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ABSTRACT 
 
The building block hypothesis implies that genetic 
algorithm efficiency will be improved if sets of genes that 
improve fitness through epistatic interaction are near to one 
another on the chromosome.  We demonstrate this effect 
with a simple problem, and show that information-theoretic 
reconstructability analysis can be used to decide on optimal 
gene ordering. 
 

 
I. INTRODUCTION 

 
Holland’s schema theorem and the building block 

hypothesis suggest that the performance of a genetic 
algorithm (GA) might be improved if genes exhibiting 
epistasis, i.e., genes having a strong interaction effect in 
their effect on fitness, are near one another on the 
chromosome.  Genes that are close are less likely to be 
separated by the crossover operator, and alleles that have 
high fitness can constitute a building block for further 
evolution. Epistasis may thus imply the existence of an 
optimal gene order for a GA.  This suggests two questions.  
First, can it be shown that GAs work better if epistatically 
linked genes are close to one another?  Second, if such an 
effect exists, is it possible to extract information from data 
produced by the GA, so that we can modify the gene order 
(using a new genetic operator) to improve GA performance? 

  
In this paper, after describing the schema and 

building block hypotheses and their relevance to epistasis, 
we demonstrate the existence of a gene order effect in a very 
simple problem (Section II).  We then show that the 
methodology of reconstructability analysis can be used to 
discover preferred gene orders even from GA data produced 
by less preferred gene orders (Section III).  Finally, we 
discuss the results of these preliminary experiments and 
point to areas for future exploration (Section IV). 

 
 

II. SCHEMA THEOREM, BUILDING BLOCKS, 
AND EPISTASIS 

The schema theorem was first proposed by Holland 
(1975) as a description of how adaptive systems 
“persistently test and incorporate structural properties 
associated with better performance (p. 66).”  Although there 
is now some doubt as to how well it describes the dynamics 
of the GA search process (Thornton, 1997; Mitchell, 1995), 
it is still useful as a conceptual device, and we use it that 
way here.  According to the theorem, GAs work by parallel 
testing of multiple combinations of bit strings made up of 
the available alleles.  In the typical binary chromosome, the 
alleles may be represented as 1, 0, and * (don’t care).  Thus, 
110***11 is a schema (call it S1) of defining length eight 
and cardinality five.  Note that S1 contains a shorter schema 
(S2), 110*****, with a defining length and cardinality of 
three, and a third schema (S3), ******11.  In fact, a schema 
of defining length eight has 38 possible schemata embedded 
in it, but we shall here discuss just these three. 

 
If strings containing S2 have a higher-than-average 

fitness, then they will be preferentially selected, and S2 will 
act as a building block that can be assembled with other 
building blocks to create longer schemata and higher fitness 
bitstrings.  Since the ratio of the defining length to the 
cardinality is low, S2 is not likely to be broken up by the 
crossover operator.  The same argument applies to S3.  Now 
consider S1.  If bitstrings containing this schema have a 
higher than average fitness, they will be preferentially 
selected as well.  However, since the defining length of S1 
is large relative to its cardinality, it also stands a higher 
chance of being broken up during crossover.  If S2 and S3 
are both important to the fitness of S1, we would be better 
off changing the representation so that S2 and S3 are close 
together.  In other words, if S1 has high fitness, it would be 
more likely to survive recombination if we had some good 
reason to move the 11 alleles over to be adjacent to the 110 
alleles, i.e., to recode the genome so that this schema was 
11011***. 

 
Although the usefulness of short building blocks 

has long been understood, only a few researchers have 



addressed the issue of how changing gene order might 
facilitate reaching enhanced fitness.  Barbara McClintock is 
credited with discovering the importance of gene 
transposition in nature (McClintock, 1987).  This 
established transposition as a possible genetic operator 
available for use by GA researchers.  Goldberg, et al. (1993) 
developed the “fast messy” GA, which, among other things, 
allows the GA to evolve gene locations on the chromosome.  
They did this by coding stretches of the chromosome with a 
gene identifier, which specified the gene that part of the 
chromosome represented.  A given gene might start out 
overexpressed in a chromosome, because its identification 
code appears at two different locations. The program selects 
the first instance of the gene and ignores the rest.  
Alternatively, a gene might be underexpressed if it does not 
appear in the bitstring at all.  The program then applies a 
default template to supply the missing gene values.  As 
evolution proceeds, and the length of the GA is allowed to 
change from long to short and back to long again, those 
bitstrings with efficient gene orders will be preferentially 
selected.  Beasley et al. (1993) used a priori knowledge to 
code interactive genes into sub-problems, which are subject 
to separate evolutionary processes and are recombined each 
generation.  This requires that some exogenous process 
identify the sub-problems.  Simoes and Costa (1999) 
examined the usefulness of McClintock’s transposons as a 
replacement for the crossover operator. In their work, 
randomly selected runs of bitstrings were moved about on 
the chromosome.  No effort was made to record which 
bitstrings worked best together. 

 
The impact of one gene on the fitness contribution 

of another is called epistasis.  In the schema S1 discussed 
above, assume that the high fitness of S1 derives from an 
epistatic interaction between S2 and S3, and not merely 
from the separate high fitnesses of these two schemas.  This 
would be all the more reason for S2 and S3 to be adjacent to 
one another and constitute a compact building block. 

 
The matter might be more complex, however.  

While the tight coupling of high epistatic genes into 
building blocks might seem at first glance to be an 
unalloyed good, further reflection shows the advantage of 
repositioning genes on our illustrative chromosome accrues 
only after the good 110 and 11 alleles first occur on the 
genome, after which preservation of these alleles as a 
building block becomes advantageous. A different, indeed 
opposite, argument might apply to the process of searching 
for high fitness schemata.  During the early generations, the 
GA is still searching for good combinations of alleles, and 
crossover is the primary tool for searching out novel 
combinations.  If the 110 and 11 alleles exist on two 
different parental chromosomes, they are more likely to be 
recombined as the result of crossover if the genes are distant 

from one another.  In the work reported in this paper, 
however, we have observed only the benefits gained by 
placing epistatically linked genes close to one another.  This 
issue is addressed further in the Discussion section. 

 
III. DEMONSTRATING GENE ORDER 
EFFECTS IN A GENETIC ALGORITHM 

 
We here demonstrate the possibility of a gene order 

effect by using an extremely simple fitness function, namely 
the function (to be maximized) specified by equation 1.   

 
F = min( A/B, B/A ) * C  (1) 
 

where A, B, and C take on values between 0 and 3.0.  The 
minimization operation thus constrains the AB term to 
values less than or equal to 1.0 and fitness, F, to the range 
0.0 to 3.0.  The epistatic nature of the problem arises from 
the fact that the AB term is maximized (at 1.0) only if A and 
B are equal.  The C variable has no impact on the AB term, 
and contributes to overall fitness in simple proportion to its 
value.  From a theoretical standpoint, focusing exclusively 
on the imperative of retaining good building blocks, one 
would expect that a chromosome where the variables A and 
B were side by side would allow the GA to perform more 
efficiently than on with A and B separated by C.  Thus, in 
the six ways of ordering A, B, and C, four are expected to 
be good orders (ABC, BAC, CAB, CBA), and two are 
expected to be bad orders (ACB, BCA). 

 
The Genetic Algorithm we used employed standard 

binary encoding, with three 8-bit genes and a chromosome 
length that varied depending upon the requirements of the 
experiment. The GA parameters for all experiments 
included:  population 30, generations 30, mutation rate 0.01, 
crossover rate 1.0, and repetitions 100, with a new random 
seed for each repetition.  Crossover was single point, and 
occurred either at the gene boundary only, or any place on 
the chromosome, depending upon the experiment.  All six 
possible gene orders (four good, two bad) were tested.   

 
Results of the experiments are shown in figures 1-

3.   For each experiment, the results from the 100 runs of the 
six gene orders hypothesized to be good (those like CBA, 
that kept A and B together) were averaged together.  Results 
from runs of the two gene orders hypothesized to be bad 
were also averaged. 

 
Three experimental setups were used.  In the first 

setup, the chromosome length was set to 24 (short 
chromosome), and crossover was only allowed at the gene 
boundaries.  All of the genes were exons, that is, they all 
expressed values used in the solution of the problem.  For 
the second and third setups, the chromosome length was 



increased by the introduction of 108 bits of non-coding 
introns to the right of each gene (long chromosome).   
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Figure 1. GA effectiveness on short chromosomes 
when crossover is allowed at any place on the 
bitstring.  Effectiveness of good orders, where 
linked genes A and B are adjacent, is compared to 
effectiveness of bad orders, where linked genes are 
separated by gene C.  All genes are exons.  

 
The second experiment retained crossover at the 

gene boundary only, while the third allowed crossover 
anywhere on the length of the chromosome. Only the 
twenty-four bits in the three genes were exons.  
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Figure 2. GA effectiveness on long chromosomes 
with introns and crossover allowed at any place 
on the bitstring.  Effectiveness of good orders, 
where linked genes A and B are adjacent, is 
compared to effectiveness of bad orders, where 
linked genes are separated by gene C. Expressed 
genes (exons) are separated by 108 bits of non-
expressed genes (introns). 

 Figures 1-3 demonstrate that a small but definite 
improvement in the performance of the GA can be attained 
if genes are ordered optimally, i.e., if A and B are not 
separated by C.  The effect is small, but the genome itself is 
small, so a large gene order effect is not to be expected. 
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Figure 3. GA effectiveness on long chromosomes 
with crossover at gene boundaries.   Effectiveness 
of the good orders, where linked genes A and B are 
adjacent, is compared to effectiveness of bad orders, 
where linked genes are separated by gene C. 
Expressed genes (exons) are separated by 108 bits of 
non-expressed genes (introns). 

  
IV. DETECTING OPTIMAL GENE ORDER BY 
RECONSTRUCTABILITY ANALYSIS 

 
Assuming then that gene order matters, and that it 

might matter more dramatically for more complex genomes 
and fitness functions, the challenge is to find out what the 
optimum gene order is.  In this section we show that this 
determination is in fact achievable.  Information on 
F(A,B,C) is generated by the GA, and this information can 
be analyzed to find the optimal gene order, even when the 
GA is initially implemented with a non-optimal order.  We 
here show that this can be done using the methods of 
reconstructability analysis. 

   
Reconstructability Analysis 
 

Reconstructability analysis (RA) derives from 
Ashby (1964), and was developed by Broekstra, Cavallo, 
Cellier, Conant, Jones, Klir, Krippendorff, and others; an 
extensive bibliography is available in (Klir, 1986), and a 
compact summary of RA is available in (Zwick, 2000).  RA 
resembles log-linear (LL) methods (Bishop et al, 1978; 
Knoke & Burke, 1980), used widely in the social sciences, 
and where RA and LL methodologies overlap they are 
equivalent (Knoke & Burke, 1980; Krippendorff, 1986).  In 



RA (Klir, 1985), a probability or frequency distribution or a 
set-theoretic relation is decomposed (compressed, 
simplified) into component distributions or relations.  ABC 
might thus be decomposed into AB and BC projections, 
written as the structure, AB:BC.  The two linked bivariate 
distributions (or relations) constitute a model of the data. 

 
RA can model problems both where “independent 

variables” (inputs) and “dependent variables” (outputs) are 
distinguished (directed systems) and where this distinction 
is not made (neutral systems).  In the present case, we have 
a directed system, with independent variables (genes) A, B, 
and C, where the dependent variable is the fitness value, F.  
Consider “regression models” (Krippendorff, 1986) where 
there is no overlap between genes in the separate 
components of the model. These models are ABF:CF, 
ACF:BF, BCF:AF, and AF:BF:CF. Interaction between two 
variables (i.e. an epistatic link, an “interaction effect”), is 
indicated when the model places the two input variables 
next to one another along with output F.  So ABF:CF 
indicates that A and B together contribute to the fitness F 
separately from the contribution made by C to F.  It is also 
useful to look at “chain models” (Krippendorff, 1986), 
which feature overlapping of input variables (like 
ABF:BCF).  Chain models do not yield disjoint 
subproblems, but they indicate particular orders of variables 
on the chromosome, e.g., ABF:BCF corresponds to order 
ABC. 
 
RA Calculations 
 

Calculations were made using the RA software 
programs developed at Portland State University, now 
integrated into the package OCCAM (for the principle of 
parsimony and as an acronym for “Organizational 
Complexity Computation And Modeling”).  The earliest of 
these programs was developed by Zwick and Hosseini 
(Hosseini, Harmon, & Zwick, 1986); a review of RA 
methodology is offered in (Zwick, 2001a); a list of recent 
RA papers is given in (Zwick, 2001b).  The 
reconstructability analysis was conducted on a dataset 
generated by multiple runs of the GA, using the two bad 
orders only.  Results are shown in Table 1.   

 
Using the same parameters as experiment 1, these 

runs first saved all members of the population, in excess of 
ten thousand records.  Then, to select data associated with 
the most fit solutions, the highest scoring members of that 
population were extracted. The cutoff point was a fitness of 
at least 2.0, and a total of 7,800 records resulted.  Values of 
A,B,C, and F were then discretized into 5 equally spaced 
bins, and the results were analyzed by the OCCAM software 
package.  

 

Table 1. Reconstructability Analysis Results.  I is 
the information captured in the model, relative to 
100% knowledge of F for the top model ABCF 
where the joint dependence of F on all genes is 
known, and 0% knowledge of F for the bottom 
model, where A,B, and C are all unknown. 
Regression models are in bold, and chain models are 
in italics. Other models are shown in smaller font. 

ABCF                1.000 
ABF:ACF:BCF     0.999 
ABF:BCF         0.999 
ABF:ACF         0.994 
ABF:CF          0.980 
ACF:BCF         0.659 
AF:BCF          0.655 
ACF:BF          0.653 
AF:BF:CF        0.639 
BCF             0.631 
BF:CF           0.616 
ACF             0.610 
AF:CF           0.591 
CF              0.554 
ABF             0.358 
AF:BF           0.092 
BF              0.067 
AF              0.039 
F 0.000 

 
 
The RA results of Table 1 show that models 

corresponding to good gene orders are clearly superior to 
those with bad gene orders.   Consider first the regression 
models, shown in the table in bold. These models assess the 
possible partitions of the problem into disjoint subproblems.  
Of the 4 regression models, ABF:CF is clearly the best, 
indicating that A and B are epistatically linked, while C 
make an independent contribution to fitness. This suggests 
that A and B should be placed near one another.   Consider 
now the chain models, shown in the table in italics, which 
directly indicate how well different gene orders fit the data.  
ABF:BCF and ABF:ACF, corresponding to orders ABC 
(and CBA) and BAC (and CAB), respectively, are the best 
models, in agreement with the implications of the regression 
models. These models as well support the idea that A and B 
should be adjacent. 

 
V. DISCUSSION 

 
For the simple test problem shown, where a part of 

the solution depends on the interaction of epistatic genes, 
the good orders (those that kept epistatic genes together) 



found better solutions faster than did orders that separated 
the epistatic genes.  The gene order effect was small, but in 
more problems with more variables, it may become more 
substantial.  The relative effectiveness of the two sets of 
orders changed throughout the experiments.  At the 
beginning, roughly the first five generations, the bad orders 
performed about the same as the good ones.  For the next 
twenty generations the good orders performed better.  In the 
end game, when both were approaching the solution 
asymptotically, the bad orders slowly caught up, but were 
still behind the performance of the good orders at the end. 

 
It was noted above in Section II that the impact of 

separation on epistatic genes might be more complex than 
what is suggested by the main results of this paper.  
Specifically, one might expect that in the early phases of a 
GA run, epistatically linked genes should best be located far 
from one another.  This is based on the supposition that at 
the beginning of the search it may be useful for all genes to 
be mixed as much as possible by the crossover operator.  If 
two epistatic genes are side-by-side from the beginning, 
then crossover would have less chance of improving them, 
and the GA would have to depend upon a good initialization 
and fortunate mutations to create the best gene pair possible.  
If, on the other hand, two epistatic genes start out well 
separated, the crossover operation might more easily 
assemble a larger selection of allele patterns in the two 
genes.  These expectations are under continuing 
investigation, but so far we have not seen any clear evidence 
for them, i.e., for the better performance at the beginning of 
GA runs of orders which separate A and B. Our runs start 
out with good and bad order nearly equivalent in 
performance.  At some point, the separation of A and B by 
C in “bad” orders definitely becomes a handicap, and that 
these orders fall behind the others.  

 
Reconstructability analysis allows one to find the 

simplest models that retain high information about the data.  
The top model, ABCF, includes interactions among all 
variables, but Table 1 shows that ABF:CF has virtually 
complete information (98%), so solving the ABF and CF 
subproblems separately and merging the answers would 
probably give a good result.  We suggest that this might be a 
way to solve Beasley et al.’s problem of a priori 
identification of subproblems for expansive coding.  Using 
RA to decompose optimization problems into subproblems 
might of course also be useful for optimization methods 
other than the GA. 

 
The success of this experiment means that in 

principle we have a way to restructure the genome of a GA 
based on data that the GA itself generates.  This might speed 
up processing in a particular GA run, if the optimum order 
can be detected early enough for the GA to gain an 

advantage from gene reordering.  It could also offer a way 
to build a GA that is optimized for a specific type of 
problem.  To use a real-world example, one of the authors 
recently studied the use of a GA to solve an inventory and 
distribution problem (Shervais, 2000a, 2000b).  One would 
expect that any set of such problems with the identical 
number and structure of nodes and stocks could use 
information generated by the first specific problem to be 
addressed.  Alternatively, we may be able to apply RA to 
binned data to prestructure the genome for optimizing the 
fitness of the original unbinned variables.  This may become 
useful as we search for more complex problems to test this 
approach on. 
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