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Viruses of thermophilic Archaea are unique in both their structures and genomic sequences.
The most widespread and arguably best studied are the lemon-shaped fuselloviruses. The
spindle-shaped virus morphology is unique to Archaea but widespread therein. The best
studied fusellovirus is SSV1 from Beppu, Japan, which infects Sulfolobus solfataricus. Very
little is known about the function of the genes in the SSV1 genome. Recently we have devel-
oped genetic tools to analyze these genes. In this study, we have deleted three SSV1 open
reading frames (ORFs) ranging from completely conserved to poorly conserved: VP2, d244,
and b129. Deletion of the universally conserved ORF b129, which encodes a predicted tran-
scriptional regulator, results in loss of infectivity. Deletion of the poorly conserved predicted
DNA-binding protein gene VP2 yields viable virus that is indistinguishable from wild-type.
Deletion of the well-conserved ORF d244 that encodes a predicted nuclease yields viable
virus. However, infection of S. solfataricus with virus lacking ORF d244 dramatically retards
host growth, compared to the wild-type virus.

Keywords: DNA binding, nuclease, transcription factor

INTRODUCTION
Viruses of Archaea are very poorly understood with only about
50 known archaeal viruses relative to the ca. 5000 character-
ized viruses of bacteria, plants, and animals (Pina et al., 2011).
The best studied of archaeal viruses are those infecting the ther-
moacidophiles, with an unprecedented new seven virus families
introduced in the last few years to accommodate the astonish-
ing morphological and sequence diversity present in these viruses
(Pina et al., 2011).

The Sulfolobus spindle-shaped viruses (SSVs) of the family
Fuselloviridae were the first discovered and probably the best stud-
ied family of archaeal viruses. SSVs are found throughout the
world in high temperature (>70◦C) and acidic (pH < 4) envi-
ronments where their hosts, Sulfolobus solfataricus and its close
relatives thrive (Wiedenheft et al., 2004; Held and Whitaker, 2009).
The type virus, SSV1, encodes a positively supercoiled, 15.5 kbp
circular dsDNA genome (NC_001338.1) that is enclosed within a
lemon or spindle-shaped capsid (Yeats et al., 1982; Martin et al.,
1984; Nadal et al., 1986). The genome encodes 34 open reading
frames (ORFs; Palm et al., 1991), most of which have no recog-
nizable homologs apart from other Fuselloviridae. The only SSV1
gene with clear homology to proteins outside the Fuselloviridae
is the viral integrase, encoded by ORF d355. The main struc-
tural proteins purified from virus particles are the major and
minor capsid proteins VP1 and VP3 and the putative DNA pack-
aging protein VP2 (Reiter et al., 1987a). More recently, mass
spectrometric analysis of SSV1 virions revealed two additional
proteins, the products of ORFs c792 and d244 (Menon et al., 2008;
Figure 1).

In the absence of homologous sequences, three complementary
approaches have been used to try and determine the function of
the proteins encoded in the SSV1 genome; structural genomics,
comparative genomics, and genetics. Atomic resolution structures
have been obtained by C. Martin Lawrence and his group for

proteins encoded by SSV1 ORFs b129, f112, d63, e96, f93, and
d244 or their homologs from other fuselloviruses. The products
of ORFs b129, f112, and f93 resemble transcriptional regulators
and d244 a novel nuclease (Lawrence et al., 2009; Menon et al.,
2010). However, the function of these proteins in virus replication
remains to be determined. Two of these ORFs, b129 and d244, are
the targets of the current study.

In parallel, we and others have undertaken comparative
genomic studies. Fifteen ORFs are completely conserved in 12
canonical SSV genomes (Stedman et al., 2003; Wiedenheft et al.,
2004; Held and Whitaker, 2009; Redder et al., 2009; Stedman,
unpublished; Figure 1). Most of the universally conserved genes
are clustered in half of the genome with the notable exception of
the VP2 gene, a target of this study. Conservation in the rest of
the genome is lower. Nonetheless, there are very few completely
unique genes in the SSV1 genome (Figure 1). It is highly probable
that the conserved genes are required for virus function, but again
this has not been confirmed.

We developed methods for gene disruption in order to deter-
mine the requirements for genes in the virus genome directly.
About 10 years ago, we showed that four SSV1 ORFs did not
tolerate insertion of the 3.2 kbp pBluescript plasmid and allow
virus function. Twelve other SSV1 ORFs appeared, indirectly,
to not tolerate insertion. However, two ORFs, e178 and e51,
were able to tolerate insertion of the entire pBluescript plas-
mid (Stedman et al., 1999). This result allowed the development
of viral shuttle vectors and the beginnings of Sulfolobus genet-
ics (Jonuscheit et al., 2003). Insertion of the pBluescript plasmid
and up to ca. 5 kbp of exogenous DNA in these ORFs does
not appear to have a noticeable effect on virus function (Sted-
man et al., 1999; Jonuscheit et al., 2003; Clore and Stedman, 2006;
Albers et al., 2006).

However, insertion of large DNA fragments into the SSV1
genome is not straightforward and the possible insertion locations
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FIGURE 1 | Genome map of SSV1. Open reading frames are shown as block
arrows and labeled as in Palm et al. (1991). Virus structural protein genes
(Reiter et al., 1987a) and other proteins found in the virion (Menon et al., 2008)
are outlined in red and labeled as “in virion.” Conservation of open reading
frames in 12 canonical SSV genomes (SSV1, SSV2, SSV3, SSV4, SSV5,
SSVRH, SSVK1, SSVL, SSVKM1, SSVKU1, SSVL2, and SSVGV1; Redder et al.,
2009; Held and Whitaker, 2009; Stedman, unpublished) is listed with the
color code in the middle of the genome with ORFs conserved in 12 genomes
in black, ORFs conserved in 11 genomes in dark blue, etc. ORFs which did

not tolerate insertion of the pBluescript plasmid are labeled as “Essential” in
blue type. ORFs allowing insertion of the pBluescript plasmid without loss of
virus function are labeled as “not essential” (Stedman et al., 1999). All ORFs
whose products have been crystallized and structure determined are labeled
as “Structure” (Lawrence et al., 2009; Menon et al., 2010). The gene for the
SSV1-integrase is labeled in green and was shown to be not essential by
deletion (Clore and Stedman, 2006). Transcripts are labeled as curved thin
arrows (Reiter et al., 1987b; Fröls et al., 2007). ORFs targeted in this study are
indicated with large arrows outside the genome map.

are limited. Therefore, Long Inverse PCR (LIPCR) using high-
fidelity highly processive DNA polymerases (e.g., Phusion�)
was developed to specifically change the SSV1 genome at sin-
gle nucleotide resolution. LIPCR was used to delete precisely
the SSV1 viral integrase gene. Surprisingly, this “integrase-less”
SSV1 was functional (Clore and Stedman, 2006). However, con-
sistent with its conservation, the virus lacking the integrase gene
is at a competitive disadvantage relative to integrase-containing
viruses (Clore and Stedman, 2006). All of the SSV1 ORFs that
can be deleted or tolerate insertion without abrogating virus func-
tion are in the “early” transcript, T5, that is induced soon after
UV-irradiation of SSV-infected cultures (Reiter et al., 1987b; Fröls
et al., 2007).

Three ORFs in the SSV1 genome were targeted for gene disrup-
tion in this study. The VP2 gene (NP_039802.1) was chosen for
disruption because it is only present in SSV1 and the very distantly
related SSV6 (Held and Whitaker, 2009; Redder et al., 2009), and
is in the middle of the most highly conserved part of fusellovirus
genomes (Figure 1). VP2 has DNA-binding activity (Reiter et al.,
1987a; Iverson and Stedman, unpublished) that is presumably
required for DNA packaging. ORF b129 (NP_039795.1) was cho-
sen because it is intolerant of insertional mutagenesis (Stedman
et al., 1999), a high resolution structure is known (Lawrence et al.,
2009) and the gene is completely conserved in all SSVs (Figure 1).
Finally, ORF d244 (NP_039781.1) was chosen for gene disruption
because a high-resolution structure of its homolog from SSVRH

Frontiers in Microbiology | Evolutionary and Genomic Microbiology June 2012 | Volume 3 | Article 200 | 2

http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology/
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology/archive


“fmicb-03-00200” — 2012/6/1 — 18:06 — page 3 — #3

Iverson and Stedman Genetics of SSV1

is known (Menon et al., 2008) and it is conserved in most SSV
genomes with the exception of SSVK1.

MATERIALS AND METHODS
CULTURE CONDITIONS
Sulfolobus solfataricus strains, Table 1, were grown aerobically at
76◦C on plates or in liquid media containing yeast extract and
sucrose as carbon and energy sources (YS Media), both as in
Jonuscheit et al. (2003). Escherichia coli strains were grown in LB
medium at 37◦C as suggested by the manufacturer (Novagen).

PURIFICATION OF DNA
Plasmid DNA used for LIPCR was purified from E. coli using the
alkaline lysis method of Birnboim and Doly (1979). Plasmid DNA
used to transform Sulfolobus was purified using the GeneJet Plas-
mid Purification Kit (Fermentas) following the manufacturer’s
protocols. Total genomic DNA was isolated from S. solfatari-
cus in late log phase growth (OD600 ∼0.6) as in Stedman et al.
(1999). Plasmid DNA was purified from a 50 mL culture of S. sol-
fataricus transformed with SSV-�d244 (late log, OD600 ∼0.6)
using the GeneJet plasmid purification kit (Fermentas) following
the manufacturer’s protocols. This DNA was retransformed into
E. coli (Novagen), purified therefrom and analyzed by restriction
endonuclease digestion with EcoRI (Fermentas).

CONSTRUCTION OF SSV1 DELETION MUTANTS
Deletion mutants were constructed from the pAJC97 shuttle vector
using LIPCR (Clore and Stedman, 2006). Primers were designed
to overlap with the start and stop codon of the ORF to be deleted
to keep the deletion in frame. Initially primers were designed
using the archaea genome browser1. Primer melting tempera-
tures were matched and then checked for potential primer dimer
and secondary structure formation using online tools from IDT2.
Table 2 contains a list of oligonucleotide sequences used. LIPCR
was performed using Phusion� High-Fidelity DNA Polymerase
(NEB/Finnzymes) at a final concentration of 0.005 U/μL. LIPCR
cycling conditions as follows: initial denaturation at 98◦C for
3 min; 35 cycles of 98◦C for 15 s, annealing for 15 s, 72◦C for
6 min, and a final extension at 72◦C for 6 min. The annealing
temperatures for deletion of VP2, ORF d244, and ORF b129 were
59, 53, and 66◦C, respectively. DNA was precipitated directly from
LIPCR reactions using sodium acetate at a final concentration of
0.3 M and 95% EtOH. This DNA was phosphorylated using T4
polynucleotide kinase according to the manufacturer’s protocols
(Fermentas). DNA was ligated overnight (∼20 h) at 16◦C using
5 Weiss units of T4 DNA ligase (Fermentas). Ligated DNA was
transformed into NovaBlue Singles chemically competent E. coli
following the manufacturer’s protocol (Novagen). Plasmids were
purified from single colonies and deletion constructs were identi-
fied by restriction endonuclease digestions. The deletion borders
were confirmed by sequencing of the plasmids.

ELECTROPORATION OF SULFOLOBUS
Purified plasmid DNA was electroportated into Sulfolobus strain
G� as in Schleper et al. (1992). Following electroporation (400�,

1http://archaea.ucsc.edu
2http://www.idtdna.com

1.5 kV, 25 μF), cells were immediately resuspended in 1 mL of
YS media at 75◦C and incubated for 1 h at 75◦C. The cells were
then added to 50 mL of prewarmed YS media (75◦C) and grown
in liquid media as outlined below.

SCREEN FOR FUNCTIONAL INFECTIOUS VIRUS/HALO ASSAY
To confirm the presence of infectious virus, halo assays were per-
formed in duplicate 48 and 72 h post-electroporation (Stedman
et al., 2003). Uninfected Sulfolobus G� cells were diluted to an
OD600 nm = ∼0.3 and allowed to grow until the OD600 nm
reached ∼0.35 (about 2.5 h). Half of a milliliter of this unin-
fected culture was added to 5 mL YS media containing 0.2% wt/vol
Gelrite� as a softlayer and poured onto prewarmed YS plates. Two
microliters of supernatant from electroporated cultures was spot-
ted onto the lawns and plates were incubated at 75◦C for up to
3 days. A halo of host growth inhibition, typically observed 48–
72 h after incubation, indicated the presence of an infectious virus
(Figure 2).

GROWTH CURVES
Portions of halos of growth inhibition from infected S. solfataricus
G� cells were removed from plates with a sterile pipette tip and
inoculated into liquid YS media. The culture was grown to an
OD600 nm of ∼0.6. One milliliter of this culture was diluted in
100 mL YS media to an OD600 ∼0.050. Cultures were placed in
a shaking incubator at 75◦C and the OD600 nm was measured

FIGURE 2 | Typical growth inhibition of S. solfataricus on plates due to

infectious virus. Lawns of S. solfataricus strain G� were prepared as in
Stedman et al. (2003). Two microliters of supernatant from cultures
transformed with either (A) SSV-�VP2 or (B) SSV-�d244 were placed on
the lawns where indicated. � indicates where SSV-�VP2 was spotted, �D
where SSV-�d244 was spotted. P indicates SSV-WT spotted as a positive
control. T or Tx indicates 2 μL of 0.01% Triton X-100 spotted as a control for
lawn growth.
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every 24 h. After 96 h, 1 mL of culture was diluted into 100 mL
fresh YS media and returned to 75◦C. One milliliter of culture was
removed 72 h after each dilution, cells removed by centrifugation
(14000 rpm for 5 min in a microcentrifuge) and the supernatant
was screened for virus using the halo assay above.

TRANSMISSION ELECTRON MICROSCOPY
Supernatant from infected cultures was collected by centrifugation
at 14,000 rpm for 5 min in a microcentrifuge. Five microliters of
supernatant was absorbed onto a 400 mesh carbon/formvar grid
(Ted Pella) for 2 min and negatively stained with 2% uranyl acetate
for 20 sec. Grids were viewed on a JEOL 100CX TEM operated at
100 keV and images captured with a Gatan imager.

RESULTS
SSV1 IS INFECTIOUS WITHOUT THE VP2 GENE
The VP2 protein was purified from SSV1 virus particles and
reported to be a DNA-binding protein (Reiter et al., 1987a). Sur-
prisingly, a gene for VP2 was not found in SSV2 (Stedman et al.,
2003) or SSVRH or SSVK1 (Wiedenheft et al., 2004). Moreover,
a homolog is not present in the S. solfataricus or S. islandicus
genomes (She et al., 2001; Reno et al., 2009; Guo et al., 2011). How-
ever, a very distant relative of SSV1, SSV6, which also contains an
atypical putative tail fiber protein, has a VP2 gene (Redder et al.,
2009). Thus, it is not clear whether SSV1 can function without a
VP2 gene.

Therefore, we made an in-frame deletion of the majority of
the VP2 gene by LIPCR in the context of the pAJC97 SSV1 shuttle
vector (Clore and Stedman, 2006), leaving the first four codons and
the last four codons (including the stop codon) of the ORF intact
(see Table 1). The putative promoter for the T9 “early” transcript
was also left intact. The construct containing the deletion, pAJC97-
�VP2, is hereafter referred to as SSV-�VP2.

To determine if the SSV-�VP2 was able to make infectious
virus, the shuttle vector was electroporated into S. solfataricus
strain G�. Two days after electroporation, the supernatant from
the transformed strains caused inhibition of growth of uninfected
S. solfataricus strain G� on plates (Figure 2) that was indistin-
guishable from growth inhibition caused by the virus containing
the VP2 gene. Similar growth inhibition was also observed on
lawns of uninfected S. solfataricus strain S443, a new S. solfa-
taricus isolate from Lassen Volcanic National Park that is a host

Table 1 | Strains and plasmid vectors used in this work.

Strain/vector Description Reference

S. solfataricus G� MT4 Derivative Cannio et al. (1998)

S. solfataricus S443 Novel Sulfolobus isolate Unpublished data

E. coli NovaBlue� Expression strain Novagen, Inc.

pAJC97 SSV1 with TOPO PCR Blunt II Clore and Stedman

(2006)

pAJC97-�VP2 pAJC97 lacking VP2 gene This Work

pAJC97-�d244 pAJC97 lacking ORF d244 This Work

pAJC97-�b129 pAJC97 lacking ORF b129 This Work

for all tested SSVs (Ceballos et al., in preparation). Moreover,
the supernatant contained SSV-like particles when observed by
transmission electron microscopy (Figure 3).

Infection by wild-type SSV1 and shuttle vectors does not dras-
tically slow growth of cells in liquid culture for unknown reasons
(Martin et al., 1984; Schleper et al., 1992; Stedman et al., 1999). The
same is true of SSV-�VP2 (Figure 4). Infection with SSV-�VP2
was confirmed via PCR amplification (data not shown)

SSV1 CONSTRUCTS LACKING THE CONSERVED ORF b129 DO NOT
APPEAR TO MAKE INFECTIVE VIRUSES
The b129 ORF in SSV1 is universally conserved in all fuselloviruses
(Redder et al., 2009). Moreover shuttle vectors with pBluescript
inserted into ORF b129 did not produce infective virus when
electroporated into Sulfolobus (Stedman et al., 1999). However,
a similar insertion mutant in the equally conserved SSV1 viral
integrase appears to be non-functional (Stedman et al., 1999),
but an in-frame deletion was functional (Clore and Stedman,
2006). A structure for the b129 ORF is also known (Lawrence
et al., 2009) and it contains two Zn-finger putative DNA-binding
motifs.

The b129 ORF was deleted with LIPCR. The deletion of the
b129 ORF left the first four and last two codons of the ORF intact
and maintained the predicted T3 promoter (Reiter et al., 1987b).
This construct is referred to as SSV-�b129. Unlike the SSV-�VP2
construct, supernatants from Sulfolobus cells electroporated with
SSV1-�b129 did not cause zones of growth inhibition when spot-
ted on lawns of uninfected S. solfataricus strain G�. A total of
nine independent transformations were performed in which the
wild-type virus consistently caused growth inhibition but SSV-
�b129 did not. Moreover, no halos of growth inhibition were
formed on lawns of S. solfataricus strain S443. It is not cur-
rently known at which step of virus replication the SSV-�b129 is
deficient.

SSV1 LACKING ORF d244 IS INFECTIOUS BUT HAS A
NOVEL PHENOTYPE
SSV1 ORF d244 is in the UV-inducible transcript T5, upstream of
the viral integrase gene (Figure 1). The entire pBluescript plasmid
can be inserted into the ORF directly upstream of ORF d244 with-
out abrogating SSV1 function (Stedman et al., 1999). ORF d244 is
well conserved in other Fusellovirus genomes with the exception
of SSVK1 (Wiedenheft et al., 2004; Redder et al., 2009). The X-ray
crystal structure of the homolog of SSV1 ORF d244, SSVRH ORF
d212 has been solved and it is predicted to be a nuclease (Menon
et al., 2010). Moreover, the product of ORF d244 has been reported
to be in purified SSV1 particles (Menon et al., 2008).

The SSV1 d244 ORF was deleted with LIPCR. The deletion of
the d244 ORF left the first two and last three codons of the ORF
intact as well as maintained the ORF to avoid polar effects. This
construct is referred to as SSV-�d244.

To determine if SSV-�d244 was able to make infectious virus,
the shuttle vector was electroporated into S. solfataricus strain
G�. Two days after electroporation, the supernatant from the
transformed strains caused inhibition of growth of uninfected
S. solfataricus strain G� on plates (Figure 2) and also inhib-
ited growth of S. solfataricus strain S443 (data not shown).
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Table 2 | Oligonucleotides used in this work.

Name Sequence Description

VP2 LIPCR F 5′-CAC CGC AAG TAG GCC-3′ Flanks VP2 gene for deletion

VP2 LIPCR R 5′-CAC CCA CTT CAT ATC ACT CC-3′ Flanks VP2 gene for deletion

d244 LIPCR F 5′-ATC CAT TTA CCA TAA TCC ACC-3′ Flanks ORF d244 for deletion

d244 LIPCR R 5′-GGA AAA TGA TAT TCA ACT CAG AGG-3′ Flanks ORF d244 for deletion

b129 LIPCR F 5′-AGT TAG GCT CTT TTT AAA GTC TAC C-3′ Flanks ORF b129 for deletion

b129 LIPCR R 5′-TGA CTC CGT CAT CCT CTA AC-3′ Flanks ORF b129 for deletion

VP2 Check F 5′-ATT CAG ATT CTG WAT WCA GAA C-3′ Amplifies VP2 gene and flanking sequences

VP2 Check R 5′-TCS CCT AAC GCA CTC ATC-3′ Amplifies VP2 gene and flanking sequences

d244 Check F 5′-GGA ACT CCT CTC ATT AAC C-3′ Amplifies ORF d244 and flanking sequences

d244 Check R 5′-GAT CAT CAA CGA GTA TAT TGA CC-3′ Amplifies ORF d244 and flanking sequences

b129 Check F 5′-ATG AAG GCT GAG GAA ACA ATC GTG-3′ Amplifies ORF b129 and flanking sequences

b129 Check R 5′-TTA ATA TAG CTG CGA TGC AGT ATA GTT TAT TTG TGC-3′ Amplifies ORF b129 and flanking sequences

*Underlined sequence indicates ORF.

FIGURE 3 |Transmission electron micrographs of SSV particles.

Supernatants from cultures of S. solfataricus strain G� transformed
with (A) pAJC97, (B) SSV-�VP2, (C) SSV-�d244, were negatively

stained with uranyl acetate and observed with a JEOL 100CX
transmission electron microscope. Bar represents 0.2 μm (B) or
0.5 μm (A,C).

The supernatant contained SSV-like particles when observed by
transmission electron microscopy (Figure 3).

Infection by wild-type SSV1, shuttle vectors and SSV-�VP2
does not slow growth of cells in liquid culture (Martin et al.,
1984; Schleper et al., 1992; Stedman et al., 1999; see above).
However, infection by SSV-�d244 drastically slows growth of
S. solfataricus strains G� and S443 in liquid culture (Figure 4).
Infection with SSV-�d244 was confirmed via PCR. Moreover,
restriction endonuclease digestion of viral DNA recovered from
transformed S. solfataricus cells and retransformed into E. coli
revealed no obvious alterations of the SSV-�d244 construct (data
not shown).

DISCUSSION
THE PUTATIVE DNA PACKAGING PROTEIN VP2 IS NOT REQUIRED
FOR SSV1 FUNCTION
The deletion of VP2 from SSV1 results in a functional virus that
is indistinguishable from the wild-type virus (Figures 2–4). Based
on the lack of conservation of VP2 this result is not completely

unexpected. However, almost all viruses contain a genome packag-
ing protein. There is no clear sequence homolog of VP2 in the host
genome, but there are a number of small DNA-binding proteins,
such as Sso7d or Cren7 that may be able to functionally substi-
tute for VP2 in SSV1 genome packaging (Choli et al., 1988; Guo
et al., 2008). This will be tested with mass spectrometry of SSV-
�VP2 particles. Alternatively, the VP2 protein may be involved in
maintenance of the positive supercoiling of the SSV1 viral genome
(Nadal et al., 1986). It would be interesting to know if the topology
of the viral DNA is affected by the absence of VP2. It is predicted
that positive supercoiling should increase the thermal stability of
the DNA, so SSV-�VP2 may be less thermally stable than the
wild-type virus.

The VP2 gene may be more prevalent than previously thought.
VP2-like sequences have been reported from metagenomic studies,
one in an acid mine drainage metagenome (Andersson and Ban-
field, 2008) and the other from Boiling Springs Lake in California
(Diemer and Stedman, unpublished). These VP2 genes may be in
the context of a SSV6 or ASV-like genome (Redder et al., 2009).
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FIGURE 4 |Typical growth inhibition in liquid culture of virus

constructs. Cultures of S. solfataricus G� infected with wild-type SSV1,
diamonds, SSV-�VP2, triangles and SSV-�d244, squares, were diluted inYS
media to equal starting OD600 nm and incubated at 75◦C. At the indicated
times, samples were removed and the OD600 nm was determined and the
presence of virus was confirmed in each culture via halo assay. After 96 h,
1 mL of cells were diluted 1:100 in fresh YS media and returned to 75◦C.

THE PRODUCT OF ORF b129 APPEARS TO BE ESSENTIAL FOR SSV1
INFECTIVITY
Homologs of SSV1 ORF b129 are present in all known SSVs
(Redder et al., 2009). The b129 ORF also does not tolerate inser-
tion of the pBluescript plasmid (Stedman et al., 1999). Thus, it
is not surprising that deletion of ORF b129 leads to an incom-
pletely replicating virus. However, the SSV1 integrase, a gene also
conserved in all fuselloviruses, did not appear to tolerate inser-
tion of pBluescript (Stedman et al., 1999), but could be deleted
with LIPCR without abrogating virus function (Clore and Sted-
man, 2006). This indicates that either polar effects are important,
which seems unlikely since the SSV1 integrase is at the end of the
T5 transcript, or that insufficient replicate transformations were
performed in the earlier study.

Nine replicate transformations of S. solfataricus with SSV-
�b129 did not generate functional virus. However, we can-
not absolutely determine that SSV1 ORF b129 is essential for
virus function without complementation experiments, which are
underway. The reasons for the apparent necessity of SSV1 ORF
b129 are unclear, but the structure of the b129 ORF product,
a predicted transcriptional regulator (Lawrence et al., 2009) and
induction of the T6 transcript containing ORF b129 after UV-
irradiation (Reiter et al., 1987b; Fröls et al., 2007) provides clues to
its function.

The assay used herein for virus infection, ability to cause a zone
of growth inhibition on a lawn of uninfected cells, is for virus
spread and infectivity. There are many other aspects of virus repli-
cation that could be affected by disruption of ORF b129. An attrac-
tive hypothesis is that the b129 protein activates transcription of
virus structural genes encoded by the “late” transcripts T7/8/9, T1,
and T2 (Reiter et al., 1987b; Fröls et al., 2007; see Figure 1). This
would be one of very few archaeal transcriptional activators char-
acterized to date and the only the second archaeal viral transcrip-
tional activator (Kessler et al., 2006). Thus, the SSV-�b129 con-
struct may be able to replicate its genome, integrate into the host,

and have genome replication induced by UV-irradiation or some
subset of these activities. Experiments to test these hypotheses are
underway.

TRANSFECTION WITH SSV-�d244 PRODUCES VIRUS AND RETARDS
HOST CELL GROWTH
The SSV1 d244 ORF is well-conserved in fuselloviruses with the
exception of SSVK1 (Wiedenheft et al., 2004; Redder et al., 2009).
However, SSV1 lacking ORF d244 clearly makes infectious virus
particles (Figures 2 and 3). Moreover, the zones of clearing pro-
duced by supernatants of cells transfected with SSV-�d244 are
clearer than those produced by either the wild-type or SSV-�VP2
viruses (Figure 3; unpublished data). They are reminiscent of
zones of clearing produced by SSVK1 (data not shown). Unlike
wild-type virus and SSV-�VP2, transfection by SSV-�d244 leads
to drastically reduced host growth (Figure 4). The reasons for
this growth inhibition are unclear. Similar growth phenotypes
have been observed in SSVK1 infections (Stedman et al., in prepa-
ration). SSVK1 consistently produces more virus than similar
cultures of the wild-type virus, so this may account for the growth
defect (unpublished data). Whether SSV-�d244 consistently pro-
duces more virus than the wild-type or SSV-�VP2 is currently
unknown.

The structure of the product of SSV1 ORF d244 is a predicted
nuclease (Menon et al., 2010), similar to Holiday junction resolvase
enzymes. Why the lack of a resolvase leads to slower host growth
is unclear. Possibly SSV1 ORF d244 is involved in the specificity
of SSV1 integration. SSV-K1 is known to integrate into multi-
ple positions in the host genome (Wiedenheft et al., 2004), which
may contribute to its higher copy number. Whether SSV-�d244
integrates into multiple positions in the host genome is under
investigation. On the other hand, there may be a defect in SSV-
�d244 replication or resolution of SSV replication intermediates
that leads to accumulation of aberrant DNA, which, in turn, leads
to slower host growth.

After multiple transfers of Sulfolobus cultures transfected with
SSV-�d244 into fresh media, growth rates recover to near wild-
type rates (unpublished data). The virus is still present in these
cultures by PCR and is able to inhibit Sulfolobus growth on plates
(unpublished data) so the virus is not lost or apparently rear-
ranged (see Results). Whether there are other genetic changes in
the virus or host under these conditions remains to be determined.
One attractive possibility is changes to the CRISPR repeat struc-
tures that are proposed to be important for acquired immunity in
Sulfolobus (Held and Whitaker, 2009).

SUMMARY AND OUTLOOK
Comparative and structural genomics has identified a number
of targets for gene disruption in the SSV1 genome. Here pre-
cise gene disruptions of the poorly conserved VP2 gene, and the
well-conserved ORFs b129 and d244 are described. Deletions in
VP2 may allow insights into DNA packaging in the SSV1 genome.
Deletion of ORF b129 may allow the identification of the second
archaeal virus transcriptional activator. Deletion of ORF d244
may allow insight into copy number regulation in SSVs, previ-
ously thought to be regulated by ORF d63 (Lawrence et al., 2009).
Clearly, there are many more genes to be analyzed in the SSV1
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genome and more insights that can be gained by combining com-
parative genomics, structural biology, and genetics. In the future,
biochemical work will be added to this suite of techniques to
gain fundamental understanding of this fascinating, unique, and
ubiquitous archaeal virus family.
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