range of φ with uncertainties typically
<1 % (solid lines).

meniscus. It is found for typical conduit types that φ and β are not independent. A
numerical similarity solution is solved, but for many practical flow conduits φ . 0.4,
and asymptotic expressions are available for the transient liquid column lengths and
flow rates. As suggested by theory, an excellent third-order polynomial fit to the
numerical data is accurate to ±. 1 % for all practical values of φ 6 1, and produces

l=√2(1− 0.0134φ + 0.0904φ2 − 0.2003φ3)

(
2H σFi

µ1s

)1/2

b

t1/2, (11.1)

L =√2φ2(1− 0.2733φ)
(

2H σFi

µ1s

)1/2

b

t1/2, (11.2)

Q= Ab√
2(1− 0.0134φ + 0.0904φ2 − 0.2003φ3)

(
2H σFi

µ1s

)1/2

b

t−1/2, (11.3)

where 2H is twice the mean curvature, Fi is an O(1) numerical constant, and 1s

is the scaled Laplacian operator for the bulk flow. Note that for the conduits of
this investigation where φ < 1, the influence of the corner flow on the overall flow
rate equation (11.3) is weak, despite the corner flow length representing a significant
proportion of the overall flow length equation (11.2).

The renowned Lucas–Washburn solutions for a single bulk meniscus are recovered
for φ = 0. The ‘low corner flow’ limit asymptotic solutions are recovered
neglecting O(φ3) terms, where l(t) and Q(t) are essentially unchanged from their
Lucas–Washburn forms despite the O(φ2) corner flows of negligible volume. In
general, however, the exact Lucas–Washburn solution is recovered only when the
bulk interface wetting condition θ 6 π/2 is satisfied and no compound capillary
flows are present, as is always the case for the right circular cylinder. For more
complex conduit sections such as containers with interior corners of half-angle α, the
Lucas–Washburn solutions are recovered only when the Concus–Finn corner wetting
condition θ 6 π/2 − α is not satisfied, whereupon β = 0 and thus φ = 0. When
θ 6 π/2 − α is satisfied, capillarity-driven corner flows advance ahead of the bulk
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meniscus, requiring the compound capillary flow approach. The approach outlined
herein solves both advancing bulk and corner flows via application of a common
capillary curvature (pressure) dynamical boundary condition. The corner flows remove
liquid from the bulk with the appearance of slowing the fluid by reducing l(t): see
(11.1). However, the flow rate is actually increased due to the reduction of the
bulk fluid viscous column length, as an increasing amount of the advancing fluid
is distributed along the corners ahead of the bulk column during the process: see
(11.3).

The present method serves as a model for both conduit and hemiwicking capillary
rise flows. The ease with which the approach is applied to the latter argues favourably
for its further development in this direction. In both cases, however, it is found that
the viscous section length ratio φ depends on the corner saturation parameter β (i.e.
φ ∼ β1/2), and only in the case of pure corner flow imbibition does it seem that φ is
ever greater than 1. In such instances, φ is infinite. An alternative similarity solution is
offered in § 6 for weakly forced flows of the form Q∼ t−1/2, where the dependence of
φ on β is decoupled. But this direction is not pursued in depth here.

For capillary rise, for certain acute rhombic sections and triangular groove surfaces
it is shown that φ = β1/2 with β determined by (8.8) and (9.1), respectively. The
method succeeds by simplifying the geometric complexities of the bulk flow, and in
particular the bulk curvature region which, for viscous flows, is essentially a finite
length region which occupies a decreasing proportion of the flow that is lengthening
with t1/2. The viscous cross-section length ratio φ must be determined a priori and
may be found by theoretical, numerical, or even experimental methods. Design-level
accuracy is achieved quickly using the Laplacian scaling method employed herein.
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Appendix

An alternative volume balance to (4.2) may be derived in terms of the corner flow
rate. In this case a dimensional balance yields

mFA

∫ l+L

l
h2 dz= mFAH2

∫ t

0
〈w〉|l dt̂, (A 1)

where from (2.9)

〈w〉|l =−
(

Fi2H σ

µ1s

)
c

1
H

∂h

∂z

∣∣∣∣
l

=−C′2c
H

∂h

∂z

∣∣∣∣
l

. (A 2)



646 M. M. Weislogel

Substitution of (A 2) into (A 1) and non-dimensionalization yields∫ l∗+L ∗

l
h∗2 dz∗ =− φ2

(1+ φ)2
∫ t∗

0

∂h∗

∂z∗

∣∣∣∣
l∗

dt̂∗, (A 3)

and (4.6) can be rewritten as

1

(1+ φ)2
∫ t∗

0
l∗−1 dt̂∗ = l∗ − βφ2

(1+ φ)2
∫ t∗

0

∂h∗

∂z∗

∣∣∣∣
l∗

dt̂∗. (A 4)

Differentiating (A 4) with respect to t∗ and rearranging yields

(1+ φ)2 l∗
dl∗

dt∗
− βφ2l∗

∂h∗

∂z∗

∣∣∣∣
l∗
= 1. (A 5)

The power law transform η = z∗t∗−1/2 of (5.1) converts (A 5) to

(1+ φ)2 t∗1/2l∗
dl∗

dt∗
− βφ2l∗F′(Cb)= t∗1/2, (A 6)

subject to l∗(0) = 0 and with F′(Cb) = constant determined numerically from (5.2). A
complementary solution to (A 6) yields

l∗ = βφ
2F′(Cb)

(1+ φ)2

3−
(

1+ 2 (1+ φ)2(
βφ2F′(Cb)

)2

)1/2
 t∗1/2 ≡ Cbt∗1/2, (A 7)

as expressed in (5.1), and converting to the F+(η+) form

l∗ = βφ2F+′(η+b )

(1+ φ)2 F+1/2(η+b )

3−
(

1+ 2 (1+ φ)2 F+(η+b )(
βφ2F+′(η+b )

)2

)1/2
 t∗1/2 ≡ Cbt∗1/2. (A 8)

Therefore,

Cb = βφ2F+′(η+b )

(1+ φ)2 F+1/2(η+b )

3−
(

1+ 2 (1+ φ)2 F+(η+b )(
βφ2F+′(η+b )

)2

)1/2
 , (A 9)

Cc = 1
F+1/2(η+b )

− βφ2F+′(η+b )

(1+ φ)2 F+1/2(η+b )

3−
(

1+ 2 (1+ φ)2 F+(η+b )(
βφ2F+′(η+b )

)2

)1/2
 . (A 10)

The simpler forms of (5.11) are preferred and pursued.
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