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ing those designated as “weeds”), and a variety of trees
and shrubs. These plant assemblages contribute to the
overall managed and emergent diversity of urban land-
scapes and reflect social and structural drivers of land-
scaping decisions. We hypothesize that differences in
plant community composition and aboveground biomass
between biophysically dissimilar regions are reduced by
urbanization because residential areas in different regions
have more similar landscaping, and
therefore plant community composition,
relative to the composition of native
ecosystems in these regions. More specif-
ically, across regions, we hypothesize that
the urban flora will have lower turnover
in species and phylogenetic composition
than the native flora. Previous research
has shown that within a region, on aver-
age, the urban flora will have higher
species richness but lower phylogenetic
diversity than the flora in natural areas
resulting from the high number of exotic
urban species from relatively few phylo-
genetic lineages (Figure 4).

Much of the ecological homogeniza-
tion of urban and suburban ecosystems is
likely related to human modification and
homogenization of microclimate in
cities. For example, comparing differ-
ences in monthly average maximum air
temperature between urban and rural
locations within the Baltimore and
Phoenix MSAs demonstrates that while
Baltimore generally exhibits urban heat-
ing, Phoenix shows urban cooling
because of the presence of irrigated land-
scapes and urban trees (WebFigure 2;
Brazel et al. 2000). Thus, microclimate is
more similar in residential ecosystems in
Baltimore and Phoenix than in the

native forest and desert ecosystems that previously cov-
ered these areas.

n The hydrography of residential landscapes

Human alteration of residential landscapes often involves
substantial modification of the structure, distribution,
and character of surface-water systems, including the intro-

Figure 3. (a) Soil organic matter and (b) soil moisture in native, agricultural, and suburban residential ecosystems in Baltimore and
Phoenix. For both variables, differences between the cities are smaller in agricultural and residential ecosystems than in native
ecosystems. Note that data are not corrected for differences in soil depth or density. However, as density is generally increased by
residential development, this correction would likely increase the estimates of soil C storage in residential ecosystems relative to the
natural ecosystems that they replaced. Baltimore data from Groffman et al. (2009) and Phoenix data from Zhu et al. (2006).

(a) (b)

Figure 4. Phylogenetic diversity in 137 privately managed yards (“urban yards”) along a
gradient of housing density in the Minneapolis–St Paul metropolis, Minnesota, US, and
in a “natural area” at the nearby Cedar Creek Ecosystem Science Reserve. Although
yards had more species per hectare than natural areas, yard species were more closely
related to each other and had lower phylogenetic diversity. The high number of exotic yard
species increased the yard flora’s phylogenetic relatedness in comparison to species at
Cedar Creek, causing phylogenetic homogenization within yards. The urban environment
and homeowners’ preferences select for trait attributes and phylogenetic lineages that can
colonize and persist in yards. As yard species disperse beyond household boundaries, their
functional attributes will affect ecosystem processes in urban environments and beyond.
Photo and design: J Cavender-Bares based on results from Knapp et al. (2012).

J 
C

av
en

de
r-

B
ar

es

Baltimore
Phoenix

Baltimore
Phoenix

Native             Agricultural         Residential Native             Agricultural         Residential

S
o

il 
o

rg
an

ic
 m

at
te

r 
(g

 k
g

–1
)

S
o

il 
m

o
is

tu
re

 (g
 k

g
–1

)

60

50

40

30

20

10

0

250

200

150

100

50

0

C
ed

ar
 C

re
ek

 E
co

sy
st

em
 S

ci
en

ce
 R

es
er

ve

Phylogenetic
homogenization of
human dominated

landscapes

More lineages

Fewer lineages

Natural areas Urban yards



Urban homogenization  PM Groffman et al.

78

www.frontiersinecology.org © The Ecological Society of America

duction of novel aquatic ecosystems where they were
absent and eliminating, or altering, others where they were
abundant. Urbanization in mesic temperate zones fre-
quently leads to large-scale loss of channel networks
(Elmore and Kaushal 2008; Roy et al. 2009). Residential
development in Phoenix has included the construction of
lakes and canals for flood control and recreation (Roach et
al. 2008; Larson and Grimm 2012); in Miami, urban
expansion into wetlands requires construction of lakes to
provide drainage and fill (Figure 5). As a result, the
hydrography of residential neighborhoods in Miami and
Phoenix is more similar to each other than to the hydrog-
raphy of the Sonoran Desert and Everglades natural ecosys-
tems that they replaced.

We hypothesize that hydrographic change associated
with urban development is shaped by interactions among
economic pressures for land development and use, engi-
neering necessities resulting from local hydrogeologic con-
ditions, and preferences for particular aesthetics and port-
folios of ecosystem services. We therefore expect urban
hydroscapes to converge on a moderate-to-low density of
surface water, reflecting the elimination and addition of
waterbodies in wet and dry regions, respectively.

In addition to these landscape-scale
changes, urban waterbodies also exhibit
notable changes in physical and biologi-
cal structure and ecosystem-scale
processes. In streams, where the effects of
urbanization are best studied, “urban
stream syndrome” describes a suite of
changes, including bigger differences
between high storm flows and low “base”
flows, reduced channel complexity,
nutrient enrichment, and loss of species
diversity (Walsh et al. 2005). There is
also great interest in the landscape- or
system-scale effects of urbanization on
lakes. For example, do the shapes of
urban lakes differ from those in undevel-
oped areas as a result of modification of
existing waterbodies or construction of
new ones? How different are hydrologic
connections to uplands and channel net-
works? Do these effects depend on lake
size? Are parameters such as denitrifica-
tion potential, invertebrate communi-
ties, or nutrient cycling homogenized by
urbanization?

n Land management and ecology at
the parcel and neighborhood
scales

The fundamental actors in residential
land management are individual resi-
dents and the household units to which
they belong. Household decision makers

maintain their yards in particular ways for a variety of rea-
sons, affecting the structure and function of urbanized
ecosystems and associated element fluxes in complex
ways. Understanding and mapping parcel-scale dynamics
is therefore critical to evaluating the impact of residential
land management on ecosystem structure and function at
large scales. Technological and methodological advances
have greatly facilitated a multi-scalar approach to resi-
dential landscape change and homogenization. Until
recently, available data included only coarse geospatial
land-cover information or US Census block-group or
tract data, aggregating 200–400 or 2500–8000 households
respectively. New methods have been developed for map-
ping ecological structure (eg the distribution of grass,
trees, and shrubs) at the highly detailed parcel scale over
large areas. In addition, understanding historical and
contemporary processes of residential land management
(eg fertilizer use) can benefit from social science theories
that address environmental decisions at varying spatial
scales, ranging from individual behavior to broader forces
at neighborhood, city, and regional scales (Roy
Chowdhury et al. 2011; Cook et al. 2012; Fissore et al.
2012). More generally, homogenization is driven by

Figure 5. Urban homogenization should lead to a decrease or alteration in surface
waterbodies in humid regions (eg Miami) and an increase in arid regions (eg Phoenix),
such that the hydrography of urban ecosystems in these diverse regions are more similar
than the hydrography of the native ecosystems that they replaced.
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human habitat preferences, as expressed through socio-
economic factors and lifestyles. Development of a more
general theory and science of human habitats, compara-
ble to the study of other species’ habitats, would help in
understanding these processes.

A growing body of research focuses on the social factors
affecting variation in residential land management in
urban areas. Such management depends on residents’ aes-
thetic values, experience, and economics but is also
affected by wider hierarchical structures, such as neigh-
borhood norms and rules, watershed-level ecological con-
text, land and commodity markets, and municipal-, state-,
and national-level policies (Zhang et al. 2013). We con-
tend that residential land management can be better
understood by integrating distinct, overlapping theories
of (sub)urban development and change pertaining to at
least three fundamental social-organizational scales: indi-
vidual/household decisions, neighborhood-level processes,
and regional-scale policy institutions. Theories operating
at these three scales address (but are not limited to) for-
mal and informal governance institutions and property
regimes (eg land ownership and tenure rights, cultural
customs and expectations), demographic and political
economic factors, social stratification, and lifestyle-based
and individual attitudinal differences. At the scale of
households and parcels, attitudinal factors, household
demographics, life stage and lifestyle, and additional spa-
tial and biophysical parcel characteristics combine in
complex ways to produce residential landscapes at the
local scale. Neighborhood social dynamics and composi-
tion, including local and historical traditions, are also
critical to the progression of residential landscapes. At
the regional scale, municipal and state regulatory struc-
tures respond to processes and predictions of urban
growth with zoning codes and land-use regulations that
directly prescribe lot sizes and in some cases the amount
and kind of impervious and vegetative cover. Regional-
scale policies are in turn influenced by national and
broader-scale dynamics and institutions, including mar-
ket fluctuations, federal policies, and the global economy.

Several studies have used measures of income and edu-
cation to examine the relationship between socioeco-
nomic status and vegetation cover (Grove and Burch
1997; Dow 2000; Martin et al. 2004). More recently, the
emergent social–ecological research discipline has
addressed relationships between households, their
lifestyle behaviors, and their environmental impacts
(Grove et al. 2006; Troy et al. 2007; Boone et al. 2009;
Zhou et al. 2009). A critical finding from this body of
research is that lifestyle factors – such as family size, life
stage, and ethnicity – may be weakly correlated with
socioeconomic status but nevertheless play a crucial role
in determining how households manage their properties
in various neighborhoods.

In a preliminary analysis, land-cover composition
within a sample of 87 census block-groups across
Baltimore, Boston, and Miami, from two contrasting

social/lifestyle groups – an urban, high affluence group
(S07) and an exurban, low affluence group (S48) – dis-
played complex patterns of similarities and differences
within and between the three cities (WebFigure 3). Tree
cover (> 50%) and impervious surface proportions
(8–11%) in sampled S07 neighborhoods in Boston and
Baltimore were very similar, though relative grass cover
in Baltimore was more than double that in Boston.
Miami’s S07 neighborhoods diverged from this pattern,
displaying far greater proportions (50%) of grass and
impervious surface (15%) and less proportional tree cover
(23%). S48 neighborhoods in Boston and Miami had
similar proportions of impervious (14–16%) and other
(12–17%) covers, but markedly distinct proportions of
grass (greater in Miami) and tree cover (greater in
Boston). “Other”, mainly bare soil and water, refers to
land cover that does not fit into the remaining categories.
Sampled neighborhoods therefore appear to demonstrate
homogenization of certain land covers for Baltimore and
Boston (especially for S07) and for Boston and Miami
(especially for S48). 

A sample of exurban, low affluence neighborhoods
(S48) in Baltimore and Boston had a higher percentage
of impervious cover than their urban, affluent counter-
parts (S07) in each city (supporting expectations of dis-
tinct lifestyle groups being associated with distinct land-
cover outcomes within each city). In Baltimore, sampled
S07 and S48 neighborhoods diverged in their relative
proportions of tree and grass cover, with the former group
maintaining larger portions in each. Miami’s sampled S07
and S48 neighborhoods did not display marked differ-
ences, belying expectations of distinct landscape/land-
cover outcomes for distinct lifestyle neighborhood
groups. The same appears to be true for tree and grass
cover in sampled neighborhoods in Boston.

Sample results are partially consistent with expecta-
tions of similar lifestyle groups/neighborhoods displaying
similar land-cover patterns across cities. Further analysis
of additional cities is necessary to determine whether
there are clear patterns of convergence by lifestyle group,
especially when confounding, multi-scalar factors are
controlled for (eg in multi-level statistical models of
land-cover and land-management practices). We expect
the degree of convergence to differ by domain (eg type of
land cover, particular indices of landscape structure, etc).

As important as it is to compare land cover within and
across MSAs in the US, a comprehensive test of the
homogenization hypothesis requires a comparison of land
use. Our project has collected extensive measures of land
management (eg fertilizer application, contracting with
professional lawncare companies), using various means.
In November 2011, we completed a telephone survey of
~9500 households, using a stratified random sampling
design, roughly equally divided among the six cities. Yet
such survey instruments offer only a partial view of the
subtleties associated with the complex land-use decision-
making process. Given that open-ended, qualitative
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interviews with homeowners may provide this additional
level of detail (Harris et al. 2012, 2013), we are conduct-
ing ~200 in-person interviews with homeowners, again
roughly evenly divided among these six cities and again
using a stratified random sampling design.

n Conclusions

Urbanization, and the forms of ecological homogeniza-
tion that it causes, is a central topic in the emerging field
of macrosystems ecology. Ecological changes – in soil; in
plant diversity, composition, and structure; and in micro-
climate and hydrography – across broad areas of North
America, and indeed around the world, are influenced by
a finite set of human drivers that apply over local-scale
(parcels and neighborhoods), regional-scale (MSA) and
continental-scale (US) macrosystems. Understanding
this homogenization should fundamentally improve our
ability to study ecological processes and their anthro-
pogenic and geophysical drivers at comparable resolution,
using data that are multi-scale, multi-variate, and multi-
thematic (ie to carry out macrosystems ecology).
Moreover, our analysis will provide insight into urban
homogenization, which strongly influences not only
environmental change at continental scales but also the
quality of life for most of the world’s human population.
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