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Preface 

These lectures were prepared for a class of (mostly) second year mathematics and statis-
tics undergraduate students at Portland State University during Spring 2020. The term 
was unlike any other. The onslaught of COVID-19 moved the course meetings online, an 
emergency transition that few of us were prepared for. Many lectures refect our preoccu-
pations with the damage inficted by the virus. I have not attempted to edit these out since 
I felt that a utilitarian course on computing need not be divested from the real world. 

These materials offer class activities for studying basics of mathematical computing using 
the python programming language, with glimpses into modern topics in scientifc com-
putation and data science. The lectures attempt to illustrate computational thinking by 
examples. They do not attempt to introduce programming from the ground up, although 
students, by necessity, will learn programming skills from external materials. In my expe-
rience, students are able and eager to learn programming by themselves using the abun-
dant free online resources that introduce python programming. In particular, my students 
and I found the two (free and online) books of Jake VanderPlas invaluable. Many sec-
tions of these two books, hyperlinked throughout these lectures, were assigned as required 
preparatory reading materials during the course (see List of Preparatory Materials). 

Materials usually covered in a frst undergraduate linear algebra course and in a one-
variable differential calculus course form mathematical prerequisites for some lectures. 
Concepts like convergence may not be covered rigorously in such prerequisites, but I have 
not shied away from talking about them: I feel it is entirely appropriate that a frst en-
counter with such concepts is via computation. 

Each lecture has a date of preparation. It may help the reader understand the context in 
relation to current events and news headlines. The timestamp also serves as an indicator 
of the state of the modules in the ever-changing python ecosystem of modules for scientifc 
computation. The specifc version numbers of the modules used are listed overleaf. The 
codes may need tinkering with to ensure compatibility with future versions. The materials 
are best viewed as offering a starting point for your own adaptation. 

If you are an instructor declaring these materials as a resource in your course syllabus, I 
would be happy to provide any needed solutions to exercises or datafles. If you fnd errors 
please alert me. If you wish to contribute by updating or adding materials, please fork the 
public GitHub Repository where these materials reside and send me a pull request. 

Jay Gopalakrishnan 

(gjay@pdx.edu) 
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Software Requirements: 

• Python >= 3.7 

• Jupyter >= 1 

Main modules used: 

• cartopy==0.18.0b2.dev48+ 

• geopandas==0.7.0 

• gitpython==3.1.0 

• matplotlib==3.2.1 

• numpy==1.18.2 

• pandas==1.0.4 

• scipy==1.4.1 

• scikit-learn==0.23.1 

• seaborn==0.10.0 

• spacy==2.2.4 

Other (optional) facilities used include line_profler, memory_profler, numexpr, pandas-
datareader, and primesieve. 
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List of Preparatory Materials for Each Activity 

The activities in the table of contents are enumerated again below in a linear ordering with 
hyperlinks to external online preparatory materials for each. 

Required Preparation Activity 

Watch the frst few of the 44 Microsoft 01 Overview of tools 
videos on python. Watch a 2014 video by 
SIAM: What is data science? Browse basic 
language facilities either from the offcial 
Python tutorial or from [JV-W]. 

Read about the iPython shell facilities 02 Interacting with python 
from the frst chapter of [JV-H]. 

Browse Git Handbook 03 Working with git 

Using the Python tutorial or [JV-W] work 04 Conversion table 
with if, while, for,range, print, lists [], 
tuples (), and list comprehension. 

Exercise: Power sum 

Using Python tutorial or [JV-W], learn 05 Approximating derivatives 
about functions, def, and lambda. 

Project: Bisection 

Using Python tutorial or [JV-W], learn 06 Genome of SARS-CoV-2 virus 
about dictionaries {}, strings and fle 
operations open, readlines 

Project: Rise of CO2 in the atmosphere 

Learn about pytest, generator 07 Fibonacci primes 
expressions, yield, line and cell magics 

Learn numpy basics from [JV-H], ufuncs, 08 Numpy blitz 
broadcasting indexing, masking 

Exercise: Argument passing 
Exercise: Piecewise functions 
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Required Preparation Activity 

Learn sorting, partitioning [JV-H], and 
quick ways to make matrices from 
[numpy.org]. 

Learn how to make simple plots using 
matplotlib. Read about aggregation and 
masking from [JV-H] 

Get an overview of scipy facilities. Online 
scipy lecture notes are very helpful. 
Familiarize yourselves with scipy’s 
sparse and integrate modules. 

Learn numpy facilities for matrix 
factorizations, eigenvalues etc. 

Introduce yourselves to the data analysis 
module pandas. 

Reinforce your pandas skills. 

Familiarize yourselves with geopandas, 
cartopy, and matplotlib.animation. 

Review scipy.sparse. Introduce 
yourselves to NetworkX. 

Exercise: Row Swap 

Exercise: Averaging Matrix 
Exercise: Differentiation Matrix 

Exercise: Graphing functions 

Exercise: Pairwise differences 
Exercise: Hausdorff distance 
Exercise: k-nearest neighbors 

09 SEIR model of infectious diseases 

Exercise: Predator-prey model 

10 Singular value decomposition 

Exercise: Column space 
Exercise: Null space 

Exercise: Pandas from dictionaries 

Exercise: Iris fower dataset 

11 Bikes on Tilikum Crossing 
Exercise: Stock prices 
Exercise: Passengers on the Titanic 

Project: Growth of COVID-19 cases in the 
west coast 

12 Visualizing geospatial data 

Exercise: Animate functions 

Project: World map of COVID-19 cases 

13 Gambler’s Ruin 

Exercise: Insurance Company 
Exercise: Probabilities on small graphs 
Exercise: Ehrenfest thought experiment 
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Required Preparation Activity 

Be acquainted with scipy.sparse’s matrix 
format, specifcally COO and CSR 
formats. 

Read the good introduction to machine 
learning from [JV-H] 

Read about unsupervised machine 
learning, focusing specifcally on PCA. 
Also review the prior lecture on SVD. 

Learn about text features in machine 
learning from [JV-H]. 

Project: Neighbor’s color 

Exercise: Power method for large graphs 
Exercise: Google’s toy graph 

15 Supervised learning by regression 

Exercise: Atmospheric carbon dioxide 

16 Unsupervised learning by PCA 

Exercise: Ovarian cancer data 
Exercise: Eigenfaces 

17 Latent semantic analysis 

Exercise: Word vectors 
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I 

Overview of some tools 

March 31, 2020 

This lecture is an introductory overview to give you a sense of the broad utility of a few 
python tools you will encounter in later lectures. Each lecture or class activity is guided by 
a Jupyter Notebook (like this document), which combines executable code, mathematical 
formulae, and text notes. This overview notebook also serves to check and verify that you 
have a working installation of some of the python modules we will need to use later. We 
shall delve into basic programming using python (after this overview and a few further 
start-up notes) starting from a later lecture. 

The ability to program, analyze and compute with data are life skills. They are useful well 
beyond your mathematics curriculum. To illustrate this claim, let us begin by considering 
the most pressing current issue in our minds as we begin these lectures: the progression 
of COVID-19 disease worldwide. The skills you will learn in depth later can be applied 
to understand many types of data, including the data on COVID-19 disease progression. 
In this overview, we shall use a few python tools to quickly obtain and visualize data on 
COVID-19 disease worldwide. The live data on COVID-19 (which is changing in as yet 
unknown ways) will also be used in several later activities. 

Specifcally, this notebook contains all the code needed to perform these tasks: 

• download today’s data on COVID-19 from a cloud repository, 
• make a data frame object out of the data, 
• use a geospatial module to put the data on a world map, 
• download county maps from US Census Bureau, and 
• visualize the COVID-19 data restricted to Oregon. 

The material here is intended just to give you an overview of the various tools we will learn 
in depth later. There is no expectation that you can immediately digest the code here. The 
goal of this overview is merely to whet your appetite and motivate you to allocate time to 
learn the materials yet to come. 

I.1 The modules you need 

These are the python modules we shall use below. 

• matplotlib (for various plotting & visualization tools in python) 
• descartes (for specialized visualization of maps using matplotlib) 
• gitpython (to work in python with Git repositories) 
• pandas (to make data frame structures out of raw data) 
• geopandas (for analysis of geospatial data) 
• urllib (for fetching resources at an internet url) 
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Please install these modules if you do not have them already. (If you do not have these 
installed, attempting to run the next cell will give you an error.) 

[1]: import pandas as pd 
import os 
from git import Repo 
import matplotlib.pyplot as plt 
import geopandas as gpd 
import urllib 
import shutil 
%matplotlib inline 

I.2 Get the data 

The Johns Hopkins University Center for Systems Science and Engineering has curated 
data on COVID-19 from multiple sources and provided it online as a “git” repository in 
a cloud server at https://github.com/CSSEGISandData/COVID-19. (We shall learn a bit 
more about git in a later lecture.) These days, as the disease progresses, new data is being 
pushed into this repository every day. 

Git repositories in the cloud server can be cloned to get an identical local copy on our 
computers. Let us begin by cloning a copy of the Johns Hopkins COVID-19 data repository 
into a location in your computer. Please specify this location in your computer in the 
variable called covidfolder below. Once you have cloned the repository, the next time 
you run the same line of code, it does not clone it again. Instead, it only pulls updates 
from the cloud to sync your local copy with the remote original. 

[2]: # your local folder into which you want to download the covid data 

covidfolder = '../../data_external/covid19' 

Remember this location where you have stored the COVID-19 data. You will need to return 
to it when you use the data during activities in later days, including assignment projects. 

[3]: if os.path.isdir(covidfolder): # if repo exists, pull newest data 
repo = Repo(covidfolder) 
repo.remotes.origin.pull() 

else: # otherwise, clone from remote 
repo = Repo.clone_from('https://github.com/CSSEGISandData/COVID-19. 

↪→git', 
covidfolder) 

datadir = repo.working_dir + '/csse_covid_19_data/ 
↪→csse_covid_19_daily_reports' 

The folder datadir contains many fles (all of which can be listed here using the command 
os.listdir(datadir) if needed). The flenames begin with a date like 03-27-2020 and 
ends in .csv. The ending suffx csv stands for “comma separated values”, a common 
simple format for storing uncompressed data. 
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I.3 Examine the data for a specifc date 

The python module pandas, the workhorse for all data science tasks in python, can make a 
DataFrame object out of each such .csv fles. You will learn more about pandas later in the 
course. For now, let us pick a recent date, say March 27, 2020, and examine the COVID-19 
data for that date. 

[4]: c = pd.read_csv(datadir+'/03-27-2020.csv') 

The DataFrame object c has over 3000 rows. An examination of the frst fve rows already 
tells us a lot about the data layout: 

[5]: 

[5]: 

c.head() 

FIPS Admin2 Province_State Country_Region Last_Update ␣ 
↪→\ 

0 45001.0 Abbeville South Carolina US 2020-03-27 22:14:55 
1 22001.0 Acadia Louisiana US 2020-03-27 22:14:55 
2 51001.0 Accomack Virginia US 2020-03-27 22:14:55 
3 16001.0 Ada Idaho US 2020-03-27 22:14:55 
4 19001.0 Adair Iowa US 2020-03-27 22:14:55 

Lat Long_ Confirmed Deaths Recovered Active \ 
0 34.223334 -82.461707 4 0 0 0 
1 30.295065 -92.414197 8 1 0 0 
2 37.767072 -75.632346 2 0 0 0 
3 43.452658 -116.241552 54 0 0 0 
4 41.330756 -94.471059 1 0 0 0 

Combined_Key 
0 Abbeville, South Carolina, US 
1 Acadia, Louisiana, US 
2 Accomack, Virginia, US 
3 Ada, Idaho, US 
4 Adair, Iowa, US 

Note that depending on how the output is rendered where you are reading this, the later 
columns may be line-wrapped or may be visible only after scrolling to the edges. This 
object c, whose head part is printed above, looks like a structured array. There are features 
corresponding to locations, as specifed in latitude Lat and longitude Long_. The columns 
Confirmed, Deaths, and Recovered represents the number of confrmed cases, deaths, and 
recovered cases due to COVID-19 at a corresponding location. 

I.4 Put the data on a map 

Data like that in c contains geospatial information. One way to visualize geospatial data is 
to indicate the quantity of interest on a map. We shall visualize the data in the Confirmed 
column by positioning a marker at its geographical location and make the marker size 
correspond to the number of confrmed cases at that position. The module geopandas 
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(gpd) is well-suited for visualizing geospatial data. It is built on top of the pandas library. 
So it is easy to convert our pandas object c to a geopandas object. 

[6]: 

[6]: 

[7]: 

# make a geometry object from Lat, Long 
geo = gpd.points_from_xy(c['Long_'], c['Lat']) 
# give the geometry to geopandas together with c 
gc = gpd.GeoDataFrame(c, geometry=geo) 
gc.head() 

FIPS Admin2 Province_State Country_Region Last_Update ␣ 
↪→\ 

0 45001.0 Abbeville South Carolina US 2020-03-27 22:14:55 
1 22001.0 Acadia Louisiana US 2020-03-27 22:14:55 
2 51001.0 Accomack Virginia US 2020-03-27 22:14:55 
3 16001.0 Ada Idaho US 2020-03-27 22:14:55 
4 19001.0 Adair Iowa US 2020-03-27 22:14:55 

Lat Long_ Confirmed Deaths Recovered Active \ 
0 34.223334 -82.461707 4 0 0 0 
1 30.295065 -92.414197 8 1 0 0 
2 37.767072 -75.632346 2 0 0 0 
3 43.452658 -116.241552 54 0 0 0 
4 41.330756 -94.471059 1 0 0 0 

Combined_Key geometry 
0 Abbeville, South Carolina, US POINT (-82.46171 34.22333) 
1 Acadia, Louisiana, US POINT (-92.41420 30.29506) 
2 Accomack, Virginia, US POINT (-75.63235 37.76707) 
3 Ada, Idaho, US POINT (-116.24155 43.45266) 
4 Adair, Iowa, US POINT (-94.47106 41.33076) 

The only difference between gc and c is the last column, which contains the new geometry 
objects representing points on the globe. Next, in order to place markers at these points on 
a map of the world, we need to get a simple low resolution world map: 

world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')) 
world.plot(); 
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You can download and use maps with better resolution from Natural Earth, but that will 
be too far of a digression for this overview. On top of the above low resolution map, we 
can now put the markers whose sizes are proportional to the number of confrmed cases. 

[8]: base = world.plot(alpha=0.3) 
msz = 500 * gc['Confirmed'] / gc['Confirmed'].max() 
gc.plot(ax=base, column='Confirmed', markersize=msz, alpha=0.7); 

These python tools have made it incredibly easy for us to immediately identify the COVID-
19 trouble spots in the world. Moreover, these visualizations can be updated easily by 
re-running this code as data becomes available for other days. 

I.5 Restricting to Oregon 

Focusing on our part of the world, let us see how to restrict the COVID-19 data in the data 
frame c to Oregon. 

[9]: co = c[c['Province_State']=='Oregon'] 

The variable co now contains the data restricted to Oregon. However, we are now pre-
sented with a problem. To visualize the restricted data, we need a map of Oregon. The 
module geopandas does not carry any information about Oregon and its counties. How-
ever this information is available from the United States Census Bureau. (By the way, the 
2020 census is happening now! Do not forget to respond to their survey. They are one of 
our authoritative sources of quality data.) 

To visualize the COVID-19 information on a map of Oregon, we need to get the county 
boundary information from the census bureau. This illustrates a common situation that 
arises when trying to analyze data: it is often necessary to procure and merge data from 
multiple sources in order to understand a real-world phenomena. 

A quick internet search reveals the census page with county information. The information 
is available in an online fle cb_2018_us_county_500k.zip at the URL below. Python al-
lows you to download this fle using its urllib module without even needing to leave this 
notebook. 

[10]: # url of the data 
census_url = 'https://www2.census.gov/geo/tiger/GENZ2018/shp/ 

↪→cb_2018_us_county_500k.zip' 
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# location of your download 
your_download_folder = '../../data_external' 
if not os.path.isdir(your_download_folder): 

os.mkdir(your_download_folder) 
us_county_file = your_download_folder + '/cb_2018_us_county_500k.zip' 

# download if the file doesn't already exist 
if not os.path.isfile(us_county_file): 

with urllib.request.urlopen(census_url) as response,␣ 
↪→open(us_county_file, 'wb') as out_file: 

shutil.copyfileobj(response, out_file) 

Now, your local computer has a zip fle, which has among its contents, fles with geometry 
information on the county boundaries, which can be read by geopandas. We let geopandas 
directly read in the zip fle: it knows which information to extract from the zip archive to 
make a data frame with geometry. 

[11]: 

[11]: 

us_counties = gpd.read_file(f"zip://{us_county_file}") 
us_counties.head() 

STATEFP COUNTYFP COUNTYNS AFFGEOID GEOID NAME LSAD ␣ 
↪→ALAND \ 

0 21 007 00516850 0500000US21007 21007 Ballard 06 ␣ 
↪→639387454 

1 21 017 00516855 0500000US21017 21017 Bourbon 06 ␣ 
↪→750439351 

2 21 031 00516862 0500000US21031 21031 Butler 06 ␣ 
↪→1103571974 

3 21 065 00516879 0500000US21065 21065 Estill 06 ␣ 
↪→655509930 

4 21 069 00516881 0500000US21069 21069 Fleming 06 ␣ 
↪→902727151 

AWATER geometry 
0 69473325 POLYGON ((-89.18137 37.04630, -89.17938 37.053... 
1 4829777 POLYGON ((-84.44266 38.28324, -84.44114 38.283... 
2 13943044 POLYGON ((-86.94486 37.07341, -86.94346 37.074... 
3 6516335 POLYGON ((-84.12662 37.64540, -84.12483 37.646... 
4 7182793 POLYGON ((-83.98428 38.44549, -83.98246 38.450... 

The object us_counties has information about all the counties. Now, we need to re-
strict this data to just that of Oregon. Looking at the columns, we fnd something called 
STATEFP. Searching through the government pages, we fnd that STATEFP refers to a 2-
character state FIPS code. The FIPS code refers to Federal Information Processing Standard 
which was a “standard” at one time, then deemed obsolete, but still continues to be used 
today. All that aside, it suffces to note that Oregon’s FIPS code is 41. Once we know this, 
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python makes it is easy to restrict the data to Oregon: 

[12]: ore = us_counties[us_counties['STATEFP']=='41'] 
ore.plot(); 

Now we have the Oregon data in two data frames, ore and co. We must combine the two 
data frames. This is again a situation so often encountered when dealing with real data 
that there is a facility for it in pandas called merge. Both data has FIPS codes: in ore you 
fnd it under column GEOID, and in co you fnd it called FIPS. The merged data frame is 
represented by the variable orco below: 

[13]: ore = ore.astype({'GEOID': 'int64'}).rename(columns={'GEOID' : 'FIPS'}) 
co = co.astype({'FIPS': 'int64'}) 
orco = pd.merge(ore, co.iloc[:,:-1], on='FIPS') 

The orco object now has both the geometry information as well as the COVID-19 informa-
tion, making it extremely easy to visualize. 

[14]: # plot coloring counties by number of confirmed cases 

fig, ax = plt.subplots(figsize=(12, 8)) 
orco.plot(ax=ax, column='Confirmed', legend=True, 

legend_kwds={'label': '# confimed cases', 
'orientation':'horizontal'}) 

# label the counties 

for x, y, county in zip(orco['Long_'], orco['Lat'], orco['NAME']): 
ax.text(x, y, county, color='grey') 

ax.set_title('Confirmed COVID-19 cases in Oregon as of March 27 2020') 
ax.set_xlabel('Latitude'); ax.set_ylabel('Longitude'); 
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This is an example of a chloropleth map, a map where regions are colored or shaded in 
proportion to some data variable. It is an often-used data visualization tool. 

I.6 Ask the data 

Different ways of displaying data often give different insights. There are many visualiza-
tion tools in the python ecosystem and you will become more acquainted with these as we 
proceed. 

Meanwhile, you might have many questions whose answers already lie in the data we 
have downloaded. For example, you may wonder how Oregon is doing in terms of 
COVID-19 outbreak compared to the other two west coast states. Here is the answer ex-
tracted from the same data: 
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How does the progression of infections in New York compare with Hubei where the dis-
ease started? Again the answer based on the data we have up to today is easy to extract, 
and is displayed next. 
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Of course, the COVID-19 situation is evolving, so these fgures are immediately outdated 
after today’s class. This situation is evolving in as yet unknown ways. I am sure that you, 
like me, want to know more about how these plots will change in the next few months. 
You will be able to generate plots like this and learn many more data analysis skills from 
these lectures. As you amass more technical skills, let me encourage you to answer your 
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own questions on COVID-19 by returning to this overview, pulling the most recent data, 
and modifying the code here to your needs. In fact, some later assignments will require 
you to work further with this Johns Hopkins COVID-19 worldwide dataset. Visualizing 
the COVID-19 data for any other state, or indeed, any other region in the world, is easily 
accomplished by some small modifcations to the code of this lecture. 
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II 

Interacting with Python 

March 31, 2020 

Python is a modern, general-purpose, object-oriented, high-level programming language 
with a clean and expressive syntax. The following features make for easy code develop-
ment and debugging in python: 

• Python code is interpreted: There is no need to compile the code. Your code is read by 
a python interpreter and made into executable instructions for your computer in real 
time. 

• Python is dynamically typed: There is no need to declare the type of a variable or the 
type of an input to a function. 

• Python has automatic garbage collection or memory management: There is no need to 
explicitly allocate memory for variables before you use them or deallocate them after 
use. 

However, keep in mind that these features also make pure python code slower (than, say 
C) in repetitious loops because of repeated checking for the type of objects. Therefore 
many python modules (such as numpy, which we shall see in detail soon), have C or other 
compiled code, which is then wrapped in python to take advantage of python’s usability 
without losing speed. 

There are at least four ways to interact with your Python 3 installation. 

1. Use a python shell 
2. Use an iPython shell 
3. Put code in a python fle ending in .py 
4. Write code + text in Jupyter notebook 

II.1 Python shell 

Type the python command you use in your system (python or python3) to get this shell. I 
will use python3 since that is what my system requires, but please do make sure to replace 
it by python if that’s what is needed on your system. Here is an image of the interactive 
python shell within a terminal. 
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Note the following from the interactive session displayed in the fgure above: 

• Computing the square root of a number using sqrt is successful only after import-
ing math. Most of the functionality in Python is provided by modules, like the math 
module. Some modules, like math, come with python, while others must be installed 
after python is installed. 

• Strings that begin with # (like “# works!” in the fgure) differentiate comments from 
code. This is the case in a python shell and also in the other forms of interacting with 
python discussed below. 

• The dir command shows the facilities provided by a module. As you can see, the 
math module contains many functions in addition to sqrt. 

II.2 iPython shell 

A more powerful shell interactive environment is provided by the iPython shell (type in 
ipython or ipython3 into your command prompt, or launch it from Anaconda navigator). 
The iPython shell has features like auto-completion, coloring, history of commands, au-
tomatic help by tacking on ?, ability to interact with your operating system’s commands, 
etc. 

21 



II.3 Jupyter Notebook 

The Jupyter notebook is a web-browser based graphical environment consisting of cells, 
which can consist of code, or text. The text cells should contain text in markdown syntax, 
which allows you to type not just words in bold and italic, but also tables, mathematical 
formula using latex, etc. The code cells of Jupyter can contain code in various languages, 
but here we will exclusively focus on code cells with Python 3. 

For example, this block of text that begins with this sentence marks the beginning of a 
jupyter notebook cell containing markdown content. If you are viewing this from jupyter, 
click on jupyter’s top menu -> Cell -> Cell Type to see what is the type of the current cell, 
or to change the cell type. Computations must be done in a code cell, not a markdown cell. 
For example, to compute √ 

π)7cos(π 

we open a code cell next with the following two lines of python code: 

[1]: from math import cos, sqrt, pi 

cos(pi*sqrt(pi))**7 

[1]: 0.14008146171564725 

This seamless integration of text and code makes Jupyter attractive for developing a repro-
ducible environment for scientifc computing. 
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II.4 Python fle 

Open your favorite text editor, type in some python code, and then save the fle as 
myfirstpy.py. Here is a simple example of such a fle. 

#------- myfirstpy.py ---------------------------------
from math import cos, sqrt, pi 

print('Hello, I can compute! ') 
x = 3 
y = cos(pi*sqrt(pi)*x)**7 
print('Starting from x =', x, 'we have computed y=', y) 
#------------------------------------------------------

One executes such a python fle by typing the following on the command line 

python3 ../pyfiles/myfirstpy.py 

Note that depending on your operating system, you may have to replace the above com-
mand by python ..\pyfiles\myfirstpy.py or similar variants. 

You can also execute the python fle in a platform-independent way from within this Jupyter 
notebook by loading the contents of the fle into a cell. This is done using line magic com-
mand %load ../pyfiles/myfirstpy.py. Once you type in this command into a code cell 
and execute the cell, the contents of the fle will be copied into the cell (and simultaneously, 
the load command will be commented out). Then, returning to the cell and executing the 
cell a second time runs the same code that was in the fle. 

[2]: # %load ../pyfiles/myfirstpy.py 
from math import cos, sqrt, pi 

print('Hello, I can compute! ') 
x = 3 
y = cos(pi*sqrt(pi)*x)**7 
print('Starting from x =', x, 'we have computed y=', y) 

Hello, I can compute! 
Starting from x = 3 we have computed y= -0.013884089495354414 

The above output cell should display the same output as what one would have obtained 
if we executed the python fle on the command line. 

For larger projects (including take-home assignments), you will need to create such python 
fles with many lines of python code. Therefore it is essential that you know how to create 
and execute python fles in your system. 
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III 

Working with git 

April 2, 2020 

Git a distributed version control system (and is a program often used independently of 
python). A version control system tracks the history of changes in projects with many fles, 
including data fles, and codes, which many people access simultaneously. Git facilitates 
identifcation of changes made, fetching revisions from a cloud repository in git format, 
and pushing revisions to the cloud. 

GitHub is a cloud server that specializes in serving data in the form of git repositories. 
Many other such cloud services exists, such as Atlassian’s BitBucket. 

The notebooks that form these lectures are in a git repository served from GitHub. In this 
notebook, we describe how to access materials from this remote git repository. We will 
also use this opportunity to introduce some object-oriented terminology like classes, objects, 
constructor, data members, and methods, which are pervasive in python. Those already 
familiar with this terminology and GitHub may skip to the next activity. 

III.1 Our materials in GitHub 

Lecture notes, exercises, codes, and all accompanying materials can be found in the GitHub 
repository at https://github.com/jayggg/mth271content 

One of the reasons we use git is that many continuously updated datasets, like the COVID-
19 dataset, are served in git format. Another reason is that we may want to use current 
news and fresh data in our activities. Such activities may be prepared with very little lead 
time, so cloud git repositories are ideal for pushing in new materials as they get devel-
oped: once they are in the cloud, you have immediate access to them. After a lecture, the 
materials may be revised and updated per your feedback and these revisions will also be 
available for you from GitHub. Therefore, it is useful to be conversant with GitHub. 

Let us spend a few minutes today on how to fetch materials from the git repository. In 
particular, executing this notebook will pull the updated data from GitHub and place it in 
a location you specify (below). 

If you want to know more about git, there are many resources online, such as the Git 
Handbook. The most common way to fetch materials from a remote repository is using 
git’s command line tools, but for our purposes, the python code in this notebook will 
suffce. 
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III.2 Git Repo class in python 

We shall use the python module gitpython to work with git. (We already used this mod-
ule in the frst overview lecture. The documentation of gitpython contains a lot of infor-
mation on how to use its facilities. The main facility is the class called Repo which it uses 
to represent git repositories. 

[1]: from git import Repo 

Python is an object-oriented language. Everything in the workspace is an object. An 
object is an instance of a class. The defnition and features of the class Repo were imported 
into this workspace by the above line of code. A class has members, which could be data 
members or attributes (which themselves are objects residing in the class’ memory layout), 
or function members, called methods, which provide functionalities of the class. 

You can query the functionalities of Repo using help. Open a cell and type in 

help(Repo) 

You will see that the ouput contains the extensive documentation for objects of class Repo, 
including all its available methods. 

Below, we will use the method called clone_from. Here is the class documentation for that 
method: 

[2]: help(Repo.clone_from) 

Help on method clone_from in module git.repo.base: 

clone_from(url, to_path, progress=None, env=None, multi_options=None, **kwargs) method of 
builtins.type instance 

Create a clone from the given URL 

:param url: valid git url, see http://www.kernel.org/pub/software/scm/git/docs/git-
clone.html#URLS 

:param to_path: Path to which the repository should be cloned to 
:param progress: See 'git.remote.Remote.push'. 
:param env: Optional dictionary containing the desired environment variables. 

Note: Provided variables will be used to update the execution 
environment for `git`. If some variable is not specified in `env` 
and is defined in `os.environ`, value from `os.environ` will be used. 
If you want to unset some variable, consider providing empty string 
as its value. 

:param multi_options: See ``clone`` method 
:param kwargs: see the ``clone`` method 
:return: Repo instance pointing to the cloned directory 

Classes have a special method called constructor, which you would fnd listed among its 
methods as __init__. 

[3]: help(Repo.__init__) 

Help on function __init__ in module git.repo.base: 

__init__(self, path=None, odbt=<class 'git.db.GitCmdObjectDB'>, search_parent_directories=False, 
expand_vars=True) 

Create a new Repo instance 
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:param path: 
the path to either the root git directory or the bare git repo:: 

repo = Repo("/Users/mtrier/Development/git-python") 
repo = Repo("/Users/mtrier/Development/git-python.git") 
repo = Repo("~/Development/git-python.git") 
repo = Repo("$REPOSITORIES/Development/git-python.git") 
repo = Repo("C:\Users\mtrier\Development\git-python\.git") 

- In *Cygwin*, path may be a `'cygdrive/...'` prefixed path. 
- If it evaluates to false, :envvar:`GIT_DIR` is used, and if this also evals to false, 

the current-directory is used. 
:param odbt: 

Object DataBase type - a type which is constructed by providing 
the directory containing the database objects, i.e. .git/objects. It will 
be used to access all object data 

:param search_parent_directories: 
if True, all parent directories will be searched for a valid repo as well. 

Please note that this was the default behaviour in older versions of GitPython, 
which is considered a bug though. 

:raise InvalidGitRepositoryError: 
:raise NoSuchPathError: 
:return: git.Repo 

The __init__ method is called when you type in Repo(...) with the arguments allowed 
in __init__. Below, we will see how to initialize a Repo object using our github repository. 

III.3 Your local copy of the repository 

Next, each of you need to specify a location on your computer where you want the course 
materials to reside. This location can be specifed as a string, where subfolders are delin-
eated by forward slash. Please revise the string below to suit your needs. 

[4]: coursefolder = '/Users/Jay/tmpdir/' 

Python provides a module os to perform operating system dependent tasks in a portable 
(platform-independent) way. If you did not give the full name of the folder, os can attempt 
to produce it as follows: 

[5]: import os 
os.path.abspath(coursefolder) 

[5]: '/Users/Jay/tmpdir' 

Please double-check that the output is what you expected on your operating system: if not, 
please go back and revise coursefolder before proceeding. (Windows users should see 
forward slashes converted to double backslashes, while mac and linux users will usually 
retain the forward slashes.) 

We proceed to download the course materials from GitHub. These materials will be stored 
in a subfolder of coursefolder called mth271content, which is the name of the git reposi-
tory. 
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[6]: repodir = os.path.join(os.path.abspath(coursefolder), 'mth271content') 
repodir # full path name of the subfolder 

[6]: '/Users/Jay/tmpdir/mth271content' 

Again, the value of the string variable repodir output above describes the location on your 
computer where your copy of the course materials from GitHub will reside. 

III.4 Two cases 

Now there are two cases to consider: 

1. Are you downloading the remote git repository for the frst time? 
2. Or, are you returning to the remote repository to update the materials? 

In Case 1, you want to clone the repository. This will create a local copy (on your computer) 
of the remote cloud repository. 

In Case 2, you want to pull updates (only) from the repository, i.e., only changes in the 
remote cloud that you don’t have in your existing local copy. 

To decide which case you are in, I will assume the following. If the folder whose name is 
the value of the string repodir already exists, then I will assume you are in Case 2. Oth-
erwise, you are in Case 1. To fnd out if a folder exists, we can use another facility from 
os: 

[7]: os.path.isdir(repodir) 

[7]: True 

The output above should be False if you are running this notebook for the frst time, per 
my assumption above. When you run it after you have executed this notebook successfully 
at least once, you would already have cloned the repository, so the folder will exist. 

III.5 Clone or pull 

The code below uses the conditionals if and else (included in the prerequisite reading for 
this lecture) to check if the folder exists: If it does not exist, a new local copy of the GitHub 
repository is cloned into your local hard drive. If it exists, then only the differences (or 
updates) between your local copy and the remote repository are fetched, so that your local 
copy is up to date with the remote. 

[8]: if os.path.isdir(repodir): # if repo exists, pull newest data 
repo = Repo(repodir) 
repo.remotes.origin.pull() 

else: # otherwise, clone from remote 
repo = Repo.clone_from('https://github.com/jayggg/mth271content', 

repodir) 

• Here repo is an object of class Repo. 
• Repo(repodir) invokes the constructor, namely the __init__ method. 
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• Repo.clone_from(...) calls the clone_from(...) method.

Now you have the updated course materials in your computer in a local folder. The object 
repo stores information about this folder, which you gave to the constructor in the string 
variable repodir, in a data member called working_dir. You can access any data members 
of an object in memory, and you do so just like you access a method, using a dot . followed 
by the member name. Here is an example: 

[9]: repo.working_dir 

[9]: '/Users/Jay/tmpdir/mth271content' 

Note how the Repo object was either initialized with repodir (if that folder exists) or set to 
clone a remote repository at a URL. 

III.6 Updated and future materials

The following instructions are for those of you who want to keep tracking the git repository 
closely in the future. Suppose you want to update your local folder with new materials 
from GitHub. But at the same time, you want to experiment and modify the notebooks as 
you like. This can create conficting versions, which we should know how to handle. 

Consider the situation where I have pushed changes to a fle into the remote git repository 
that you want your local folder to refect. But you have been working with the same fle 
locally and have made changes to it - perhaps you have put a note to yourself to look 
something up, or perhaps you have found a better explanation, or better code, than what I 
gave. You want to keep your changes. 

You should know that once you modify a fle that is tracked by git as a local copy of a 
remote fle, and you ask git to update, git will refuse to overwrite your changes. Because the 
remote version of the fle and the local version of the fle are now in confict, a simple git 
pull command will fail. Git provides constructs to help resolve such conficts, but let’s try 
to keep things simple today. The following method is a solution that doubles the number 
of fles, but has the advantage of simplicity: 

Go to the repodir location in your computer. Copy the jupyter subfolder as, say 
jupyterCopy. Overwrite the copy of this notebook (called 03_Working_with_git.ipynb) 
in the jupyterCopy folder with this fle, which you saved after making your changes to 
variables like coursefolder above. Note that jupyerCopy is untracked by git: there is 
no remote folder in the cloud repository with that name. So any changes you make in 
jupyterCopy will be left untouched by git. So you can freely change any jupyter notebooks 
within this folder. The next time you run this fle from jupyterCopy it will pull updates 
from the remote repository into the original jupyter folder. This way you get your up-
dates from the cloud in jupyter and at the same time get to retain your modifcations in 
jupyterCopy. 

Alternately, if you like working on the command line, instead of running this notebook, 
you can run the python fle update_course.py on the command line. You should move this 
fle outside of the repository and save it after changing the value of the string coursefolder 
to your specifc local folder name. 
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IV 

Conversion table 

April 2, 2020 

This elementary activity is intended to check and consolidate your understanding of very 
basic python language features. It is modeled after a similar activity in [HPL] and involves 
a simple temperature conversion formula. You may have seen kitchen cheat sheets (or have 
one yourself) like the following: 

Fahrenheit Celsius 

cool oven 200 F 90 C 
very slow oven 250 F 120 C 
slow oven 300-325 F 150-160 C
moderately slow oven 325-350 F 160-180 C
moderate oven 350-375 F 180-190 C
moderately hot oven 375-400 F 190-200 C
hot oven 400-450 F 200-230 C
very hot oven 450-500 F 230-260 C

This is modeled after a conversion table at the website Cooking Conversions for Old Time 
Recipes, which many found particularly useful for translating old recipes from Europe. 
Of course, the “old continent” has already moved on to the newer, more rational, metric 
system, so all European recipes, old and new, are bound to have temperatures in Celsius 
(C). Even if recipes don’t peak your interest, do know that every scientist must learn to 
work with the metric system. 

Celsius values can be converted to the Fahrenheit system by the formula 

9
F = C + 32.

5 

The task in this activity is to print a table of F and C values per this formula. While ac-
complishing this task, you will recall basic python language features, like while loop, for 
loop, range, print, list and tuples, zip, and list comprehension. 

IV.1 Using the while loop

We start by making a table of F and C values, starting from 0 C to 250 C, using the while 
loop. 

[1]: print('F C') 
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C = 0 
while C <= 250: 

F = 9 * C / 5 + 32 
print(F, C) 
C += 10 

F C 
32.0 0 
50.0 10 
68.0 20 
86.0 30 
104.0 40 
122.0 50 
140.0 60 
158.0 70 
176.0 80 
194.0 90 
212.0 100 
230.0 110 
248.0 120 
266.0 130 
284.0 140 
302.0 150 
320.0 160 
338.0 170 
356.0 180 
374.0 190 
392.0 200 
410.0 210 
428.0 220 
446.0 230 
464.0 240 
482.0 250 

This cell shows how to add, multiply, assign, increment, print, and run a while loop. Such 
basic language features are introduced very well in the prerequisite reading for this lecture, 
the offcial python tutorial’s section titled “An informal introduction to Python.” (Note 
that all pointers to prerequisite reading materials are listed together just after the table of 
contents in the beginning.) 

IV.2 Adjusting the printed output 

Examining the output above, we note that it is not perfectly aligned like a printed table. 
Here is how we can use print’s features to format or align them to our tastes. 

Formatting options like %10.3f can be used for alignment. It’s easy to describe this by an 
example: 

%10.3f: print 3 decimals, field width 10 
%9.2e: print 2 decimals, field width 9, scientific notation 

Type help(print) to recall these and other options. Below, we use a fxed width of 4 to 
format F and C values. 

[2]: print(' F C') 

C = 0 
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while C <= 250: 
F = 9 * C / 5 + 32 
print('%4.0f %4.0f' % (F, C)) 
C += 10 

F C 
32 0 
50 10 
68 20 
86 30 

104 40 
122 50 
140 60 
158 70 
176 80 
194 90 
212 100 
230 110 
248 120 
266 130 
284 140 
302 150 
320 160 
338 170 
356 180 
374 190 
392 200 
410 210 
428 220 
446 230 
464 240 
482 250 

IV.3 Do the same using for loop 

In addition to the while loop construct, python also has a for loop, which is often safer 
from an accidental bug sending the system into an infnite loop. Also recall the very useful 
range construct. The loop statement 

for i in range(4): 

runs over i=0,1,2,3 implicitly using range’s default starting value 0 and the default step-
ping value 1. For our temperature conversion task, we step by 10 degrees instead of the 
default value of 1: 

[3]: print(' F C') 
for C in range(0, 250, 10): 

F = 9 * C / 5 + 32 
print('%4.0f %4.0f' % (F, C)) 

F C 
32 0 
50 10 
68 20 
86 30 

104 40 
122 50 
140 60 
158 70 
176 80 
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194 90 
212 100 
230 110 
248 120 
266 130 
284 140 
302 150 
320 160 
338 170 
356 180 
374 190 
392 200 
410 210 
428 220 
446 230 
464 240 

IV.4 Is there a temperature whose F and C values are equal? 

As you can see from the above values, for a 10 degree increase in the C column, we see 
a corresponding 18 degree increase in the F column. Due to the these different rates of 
increase, we should see the values coincide by going to lower C values. Focusing on lower 
C values, let us run the for loop again: 

[4]: print(' F C') 
for C in range(-50, 50, 5): 

F = 9 * C / 5 + 32 
print('%4.0f %4.0f' % (F, C)) 

F C 
-58 -50 
-49 -45 
-40 -40 
-31 -35 
-22 -30 
-13 -25 
-4 -20 
5 -15 

14 -10 
23 -5 
32 0 
41 5 
50 10 
59 15 
68 20 
77 25 
86 30 
95 35 

104 40 
113 45 

As you see from the output above, at −40 degrees, the Fahrenheit scale and the Celsius 
scale coincide. If you have lived in Minnesota, you probably know how −40 feels like, and 
you likely already know the fact we just discovered above (it’s common for Minnesotans 
to throw around this tidbit while commiserating in the cold). 
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IV.5 Store in a list 

If we want to use the above-printed tables later, we would have to run a loop again. Our 
conversion problem is so small that there is no cost to run as many loops as we like, but 
in many practical problems, loops contains expensive computations. So one often wants 
to store the quantities computed in the loop in order to reuse them later. Lists are good 
constructs for this. 

First we should note that python has lists and also tuples. Only the former can be modifed 
after creation. Here is an example of a list: 

[5]: Cs = [0, 10] # create list using [] 
Cs.append(20) # modify by appending an entry 
Cs 

[5]: [0, 10, 20] 

And here is an example of a tuple: 

[6]: Cs = (0, 10) # create a tuple using () 

You access a tuple element just like a list element, so Cs[0] will give the frst element 
whether or not Cs is a list or a tuple. But the statement Cs[0] = -10 that changes an 
element of the container will work only if Cs is a list. We say that a list is mutable, while 
a tuple is immutable. Tuples are generally faster than lists, but lists are more fexible than 
tuples. 

Here is an example of how to store the computed C and F values within a loop into lists. 

[7]: Cs = [] # empty list 
Fs = [] 

for C in range(0, 250, 25): 
Cs.append(C) 
Fs.append(9 * C / 5 + 32) 

The lists Cs and Fs can be accessed later: 

[8]: print(Cs) 

[0, 25, 50, 75, 100, 125, 150, 175, 200, 225] 

[9]: print(Fs) 

[32.0, 77.0, 122.0, 167.0, 212.0, 257.0, 302.0, 347.0, 392.0, 437.0] 

This is not as pretty an output as before. But we can easily run a loop and print the stored 
values in any format we like. This is a good opportunity to show off a pythonic feature zip 
that allows you to traverse two lists simultaneously: 
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[10]: print(' F C') 
for C, F in zip(Cs, Fs): 

print('%4.0f %4.0f' % (F, C)) 

F C 
32 0 
77 25 

122 50 
167 75 
212 100 
257 125 
302 150 
347 175 
392 200 
437 225 

IV.6 List comprehension 

An alternate and very interesting way to make lists in python is by the list comprehension 
feature. Codes with list comprehension read almost like English. Let’s illustrate this by 
creating the list of F values from the existing list Cs of C values. Instead of making Fs in a 
loop as above, in a list comprehension, we just say that each value of the list Fs is obtained 
applying a formula for each C in a list Cs: 

[11]: Fs = [9 * C / 5 + 32 for C in Cs] 

Note how this makes for compact code without sacrifcing readability: constructs like this 
are why your hear so much praise for python’s expressiveness. For mathematicians, the 
list comprehension syntax is also reminiscent of the set notation in mathematics: the set 
(list) Fs is described in mathematical notation by { } 

9 
Fs = C + 32 : C ∈ Cs .

5 

Note how similar it is to the list comprehension code. (Feel free to check that the Fs com-
puted by the above one-liner is the same as the Fs we computed previously within a loop.) 
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V 

Approximating the derivative 

April 7, 2020 

In calculus, you learnt about the derivative and its central role in modeling processes 
where a rate of change is important. How do we compute the derivate on a computer? 

Recall what you did in your frst calculus course to compute the derivative. You memo-
rized derivatives of simple functions like cos x, sin x, exp x, xn etc. Then you learnt rules 
like product rule, quotient rule, chain rule etc. In the end you could systematically com-
pute derivatives of complicated functions by reducing it to simpler components and ap-
plying the rules. We could teach the computer the same rules and come up with an algo-
rithm for computing derivatives. This is the idea behind automatic differentiation. Python 
modules like sympy can compute derivatives symbolically in this fashion. However, this 
approach has its limits. 

In the real world, we often encounter complicated functions, such as functions that cannot 
be represented in terms of simple component functions, or functions whose values you can 
only query from some proprietary company code, or functions whose values are based off 
a table, like for instance this function. 

2020-01-01

2020-01-15

2020-02-01

2020-02-15

2020-03-01

2020-03-15

2020-04-01

Date

400

500

600

700

800

900

Price of TSLA stock

Daily Closing
Weekly Mean

This function represents Tesla’s stock prices this year until yesterday (which I got, in case 
you are curious, using just a few lines of python code). The function is complicated (not 
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to mention depressing - it refects the market downturn due to the pandemic). But its 
rate of change drives some investment decisions. Instead of the oscillatory daily stock 
values, analysts often look at the rate of change of trend lines (like the rolling weekly 
means above), a function certainly not expressible in terms of a few simple functions like 
sines or cosines. 

In this activity, we look at computing a numerical approximation to the derivative using 
something you learnt in calculus. 

V.1 Numerical differentiation 

Suppose f is a function of a single real variable x. Its derivative at any point x is the slope 
of the tangent of its graph at x. This slope, as you no doubt recall from calculus, can be 
numerically approximated by the slope of a secant line: 

f (x + h/2) − f (x − h/2)
f ′ (x) ≈ 

h 

Below is a plot of the tangent line of some function f at x, whose slope is f ′ (x), together 
with the secant line whose slope is the approximation on the right hand side above. Clearly 
as the spacing h decreases, the secant line becomes a better and better approximation to 
the tangent line. 

The right hand side formula 

f (x + h/2) − f (x − h/2) 
h 

can be implemented in python as long as we can compute the values f (x + h/2) and f (x − 
h/2). As h → 0, we should a good obtain approximation to f ′ (x). 

V.2 Second derivative 

We take one further step and approximate the second derivative by 

′′ (x) ≈ 
f ′ (x + h/2) − f ′ (x − h/2)

f ( h ) ( ) 
f (x+h/2+h/2)− f (x+h/2−h/2) f (x−h/2)− f (x−h/2−h/2)−h h ≈ 

h 
f (x + h) − 2 f (x) + f (x − h)≈ 

h2 

This is the Central Difference Formula for the second derivative. 

The frst task in this activity is to write a function to compute the above-stated second 
derivative approximation, 

f (x − h) − 2 f (x) + f (x + h) 
h2 

given any function f of a single variable x. The parameter h should also be input, but can 
take a default value of 10−6. 
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The prerequisite reading for this activity included python functions, keyword arguments, 
positional arguments, and lambda functions. Let’s apply all of these concepts while com-
puting the derivative approximation. Note that python allows you to pass functions them-
selves as arguments to other functions. Therefore, without knowing what specifc function 
f to apply the central difference formula, we can write a generic function D2 for implement-
ing the formula for any f . 

[1]: def D2(f, x, h=1E-6): 
return (f(x-h) - 2*f(x) + f(x+h)) / (h*h) 

Let’s apply the formula to some nice function, say the sine function. 

[2]: from math import sin 

D2(sin, 0.2) 

[2]: -0.19864665468105613 

Of course we know that second derivative of sin(x) is negative of itself, so a quick test of 
correctness is to compare the above value to that of − sin(0.2). 

[3]: -sin(0.2) 

[3]: -0.19866933079506122 

How do we apply D2 to, say, sin(2x)? One way is to defne a function returning sin(2 ∗ x) 
and then pass it to D2, as follows. 

[4]: def g(x): 
return sin(2*x) 

D2(g, 0.2) 

[4]: -1.5576429035490946 

An alternate way is using a lambda function. This gives a one-liner without damaging code 
readability. 

[5]: D2(lambda x: sin(2*x), 0.2) # central diff approximation 

[5]: -1.5576429035490946 

Of course, in either case the computed value approximates the actual value of sin′′ (2x) = 
−4 sin(2x), thus verifying our code. 

[6]: -4*sin(2* 0.2) # actual 2nd derivative value 

[6]: -1.557673369234602 
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V.3 Error 

The error in the approximation formula we just implemented is 

′′ (x) − 
f (x − h) − 2 f (x) + f (x + h)

ε(x) = f 
h2 

Although we can’t know the error ε(x) without knowing the true value f ′′ (x), calculus 
gives you all the tools to bound this error. 

Substituting the Taylor expansions 

h2 h3 h4 
′′′ (x) + ′′′′ (x) + ·f (x + h) = f (x) + h f ′ (x) + f ′′ (x) + f f · · 

2 6 24 

and 
h2 h3 h4 

′′ (x) − ′′′′ (x) + ·f (x − h) = f (x) − h f ′ (x) + f f ′′′ (x) + f · · 
2 6 24 

into the defnition of ε(x), we fnd that the after several cancellations, the dominant term 
is O(h2) as h → 0. 

This means that if h is halved, the error should decrease by a factor of 4. Let us take a look 
at the error in the derivative approximations applied to a simple function 

f (x) = x−6 

at, say x = 1. I am sure you can compute the exact derivative using your calculus knowl-
edge. In the code below, we subtract this exact derivative from the computed derivative 
approximation to obtain the error. 

[7]: print(' h D2 Result Error') 
for k in range(4,8): 

h = 2**(-k) 
d2g = D2(lambda x: x**-6, 1, h=h) 
e = d2g - 42 
print('%.0e %.5f %7.6f' %(h, d2g, e)) 

h D2 Result Error 
6e-02 42.99863 0.998629 
3e-02 42.24698 0.246977 
2e-02 42.06158 0.061579 
8e-03 42.01538 0.015384 

Clearly, we observe that the error decreases by a factor of 4 when h is halved. This is in 
accordance with what we expected from the Taylor expansion analysis above. 

V.4 Limitations 

A serious limitation of numerical differentiation formulas like this can be seen when we 
take values of h really close to 0. Although the limiting process in calculus relies on h going 
to 0, your computer is not equipped to deal with very small numbers. This creates issues. 
Instead of halving h, let us aggressively reduce h by a factor of 10, going down to 10−13 

and look at the results. 

38 



[8]: for k in range(1,14): 
h = 10**(-k) 
d2g = D2(lambda x: x**-6,1, h) 
print('%.0e %18.5f' %(h, d2g)) 

1e-01 44.61504 
1e-02 42.02521 
1e-03 42.00025 
1e-04 42.00000 
1e-05 41.99999 
1e-06 42.00074 
1e-07 41.94423 
1e-08 47.73959 
1e-09 -666.13381 
1e-10 0.00000 
1e-11 0.00000 
1e-12 -666133814.77509 
1e-13 66613381477.50939 

Although a mathematical argument led us to expect better approximations as h → 0, we 
fnd that the results from our computer for h < 10−8 are totally wrong! The problem is 
that computers cannot do exact arithmetic: the infnite real number system is replaced 
by a fnite set of numbers allowed in the so-called IEEE standard. This causes errors, 
called round-off errors that are different from the approximation error ε(x) we discussed. 
Specifcally, what happened was that for small h we subtracted very closeby numbers, 
creating round-off errors; we then multiplied by a big number (1/h2) amplifying these 
round-off errors. We shall not deal in depth with round-off errors in this course, but it 
pays to be wary of them. 
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VI 

Genome of SARS-CoV-2 

April 7, 2020 

Since most data come in fles and streams, a data scientist must be able to effectively work 
with them. Python provides many facilities to make this easy. In this class activity, we 
will review some of python’s fle, string, and dictionary facilities by examining a fle con-
taining the genetic code of the virus that has been disrupting our lives this term. Here is 
a transmission electron micrograph showing the virus (a public domain image from the 
CDC, credited to H. A. Bullock and A. Tamin). 

The genetic code of each living organism is a long sequence of simple molecules called nu-
cleotides or bases. Although many nucleotides exist in nature, only 4 nucleotides, labeled 
A, C, G, and T, have been found in DNA. They are abbreviations of Adenine, Cytosine, 
Guanine, and Thymine. Although it is diffcult to put viruses in the category of living 
organisms, they also have genetic codes made up of nucleotides. 

VI.1 Get the genome 

The NCBI (National Center for Biotechnology Information) has recently started maintain-
ing a data hub for genetic sequences related to the virus causing COVID-19. Recall that the 
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name of the virus is SARS-CoV-2 (which is different from the name of the disease, COVID-
19), or “Severe Acute Respiratory Syndrome Coronavirus 2” in full. Searching the NCBI 
website with the proper virus name will help you locate many publicly available data sets. 

Let’s download NCBI’s Reference Sequence NC_045512 giving the complete genome ex-
tracted from a sample of SARS-CoV-2 from the Wuhan seafood market, called the Wuhan-
Hu-1 isolate. Here is a code using urllib that will attempt to directly download from the 
url specifed below. It is unclear if this url would serve as a stable permanent link. In the 
event you have problems executing the next cell, please just head over to the webpage for 
NC_045512, click on “FASTA” (a data format) and then click on “Send to” a fle. Then save 
the fle in the same relative location mentioned below in f within the folder where we have 
been putting all the data fles in this course. 

[1]: # NCBI url: 

url = 'https://www.ncbi.nlm.nih.gov/sviewer/viewer.cgi?tool=portal&' + \ 
'save=file&log$=seqview&db=nuccore&report=fasta&id=1798174254&' + \ 
'extrafeat=null&conwithfeat=on&hide-cdd=on' 

# your local downloaded file: 

f = '../../data_external/SARS-CoV-2-Wuhan-NC_045512.2.fasta' 

[2]: import os 
import urllib 
import shutil 

if not os.path.isdir('../../data_external/'): 
os.mkdir('../../data_external/') 

r = urllib.request.urlopen(url) 
fo = open(f, 'wb') 
shutil.copyfileobj(r, fo) 
fo.close() 

As mentioned in the page describing the data, this fle gives the RNA of the virus. 

[3]: lines = open(f, 'r').readlines() 

The fle has been opened in read-only mode. The variable lines contains a list of all the 
lines of the fle. Here are the frst fve lines: 

[4]: lines[0:5] 

[4]: ['>NC_045512.2 Severe acute respiratory syndrome coronavirus 2 isolate␣ 
↪→Wuhan-

Hu-1, complete genome\n', 
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␣ 
↪→'ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAA\n', 

␣ 
↪→'CGAACTTTAAAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATAAC\n', 

␣ 
↪→'TAATTACTGTCGTTGACAGGACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTG\n', 

␣ 
↪→'TTGCAGCCGATCATCAGCACATCTAGGTTTCGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTC\n'] 

The frst line is a description of the data. The long genetic code is broken up into the 
following lines. We need to strip end-of-line characters from each such line to re-assemble 
the RNA string. Here is a way to strip off the end-of-line character: 

[5]: lines[1].strip() 

[5]: 'ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAA' 

Let’s do so for every line starting ignoring the frst. Since lines is a list object, ignoring the 
frst element of the list is done by lines[1:]. (If you don’t know this already, you must 
review the list access constructs.) The following code uses the string operation join to put 
together the lines into one long string. This is the RNA of the virus. 

[6]: rna = ''.join([line.strip() for line in lines[1:]]) 

The frst thousand characters and the last thousand characters of the RNA of the coron-
avirus are printed below: 

[7]: rna[:1000] 

[7]: 'ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAACGAACTTTA 
AAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATAACTAATTACTGTCGTTGACAG 
GACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAGGTT 
TCGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAACACACGTCCAACTCAGTTTG 
CCTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGGAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACA 
TCTTAAAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAACTTGAACAGCCCTATGTGTTCATCA 
AACGTTCGGATGCTCGAACTGCACCTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGT 
CGTAGTGGTGAGACACTTGGTGTCCTTGTCCCTCATGTGGGCGAAATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAA 
GAACGGTAATAAAGGAGCTGGTGGCCATAGTTACGGCGCCGATCTAAAGTCATTTGACTTAGGCGACGAGCTTGGCACTG 
ATCCTTATGAAGATTTTCAAGAAAACTGGAACACTAAACATAGCAGTGGTGTTACCCGTGAACTCATGCGTGAGCTTAAC 
GGAGGGGCATACACTCGCTATGTCGATAACAACTTCTGTGGCCCTGATGGCTACCCTCTTGAGTGCATTAAAGACCTTCT 
AGCACGTGCTGGTAAAGCTTCATGCACTTTGTCCGAACAACTGGACTTTATTGACACTAAGAGGGGTGTATACTGCTGCC 
GTGAACATGAGCATGAAATTGCTTGGTACACGGAACGTTCT' 

[8]: rna[-1000:] 

[8]: 'GCTGGCAATGGCGGTGATGCTGCTCTTGCTTTGCTGCTGCTTGACAGATTGAACCAGCTTGAGAGCAAAATGTCTGGTA 
AAGGCCAACAACAACAAGGCCAAACTGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAAAAACGTACT 
GCCACTAAAGCATACAATGTAACACAAGCTTTCGGCAGACGTGGTCCAGAACAAACCCAAGGAAATTTTGGGGACCAGGA 
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ACTAATCAGACAAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAGCGTTCTTCGGAA 
TGTCGCGCATTGGCATGGAAGTCACACCTTCGGGAACGTGGTTGACCTACACAGGTGCCATCAAATTGGATGACAAAGAT 
CCAAATTTCAAAGATCAAGTCATTTTGCTGAATAAGCATATTGACGCATACAAAACATTCCCACCAACAGAGCCTAAAAA 
GGACAAAAAGAAGAAGGCTGATGAAACTCAAGCCTTACCGCAGAGACAGAAGAAACAGCAAACTGTGACTCTTCTTCCTG 
CTGCAGATTTGGATGATTTCTCCAAACAATTGCAACAATCCATGAGCAGTGCTGACTCAACTCAGGCCTAAACTCATGCA 
GACCACACAAGGCAGATGGGCTATATAAACGTTTTCGCTTTTCCGTTTACGATATATAGTCTACTCTTGTGCAGAATGAA 
TTCTCGTAACTACATAGCACAAGTAGATGTAGTTAACTTTAATCTCACATAGCAATCTTTAATCAGTGTGTAACATTAGG 
GAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTACGATCGAGTGTACAGTGAACAATGCTAGGGAGA 
GCTGCCTATATGGAAGAGCCCTAATGTGTAAAATTAATTTTAGTAGTGCTATCCCCATGTGATTTTAATAGCTTCTTAGG 
AGAATGACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' 

Here is the total length of the RNA: 

[9]: len(rna) 

[9]: 29903 

While the human genome is over 3 billion in length, the genome of this virus does not even 
reach the length of 30000. 

VI.2 Finding a protein 

When describing RNA, the T (Thymine) is often replaced by U (Uracil). This is done for 
example in an interesting New York Times article that came out last Friday. The article 
explains how this RNA code makes infected host cells produce a variety of proteins. Sci-
entists have a good understanding of what some of these proteins do, but not all. 

Here is a quote from the article on a protein it nicknamed Virus Liberator. ORF7a 

When new viruses try to escape a cell, the cell can snare them with 
proteins called tetherin. Some research suggests that ORF7a cuts 
down an infected cell’s supply of tetherin, allowing more of the 
viruses to escape. Researchers have also found that the protein can 
trigger infected cells to commit suicide - which contributes to the 
damage Covid-19 causes to the lungs. 

The article then gives the ORF7a sequence, which I have copied and pasted into the next 
cell, adding some string breaks. Note how the article has used lower case characters and 
the character u instead of T. 

[10]: orf7a = 'augaaaauuauucuuuucuuggcacugauaacacucgcuacuugugagcuuuaucacuaccaag'␣ 
↪→+ \ 

'aguguguuagagguacaacaguacuuuuaaaagaaccuugcucuucuggaacauacgagggcaa'␣ 
↪→+ \ 

'uucaccauuucauccucuagcugauaacaaauuugcacugacuugcuuuagcacucaauuugcu'␣ 
↪→+ \ 

'uuugcuuguccugacggcguaaaacacgucuaucaguuacgugccagaucaguuucaccuaaac'␣ 
↪→+ \ 
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'uguucaucagacaagaggaaguucaagaacuuuacucuccaauuuuucuuauuguugcggcaau'␣ 
↪→+ \ 

'aguguuuauaacacuuugcuucacacucaaaagaaagacagaaugauugaacuuucauuaauug'␣ 
↪→+ \ 

'acuucuauuugugcuuuuuagccuuucugcuauuccuuguuuuaauuaugcuuauuaucuuuug'␣ 
↪→+ \ 

'guucucacuugaacugcaagaucauaaugaaacuugucacgccuaaacgaac' 

The next task in this class activity is to fnd if this sequence occurs in the RNA we just 
downloaded, and if it does, where it occurs. To this end, we frst make the replacements 
required to read the string in terms of A, T, G, and C. 

[11]: s=orf7a.replace('u', 'T').replace('a', 'A').replace('g', 'G').replace('c',␣ 
↪→'C') 

s 

[11]: 'ATGAAAATTATTCTTTTCTTGGCACTGATAACACTCGCTACTTGTGAGCTTTATCACTACCAAGAGTGTGTTAGAGGTA 
CAACAGTACTTTTAAAAGAACCTTGCTCTTCTGGAACATACGAGGGCAATTCACCATTTCATCCTCTAGCTGATAACAAA 
TTTGCACTGACTTGCTTTAGCACTCAATTTGCTTTTGCTTGTCCTGACGGCGTAAAACACGTCTATCAGTTACGTGCCAG 
ATCAGTTTCACCTAAACTGTTCATCAGACAAGAGGAAGTTCAAGAACTTTACTCTCCAATTTTTCTTATTGTTGCGGCAA 
TAGTGTTTATAACACTTTGCTTCACACTCAAAAGAAAGACAGAATGATTGAACTTTCATTAATTGACTTCTATTTGTGCT 
TTTTAGCCTTTCTGCTATTCCTTGTTTTAATTATGCTTATTATCTTTTGGTTCTCACTTGAACTGCAAGATCATAATGAA 
ACTTGTCACGCCTAAACGAAC' 

The next step is now a triviality in view of python’s exceptional string handling mecha-
nisms: 

[12]: s in rna 

[12]: True 

We may also easily fnd the location of the ORF7a sequence and read off the entire string 
beginning with the sequence. 

[13]: rna.find(s) 

[13]: 27393 

[14]: rna[27393:] 

[14]: 'ATGAAAATTATTCTTTTCTTGGCACTGATAACACTCGCTACTTGTGAGCTTTATCACTACCAAGAGTGTGTTAGAGGTA 
CAACAGTACTTTTAAAAGAACCTTGCTCTTCTGGAACATACGAGGGCAATTCACCATTTCATCCTCTAGCTGATAACAAA 
TTTGCACTGACTTGCTTTAGCACTCAATTTGCTTTTGCTTGTCCTGACGGCGTAAAACACGTCTATCAGTTACGTGCCAG 
ATCAGTTTCACCTAAACTGTTCATCAGACAAGAGGAAGTTCAAGAACTTTACTCTCCAATTTTTCTTATTGTTGCGGCAA 
TAGTGTTTATAACACTTTGCTTCACACTCAAAAGAAAGACAGAATGATTGAACTTTCATTAATTGACTTCTATTTGTGCT 
TTTTAGCCTTTCTGCTATTCCTTGTTTTAATTATGCTTATTATCTTTTGGTTCTCACTTGAACTGCAAGATCATAATGAA 
ACTTGTCACGCCTAAACGAACATGAAATTTCTTGTTTTCTTAGGAATCATCACAACTGTAGCTGCATTTCACCAAGAATG 
TAGTTTACAGTCATGTACTCAACATCAACCATATGTAGTTGATGACCCGTGTCCTATTCACTTCTATTCTAAATGGTATA 
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TTAGAGTAGGAGCTAGAAAATCAGCACCTTTAATTGAATTGTGCGTGGATGAGGCTGGTTCTAAATCACCCATTCAGTAC 
ATCGATATCGGTAATTATACAGTTTCCTGTTTACCTTTTACAATTAATTGCCAGGAACCTAAATTGGGTAGTCTTGTAGT 
GCGTTGTTCGTTCTATGAAGACTTTTTAGAGTATCATGACGTTCGTGTTGTTTTAGATTTCATCTAAACGAACAAACTAA 
AATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGCAGTA 
ACCAGAATGGAGAACGCAGTGGGGCGCGATCAAAACAACGTCGGCCCCAAGGTTTACCCAATAATACTGCGTCTTGGTTC 
ACCGCTCTCACTCAACATGGCAAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAATTAACACCAATAGCAGTCC 
AGATGACCAAATTGGCTACTACCGAAGAGCTACCAGACGAATTCGTGGTGGTGACGGTAAAATGAAAGATCTCAGTCCAA 
GATGGTATTTCTACTACCTAGGAACTGGGCCAGAAGCTGGACTTCCCTATGGTGCTAACAAAGACGGCATCATATGGGTT 
GCAACTGAGGGAGCCTTGAATACACCAAAAGATCACATTGGCACCCGCAATCCTGCTAACAATGCTGCAATCGTGCTACA 
ACTTCCTCAAGGAACAACATTGCCAAAAGGCTTCTACGCAGAAGGGAGCAGAGGCGGCAGTCAAGCCTCTTCTCGTTCCT 
CATCACGTAGTCGCAACAGTTCAAGAAATTCAACTCCAGGCAGCAGTAGGGGAACTTCTCCTGCTAGAATGGCTGGCAAT 
GGCGGTGATGCTGCTCTTGCTTTGCTGCTGCTTGACAGATTGAACCAGCTTGAGAGCAAAATGTCTGGTAAAGGCCAACA 
ACAACAAGGCCAAACTGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAAAAACGTACTGCCACTAAAG 
CATACAATGTAACACAAGCTTTCGGCAGACGTGGTCCAGAACAAACCCAAGGAAATTTTGGGGACCAGGAACTAATCAGA 
CAAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAGCGTTCTTCGGAATGTCGCGCAT 
TGGCATGGAAGTCACACCTTCGGGAACGTGGTTGACCTACACAGGTGCCATCAAATTGGATGACAAAGATCCAAATTTCA 
AAGATCAAGTCATTTTGCTGAATAAGCATATTGACGCATACAAAACATTCCCACCAACAGAGCCTAAAAAGGACAAAAAG 
AAGAAGGCTGATGAAACTCAAGCCTTACCGCAGAGACAGAAGAAACAGCAAACTGTGACTCTTCTTCCTGCTGCAGATTT 
GGATGATTTCTCCAAACAATTGCAACAATCCATGAGCAGTGCTGACTCAACTCAGGCCTAAACTCATGCAGACCACACAA 
GGCAGATGGGCTATATAAACGTTTTCGCTTTTCCGTTTACGATATATAGTCTACTCTTGTGCAGAATGAATTCTCGTAAC 
TACATAGCACAAGTAGATGTAGTTAACTTTAATCTCACATAGCAATCTTTAATCAGTGTGTAACATTAGGGAGGACTTGA 
AAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTACGATCGAGTGTACAGTGAACAATGCTAGGGAGAGCTGCCTATA 
TGGAAGAGCCCTAATGTGTAAAATTAATTTTAGTAGTGCTATCCCCATGTGATTTTAATAGCTTCTTAGGAGAATGACAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' 

VI.3 Nucleotide frequencies 

The frequency of a base or a nucleotide in a genetic code is the number of times it occurs 
divided by the length of the code. The varying frequency of different nucleotides, called 
the nucleotide bias varies between organisms and is known to have biological implica-
tions. Biologists also often talk of the GC content, the percentage of nitrogeneous bases (G 
and C) in an RNA or DNA to get insights into its stability. 

The next task in this activity is to make a python dictionary, called freq, whose keys are 
the nucleotide characters and whose values are the number of times it occurs in the virus 
RNA. Once you have made it, freq['A'], for example, should output the frequency of 
nucleotide A. 

[15]: freq = {b: rna.count(b)/len(rna) for b in 'ATGC'} 

[16]: freq 

[16]: {'A': 0.29943483931378123, 
'T': 0.32083737417650404, 
'G': 0.19606728421897468, 
'C': 0.18366050229074005} 
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VI.4 A Washington sample 

A more recent dataset at NCBI, apparently just submitted for peer-review on April 3, 
claims to contain the genome of a virus sample from our neighboring state of Washing-
ton. You can fnd it labeled there as the data set MT293201. Let us take a look. (Again, 
if the url below fails, please head over the NCBI webpage, fnd and download the corre-
sponding data fle for this sample, again in FASTA format, and save it using the name f2 
below.) 

[17]: url2 = 'https://www.ncbi.nlm.nih.gov/sviewer/viewer.cgi?' + \ 
'tool=portal&save=file&log$=seqview&db=nuccore&report=fasta&' + \ 
'id=1828694245&extrafeat=null&conwithfeat=on&hide-cdd=on' 

f2 = '../../data_external/SARS-CoV-2-Washington_MT293201.1.fasta' 

[18]: r2 = urllib.request.urlopen(url2) 
fo2 = open(f2, 'wb') 
shutil.copyfileobj(r2, fo2) 

You might have already heard in the news that there are multiple strains of the virus 
around the globe. Let’s investigate this genetic code a bit closer. 

Is this the same genetic code as from the Wuhan sample? Let’s repeat the previous pro-
cedure on this new fle to make a string object that contains the RNA from the Washington 
sample. We shall call it rna2 below. 

[19]: lines = open(f2, 'r').readlines() 
rna2 = ''.join([line.strip() for line in lines[1:]]) 

We should note that not all data sets uses just ATGC. There is a standard notation that ex-
tends the four letters, e.g., N is used to indicate any nucleotide. So, it might be a good idea 
to answer this question frst: what are the distinct characters in the new rna2? There can be 
very simply done in python if you use the set data structure, which removes duplicates. 

[20]: set(rna2) 

[20]: {'A', 'C', 'G', 'T'} 

The next natural question might be this. Are the lengths of rna and rna2 the same? 

[21]: len(rna2), len(rna) 

[21]: (29846, 29903) 

We could also look at the frst and last 30 characters and check if they are the same, like so: 

[22]: rna2[:30], rna2[-30:] 

[22]: ('AACCTTTAAACTTTCGATCTCTTGTAGATC', 'TTTAATAGCTTCTTAGGAGAATGACAAAAA') 

46 

https://www.ncbi.nlm.nih.gov/nuccore/MT293201
https://en.wikipedia.org/wiki/Nucleic_acid_sequence


[23]: rna[:30], rna[-30:] 

[23]: ('ATTAAAGGTTTATACCTTCCCAGGTAACAA', 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA') 

Clearly, rna and rna2 are different strings. 

Compare their nucleotide frequencies 
[24]: freq2 = {b: rna2.count(b)/len(rna2) for b in 'ATGC'} 

[25]: freq2 

[25]: {'A': 0.29866648797158746, 
'T': 0.3214166052402332, 
'G': 0.1963077129263553, 
'C': 0.18360919386182403} 

Although the Washington genome is not identical to the Wuhan one, their nucleotide fre-
quencies are very close to the Wuhan one, reproduced here: 

[26]: freq 

[26]: {'A': 0.29943483931378123, 
'T': 0.32083737417650404, 
'G': 0.19606728421897468, 
'C': 0.18366050229074005} 

Does it contain ORF7a? 
[27]: s in rna2 

[27]: True 

[28]: rna2.find(s) 

[28]: 27364 

Thus, we located the same ORF7a instruction in this virus at a different location. Although 
the genetic code from the Washington sample and the Wuhan sample are different, they 
can make the same protein ORF7a and their nucleotide frequencies are very close. 

This activity provided you with just a glimpse into the large feld of bioinformatics, which 
studies, among other things, patterns of nucleotide arrangements. If you are interested in 
this feld, you should take a look at Biopython, a bioinformatics python package. 
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VII 

Fibonacci primes 

April 9, 2020 

Fibonacci numbers appear in so many unexpected places that I am sure you have already 
seen them. They are elements of the Fibonacci sequence Fn defned by 

F0 = 0, F1 = 1, 
Fn = Fn−1 + Fn−2, for n > 1. 

Obviously, this recursive formula gives infnitely many Fibonacci numbers. We also know 
that there are infnitely many prime numbers: the ancient Greeks knew it (actually proved 
it) in 300 BC! 

But, to this day, we still do not know if there are infnitely many prime numbers in the Fibonacci 
sequence. These numbers form the set of Fibonacci primes. Its (in)fniteness is one of the 
still unsolved problems in mathematics. 

In this activity, you will compute a few initial Fibonacci primes, while reviewing some 
python features along the way, such as generator expressions, yield, next, all, line mag-
ics, modules, and test functions. Packages we shall come across include memory_profiler, 
primesieve, and pytest. 

VII.1 Generator expressions 

Representing sequences is one of the elementary tasks any programming language should 
be able to do well. Python lists can certainly be used for this. For example, the following 
list comprehension gives elements of the sequence 

ni , n = 0, 1, 2, . . . , N − 1 

succinctly: 

[1]: i=2; N=10 

L = [n**i for n in range(1, N)] 

If you change the brackets to parentheses, then instead of a list comprehension, you get a 
different object called generator expression. 

[2]: G = (n**i for n in range(1, N)) 

Both L and G are examples of iterators, an abstraction of a sequence of things with the 
ability to tell, given an element, what is the next element of the sequence. Since both L and 
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G are iterators, you will generally not see a difference in the results if you run a loop to 
print their values, or if you use them within a list comprehension. 

[3]: [l for l in L] 

[3]: [1, 4, 9, 16, 25, 36, 49, 64, 81] 

[4]: [g for g in G] 

[4]: [1, 4, 9, 16, 25, 36, 49, 64, 81] 

However, if you run the last statement again, what happens? 

[5]: [g for g in G] 

[5]: [] 

The difference between the generator expression G and the list L is that a generator expres-
sion does not actually compute the values until they are needed. Once an element of the 
sequence is computed, the next time, the generator can only compute the next element in 
the sequence. If the end of a fnite sequence was already reached in a previous use of the 
generator, then there are no more elements of the sequence to compute. This is why we 
got the empty output above. 

VII.2 Generator functions 

Just as list comprehensions can be viewed as abbreviations of loops, generator expressions 
can also be viewed so using the yield statement. The statement 

G = (n**i for n in range(1, N)) 

is an abbreviation of the following function with a loop where you fnd yield in the loca-
tion where you might have expected a return statement. 

[6]: def GG(): 
for n in range(1, N): 

yield n**i 

[7]: G2 = GG() 
print(*G2) # see that you get the same values as before 

1 4 9 16 25 36 49 64 81 

The yield statement tells python that this function does not just return a value, but rather 
a value that is an element of a sequence, or an iterator. Internally, in order for something 
to be an iterator in python, it must have a well-defned __next__() method: even though 
you did not explicitly defne anything called __next__ when you defned GG, python seeing 
yield defnes one for you behind the scenes. 
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Recall that you have seen another method whose name also began with two underscores, 
the special __init__ method, which allows you to construct a object using the name of the 
class followed by parentheses. The __next__ method is also a “special” method in that it 
allows you to call next on the iterator to get its next value, like so: 

[8]: G2 = GG() 

# get the first 3 values of the sequence using next: 

next(G2), next(G2), next(G2) 

[8]: (1, 4, 9) 

[9]: print(*G2) # print the remaining values of the sequence 

16 25 36 49 64 81 

As you can see, a generator “remembers” where it left off in a prior iteration. 

VII.3 Disposable generators or reusable lists? 

It might seem that generators are dangerous disposable objects that are somehow inferior 
to resuable lists which have all the same properties. Here is an example that checks that 
thinking: 

[10]: i = -20 
N = 10**8 

To compute the sum 
108 

1
∑ n20 , 
n=1 

would you use the following list comprehension? 

sum([n**i for n in range(1, N)]) 

If you do, you would need to store the created list in memory. If you install the 
memory_profiler and use it as described in the prerequisite reading material from [JV-
H], then you can see memory usage easily. If you don’t have a GB of RAM free, be warned 
that running this list comprehension (mentioned above, and in the cell after next) might 
crash your computer. 

[11]: %load_ext memory_profiler 

[12]: %memit sum([n**i for n in range(1, N)]) 

peak memory: 3884.82 MiB, increment: 3842.59 MiB 
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Per offcial standards, memory should be reported in mebibytes (MiB), a power of two that 
is close to 103 (“mebi” is made up of words “mega” and “binary”), although the commer-
ical world continues to use 10-based MB, GB, etc. The “increment” reported in the above 
output in MiB is the difference between the peak memory and the memory used just before 
memit was called: that gives the memory used by the statement. 

Clearly we should not need so much memory for such a simple task. A better solution 
is offered by the generator expression. It has no memory issues since it doesn’t store all 
the elements of the sequence at once. Moreover, we can decide to stop iterating when the 
numbers in the sequence get below machine precision, thus getting to the sum faster. 

[13]: G3 = (n**i for n in range(1, N)) 

s = 0 

for g in G3: 
s += g 
if g < 1e-15: 

break 

print(s) 

1.0000009539620338 

VII.4 Infnite sequences 

By now you are wondering, if we can work with a sequence of 108 entries, then why can 
we not work with an infnite sequence. Yes, python makes it easy for you to make an 
infnite sequence construct: 

[14]: def natural_numbers(): 
n = 0 
while True: 

yield n 
n += 1 

[15]: for n in natural_numbers(): 
print(n) 
if n >= 5: break # don't go into infinite loop! 

0 
1 
2 
3 
4 
5 

In fact the function count in module itertools does just this. Python does assume that 
you are smart enough to use these without sending yourself into infnite loops. If you want 
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to stay safe, then avoid using while True, replacing it with while n < max where max is 
some maximum number, a sentinel, that you never plan to exceed. 

VII.5 Fibonacci generator 

To generate Fn satisfying 

F0 = 0, F1 = 1, ∀n > 1 : Fn = Fn−1 + Fn−2, 

we use a generator that keeps in memory two prior elements of the sequence, as follows. 

[16]: def fibonacci(max): 
f, fnext = 0, 1 
while f < max: 

yield f 
f, fnext = fnext, f + fnext 

[17]: Fn = fibonacci(10000) 
print(*Fn) 

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 

Note that we have used python’s tuple swap idiom in the defnition of fibonacci above. 
To understand it, note the evaluation order of expressions 

expr3, expr4 = expr1, expr2 

per the offcial documentation. The tuple swap idiom is an example (yet another) of how 
python achieves brevity without compromising elegance or readability. 

VII.6 Prime number generator 

Let’s make a generator for the infnite prime number sequence. This classic example is 
beautifully discussed in [JV-H], which I suggest you read, if you have not already. Here is 
a standard method to generate the set P of all primes less than some N. Suppose at any 
stage of the generator algorithm, a subset P = {2, 3, . . . , q} of primes up to and including 
q have been found. The prime number generator should fnd the next prime number by 
checking if any element of P divides n for a number n greater than q: if the remainder in 
the division of n by p is nonzero for all p ∈ P, then n is the next prime. 

For example, at some stage, suppose P is this: 

[18]: P = [2, 3] 

Then, the next number n = 4 has remainders 4%p given by 

[19]: [4 % p for p in P] 

[19]: [0, 1] 

Clearly not all of the remainders are nonzero: 
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[20]: all([4 % p for p in P]) 

[20]: False 

Hence the generator would conclude that the number 4 is not a prime, and proceed to the 
next case n = 5, which it would conclude is a prime because: 

[21]: all([5 % p for p in P]) 

[21]: True 

This is implemented below. 

[22]: def prime_numbers(N): 
primes = [] 
q = 1 
for n in range(q+1, N): 

if all(n % p > 0 for p in primes): 
primes.append(n) 
q = n 
yield n 

[23]: list(prime_numbers(70)) 

[23]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67] 

VII.7 First few Fibonacci primes 

Now we can generate all primes less than any number N and all Fibonacci numbers less 
than N. Listing Fibonacci primes less than N then becomes possible by simply intersecting 
the two sets. Python does have a set data structure which comes with a handy intersection 
method, so the code is trivial: 

[24]: def fibonacci_primes(N): 
F = set(fibonacci(N)) 
P = set(prime_numbers(N)) 
print('Intersecting', len(P), 'primes with', len(F), 'fibonaccis.') 
return P.intersection(F) 

fibonacci_primes(100000) 

Intersecting 9592 primes with 25 fibonaccis. 

[24]: {2, 3, 5, 13, 89, 233, 1597, 28657} 

VII.8 Verifcation 

Verifcation refers to the process of cross checking that a program behaves as expected in 
a few chosen cases. It is the developer’s responsibility to ensure that a code is correct. 
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Part of this responsibility involves designing and adding test functions that verify that the 
code produces the correct output in a few cases where correct output is known. Complex 
codebases with multiple fles often have a suite of test functions. After a development 
team member changes one fle, if the test suite does not pass all tests, it is a sign that the 
change has broken the code functionality due to some unanticipated repercussions of the 
change in other parts of the code. 

How do you know that the result of your fibonacci_primes is correct? We could design 
checks, say by verifying that our prime number routine is correct for the frst few primes, 
plus a similar check for Fibonacci numbers. Or, we could look up the known Fibonacci 
prime numbers and see if we have got the frst few correctly. Design of such tests is the 
process of verifcation. While there no standard method for it, one often used principle is 
to code with all cases in mind and test using known cases. 

Let us use the Online Encylopedia of Integer Sequences (OEIS) which reports the currently 
known values of n for which Fn is prime. It is listed there as sequence A001605. Here are 
the frst 10 elements of this sequence: 

[25]: nFP = [3, 4, 5, 7, 11, 13, 17, 23, 29, 43] 

Based on this we can write a test function. A test function has a name that begins with test 
and does not take any argument. In the test function below you see a statement of the 
form assert Proposition, Error, which will raise an AssertionError and print Error 
if Proposition evaluates to False (and if True, then assert lets execution continues to the 
next line). The test checks if our list of initial Fibonacci primes coincides with the one 
implied by nFP above. 

[26]: def test_fibonacci_prime(): 
N = 10000 
F = list(fibonacci(N)) 
nFP = [3, 4, 5, 7, 11, 13, 17, 23, 29, 43] 

our_list = fibonacci_primes(N) 
known_list = set([F[n] for n in nFP if n < len(F)]) 

assert len(known_list.difference(our_list))==0, 'We have a bug!' 
print('Passed test!') 

[27]: test_fibonacci_prime() 

Intersecting 1229 primes with 20 fibonaccis. 
Passed test! 

One of the python modules that facilitates automated testing in python codes is the pytest 
module. If you run pytest within a folder (directory), it will run all test functions it fnds in 
all fles of the form test_*.py or *_test.py in the current directory and its subdirectories. 
Please install pytest in the usual way you install any other python package. 

To illustrate its use, let us make up a simple project structure as follows. This also serves as 
your introduction to modules in python. Please create a folder fibonacci_primes and fles 
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my_simple_primes.py, fibonacci.py and test_fibonacci_primes.py within the folder as 
shown below: 

fibonacci_primes <- create this folder within ../pyfiles 
|-- fibonacci.py <- define functions fibonacci & fibonacci_primes 
|-- my_simple_primes.py <- copy prime_numbers function definition here 
|-- test_fibonacci_primes.py <- copy test_fibonacci_prime function here 

Individual fles may be thought of as python modules and you can import from them 
the way you have been importing from external packages. Since fibonacci.py uses 
prime_numbers which is now in a different fle my_simple_primes.py, you should add 
the line 

from my_simple_primes import prime_numbers 

at the top of fibonacci.py. Additionally, since test_fibonacci_primes.py uses the func-
tions fibonacci and fibonacci_primes, in order for the test function to fnd these function 
defnitions, you should include the line 

from fibonacci import fibonacci, fibonacci_primes 

at the top of test_fibonacci_primes.py. 

Now you have a project called fibonacci_primes on which you can apply automated 
testing programs like pytest, as shown in the next cell. Note that a test function will run 
silently if all tests pass (without printing any outputs). 

[28]: !pytest ../pyfiles/fibonacci_primes 

================================ test session starts ================================ 
platform darwin -- Python 3.8.0, pytest-5.3.2, py-1.8.0, pluggy-0.13.1 
rootdir: /Users/jay/Dropbox/Jay/teaching/2019-20/MTH271/mth271content 
collected 1 item 

../pyfiles/fibonacci_primes/test_fibonacci_prime.py . 

[100%] 

================================= 1 passed in 0.07s ================================= 

To see how the output would be like if a test fails, you might want to run this again after 
deliberately creating a bug: for example, set the initializer for Fibonacci recurrence to 2 
instead of 1 in the fle fibonacci.py and then return to run the above pytest to see what 
happens. 

VII.9 There must be a module for it! 

While coding up the prime number generator, did you get that nagging question in your 
mind, the one that we all get when coding up a basic algorithmic task in python? May be 
there is already a module for this? 

Yes, indeed, the few lines we implemented above to get the prime numbers actually form 
an ancient algorithm, called the Sieve of Eratosthenes, which is implemented in many 
places. An example is a python binding for a C library called primesieve. (You might 
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need to install python-primesieve and primesieve depending on your system.) After you 
install it, the following two lines will give you the same prime number list. 

[29]: from primesieve import primes # do after you have installed primesieve 
list(primes(70)) 

[29]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67] 

This package is many times faster than our simple code with a python loop above, as 
you can verify using another %magic. (Recall that iPython/Jupyter facilties like %timeit 
and %memit are called line magics. You can read more about line and cell magics in your 
[JV-H].) 

[30]: %timeit primes(1000) 

3.15 µs ± 53.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) 

[31]: %timeit list(prime_numbers(1000)) 

1.2 ms ± 37 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) 

VII.10 The Fibonaccis among primes (or vice versa)? 

Finding bigger and bigger primes is kind of like fnding rare bit coins. Indeed, the diffculty 
of factoring the product of two large prime numbers is the basis of several encryption tech-
niques. There is a world-wide effort to fnd more and more primes. For example, GIMPS, 
the Great Internet Mersenne Prime Search, discovered the largest (currently) known prime 
number, 282,589,933 − 1, having 24,862,048 digits (on December 7, 2018, using a computer in 
Ocala, Florida, whose owner decided to download the free GIMPS software to stress test 
his computer). 

Our simple function fibonacci_primes was not designed to go above a fnite maximal N, 
so of course, it can make no contribution to answering the unsolved question on fniteness 
of the set of Fibonacci primes. To write a code to fnd larger and larger Fibonacci primes, 
one might consider two options: 

1. Look for prime numbers within the set of Fibonacci numbers. 

OR 

2. Look for Fibonacci numbers within the set of prime numbers. 

The few Fibonacci numbers we saw above looked quite sparse so Option 1 might look 
good, but it would require us to test whether a number is prime or not, which as we saw 
involves quite a bit of effort as the numbers get larger. 

Option 2 could work as a good strategy, especially when more and more primes are dis-
covered, provided we know how to test if a number is in the Fibonacci sequence. Using 
some completely elementary mathematics (and without having to use any fancy theorems 
you haven’t yet studied) you can prove the following. (Do be warned that proving this is 
not a 5-minute exercise; if you can do it in 5 minutes, I’d love to hear!) 
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Theorem 1. A number F is a Fibonacci number if and only if 5F2 + 4 or 5F2 − 4 is a perfect 
square. 

Let’s close by implementing this check for a number to be a perfect square using math.sqrt 
and let’s use it together with primesieve to get a Fibonacci prime. 

[32]: import primesieve, math 

def is_square(n): 
s = int(math.sqrt(n)) 
return s*s == n 

it = primesieve.Iterator() 
it.skipto(2**28-1) 
p = it.next_prime() 

while p < 2**30-1: 
if is_square(5*p*p+4) or is_square(5*p*p-4): 

print('¡¡ Got one !! ', p, 'is a Fibonacci prime!') 
p = it.next_prime() 

¡¡ Got one !! 433494437 is a Fibonacci prime! 

Do feel free to experiment increasing the 2**30 limit above. But may be it is now time 
to manage your expectations a bit. A few decades ago, 231 − 1 was the largest integer 
representable on most computers. Now that 64-bit computing is common, we can go up 
to 263 − 1 (and a bit more with unsigned integers). To go beyond, not only will we need 
much faster programs, but also specialized software to represent larger integers and do 
arithmetic with them. 
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VIII 

Numpy blitz 

April 14, 2020 

Numpy arrays are more effcient than lists because all elements of numpy arrays are of the 
same pre-determined type. Numpy also provides effcient ufuncs (universal functions) 
which are vectorized functions that loop over array elements with loops pre-compiled in 
C. Numpy also exhibits some syntactic features that a mathematician may consider a nui-
sance, but knowing how to work with numpy is key for almost all scientifc computation 
in python. It takes some practice to be comfortable with numpy and practice is what we 
are aiming for in this activity. This activity is structured as a list of questions. You will 
be in a position to appreciate these questions (and their answers) after going through this 
lecture’s prerequistes on numpy yourself. 

[1]: import numpy as np 
import math 

VIII.0.1 Are lists and numpy arrays different? 

[2]: A = [0.1, 1.3, 0.4, 0.5] # list 
a = np.array(A) # numpy array 

type(a), type(A) 

[2]: (numpy.ndarray, list) 

Here is how you fnd out the common data type of elements of a numpy array (and there 
is no such analogue for list, since list elements can be of different types). 

[3]: a.dtype # a's common element type (A.dtype is undefined!) 

[3]: dtype('float64') 

VIII.0.2 What is the difference between 2*a and 2*A? 

[4]: 2*a 

[4]: array([0.2, 2.6, 0.8, 1. ]) 

[5]: 2*A 
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[5]: [0.1, 1.3, 0.4, 0.5, 0.1, 1.3, 0.4, 0.5] 

VIII.0.3 How best to compute sin(x)e−x for many x? 

Here is one option: 

[sin(x[i]) * exp(-x[i]) for i in range(n)] 

And here is another: 

np.sin(x) * np.exp(-x) 

Which is better? 

[6]: n = 100000 
x = np.linspace(0, 2*np.pi, n) 

[7]: # list comprehension 
%timeit y = [math.sin(x[i]) * math.exp(-x[i]) for i in range(n)] 

# use numpy ufuncs 
%timeit y = np.sin(x) * np.exp(-x) 

53.4 ms ± 1.7 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 
1.29 ms ± 39.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) 

The functions np.sin and np.exp are examples of numpy’s universal functions (ufuncs) 
that act directly on arrays. While np.sin are unary ufunc, there are many binary ufuncs 
like np.add: when you write x+y, you are actually calling the binary ufunc np.add(x, y). 
Ufuncs are vectorized functions. 

VIII.1 What is vectorization? 

Vectorization refers to one or both of the following, depending on context: 

1. A convenience feature: Apply an operation to all elements of a collection at once. 

2. A performance feature: Use hardware instruction sets to execute single instruction 
on multiple data (SIMD). 

A numpy ufunc like np.sin is vectorized in both the above senses: (1) you can apply it 
directly to an array thus avoiding python loops (unlike math.sin which can be applied 
to just a single value), and (2) numpy’s C implementation of np.sin uses some SIMD 
instruction sets, allowing you to get automatic speed up when running on hardware that 
supports the instructions. If the latter still sounds mysterious, here is more explanation 
than you probably need: most chips today come with a SIMD instruction to process 4 
numbers (foat64) at once (and fancier chips can do more), so a loop over an array of N 
foats can fnish in N/4 iterations if you utilize that instruction. 

To examine the difference between the convenience feature and the performance feature, 
consider the following function, which is written to apply to just one number: 

59 

https://github.com/numpy/numpy/blob/master/numpy/core/src/umath/simd.inc.src


[8]: def f(v): # apply f to one scalar value v 
return math.sin(v) * math.exp(-v) 

To gain (1), the convenience feature, there are at least two options other than using ufuncs: 

a) Use map 

A function f acting on a scalar value can be made into a function that acts on a vector of 
values using the functional programming tool map(f, x), which returns an iterator that 
applies f to every element of x. 

[9]: vectorizedf = map(f, x) # apply same f to a vector of values x 

b) Use numpy’s vectorize 

[10]: F = np.vectorize(f) # F can be applied to a array x 

Both options (a) and (b) provide the convenience feature (1), letting you avoid python 
loops, and allows you to write expressive short codes. 

However, neither option (a) nor (b) gives you the full performance of numpy’s ufuncs. 

[11]: # use map 
%timeit y = list(map(f, x)) 

# use numpy's vectorize 
%timeit y = F(x) 

# use numpy's ufunc 
%timeit y = np.sin(x) * np.exp(-x) 

36.1 ms ± 1.56 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 
27.6 ms ± 1.54 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 
1.27 ms ± 52.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) 

VIII.1.1 Is range as effcient as np.arange? 

[12]: %timeit for x in range(1000000): x**3 
%timeit for x in np.arange(1000000): x**3 

266 ms ± 856 µs per loop (mean ± std. dev. of 7 runs, 1 loop each) 
270 ms ± 16 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 

There was a time (in Python 2) when range was not as effcient, but those times have 
passed. 

VIII.1.2 Have you really understood indexing and slicing? 

• A slice a[b:e:s] of a refers to the array of elements from the beginning index b 
(included) till ending index e (excluded), stepping s elements. 
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• The defaults b=0, e=len(a), and s=1 may be omitted in a slice specifcation. 

• Negative indices count from the end of the array: a[-1] is the last element of a and 
a[-k] = a[len(a)-k]. 

• Positive indices count from the begining as usual. 

[13]: a = np.random.randint(0,9,5) 
a 

[13]: array([8, 0, 3, 4, 5]) 

If you have understood these, then you should be able to say what the expected results are 
from each of the following statements. 

a[::] 
a[-1] 
a[len(a)-1] 
a[-3:] 
a[-4:-1:2] 
slice = range(-4,-1,2) 
a[-4:-1:2], a[slice] 

Verify your answers: 

[14]: a[::] 

[14]: array([8, 0, 3, 4, 5]) 

[15]: a[-3:] 

[15]: array([3, 4, 5]) 

[16]: a[-1], a[len(a)-1] 

[16]: (5, 5) 

[17]: a[-4:-1:2] 

[17]: array([0, 4]) 

[18]: slice = range(-4,-1,2) # Think of b:e:s specification as a range. 
a[-4:-1:2], a[slice] # In older versions, a[slice] may not work 

# but will work with slice=arange(-4,-1,2). 

[18]: (array([0, 4]), array([0, 4])) 
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VIII.1.3 Do you really know what = does? 

[19]: a = np.array([1,2,3]) 
b = np.array([3,4,5,6]) 

After assigning a to b by =, what happens when you change an element of a? 

[20]: a = b 
a[0] = 1 
a 

[20]: array([1, 4, 5, 6]) 

We certainly expected the 3 to become 1 in a. Did you also expect the following? 

[21]: b 

[21]: array([1, 4, 5, 6]) 

If this surprises you, listen to what I have say next carefully. 

VIII.1.4 What is a python variable anyway? 

In most languages, each variable has its own memory address. For example consider this 
simple C++ code (ignore it if you don’t know C++). 

#include <vector> 
std::vector<int> a{1,2,3}, b{3,4,5,6}; 
// Objects a and b each have their own memory addresses. 
// Assignment a=b copies contents of b's memory into a. 
a = b; 
// a's memory address has not changed, but its contents have. 

If you have programmed in C or C++, you might have gotten used to variables being 
permanently linked to their memory locations. 

In contrast, python variables are just names. In python, variables like a and b are names 
which are not associated to fxed memory addresses. Names can be bound to one object in 
memory, and later to another. Multiple names can be bound to the same object (sometimes 
known as aliasing in other languages). The upshot of this is that in python, the assignment 
“=” changes names, but need not copy memory contents. 

[22]: a = np.array([1,2,3]) # This is Object1 and "a" is a name for it. 
b = np.array([3,4,5,6]) # This is Object2 and "b" is a name for it. 

We can double check that these objects occupy different memory locations using python’s 
id function. 

[23]: id(a), id(b) 
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[23]: (140447422075168, 140447424972400) 

Consider what happens when you say a=b: 

[24]: a = b # a is no longer a name for Object1, it is now a name for Object2. 

[25]: id(a), id(b) 

[25]: (140447424972400, 140447424972400) 

Names a and b are now both bound to the same “Object2”. (And we no longer have a 
way to access “Object1”!) Now, when we change a, or when we change b, we are really 
changing the same object. 

VIII.1.5 What if I really want to copy data? 

[26]: a = np.array([1,2,3]) # Object1 
b = np.array([3,4,5,6]) # Object2 
a = b.copy() # Copies Object2, and binds a to the copy 
a[0] = 2 # Only the copied (new) object is changed 

[27]: a, b 

[27]: (array([2, 4, 5, 6]), array([3, 4, 5, 6])) 

VIII.1.6 Does numpy have matrices? 

Of course, numpy is all about vectors and matrices (and even higher-order tensors). Two-
dimensional data, or tabular data, or matrix data of the form ⎤⎡ ⎢⎣ 

A0,0 · · · A0,n−1 
. . . 

. . . 
. . . 

Am−1,0 · · · Am−1,n−1 

⎥⎦ 

can be represented in python - either as list of lists - or as a numpy array. 

The numpy array is more effcient than list of lists and has constructs for some matrix 
operations. (Note that you might fnd a numpy.matrix class, distinct from the array class, 
in some older codes, but be warned that it is deprecated. Due to problems arising from 
mixing matrix and array objects in python codes, we will not use the deprecated matrix 
class in this course. You should not use it in work you turn in.) 

[28]: Amat = [[1,2], 
[3,4]] 

Amat 

[28]: [[1, 2], [3, 4]] 
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[29]: amat = np.array(Amat) 
amat 

[29]: array([[1, 2], 
[3, 4]]) 

[30]: type(A), type(a) 

[30]: (list, numpy.ndarray) 

Note that 2D and 1D numpy arrays are of the same type called numpy.ndarray. 

VIII.1.7 Multiply a list or a matrix? 

What is the difference between 2*Amat and 2*amat, for the objects Amat (list of lists) and 
amat (numpy array) just made above? 

[31]: 2*Amat 

[31]: [[1, 2], [3, 4], [1, 2], [3, 4]] 

[32]: 2*amat 

[32]: array([[2, 4], 
[6, 8]]) 

VIII.1.8 How do I matrix multiply? 

[33]: amat 

[33]: array([[1, 2], 
[3, 4]]) 

[34]: amat * amat 

[34]: array([[ 1, 4], 
[ 9, 16]]) 

Look at the output: is this really matrix multiplication?! This is one thing that drives math-
ematicians crazy when they look at numpy for the frst time. Mathematicians want the 
multiplication operator * to mean matrix multiplication when it is applied to numpy ar-
rays. Unfortunately python’s default * does element-by-element multiplication, not ma-
trix multiplication. Since the frst proposal for numpy, decades ago, many battles have 
been waged to resolve this embarrassment. 

Finally, a few years ago, there came some good news. Since Python 3.5, the @ symbol was 
dedicated to mean the matrix multiplication operator. You can read more about it at PEP 
465. 
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[35]: import sys 
print(sys.version) # check if you have version >= 3.5 before trying @ 

3.8.0 (v3.8.0:fa919fdf25, Oct 14 2019, 10:23:27) 
[Clang 6.0 (clang-600.0.57)] 

[36]: amat @ amat 

[36]: array([[ 7, 10], 
[15, 22]]) 

Naturally, many of us needed matrix multiplication before the @ came along, so as you 
must have guessed, there is another way to do matrix multiplication: 

[37]: np.dot(amat, amat) # dot(A,B) = matrix A multiplied by matrix B 

[37]: array([[ 7, 10], 
[15, 22]]) 

[38]: amat.dot(amat) 

[38]: array([[ 7, 10], 
[15, 22]]) 

I think you will agree with me that this is not as neat as @. 

You should know that the embarrassment continues in matrix powers. If you thought amat 
** 2 should give you a matrix power equaling the product of amat with itself, think again. 

[39]: amat**2 # not equal to matrix power !! 

[39]: array([[ 1, 4], 
[ 9, 16]]) 

Numpy provides a matrix_power routine to compute Mn for matrices M (and integers n). 

[40]: np.linalg.matrix_power(amat, 2) 

[40]: array([[ 7, 10], 
[15, 22]]) 

It does the job, but leaves elegance by the wayside. 

VIII.1.9 How to slice 2D arrays? 

Slicing in two-dimensional arrays is similar to slicing one-dimensional arrays. If rslice 
and cslice are 1D slices (or ranges) like the ones we used for one-dimensional arrays, then 
when applied to a 2D array A, 

A[rslice, cslice] 
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the result is a submatrix of A using row indices in rslice and column indices in cslice. 

[41]: A = np.array([[7, 8, 5, 1], [2, 5, 5, 2], [9, 6, 8, 9]]) 
A 

[41]: array([[7, 8, 5, 1], 
[2, 5, 5, 2], 
[9, 6, 8, 9]]) 

[42]: A[1, :], A[:, 2] 

[42]: (array([2, 5, 5, 2]), array([5, 5, 8])) 

[43]: A[:3:2, :3] 

[43]: array([[7, 8, 5], 
[9, 6, 8]]) 

VIII.1.10 How are 2D arrays stored? 

Like other programming facilities, numpy stores 2D array data internally as a 1D array, 
in order to get a contiguous memory block for convenient storage. For 2D arrays, Fortran 
and Matlab uses column-major ordering, while C uses row-major ordering. For example, 
the 2D array 

[[7, 8, 5, 1], 
[2, 5, 5, 2], 
[9, 6, 8, 9]] 

in row-major ordering looks like 

7, 8, 5, 1, 2, 5, 5, 2, 9, 6, 8, 9 

while in column-major ordering, it looks as follows. 

7, 2, 9, 8, 5, 6, 5, 5, 8, 1, 2, 9 

Numpy, by default, stores arrays in row-major ordering (like C). This thinking is refected 
in some numpy’s methods: e.g., when you ask numpy to reshape or fatten a array, the 
result is what you expect as if it were stored in row-major ordering. 

[44]: M = np.array([[7, 8, 5, 1], [2, 5, 5, 2], [9, 6, 8, 9]]) 
M 

[44]: array([[7, 8, 5, 1], 
[2, 5, 5, 2], 
[9, 6, 8, 9]]) 

[45]: M.reshape(2, 6) # Just a different view of the same data 
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[45]: array([[7, 8, 5, 1, 2, 5], 
[5, 2, 9, 6, 8, 9]]) 

[46]: M.ravel() # The 1D data of M in row-major ordering 

[46]: array([7, 8, 5, 1, 2, 5, 5, 2, 9, 6, 8, 9]) 

But the actual situation is more complicated since numpy allows users to override the default 
storage ordering. You can decide to store an array like in C or like in Fortran. Here is how 
to store the same array in Fortran’s column-major ordering. 

[47]: A = np.array(M, order='F') 
A 

[47]: array([[7, 8, 5, 1], 
[2, 5, 5, 2], 
[9, 6, 8, 9]]) 

Obviously, it is the same matrix. How the data is stored internally is mostly immaterial 
(except for some performance optimizations). The behavior (of most) of numpy methods 
does not change even if the user has opted to store the array in a different ordering. If you 
really need to see a matrix’s internal ordering, you can do so by calling the ravel method 
with keyword argument order='A'. 

[48]: A.ravel(order='A') # A's internal ordering is Fortran style 

[48]: array([7, 2, 9, 8, 5, 6, 5, 5, 8, 1, 2, 9]) 

[49]: M.ravel(order='A') # M's internal ordering is default C-style 

[49]: array([7, 8, 5, 1, 2, 5, 5, 2, 9, 6, 8, 9]) 

VIII.1.11 Can I put booleans as indices? 

If a numpy array is given indices that are boolean (instead of integers), then rows or 
columns are selected based on True indices. This is called masking. It is very useful 
together with vectorized conditionals. 

[50]: N = np.arange(25).reshape(5,5) 
N 

[50]: array([[ 0, 1, 2, 3, 4], 
[ 5, 6, 7, 8, 9], 
[10, 11, 12, 13, 14], 
[15, 16, 17, 18, 19], 
[20, 21, 22, 23, 24]]) 

How will you isolate elements in N whose value is between 7 and 18? 
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[51]: mask = (N>7) & (N<18) 
mask 

[51]: array([[False, False, False, False, False], 
[False, False, False, True, True], 
[ True, True, True, True, True], 
[ True, True, True, False, False], 
[False, False, False, False, False]]) 

These are the elements we needed: 

[52]: N[mask] 

[52]: array([ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]) 

And these are their locations: 

[53]: i, j = np.where(mask) # Returns i and j indices where mask[i,j] is True. 
i, j # 1st True value of mask is at i[0],j[0], 

# 2nd True value of mask is at i[1],j[1], etc. 

[53]: (array([1, 1, 2, 2, 2, 2, 2, 3, 3, 3]), array([3, 4, 0, 1, 2, 3, 4, 0, 1,␣ 
↪→2])) 

VIII.1.12 How do I represent higher order tensors? 

Numpy can work with general-dimensional arrays, not just 1D or 2D arrays. For an n-
dimensional array, the shape of a numpy array is a tuple of n integers giving the sizes in 
each dimension. 

data = np.random.randint(low=0, high=10, size=30) # 1D array 

T2 = np.reshape(data, (6, 5)) # 2D array 
T2 

[55]: array([[5, 3, 6, 8, 6], 
[2, 5, 0, 3, 1], 
[3, 6, 5, 3, 6], 
[3, 8, 2, 1, 8], 
[2, 5, 3, 1, 7], 
[8, 9, 0, 4, 9]]) 

T3 = np.reshape(data, (2, 3, 5)) # 3D array 
T3 

[56]: array([[[5, 3, 6, 8, 6], 
[2, 5, 0, 3, 1], 
[3, 6, 5, 3, 6]], 

[54]: 

[55]: 

[56]: 
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[[3, 8, 2, 1, 8], 
[2, 5, 3, 1, 7], 
[8, 9, 0, 4, 9]]]) 

[57]: print('T3 is a ', T3.ndim, 'dimensional array of shape ', T3.shape) 
print('T2 is a ', T2.ndim, 'dimensional array of shape ', T2.shape) 
print('data is a ', data.ndim, 'dimensional array of shape ', data.shape) 

T3 is a 3 dimensional array of shape (2, 3, 5) 
T2 is a 2 dimensional array of shape (6, 5) 
data is a 1 dimensional array of shape (30,) 

Here are a few other features of numpy arrays to note: 

• Every numpy array has attributes ndim and shape. 
• A scalar c, or np.array(c) is considered to have ndim=0 and shape=(). 
• A vector of length n, when viewed as a row vector has ndim=1 and shape=(n,). 
• A vector of length n, when viewed as a column vector has ndim=2 and shape=(n, 1). 
• You can convert a row vector a to a column vector by a[:, np.newaxis]. 
• Use newaxis to add a new dimension, e.g., T3[:, :, np.newaxis, :] has shape=(2, 

3, 1, 5). 

VIII.1.13 Would you like to add matrices of different shapes? 

In mathematics, it would be an illegal operation to add matrices of different shapes. But it 
is not surprising that we would want to: e.g., viewing the number 10 as a 1x1 matrix and 
considering a matrix A of any other size, wouldn’t it be nice to say 10 + A to add 10 to all 
elements of A? Wouldn’t it also be nice to be able to use + to add a vector to all columns 
of a matrix with more than one columns? All this and more is made possible in numpy by 
broadcasting rules, which extend the possibilities of vectorized operations. A very clear 
explanation of broadcasting is in [JV-H]. 

To see if you can add up (or apply another binary ufunc) differently shaped arrays, follow 
this algorithm, which uses the ndim and shape attributes we just saw. 

Step 1. If two arrays differ in their ndim, then revise the shape of the one with lower ndim 
by prepending 1 on the left until the ndims are equal. 

Step 2. If shape[i] (after its possible revision from Step 1) of the two arrays are unequal 
and one of them equals 1, then increase the latter to match the other shape[i]. 

If the resulting revised shapes of the arrays are still unequal, then broadcasting fails and 
you can’t add them. In Step 1, when we increase ndim by prepending a 1 to shape, we 
are not really changing the array: we are just imagining it with one extra dimension. In 
Step 2, when we increase shape[i] from 1 to something larger, we are imagining the array 
elements repeated along the i-th dimension (without actually performing an operation 
copying the elements). Here are a few examples to illustrate these rules. 

Example 1: 

a + b = [1, 8, 3] + [1] 
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[0, 6, 5] 
a.ndim=2 
a.shape=(2, 3) 

Step 2: a.shape=(2, 3) 

a + b = [1, 8, 3] + 
[0, 6, 5] 

Example 2: 

a + b = [1, 8, 3] + 
[0, 6, 5] 
a.ndim=2 
a.shape=(2, 3) 

Step 1: a.shape=(2, 3) 

Step 2: a.shape=(2, 3) 

a + b = [1, 8, 3] + 
[0, 6, 5] 

Example 3: 

a + b = [1, 8, 3] + 
[0, 6, 5] 
a.ndim=2 
a.shape=(2, 3) 

Step 1: a.shape=(2, 3) 

Step 2: a.shape=(2, 3) 

[8] 
b.ndim=2 
b.shape=(2, 1) 

b.shape=(2, 3) 

[1, 1, 1] = 
[8, 8, 8] 

[1] 

b.ndim=0 
b.shape=() 

b.shape=(1, 1) 

b.shape=(2, 3) 

[1, 1, 1] = 
[1, 1, 1] 

[1, 3] 

b.ndim=1 
b.shape=(2, ) 

b.shape=(1, 2) 

b.shape=(2, 2) 

<= No need for Step 1 modification 
<= Apply Step 2 to equalize shape 

[ 2, 9, 4] 
[ 8, 14, 13] 

<= Apply Step 1 to equalize ndim 
(prepend 1 until ndim equalizes) 

<= Next apply Step 2 to equalize shape 

[ 2, 9, 4] 
[ 1, 7, 5] 

<= Apply Step 1 to equalize ndim 

<= Next apply Step 2 to equalize shape 

<= Still unequal: broadcasting fails 

As a simple exercise to further fx ideas, follow the above procedure and see if you can 
explain whether broadcasting rules apply, or not, to the following (with T2 and T3 as set 
previously). 

• T2 + T3 
• T3 + 1 
• T2[:3,:] + T3 
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IX 

The SEIR model of infectious diseases 

April 22, 2020 

Recent news of COVID-19 has brought to our attention the stories of the many earlier 
pandemics the world has seen. A classic case is a strain of infuenza that invaded New 
York City during 1968-1969, then dubbed the Hong Kong fu. The following data (from 
[DM]) shows the number of deaths that winter in New York City believed to be due to this 
fu. 

[1]: import matplotlib.pyplot as plt 
%matplotlib inline 
import seaborn; seaborn.set(); 
plt.bar(range(1,14), [14,28,50,66,156,190,156,108,68,77,33,65,24]) 
plt.xlabel('Week'); plt.ylabel('Excess deaths'); 
plt.xticks(range(1,14)); plt.title('1968-69 Influenza in New York City'); 

Notice how the data from Week 1 to Week 13 roughly fts into a bell-shaped curve. You 
have, by now, no doubt heard enough times that we all must do our part to fatten the curve. 
The bell-shaped curve, which has been identifed in many disease progressions, is the 
curve we want to fatten. Some mathematical models of epidemic evolution, for instance 
the well-known “SIR model” discussed in [DM], produces such bell curves. Flattening 
the curve can then be interpreted as bringing relevant model parameters into a range that 
produces a shallow bell. 

Mathematical models are often used as tools for prediction. However, we should be wary 
that models only approximate a few features of reality, and only when realistic parameter 
values (which are often missing) are supplied. Yet, as the saying goes, “All models are 
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wrong, but some are useful.” Even if a model is far away from the “truth”, the “whole 
truth”, it helps us understand the process being modeled by revealing the consequences 
of various hypotheses. Hence mathematical models are key instruments of computational 
thinking. 

In this activity, we will study a mathematical model called the SEIR model of infectious dis-
ease progression. In the last few weeks, many researchers have been furiously working to ft 
the emerging COVID-19 data into variants of the SEIR model. A number of contributions 
can be viewed at the Bulletin of World Health Organization (WHO) which now maintains 
a special COVID-19 Open archive. 

A number that emerges from models like the SIR or the SEIR model, called R0, or the basic 
reproduction number often makes its appearance in popular science. It is even explained 
in a flm from 2011 called the Contagion, which has now gained in popularity in view of 
its almost prescient plot. The epidemiological defnition of R0 is the average number of sec-
ondary cases produced by one infected individual introduced into a population entirely of 
susceptible individuals. One suspects from this defnition that if R0 > 1, then there will be 
an epidemic outbreak. We will see that this number also naturally emerges from a math-
ematical model. A quite readable review of R0 (written before the COVID-19 pandemic) 
gives an R0 of 14.5 for a measles outbreak in Ghana in the sixties. By all current accounts, 
the R0 for COVID-19 appears to be between 2 and 3. 

IX.1 Construction of the SEIR model 

The SEIR model divides the population into four categories, called “S”, “E”, “I”, and “R”. 

• Category “S” consists of individuals who are susceptible to the disease being mod-
eled. 

• Category “E” consists of individuals who are exposed to the disease. Diseases (like 
COVID-19) often have an incubation period or a latency period and this category 
accommodates it. (The SIR model does not have this category.) 

• Category “I” consists of individuals infected with the disease and are capable of 
infecting others. 

• Category “R” consists of individuals who can be removed from the system, e.g., be-
cause they have gained immunity to the disease, or because they have succumbed to 
the disease. 

S
Susceptible

E
Exposed

I
Infected

R
Recovered

λ σ γ

The model then postulates rules on how populations in each category can move to other 
categories. Let us consider the following simple set of rules. 

• Assume that individuals move from S to E at the exposure rate λ, i.e., the population 
in category S decreases with respect to time t at the rate λ × S and the population in E 
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correspondingly increases at the same rate: 

dS 
= −λS + · · · 

dt 
dE 

= +λS + · · · 
dt 

where “· · ·” serves to remind us that there may be other unmodeled factors. In this 
discussion, the number of individuals in each category (S, E, etc.) is denoted in italic 
type by the same letter (S, E etc.). 

• The exposure rate λ should grow with I, the number of infected individuals. A 
standard hypothesis is that λ is the product of the transmission rate (or the rate of 
contact) β and the probability of infection given that contact occurred, which is I/N 
in a total population of N individuals, i.e., 

β I
λ = .

N 
• The incubation rate σ is the rate at which exposed hosts become infected, i.e., 

dE 
= +λS−σE + · · · 

dt 
dI 

= +σE + · · · 
dt 

• The recovery rate γ is the rate at which infected individuals move to the R category: 

dI 
= +σE−γI + · · · 

dt 
dR 

= +γI + · · · 
dt 

Collecting the above-derived equations (and omitting the unknown/unmodeled “· · ·”), 
we have the following basic SEIR model system: 

dS β I 
= − S,

dt N 
dE β I 

= S − σE,
dt N 
dI 

= σE − γI
dt 

dR 
= γI

dt 

The three critical parameters in the model are β, σ, and γ. 

Note that we have left several features unmodeled: exposed individuals in “E” might con-
tribute to λ to spread the infection; some exposed individuals in “E” might move directly 
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to the “R” category; some infected individuals in category “I” might not gain perfect im-
munity and so may move back to susceptible category “S.” Despite these limitations, even 
this basic SEIR model can provide some useful insights on the disease evolution. 

IX.2 Initial value problem 

A system of ordinary differential equations (ODE) like the above, together with some ini-
tial conditions (values of the variables of the model at initial starting time, say t = 0), make 
up an initial value problem, or IVP. IVPs are ubiquitous in modeling systems that evolve in 
time. They encapsulate how a future state of a system is determined by the present state 
(the initial data) plus certain rules on how quantities evolve (the ODEs). 

Before we talk about a python module to numerically solve an IVP, let us make a simpli-
fcation. The total population N in the system (the sum of individuals in all categories) 
is likely to be a huge number. Instead of working with such large numbers, let us divide 
each side of each equation by N and work instead with the proportions 

S E I R 
s = , e = , i = , r = .

N N N N 

The equivalent ODE system to be solved for the unknown functions s(t), e(t), i(t), and r(t), 
has now become 

ds 
= −β i s,

dt 
de 

= β i s − σ e,
dt 
di 

= σ e − γ i
dt 
dr 

= γ i.
dt 

When supplemented with some initial conditions, say 

s(0) = 0.99, e(0) = 0.01, i(0) = 0, r(0) = 0, 

we have completed our formulation of the IVP to be solved. Note that the above initial 
conditions correspond to a starting scenario where just 1% of the population is exposed. 

IX.3 Solving the IVP using scipy module 

[2]: from scipy.integrate import solve_ivp 
import numpy as np 

Scipy’s integrate module provides a solve_ivp facility for solving IVPs like the above. 
The facility assumes you have an IVP of the form 

⃗dY
dt 

= ⃗ f (t, Y⃗ ), t0 ≤ t ≤ t1, 

Y⃗ (t0) = Y⃗ 0, t = t0, 
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where you know the function ⃗ f : [t0, t1] × Rn → Rn and the initial data Y⃗0. It can then 
compute an approximation of the solution ⃗Y(t) for t in the interval [t0, t1] using numerical 
ODE solvers that you might learn about if you take a numerical analysis course. Type in 
help(solve_ivp) into a cell to get more information on how to use this function. 

Let us apply this to the SEIR model. To ft to the setting required for solve_ivp, we put ⎤⎡ ⎢⎢⎣ 

s 
e 
i 
r 

⎥⎥⎦Y⃗ = 

and ⎡ ⎤ 
−β i s, 

β i s − σ e, 
σ e − γ i 

γ i 

⎢⎢⎣ 
⎥⎥⎦f⃗ (t, Y⃗) = . 

We have to give this f⃗ as a function argument to solve_ivp. Let’s frst defne this f⃗ , called 
seir_f in the code below, keeping in mind that we also need to provide some values of 
β, σ, and γ before we can solve it. We pass these values as additional arguments to seir_f. 

def seir_f(t, y, beta, sigma, gamma): 
s, e, i, r = y 
return np.array([-beta * i * s, 

-sigma * e + beta * i * s, 
-gamma * i + sigma * e, 
gamma * i]) 

# try some parameter values 
beta = 1 
sigma = 1 
gamma = 0.1 

[3]: 

[4]: 

Following the documentation from help(solve_ivp) we now proceed to solve by calling 
solve_ivp as follows. 

[5]: sol = solve_ivp(seir_f, [0, 60], [0.99, 0.01, 0, 0], 
rtol=1e-6, args=(beta, sigma, gamma)) 

Examining the resulting solution object sol you will notice that it has a numpy array as its 
data member sol.y containing the values of the computed solution ⃗Y(t) at values of t con-
tained in another data member sol.t. We can easily send these arrays to the matplotlib 
module to get a plot of the solution. 

[6]: fig = plt.figure(); ax = fig.gca() 
curves = ax.plot(sol.t, sol.y.T) 
ax.legend(curves, ['S', 'E', 'I', 'R']); 

75 



As you can see, even with 1% exposed population, the number of infections rapidly rise. 
However, with more time, they begin to fall, making for a bell-shaped curve, like the one 
from the previously mentioned New York City data. 

IX.4 Parameter study 

Having a function to compute and plot E and I together makes it easy to study the vari-
ations in solutions with respect to the three parameters. Let’s make such a function by 
putting together the previous steps. 

[7]: def plot_ei(beta=1, sigma=1, gamma=0.1, s0=0.99, 
e0=0.01, i0=0, r0=0, t1=60): 

# apply ODE solver 
sol = solve_ivp(seir_f, [0, t1], [s0, e0, i0, r0], rtol=1e-7, 

args=(beta, sigma, gamma)) 
# plot I and E components 
fig = plt.figure(); ax = fig.gca() 
ax.plot(sol.t, sol.y[1, :].T, color='brown', 

linestyle='dashed', label='Exposed') 
ax.plot(sol.t, sol.y[2, :].T, color='red', label='Infected') 
ax.legend() 
return ax 

[8]: plot_ei(); # baseline with the default parameters above 
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[9]: plot_ei(beta=0.5); # what happens if beta is reduced? 

[10]: plot_ei(gamma=0.5); # what happens if gamma is increased? 

[11]: plot_ei(sigma=0.1); # what's the effect of sigma? 
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IX.5 Equilibria 

In the study of evolution of dynamical systems like the SEIR model, equilibria play an 
important role. An equilibrium state is a value of the vector Y⃗ (i.e., values of s, e, i, and 
r) for which the rate of change dY⃗ /dt = 0, i.e., if the system happens to enter an exact 
equilibrium, then it no longer changes. 

For our SEIR system, an equilibrium state s, e, i, r satisfes ⎡⎤⎡ ⎤ 
0 −β i s, ⎢⎢⎣ 
⎥⎥⎦ = 

⎢⎢⎣ 
⎥⎥⎦ 

0 
0 

β i s − σ e, 
σ e − γ i . 

0 γ i 

You should be able to conclude (exercise!) that the only solutions for this system are of the 
form 

s ≡ constant, e = i = 0, r ≡ constant. 

In other words, since e = i = 0, all equilibria of our model are disease-free equilibria. This 
matches our previous observations from our simulations. After a transitional phase, where 
i and e increases and decreases per the bell-curve, the system settles into an equilibrium of 
the form above. 

There are other scenarios where an infection persists and never quite disappears from the 
population. Such equilibria where the disease is endemic are sometimes called endemic 
equilibria. 

As an example, suppose our model represents a city’s population, and suppose travel into 
and out of the city is allowed. Then we must add terms that represent the infux of travel-
ers in each category (the number of people entering minus the number of people leaving). 
Even if we assume that infected people do not travel, a small infux into susceptible cate-
gory S and exposed category E will disturb the disease-free equilibrium of our model. Let 
us add terms a and b representing these infuxes and see what happens. 

[12]: def seir_f2(t, y, beta, sigma, gamma, a, b): 
s, e, i, r = y 
return np.array([-beta * i * s + a, 

-sigma * e + beta * i * s + b, 
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-gamma * i + sigma * e, 
gamma * i - (a + b)]) 

def plot_ei2(beta=1, sigma=1, gamma=0.1, a=0.005, b=0.001, t1=150): 
sol = solve_ivp(seir_f2, [0, t1], [0.99, 0.01, 0, 0], rtol=1e-7, 

args=(beta, sigma, gamma, a, b)) 
fig = plt.figure(); ax = fig.gca() 
ax.plot(sol.t, sol.y[1, :].T, color='brown', linestyle='dashed',␣ 

↪→label='Exposed') 
ax.plot(sol.t, sol.y[2, :].T, color='red', label='Infected') 
ax.legend() 

[13]: plot_ei2(a=0.005, b=0.001) 

As you can see from this output, the percentage of the population with the disease now 
remains at around 5% and never quite vanishes, an example of an endemic equilibrium. 

IX.6 The emergence of R0 

The stability of equilibria is another important consideration in the study of dynamical sys-
tems. Loosely speaking, an equilibrium is considered stable if a solution, when perturbed 
from the equilibrium, moves back to it over time. Returning to our simple model ⎡⎤⎡ ⎤ 

−β i s,s ⎢⎢⎣ 
⎥⎥⎦ = 

⎢⎢⎣ 
⎥⎥⎦ 

d 
dt 

β i s − σ e, 
σ e − γ i 

e 
i 
r γ i 

suppose we want to guess the stability of one of the previously discussed disease-free 
equilibrium states, 

s = s0, e = i = 0, r = r0. 

where s0 and r0 are some constants. Adding the e and the i equations, we observe that 

d(e + i) 
= (β s − γ) i.

dt 
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Thus, despite a perturbation brought about by a small surge in the infected population 
(resulting in a small positive i value), if the above derivative is negative, i.e., if 

β s0 − γ < 0, 

then, the value of e + i will decrease to its equilibrium value. This simple argument already 
hints at the relevance of the number 

β
R0 = s0,

γ 

which is the basic reproductive number for this model. In some texts, R0 is defned (to 
match the epidemiological defnition) using an initial population that is 100% susceptible, 
in which case s0 = 1 and R0 = β/γ. 

The argument sketched above was not a proof that the system will return to the disease-
free equilibrium, but rather a sketch to show you why R0 naturally emerges from the 
model, using only the calculus tools you have already studied. (Nonetheless, one can 
indeed rigorously prove that if R0 < 1, the disease-free equilibrium is stable, see e.g., 
[HSW].) 

IX.7 The effect of R0: outbreak or no outbreak 

The simple argument sketched above shows that if R0 = βs0/γ > 1 then e + i will increase 
(at least for some time), while if R0 < 1, then e + i will decrease. Let us return to the code 
and examine the results from the model to see if there is agreement. 

Here is an example where R0 = βs0/γ < 1. 

[14]: plot_ei(beta=0.6, gamma=1, s0=0.9, i0=0.1); 

Clearly, the infected population, despite a positive bump in infections, decays as seen be-
low. In other words, when R0 < 1 there is no outbreak. 

Next, consider an example where R0 > 1. 

[15]: plot_ei(beta=1, gamma=0.5, s0=0.9, i0=0.1); 
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This output clearly shows that the small percentage of introduced infections rapidly in-
crease. (If you worry about the small initial dip in i observed in the output, do please 
try to plot e + i to convince yourselves.) The system eventually goes on to attain (the 
unique) disease-free equilibrium, but only after inficting some damage. Summarizing, 
when R0 > 1, we can expect an epidemic outbreak. 

Regarding the impact of vaccinations (provided a vaccine exists) the model does have 
something to say. If a fraction, say v, of the population is vaccinated, then that population 
moves directly from the S category to the R category. Therefore, changing s0 to s0(1 − v), 
we see that R0 reduces to R0 = βs0(1 − v)/γ. A vaccine would therefore be effective to 
prevent an epidemic outbreak if enough people are vaccinated, i.e., if v is suffciently large 
in order to bring R0 under 1. 

IX.8 Application to COVID-19 

There are a number of diffculties in applying the SEIR model to the COVID-19 epidemic 
we are now facing. One diffculty is in applying it to a single country: we would have to 
carefully develop terms that model infow due to travel to or from the country. Of course, 
this problem disappears if we consider the entire world as our system. But other problems 
remain. As you must have heard in the news, we now suspect that exposed individuals 
in E category, who are not symptomatic, might be spreading the infection (i.e., λ might 
depend not only on I, but also on E). Our model does not take this into account. Although 
we can easily add terms to model this, without accurate testing of both symptomatic and 
asymptomatic populations, it is impossible to conclude the required parameter values. 
Notwithstanding these (signifcant) limitations, we can forge ahead to see what a simula-
tion would give us, provided we can gather some data on the remaining parameter values. 

A recent submission to the Bulletin of WHO uses an R0 of 2.2, which was reported in an 
earlier paper, published in January 2020, in the New England Journal of Medicine. Other 
reported values now found in the internet seem to be higher. (Inexact parameter values 
are indeed one of the diffculties in dealing with real-word problems.) Nonetheless, let us 
continue with R0 = β/γ = 2.2. Let us also use the values of σ and γ that others have used: 

• σ = 1/5.2 days−1, 
• γ = 1/2.3 days−1, 
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• β = R0γ = 2.2γ. 

Finally, let us additionally assume a scenario where 0.02% of the world’s population is in-
fected at the start of the simulation, and thrice that many are exposed. (The current number 
of active infections worldwide appear to be around 0.02% of the world’s population.) Here 
are the outputs of the simulation under these values. 

[16]: ax = plot_ei(beta=2.2/2.3, sigma=1/5.2, gamma=1/2.3, 
i0=0.02/100, e0=3*0.02/100, t1=100) 

ax.set_xlabel('days'); ax.set_ylabel('population fraction'); 

These output curves seem to suggest that the infection will proceed well into the next two 
months before subsiding. 

The social distancing and other governmental measures that we are now practicing can be 
viewed from the perspective of this simple SEIR model. They are designed to reduce the 
transmission rate β. Please go ahead and experiment to see what you get with lower β 
values that you can imagine. 

You will see that lowering β by a little has two effects: 

• it reduces the peak value of the curves (multiply the percentage value by the world’s 
population ≈ 7.5 billion, to see the effect in terms of the reduction in number of 
people affected), and 

• it moves the location of the infection peak farther out in time (i.e., the infection per-
sists longer but in lower numbers). 

On the other hand, lowering β by a lot (enough to make R0 < 1) will take you to a regime 
where e + i decreases, indicating the other side of the peak, where we really want the world 
to be as soon as possible. 
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X 

The Singular Value Decomposition 

April 27, 2020 

One of the early and natural ideas in software development for scientifc computation was 
the idea of packaging linear algebra software around robust implementations of matrix 
factorizations, divested from specifc applications. This enabled durable linear algebra 
tools like LAPACK to be developed with a stable interface, usable across numerous appli-
cation domains. Commercial software like Matlab™, as well as open-source software like 
octave, numpy and scipy, all take full advantage of these developments. What does this 
mean for you as an aspiring data scientist? When you are faced with a specifc computa-
tional task, if you are able to reformulate your task using off-the-shelf implementations of 
matrix factorizations, then you might already be half-way to fnishing your task. 

You already know about some matrix factorizations. In your introductory linear algebra 
prerequisites, you learnt about eigenvalues and eigenvectors. The computation of eigen-
values and eigenvectors is indeed the computation of a matrix factorization. This factor-
ization is called a diagonalization or an eigenvalue decomposition of an n × n matrix A 
and it takes the form 

A = XDX−1 

where D is a diagonal matrix and X is an invertible matrix, both of the same size as A. The 
eigenvalues of A are found in the diagonal entries of D and the eigenvectors are columns 
of X, as can be see by rewriting the factorization as 

AX = XD. 

The importance of eigenvalues in varied applications is usually highlighted well in a frst 
linear algebra course. 

Another important factorization is the SVD, or the singular value decomposition, which 
often does not get the emphasis it deserves in lower division courses. In some ways the 
SVD is even more important that a diagonalization. This is because not all matrices have a 
diagonalization. In contrast, using basic real analysis results, one can prove that any matrix 
has an SVD. We shall see that from an SVD, one can read off the important properties of a 
matrix and easily construct compressed approximations of the matrix. The two theorems 
stated below without proof are usually proved in a linear algebra course and can be found 
in many texts (see e.g., [TB]). 

X.1 Defnition of SVD 

The SVD is a factorization of an m × n matrix A of the form 

A = UΣV∗ 
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where Σ is am m × n diagonal matrix, and U and V are unitary matrices of sized m × m 
and n × n, respectively. (Recall that a square matrix Q is called unitary if its inverse equals 
Q∗, the conjugate transpose of Q.) The diagonal entries of Σ are non-negative and positive 
ones are called the singular values of A. It is a convention to list the singular values in 
non-increasing order along the diagonal. The columns of U and V are called the left and 
right singular vectors, respectively. 

Here is how we compute SVD using scipy. 

from scipy.linalg import svd 
import numpy as np 
np.set_printoptions(precision=3, suppress=True) 

a = np.random.rand(4, 5) + 1j * np.random.rand(4, 5) 
u, s, vh = svd(a) 

u @ u.T.conjugate() # u is unitary. Its columns are left singular␣ 
↪→vectors 

[3]: array([[1.+0.j, 0.-0.j, 0.-0.j, 0.+0.j], 
[0.+0.j, 1.+0.j, 0.-0.j, 0.+0.j], 
[0.+0.j, 0.+0.j, 1.+0.j, 0.-0.j], 
[0.-0.j, 0.-0.j, 0.+0.j, 1.+0.j]]) 

vh @ vh.T.conjugate() # Rows of vh are right singular vectors 

[4]: array([[ 1.+0.j, -0.+0.j, -0.+0.j, -0.-0.j, 0.-0.j], 
[-0.-0.j, 1.+0.j, 0.-0.j, -0.-0.j, 0.+0.j], 
[-0.-0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], 
[-0.+0.j, -0.+0.j, 0.-0.j, 1.+0.j, -0.-0.j], 
[ 0.+0.j, 0.-0.j, 0.+0.j, -0.+0.j, 1.+0.j]]) 

s # Only the diagonal entries of Sigma are returned in s 

[5]: array([3.632, 1.088, 0.748, 0.473]) 

[1]: 

[2]: 

[3]: 

[4]: 

[5]: 

X.2 The algebra of SVD 

An outer product of an x ∈ Rm and y ∈ Rn , is the m × n matrix xy ∗ (which being the 
product of m × 1 and 1 × n matrices, is of shape m × n). Reversing the order of x and y ∗ in 
the product, we of course get the familiar inner product, which is a 1 × 1 matrix, or a scalar. 

Although the outer product is an m × n matrix, with mn entries, it only takes m + n entries 
to completely specify it (namely the entries of x vector and the y vector). Note that the 
columns of the outer product xy ∗ are 

ȳ1x, ȳ2x, . . . , ȳ x.n 

In other words all columns are scalar multiples of the same vector x. Therefore, whenever 
x is a nontrivial vector, the dimension of the range (or the column space) of the matrix is 1. 
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Recall from your linear algebra prerequisite that this dimension is what we call rank. All 
outer products are of unit rank (unless one of the vectors is trivial). 

A very useful way to think of the SVD is to expand the factorization as follows. Naming 
the columns of U and V as ui and vj, we have 

⎤⎡ 
σ1 min(m,n) 

A = UΣV∗ = [u1, . . . , um]
⎢⎣ σ2 ⎥⎦ ∗ [v1, . . . , vn] ∗ = ∑ σl ulvl . . . l=1 . 

Thus the SVD can be viewed as a sum of unit rank outer products. Each summand in-
creases rank (if the corresponding singular value is nonzero) until the rank of A is reached. 
Let’s see this in action for a small matrix. 

[6]: a = np.random.rand(4, 5) 
u, s, vh = svd(a) 

Numpy’s broadcasting rules do not make it easy to make the outer product ulv ∗ simply. l 
Yet, once you follow the broadcasting rules carefully, you will see that all that is needed is 
a placement of a newaxis in the right places. 

[7]: u[0, :, np.newaxis] @ vh[np.newaxis, 0, :] 

[7]: array([[ 0.249, 0.213, 0.163, 0.211, 0.214], 
[-0.205, -0.176, -0.134, -0.174, -0.177], 
[ 0.196, 0.168, 0.128, 0.167, 0.169], 
[ 0.365, 0.313, 0.238, 0.31 , 0.314]]) 

Alternately, you can use the facility that numpy itself provides specifcally for the outer 
product, namely np.outer. 

[8]: np.outer(u[0, :], vh[0, :]) 

[8]: array([[ 0.249, 0.213, 0.163, 0.211, 0.214], 
[-0.205, -0.176, -0.134, -0.174, -0.177], 
[ 0.196, 0.168, 0.128, 0.167, 0.169], 
[ 0.365, 0.313, 0.238, 0.31 , 0.314]]) 

Executing the sum ∑l σl(ulv ∗ l ), we fnd that it is equal to a: 

[9]: ar = np.zeros_like(a) 
for i in range(4): 

ar += np.outer(u[:, i], s[i] * vh[i, :]) 

[10]: a - ar # a and ar are identical 

[10]: array([[-0., 0., -0., -0., -0.], 
[-0., -0., -0., -0., -0.], 
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[-0., -0., -0., -0., 0.], 
[-0., -0., -0., 0., -0.]]) 

The factors of the SVD tell us all the important properties of the matrix immediately, as we 
see next. If you enjoy linear algebra, I encourage you to prove the following simple result 
yourself. 

Theorem 1. Suppose A = UΣV∗ is the SVD of an m × n matrix A. Then the following 
statements hold. 

1. The rank r of A is the number of nonzero singular values. 
2. A basis for the range (column space) of A is {u1, u2, . . . , ur}. 
3. A basis for the null space (kernel) of A is {vr+1, . . . , vn−1, vn}. 
4. The singular values of A are non-negative square roots of eigenvalues of A∗ A. 

Notice how the rank-nullity theorem (something you may have been tortured with in your 
frst linear algebra course) follows as a trivial consequence of items (2) and (3). 

X.3 The geometry of SVD 

The geometry of any linear operator in Rn is easy to describe: application of a matrix trans-
forms (hyper)spheres to (hyper)ellipses - if you did not know this, you will momentarily 
see this from the code below. Unitary operators are special in that they are coordinate 
changes that maps (hyper)spheres to (hyper)spheres. In general unitary operators don’t 
change angles - they include operations like rotation and refection in higher dimensions. 

The presence of unitary factors in the SVD is signifcant. The SVD provides a geometrical 
decomposition of a linear operator into factors U and V∗ that do not change the shapes, 
and a factor Σ that stretches axial directions (so that the shape change is transparent). Let 
us see this in action for a 2 × 2 matrix. 

[11]: a = np.array([[0.1, 0.5], [0.4, 0.8]]) 
u, s, vh = svd(a) 

To see how the geometry gets transformed (squashed) by the linear operator (matrix) a, 
we frst plot the unit circle and the parts of the x and y axis within it. Then, we track how 
these points are mapped by a, as well as by each of the components of the SVD of a. 

[12]: import matplotlib.pyplot as plt 
%matplotlib inline 

def show(c): 
plt.plot(c[0, :], c[1, :]) 
plt.axis('image'); 

# plot the unit circle and axis segments: 
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t = np.linspace(0, 3.5 * np.pi , num=300) 
l = np.linspace(-1, 1, num=10) 
z = np.zeros_like(l) 
c = np.array([np.concatenate([l, np.cos(t), z]), 

np.concatenate([z, np.sin(t), l])]) 
show(c) 

This is what a does to this geometry: 

[13]: show(a @ c) 
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Now, let us see this transformation as a composition of the following three geometrical 
operations: 

[14]: show(vh @ c) 

[15]: show(np.diag(s) @ c) 

[16]: show(u @ c) 
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When you compose these operations, you indeed get the transformation generated by a. 

[17]: show(u @ np.diag(s) @ vh @ c) 

X.4 Low rank approximation 

There are many ways of expressing a matrix as a sum of low rank matrices, e.g., 

[ ] [ ] [ ] [ ] [ ] 
a b a 0 0 b 0 0 0 0 

= + + + . c d 0 0 0 0 c 0 0 d 

Each of the matrices on the right can have rank at most one. 

As we have already seen, the SVD also expresses A as a sum of rank-one outer products. 
However, the way the SVD does this, is special in that a low-rank minimizer can be read off 
the SVD, as described in the following (Eckart-Young-Mirksy) theorem. Here we compare 
matrices of the same size using the Frobenius norm ( )1/2 

∥A∥F = ∑ |Aij|2 . 
i,j 

The theorem answers the following question: how close can we get to A using matrices 
whose rank is much lower than the rank of A? 

Theorem 2. Suppose A be an m × n matrix (complex or real). For any 0 ≤ ℓ ≤ r = rank(A), 
defne the matrix 

ℓ 

Aℓ = ∑ ∗σjujvj , 
j=1 
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using the singular values σj and the left and right singular vectors uj, vj of A, i.e., Aℓ is the 
sum of the frst ℓ terms of the SVD when written as a sum of outer products. Then, the 
minimum of ∥A − B∥F over all m × n matrices B of rank not more than ℓ is attained by 

)1/2 ∥A − Aℓ∥F and the minimum is (σℓ 
2 
+1 + · · · + σr 

2 . 

This matrix approximation result is perhaps best visualized using images. Think of an im-
age as a matrix. Using matplotlib’s imread we can load PNG images. Here is an example. 

[18]: cats = plt.imread('../figs/GeoLea.png') 
cats.shape 

[18]: (1040, 758, 4) 

This is a 3-dimensional array because images are represented using RGBA values at each 
pixel (red, green, blue and an alpha value for transparency). However this image of my 
cats is actually a black and white image, so all RGB values are the same, as can be verifed 
immediately: 

[19]: np.linalg.norm(cats[..., 0] - cats[..., 2], 'fro') 

[19]: 0.0 

The above line contains two features that you might want to note: the use of the ellipsis to 
leave the dimension of a numpy slice unspecifed, and the way to compute the Frobenius 
norm in numpy. Restricting to the frst of the three identical image channels, we continue: 

[20]: c = cats[..., 0] 
plt.imshow(c, cmap='gray'); 

90 

https://docs.python.org/dev/library/constants.html#Ellipsis


Let us take the SVD of this 1040 x 758 matrix. 

[21]: u, s, vh = svd(c) 

[22]: plt.plot(s); 

You can see a sharp drop in the magnitude of the singular values. This is a good indication 
that the later summands in the SVD representation of A, 

min(m,n) 
∗A = ∑ σjujvj 

j=1 

are adding much less to A than the frst few summands. Therefore, we should be able to 
represent the same A using the frst few outer products. 

[23]: # Rank 20 approximation of the cats: 
l = 20; cl = u[:, :l] @ np.diag(s[:l]) @ vh[:l, :] 
plt.imshow(cl, cmap='gray'); 
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[24]: # Rank 50 approximation of the cats: 
l = 50; cl = u[:, :l] @ np.diag(s[:l]) @ vh[:l, :] 
plt.imshow(cl, cmap='gray'); 

If you increase the rank l to 100, you will fnd that the result is visually indistinguishable 
from the original. 

Returning to Theorem 2, notice that the theorem also gives one the ability to specify an 
error tolerance and let that dictate the choice of the rank ℓ. E.g., if I do not want the error 
in my low-rank approximation to be more than some specifc ε, then I need only choose ℓ 
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so that 
(σ2 · + σ2)1/2 ≤ ε.ℓ+1 + · · r 

As an example, suppose I declare I want a low-rank approximation within the following 
relative error in Frobenius norm: 

[25]: relative_error = 1.e-1 

Then we can fnd the needed ℓ using an aggregation and masking (see [JV-H] for the prereq-
uisite material on this) as follows. 

[26]: s2 = s**2 
total = np.sum(s2) 
diff = np.sqrt((total - np.add.accumulate(s2)) / total) 
l = np.argmax(diff < relative_error) + 1 
l 

[26]: 41 

Then here is the needed low rank approximation: 

[27]: cl = u[:, :l] @ np.diag(s[:l]) @ vh[:l, :] 

You can check that the error is indeed less than the prescribed error tolerance. 

[28]: np.linalg.norm(c - cl, 'fro') / np.linalg.norm(c, 'fro') 

[28]: 0.09942439 

As you can see, the low rank approximation does give some image compression. The 
number of entries needed to store a rank ℓ approximation cl of an m × n matrix is mℓ + 
ℓ + ℓn: 

[29]: u.shape[0] * l + l + l * vh.shape[0] 

[29]: 73759 

In contrast, to store the original image (single channel) we would need to minimally store 
mn numbers: 

[30]: c.shape[0] * c.shape[1] 

[30]: 788320 

Comparing the two previous output, we can certainly conclude that we have some com-
pression. However, for image compression, there are better algorithms. 

The utility of the low-rank approximation technique using the SVD is not really in im-
age compression, but rather in other applications needing a condensed operator. Being an 
compressed approximation of an operator (i.e., a matrix) is much more than being just a 
compressed visual image. For example, one can not only reduce the storage for a matrix, 
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but also reduce the time to apply the operator to a vector using a low-rank approximation. 
Because the SVD tells us the essentials of an operator in lower dimensional spaces, it con-
tinues to fnd new applications in many modern emerging concepts, some of which we 
shall see in later lectures. 
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XI 

Bikes on Tilikum Crossing 

May 1, 2020 

A car-free bridge is still considered a ridiculous idea in many parts of our country. Port-
landers beg to differ. Portland’s newest bridge, the Tilikum Crossing, opened in 2015, and is 
highly multimodal, allowing travel for pedestrians, bikes, electric scooters, trains, street-
cars, and buses (but the modality of travel by personal car is missing). Bike lanes were not 
an afterthought, but rather an integral part of the bridge design. One therefore expects to 
see a good amount of bike traffc on Tilikum. 

In this activity, we examine the data collected by the bicycle counters on the Tilikum. Port-
land is divided into east side and west side by the north-fowing Willamette river and the 
Tilikum connects the two sides with both eastbound and westbound lanes. Here is a photo 
of the bike counter (the black display, located in between the streetcar and the bike lane) 
on the bridge. 

Portlanders use the numbers displayed live on this little device to boast about Portland’s 
bike scene in comparison to other cities. The data from the device can also be used in more 
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complex ways. The goal of this lesson is to share the excitement of extracting knowledge 
or information from data - it is more fun than a Sherlock Holmes tale. In this activity, you 
get to be Mr. Holmes while you wrangle with the data and feel the thrill of uncovering 
the following facts that even many of the locals don’t know about. (a) Most of those who 
bike to work on Tilikum live on the east side. (b) Recreational bikers on Tilikum prefer 
afternoon rides. (c) There are fewer bikers on the bridge after social distancing and they 
appear to use the bridge during afternoons. 

Comparison with Seattle’s Fremont bridge bike counter data reveals more, as we shall 
see: (a) there are fewer bikers on Portland’s Tilikum than on Seattle’s Fremont bridge in 
general. (b) During peak hours, bikers are distributed more evenly on Seattle’s Fremont 
bridge travel lanes than on Tilikum. (c) The bike usage on both bridges have shifted to a 
recreational pattern after social distancing. 

The BikePed Portal provides some of the data collected from the counter for the public, 
but currently only subsampled data can be downloaded from there. Here we shall instead 
use the full raw data set collected by the counters, which is not yet publicly downloadable. 
I gratefully acknowledge Dr. Tammy Lee and TREC for making this data accessible. This 
activity is motivated by the material in Working with Time Series section of [JV-H]. 

[1]: import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn; seaborn.set() 

XI.1 Initial examination of the data 

As you have seen in previous activities, the frst step in dealing with real data is data 
wrangling to make the data ft our tools. The case of this data is no different. (If you haven’t 
yet heard of Hadley Wickham’s famous paper Tidy Data, J. Stat. Software, I recommend 
you take a look. It begins with the sentence, “A huge amount of effort is spent cleaning 
data to get it ready for analysis . . .”) 

[2]: 

[2]: 

# metadata file (small file) 
tm = pd.read_csv('../../data_external/tilikum_metadata.csv') 

# data file (large file) 
td = pd.read_csv('../../data_external/tilikum_20200501.csv') 
td.head() 

id start_time end_time measure_period␣ 
↪→ \ 

0 36586735 2015-08-09 08:00:00+00 2015-08-09 08:15:00+00 00:15:00 
1 36586736 2015-08-09 08:15:00+00 2015-08-09 08:30:00+00 00:15:00 
2 36586737 2015-08-09 08:30:00+00 2015-08-09 08:45:00+00 00:15:00 
3 36586738 2015-08-09 08:45:00+00 2015-08-09 09:00:00+00 00:15:00 
4 36586739 2015-08-09 09:00:00+00 2015-08-09 09:15:00+00 00:15:00 
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[3]: 

[3]: 

[4]: 

[4]: 

volume flow_detector_id 
0 0 1903 
1 0 1903 
2 0 1903 
3 0 1903 
4 0 1903 

td.tail() 

id start_time end_time \ 
324700 96966870 2020-04-30 05:45:00+00 2020-04-30 06:00:00+00 
324701 96966871 2020-04-30 06:00:00+00 2020-04-30 06:15:00+00 
324702 96966872 2020-04-30 06:15:00+00 2020-04-30 06:30:00+00 
324703 96966873 2020-04-30 06:30:00+00 2020-04-30 06:45:00+00 
324704 96966874 2020-04-30 06:45:00+00 2020-04-30 07:00:00+00 

measure_period volume flow_detector_id 
324700 00:15:00 4 1905 
324701 00:15:00 0 1905 
324702 00:15:00 0 1905 
324703 00:15:00 0 1905 
324704 00:15:00 0 1905 

Looking through frst few (of the over 300,000) data entries above, and then examining the 
meta data fle contents in tm, we conclude that volume gives the bike counts. The volume is 
for 15-minute intervals as seen from measure_period. A quick check indicates that every 
data entry has a starting and ending time that conforms to a 15-minute measurement. 

dif = pd.to_datetime(td['end_time']) - pd.to_datetime(td['start_time']) 
(dif == dif[0]).all() 

True 

Therefore, let us rename start_time to just time and drop the redundant data in end_time 
and measure_period (as well as the id) columns. 

[5]: td = td.rename(columns={'start_time':'time'}).drop(columns=['end_time',␣ 
↪→'measure_period', 'id']) 

The meta data also tells us to expect three detectors and three values of flow_detector_id. 
Here are a few entries from the meta data: 

[6]: tm.T.loc[['detector_description', 'flow_detector_id', 'detector_make',␣ 
↪→'detector_name', 'facility_description'], :] 

[6]: 0 \ 
detector_description Inbound towards East 
flow_detector_id 1903 
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detector_make EcoCounter 
detector_name Tilikum Crossing 1 EB 
facility_description South bike lane of Tilikum Crossing Bridge 

1 \ 
detector_description Inbound towards West 
flow_detector_id 1904 
detector_make EcoCounter 
detector_name Tilikum Crossing (EAST) 
facility_description North bike lane of Tilikum Crossing Bridge 

2 
detector_description Inbound towards West 
flow_detector_id 1905 
detector_make EcoCounter 
detector_name Tilikum Crossing 2 WB 
facility_description North bike lane of Tilikum Crossing Bridge 

Although there are three values of flow_detector_id listed above, one of these values 
never seems to appear in the data fle. You can check that it does not as follows: 

[7]: (td.flow_detector_id==1904).sum() 

[7]: 0 

Therefore, going through the meta data again, we conclude that eastbound and westbound 
bikes pass through the fow detectors with id-numbers 1903 and 1905, respectively. 

The next step is to reshape the data into the form of a time series. The start_time seems 
like a good candidate for indexing a time series. But it’s a red herring. A closer look will 
tell you that the times are repeated in the data set. This is because there are distinct data 
entries for the eastbound and westbound volumes with the same time stamp. So we will 
make two data sets (since our data is not gigabytes long, memory will not be an issue), a 
tE for eastbound volume and tW for westbound volume. 

[8]: tE = td.loc[td['flow_detector_id']==1903, ['time', 'volume']] 
tE.index = pd.DatetimeIndex(pd.to_datetime(tE['time'])).tz_convert('US/ 

↪→Pacific') 
tE = tE.drop(columns=['time']).rename(columns={'volume':'Eastbound'}) 

[9]: tW = td.loc[td['flow_detector_id']==1905, ['time', 'volume']] 
tW.index = pd.DatetimeIndex(pd.to_datetime(tW['time'])).tz_convert('US/ 

↪→Pacific') 
tW = tW.drop(columns=['time']).rename(columns={'volume':'Westbound'}) 

Note that we have now indexed eastbound and westbound data by time stamps, and re-
named volume to Eastbound and Westbound respectively in each case. 

We are now ready for a frst look at the full time series. Let us consider the eastbound data 
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frst. 

[10]: tE.plot(); 

Clearly, we have problems with this data. A spike of 7000 bikers passing through in 15 
minutes, even for a bike-crazed city like Portland, just does not seem right. Zooming in, 
we fnd the situation even more disturbing, with a lot of zero readings before the spike: 

[11]: tE['2018-11-25':'2019-06-01'].plot(); 

There are reports from TriMet of construction in 2018 and city traffc advisories in 2019 that 
might all affect bike counter operation, but since the data set seems to have no means to in-
dicate these outages, we are forced to come up with some strategy ourselves for discarding 
the false-looking entries from the data. 

First, exploiting pandas’ ability to work with missing values, we declare the entries for the 
dates in the above plot to be missing. Note that missing data is not the same as zero data. 
When the bike counter is not working, the data should ideally be marked as missing, not 
zero. Since our suspicion is that outages might have resulted in defective counts, we shall 
effectively remove all data entries for these dates from the data set, as follows: 

[12]: tE['2018-11-25':'2019-06-01'] = np.nan 
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Next, we shall declare all entries with a volume of more than 1000 bikes per 15 minute to 
be a missing/defective value on both the westbound and eastbound data. 

[13]: tE[tE > 1000] = np.nan 
tW[tW > 1000] = np.nan 

XI.2 Visualize cleaned up data 

After the preparations above, we are now ready to visualize. Let us merge the east and 
west two data sets on the same time stamp axis. 

[14]: t = pd.merge(tE, tW, on='time') 
t.plot(alpha=0.7, style=['-',':']); 

Examining the above graph, we still see spikes that look unreasonably high in the be-
ginning of the data, but they may actually be real because at the offcial opening of the 
bridge there were 30,000 to 40,000 people and at least 13,000 bikes milling around. Simi-
larly, the other spikes may be real data. One can try to explain them, e.g., by consulting 
https://bikeportland.org/events/, from which you might conclude that the spike on Au-
gust 25, 2019 is due to a Green Loop event, and that large spike on June 29, 2019 might be 
due to all the people coming over for the World Naked Bike Ride; or was it some afterparty 
of Loud’n Lit event? I can’t really tell. We’ll just leave it at that, and blame the remaining 
spikes on the groovy bike scene of Portland. 

The quarter-hour samples look too dense in the plot above. A better picture of the situation 
is obtained by extracting weekly counts of bikes in both directions from the data. 

[15]: t.resample('W').sum().plot(style=['-',':'], title='Weekly bike counts on␣ 
↪→Tilikum'); 
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XI.3 The pattern of use 

The Tilikum is being used both by people who commute to work using a bicycle as well as 
recreational bicycle users. We can understand more about this division among bikers by 
dividing the data into weekend and weekday entries. 

The only technical skills you need for this are numpy.where and an understanding of 
pandas.Timestamp objects. (Please ensure you have studied Working with Time Series 
section of [JV-H] before proceeding.) Combined with a use of pandas.groupby, we can 
then extract the mean biker volumes for each 15-minute interval during the day. 

The result is the distribution plotted below. 

[16]: def weekplot(d, onlyweekend=False, title=None): 
weekend = np.where(d.index.weekday < 5, 'Weekday', 'Weekend') 
by_time = d.groupby([weekend, d.index.time]).mean() 
if onlyweekend: 

if title is None: title = 'Bikes per 15-min during weekends' 
by_time.loc['Weekend'].plot(title=title) 

else: 
if title is None: title = 'Bikes per 15-min during weekdays' 
by_time.loc['Weekday'].plot(title=title) 

weekplot(t) 
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The hourly distribution is distinctly “bimodal”. There is a group of westbound commuters 
(on their way to work) on the bridge in the morning, and a group (probably the same 
people) traveling eastbound after work. If you look closely, you will fnd that there are two 
slightly smaller bumps indicating that there are some (although many fewer) eastbound 
morning bikers and westbound evening bikers across the bridge. Yet, on the whole, the 
data leads us to the interesting conclusion that the overwhelming majority of the bike 
commuters on the Tilikum live on the east side and commute to the west for work and 
return daily. 

Often the purpose of understanding data is to guide policy and action. What might one 
do with the pattern we have just discovered? The current numbers are small enough not 
to pose a bike traffc problem. But envision a future where the bike counts will grow. If 
it grows maintaining the same lop-sided utilization pattern, what are the city’s options 
to encourage optimal bridge usage? Bike traffc fow control modifcations? Generation 
of more jobs on the east side? More residential zoning near the west end of the bridge? 
These are complex issues where an urban planner’s expertise is needed. Nonetheless, I 
hope to have convinced you of the importance of going from data (clicks on a counter) to 
knowledge (patterns of use). 

Next, let us look at the non-commuter, recreational, use, assuming that they occur in the 
weekends. In sharp contrast to the weekday distribution, below we fnd that the weekend 
distribution has just one peak. 

[17]: weekplot(t, onlyweekend=True) 
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Both the eastbound and westbound lanes seem to fnd a good amount of use in the week-
end. There is, most defnitely, a preference for recreational riding in the afternoon. I sup-
pose that is not a major surprise in Portland as afternoons are most often when we are 
given a reprieve from the battleship gray of the cloud cover. 

XI.4 Changes due to isolation 

As you know, on March 18, 2020, in-person instructional activities at all universities in 
Oregon were suspended, and on March 23 our governor issued the “Stay Home, Save 
Lives” executive order. Since the Tilikum is near two major universities in Portland, we 
expect the weekday bike traffc to be impacted by these measures. Let us examine what 
the data tells us. 

[18]: weekplot(t.loc[:'2020-03-17'], title='Before social distancing') 

[19]: weekplot(t.loc['2020-03-17':], title='After social distancing') 
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Clearly, the strong bimodal distribution has weakened considerably after we all started 
isolating ourselves. This perhaps comes as no surprise, since both universities on the west 
side of Tilikum have switched to remote classes. It makes sense that there are fewer west-
bound commuters in the morning. What about the afternoon peak? One could imagine 
various explanations for this: people isolating themselves all morning, getting restless in 
the afternoon, especially with such unusually good weather we were having in April, and 
deciding to take their bikes out for some fresh air. Whatever be the case, we can summa-
rize our conclusion from the data as follows: social distancing has changed the weekday 
bike use on Tilikum from a commuter to a recreational pattern. 

Of course, we can also compare the overall statistics before and after social distancing, but 
the results are too blunt to point out differences like the above. From the statistics outputs 
below, we see that the average number of bikers per quarter-hour in each direction has 
decreased by about 1: 

[20]: t.loc[:'2020-03-17'].mean() - t.loc['2020-03-17':].mean() 

[20]: Eastbound 0.868757 
Westbound 1.247903 
dtype: float64 

The data can also tell us the reduction in terms of number of bikers per week, although 
we should perhaps use it with some caution as not enough weeks have passed after social 
distancing started to form a robust sample. 

[21]: t.loc[:'2020-03-17'].resample('W').sum().mean() - t.loc['2020-03-17':]. 
↪→resample('W').sum().mean() 

[21]: Eastbound 208.005903 
Westbound 1088.181228 
dtype: float64 

The westbound lane certainly seems to have suffered more reduction in traffc after social 
distancing, whichever way we slice it. 

104 



XI.5 Comparison with Seattle’s Fremont bridge 

Although Portland claims to be the frst city in the US to adopt the open data program, 
Seattle’s open data program is something to envy. Seattle’s Fremont bridge bike counter 
data, even way back from 2012, is readily available for anyone to download, thanks to their 
open data program (at the URL below). Let’s take a peek at their data. 

[22]: import os 
import shutil 
import urllib 

url = "https://data.seattle.gov/api/views/65db-xm6k/rows.csv? 
↪→accessType=DOWNLOAD" 

f = "../../data_external/Fremont_Bridge_Bicycle_Counter.csv" 

if not os.path.isdir('../../data_external/'): 
os.mkdir('../../data_external/') 

if not os.path.exists(f): 
with open(f, 'wb') as fo: 

r = urllib.request.urlopen(url) 
shutil.copyfileobj(r, fo) 

sd = pd.read_csv(f) 
sd.tail() 

Date Fremont Bridge Total \ 
66403 04/30/2020 07:00:00 PM 156.0 
66404 04/30/2020 08:00:00 PM 51.0 
66405 04/30/2020 09:00:00 PM 25.0 
66406 04/30/2020 10:00:00 PM 15.0 
66407 04/30/2020 11:00:00 PM 13.0 

Fremont Bridge East Sidewalk Fremont Bridge West Sidewalk 
66403 68.0 88.0 
66404 30.0 21.0 
66405 17.0 8.0 
66406 4.0 11.0 
66407 6.0 7.0 

Let’s do some quick clean up and renaming. 

sd = sd.rename(columns={'Date' : 'time', 
'Fremont Bridge East Sidewalk' : 'East', 
'Fremont Bridge West Sidewalk' : 'West'}) 

sd.index = pd.to_datetime(sd.loc[:, 'time']) 
sd = sd.drop(columns=['time', 'Fremont Bridge Total']) 
sd.head() 

[23]: 

[23]: 

[24]: 
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[24]: East West 
time 
2012-10-03 00:00:00 4.0 9.0 
2012-10-03 01:00:00 4.0 6.0 
2012-10-03 02:00:00 1.0 1.0 
2012-10-03 03:00:00 2.0 3.0 
2012-10-03 04:00:00 6.0 1.0 

XI.5.1 Volume comparison 

Note that the Seattle data gives counts per hour, not counts per 15-minutes like the Tilikum 
data. To compare the general statistics, we should resample the Tilikum to get hourly 
counts. 

[25]: 

[25]: 

[26]: 

[26]: 

[27]: 

th = t.resample('H').sum() 
th.describe() # Portland's Tilikum 

Eastbound Westbound 
count 41423.000000 41423.000000 
mean 28.467856 34.979504 
std 53.384867 55.594878 
min 0.000000 0.000000 
25% 0.000000 2.000000 
50% 7.000000 14.000000 
75% 32.000000 46.000000 
max 2606.000000 1577.000000 

sd.describe() # Seattle's Fremont 

East West 
count 66398.000000 66398.000000 
mean 51.653047 61.499277 
std 66.661856 90.060985 
min 0.000000 0.000000 
25% 6.000000 7.000000 
50% 28.000000 30.000000 
75% 69.000000 74.000000 
max 698.000000 850.000000 

The Tilikum data is spikier than Seattle’s Fremont data (compare the max values in the 
above outputs), but the average volumes (mean) are clearly higher in Seattle. That the 
volume is higher in Seattle in even more clear if we plot weekly counts on both bridges on 
the same axis. 

sw = sd.resample('W').sum() 
tw = t.resample('W').sum() 
fig, axs = plt.subplots(1, 2, figsize=(13, 3), sharey=True) 
plt.subplots_adjust(wspace=0.05) 
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sw.plot(ax=axs[0], title='Fremont bridge (Seattle) bikes/week'); 
tw.plot(ax=axs[1], title='Tilikum bridge (Portland) bikes/week'); 

XI.5.2 Daily patterns 

There is a striking difference in the distribution of the average number of bikes/hour dur-
ing weekdays on the two bridges. 

[28]: weekplot(sd, title='Fremont (Seattle) on weekdays (Bikes/hr)') 
weekplot(th, title='Tilikum (Portland) on weekdays (Bikes/hr)') 

The Fremont bridge has good bike traffc fow in both directions during the peak hours, 
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unlike the Tilikum. We conclude that during peak hours, bikers are distributed more 
evenly on Seattle’s Fremont bridge travel lanes than on Portland’s Tilikum. 

XI.5.3 Changes after social distancing 

[29]: weekplot(sd['2020-03-17':], title='Fremont (Seattle): Weekdays after␣ 
↪→social distancing'); plt.ylabel('Bikes/hour'); 

weekplot(th['2020-03-17':], title='Tilikum (Portland): Weekdays after␣ 
↪→social distancing'); plt.ylabel('Bikes/hour'); 

Somewhat remarkably, despite all the above-seen differences, the weekday bike counts of 
both cities respond to social distancing in quite the same fashion: the bimodal weekday 
distribution of commuting to work has become a unimodal afternoon recreation pattern. 
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XII 

Visualizing geospatial data 

May 6, 2020 

Geospatial data refers to data which has a geographic component in it. Usually this means 
that the data entries are associated to some point on the surface of the earth. Therefore, 
geospatial data are usually visualized on maps. 

Because the earth is round, in order to make a fat map, one must transform the earth’s 
surface to a fat surface. Such transformations are called projections by cartographers (not 
to be confused with linear projections from linear algebra). Mathematicians know that a 
transformation between topologically different regions must be discontinous somewhere. 
So these projections, while very useful, cannot be perfect replicas of reality. It is useful 
to know this and a bit more about python modules for projections while attempting to 
visualize geospatial data on the globe. 

Many references, including Geographic Data with Basemap of [JV-H], use the python mod-
ule basemap. However in recent years, the module basemap has been deprecated in favor 
of the new python mapping project called Cartopy. Therefore, this activity aims at tak-
ing a quick look at cartopy. Cartopy, together with geopandas, a package built on top of 
pandas, shows promise in easing geospatial visualization. They are nonetheless relatively 
new efforts. You will notice that their documentation, while constantly improving, is not 
as mature as, say numpy. There will likely be a number of changes in the provided facili-
ties as these efforts take hold. Our goal in this activity is to get acquainted with these new 
developments for visualizing geospatial data. 

[1]: import numpy as np 
import matplotlib.pyplot as plt 
%matplotlib inline 
import pandas as pd 
import geopandas as gpd 
from cartopy import crs 

XII.1 Geometry representation 

The GeoDataFrame class of geopandas is a pandas data frame with a special column repre-
senting geometry. This column is a GeoSeries object, which may be viewed as a pandas 
series where each entry is a set of shapes. The shapes are geometric objects like a a set of 
points, lines, a single polygon, or many polygons. These shapes are objects made using 
the shapely package. Together they allow easy interaction with matplotlib for plotting 
geospatial data. 
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Here is a GeoDataFrame object we have already used in 01 Overview: 

[2]: world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')) 
type(world) 

[2]: geopandas.geodataframe.GeoDataFrame 

The above-mentioned special column of the world data frame is this. 

[3]: type(world.geometry) 

[3]: geopandas.geoseries.GeoSeries 

A GeoDataFrame can have many columns of type GeoSeries, but there can only be one ac-
tive geometry column, which is what is returned by the attribute GeoDataFrame.geometry. 
Note also that the name of this active GeoSeries can be anything (not necessarily 
geometry), but in the world object, the column happens to be called geometry, as can be 
seen below. 

world.geometry.name 

'geometry' 

world.head() 

pop_est continent name iso_a3 gdp_md_est \ 
0 920938 Oceania Fiji FJI 8374.0 
1 53950935 Africa Tanzania TZA 150600.0 
2 603253 Africa W. Sahara ESH 906.5 
3 35623680 North America Canada CAN 1674000.0 
4 326625791 North America United States of America USA 18560000.0 

geometry 
0 MULTIPOLYGON (((180.00000 -16.06713, 180.00000... 
1 POLYGON ((33.90371 -0.95000, 34.07262 -1.05982... 
2 POLYGON ((-8.66559 27.65643, -8.66512 27.58948... 
3 MULTIPOLYGON (((-122.84000 49.00000, -122.9742... 
4 MULTIPOLYGON (((-122.84000 49.00000, -120.0000... 

The plot method of the data frame is redefned in a GeoDataFrame to use the geometry 
objects in the active geometry column. So to plot this map, all we have to do is use the 
plot method: 

world.plot() 

[6]: <matplotlib.axes._subplots.AxesSubplot at 0x119f93ca0> 

[4]: 

[4]: 

[5]: 

[5]: 

[6]: 
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A GeoDataFrame has more attributes than a regular pandas data frame. For example, it 
stores the centroids of the shapes in the active geometry column. 

[7]: type(world.centroid) 

[7]: geopandas.geoseries.GeoSeries 

This is a GeoSeries that did not show up when we queried world.head(), but it is an 
attribute of world. We can, of course, make it an additional column of world by in the 
usual pandas way. 

[8]: 

[8]: world['centroids'] = world.centroid 
world.head() 

pop_est continent name iso_a3 gdp_md_est \ 
0 920938 Oceania Fiji FJI 8374.0 
1 53950935 Africa Tanzania TZA 150600.0 
2 603253 Africa W. Sahara ESH 906.5 
3 35623680 North America Canada CAN 1674000.0 
4 326625791 North America United States of America USA 18560000.0 

geometry \ 
0 MULTIPOLYGON (((180.00000 -16.06713, 180.00000... 
1 POLYGON ((33.90371 -0.95000, 34.07262 -1.05982... 
2 POLYGON ((-8.66559 27.65643, -8.66512 27.58948... 
3 MULTIPOLYGON (((-122.84000 49.00000, -122.9742... 
4 MULTIPOLYGON (((-122.84000 49.00000, -120.0000... 

centroids 
0 POINT (163.85316 -17.31631) 
1 POINT (34.75299 -6.25773) 
2 POINT (-12.13783 24.29117) 
3 POINT (-98.14238 61.46908) 
4 POINT (-112.59944 45.70563) 

Now, world has two GeoSeries columns. If we make the centroids column the active 
geometry column, then the output of the plot method changes since it uses the active 
column’s geometry specifcations. 
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[9]: world = world.set_geometry('centroids') # change the active geometry␣ 
↪→column 

world.plot(); 

XII.2 Coordinate Reference Systems 

An essential data structure of cartopy is CRS, or Coordinate Reference Systems, the name 
used by cartopy (and other python projects) for the projections used in maps. A CRS often 
used as default is the the Plate Carrée projection, which cartopy provides as follows. 

[10]: crs.PlateCarree() 

[10]: <cartopy.crs.PlateCarree at 0x11c140a90> 

As you guessed from the above output, the CRS object is able to plot itself using matplotlib. 
This points to one avenue for visualizing geospatial data that has no need for geopandas. 
Cartopy produces a matplotlib axis on which you can overlay your data as you see ft: 
if your data has latitude and longitude associated to it, cartopy can apply the relevant 
projection automatically to place it at the proper place in the fgure. Below, we will focus 
on alternative visualization methods using geopandas and facilities to interact between 
cartopy and geopandas. 

The world object of class GeoDataFrame comes with a CRS attribute, another attribute that 
does not show up in world.head() output. 

[11]: world.crs 

[11]: <Geographic 2D CRS: EPSG:4326> 
Name: WGS 84 
Axis Info [ellipsoidal]: 
- Lat[north]: Geodetic latitude (degree) 
- Lon[east]: Geodetic longitude (degree) 
Area of Use: 
- name: World 
- bounds: (-180.0, -90.0, 180.0, 90.0) 
Datum: World Geodetic System 1984 
- Ellipsoid: WGS 84 
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- Prime Meridian: Greenwich 

We see that the CRS above is codenamed EPSG:4326. Here EPSG stands 
for European Petroleum Survey Group. They maintain several data sets at 
https://spatialreference.org/ref/epsg/. Each set in “EPSG Geodetic Parameter Dataset is 
a collection of defnitions of coordinate reference systems and coordinate transformations 
which may be global, regional, national or local in application.” 

EPSG-number 4326 that we have here belongs to the WGS 84 coordinate system, the latest 
in the World Geodetic System (WGS) where the earth is represented as an oblate spheroid 
with coordinates in decimal degrees (Lat, Lon). 

Changing the active geometry from previously set centroids to the original geometry col-
umn, let us plot the world again in order to compare the result with another CRS. 

[12]: world = world.set_geometry('geometry') # set the active geometry 
world.plot(); plt.title('World in WGS 84 CRS'); 

We compare this output with another very well-known projection, the Mercator projection, 
which has the nice property that it is conformal, i.e., it preserves angles. EPSG has made 
available a Web Mercator projection. We can easily convert world from the WGS 84 to the 
Mercator CRS: 

[13]: world_Mercator = world.to_crs("EPSG:3395") 
world_Mercator.plot(); 
plt.title('World in Mercator CRS'); 
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Generations of school kids have grown up with this Mercator map. Note how the Merca-
tor projection distorts the size of objects as the latitude increases from the equator to the 
poles. Some countries near equator look smaller than they really are. For example, Brazil 
is actually larger than the contiguous United States, but it looks smaller in the Mercator 
projection. If you have time for a digression, have a look into the many discussions online, 
e.g., The Problem With Our Maps, on how the false sizes on maps (perhaps inadvertently) 
shape our views on countries. 

XII.3 Two other CRS 

The Azimuthal Equidistant and Albers Equal Area coordinate reference systems show areas of 
the globe in better proportions than the Mercator projection, as their names suggest. These 
are implemented in cartopy. We want to leverage geopandas’ ability to work with cartopy 
in the next step. We don’t always get meaningful plots after an arbitrary CRS to CRS con-
version, but what is offcially possible is laid out in the current geopandas documentation, 
which would be a good source to check back on for future changes. 

First, for conversion from the default WGS 84 to the azimuthal equidistant CRS, we create 
a cartopy CRS object. 

[14]: ae = crs.AzimuthalEquidistant() 
type(ae) 

[14]: cartopy.crs.AzimuthalEquidistant 

Then we convert the cartopy object to a form usable by geopandas through an intermediate 
step. That step offers a glimpse of what lies at the core of many of the mapping tools, the 
PROJ project. (All these dependencies made installing geopandas more involved, as you 
recall from our early install sessions.) 
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[15]: aeproj4 = ae.proj4_init # Convert to`proj4` string/dict usable␣ 
↪→in gpd 

world_ae = world.to_crs(aeproj4) # Then call to_crs method 
world_ae.plot() 

[15]: <matplotlib.axes._subplots.AxesSubplot at 0x12794f3a0> 

This represents the geopandas object world_ae, which is the world object whose geometry 
has been converted to the azimuthal equidistant CRS. From the above output, it we see that 
the azimuthal equidistant projection shows the central view in good proportions, with ob-
vious distortions farther out although the distortions are evocative of the globe. However, 
this CRS is often diffcult to use for showing data that is spread over the populous parts of 
the globe. (You can change the central view as shown in the next cell.) See, for example, 
how diffcult it is to get the far east, the west, and Europe, together in any perspective, due 
to the vastness of the intermediate Pacifc ocean. 

[16]: crs.AzimuthalEquidistant(central_longitude=200, central_latitude=10) 

[16]: <cartopy.crs.AzimuthalEquidistant at 0x127856310> 

It is therefore useful to get to know another projection from cartopy called 
AlbersEqualArea projection. 

[17]: aea = crs.AlbersEqualArea() 
aea 

[17]: <cartopy.crs.AlbersEqualArea at 0x127a86e50> 

Finally, as an illustration of how to plot geopandas geometries into an axis generated 
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by cartopy, we will convert or project the existing geometry objects in world_ae to 
AlbersEqualArea CRS as shown below. 

[18]: aea_geo = [aea.project_geometry(ii, src_crs=ae) 
for ii in world_ae['geometry'].values] 

Since cartopy works directly with matplotlib, we can immediately render the resulting 
geometries in matplotlib’s axis. 

[19]: fig, ax = plt.subplots(subplot_kw={'projection': aea}) 
ax.add_geometries(aea_geo, crs=aea); 

We can alternately produce essentially the same plot using geopandas as follows. 

[20]: gpd.GeoDataFrame(world, geometry=aea_geo, crs=aea.proj4_init).plot(); 

XII.4 Mapping COVID-19 cases on the globe 

As an application of the above-discussed geospatial visualization techniques, we will now 
make a map of COVID-19 cases throughout the world using the AlbersEqualArea coordi-
nate reference system. 
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[21]: import os 
from git import Repo 

[22]: 

[23]: 

[23]: 

First update your data folder by pulling the newest reports of COVID-19 from the GitHub 
repository maintained by Johns Hopkins’ researchers. 

covidfolder = '../../data_external/covid19' 
if os.path.isdir(covidfolder): # if repo exists, pull newest data 

repo = Repo(covidfolder) 
repo.remotes.origin.pull() 

else: # otherwise, clone from remote 
repo = Repo.clone_from('https://github.com/CSSEGISandData/COVID-19. 

↪→git', 
covidfolder) 

datadir = repo.working_dir + '/csse_covid_19_data/ 
↪→csse_covid_19_time_series' 

f = datadir + '/time_series_covid19_confirmed_global.csv' 

c = pd.read_csv(os.path.abspath(f)) 
c = c.rename(columns={'Country/Region': 'country'}).iloc[:, 1:] 
c.head() 

country Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 \ 
0 Afghanistan 33.93911 67.709953 0 0 0 0 
1 Albania 41.15330 20.168300 0 0 0 0 
2 Algeria 28.03390 1.659600 0 0 0 0 
3 Andorra 42.50630 1.521800 0 0 0 0 
4 Angola -11.20270 17.873900 0 0 0 0 

1/26/20 1/27/20 1/28/20 ... 7/14/20 7/15/20 7/16/20 7/17/20 \ 
0 0 0 0 ... 34740 34994 35070 35229 
1 0 0 0 ... 3667 3752 3851 3906 
2 0 0 0 ... 20216 20770 21355 21948 
3 0 0 0 ... 861 862 877 880 
4 0 0 0 ... 541 576 607 638 

7/18/20 7/19/20 7/20/20 7/21/20 7/22/20 7/23/20 
0 35301 35475 35526 35615 35727 35928 
1 4008 4090 4171 4290 4358 4466 
2 22549 23084 23691 24278 24872 25484 
3 880 880 884 884 889 889 
4 687 705 749 779 812 851 

[5 rows x 187 columns] 

Some countries are repeated (as their provinces are being counted in separate data entries), 
as can be seen from the following nonzero difference: 
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[24]: len(c['country']) - len(set(c['country'])) 

[24]: 78 

Therefore, we sum up each country’s confrmed COVID-19 counts for each day using a 
pandas groupby operation. Of course, it doesn’t make sense to sum up the latitudes and 
longitudes, so we take their average values within countries. (Taking the mean of latitudes 
and longitudes will do for our current purposes, but it is defnitely not a perfect solution, 
which is why I’ll be asking you to improve on it by making a chloropleth map in the next 
assignment.) 

[25]: cg = c.groupby('country')[c.columns[3:]].sum() 
cg['Lat'] = c.groupby('country')['Lat'].mean() 
cg['Long'] = c.groupby('country')['Long'].mean() 

This newly created data frame has no GeoSeries. We use the latitude and longitude infor-
mation to create point geometries. With this information, we can make a GeoDataFrame. 

[26]: geo = gpd.points_from_xy(cg['Long'], cg['Lat']) 
c_aea_geo = [aea.project_geometry(ii) for ii in geo] 
cg = gpd.GeoDataFrame(cg, geometry=c_aea_geo, crs=aea.proj4_init) 

Now, in cg, we have a GeoDataFrame object that should know how to plot its data columns 
in the data’s associated places on the globe. 

[27]: def covidworldmap(date): 

fig, ax = plt.subplots(figsize=(12, 10)) 
# put the world map on an axis 
w = gpd.GeoDataFrame(world, geometry=aea_geo, crs=aea.proj4_init) 
w.plot(ax=ax, color='midnightblue', edgecolor='darkslategray') 
ax.set_facecolor('dimgray') 
mx = cg.iloc[:, :-3].max().max() # get max across data 

# set marker sizes, with a min marker size for cases > 1000 
msz = 500 * np.where(cg[date]-1000, np.maximum(cg[date]/mx, 0.001), 0) 
cg.plot(ax=ax, cmap='Wistia', markersize=msz, alpha=0.5) 

ax.set_xticks([]) # remove axis marks 
ax.set_yticks([]); 

[28]: covidworldmap('5/5/20') 
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The world is now littered with COVID-19 cases. I wish the world and our country had 
fared better, but the data doesn’t lie. 
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XIII 

Gambler’s Ruin 

May 11, 2020 

A gambler G starts with two chips at a table game in a casino, pledging to quit once 8 more 
chips are won. G can either win a chip or lose a chip in each game, with probabilities p 
and 1 − p, respectively (independent of past game history). What is the probability that G 
accumulates a total of 10 chips playing the game repeatedly, without being ruined while 
trying? The ruining state is one where G has no chips and can no longer play. What is the 
probability that G is ruined while trying to get to 10 chips? 

The goal of this activity is to introduce you to the rich subject of Markov chains, and in the 
process also get you acquainted with graphs, random walks, and stochastic matrices, with 
the gambler G as an entry point example. Since a probability course is not a prerequisite 
for this course, I will try to present the results colloquially and without proofs, with my 
advance apologies to the probabilists among you. The two theorems you will fnd stated 
below are proved using probabilistic tools (see, for example, [S]) and is material one might 
usually fnd in a statistics program. In the next activity, I will connect this to material from 
other felds. 

XIII.1 Markov chains 

A Markov chain is an abstraction used to model systems that transition from a current state 
to the next state according to some given probability. It has proven itself to be a powerful 
construct in statistics due to its wide applicability. Specifcally, given 

• a set of states S = {S0, S1, . . .}, 
• and a set of numbers 0 ≤ pij ≤ 1, 

a Markov chain is a sequence whose elements are taken from S in such a way that probability 
to go from state Si to Sj is pij. The number pij is called the transition probability. The states 
and transition probabilities are often represented in diagrams like this: 

S0 S1 S2 S3 S4p00
p01 p12

p13

p20

p33

p32

p34

p43

The assumptions when considering a Markov chain are that the system is required to move 
from state to state (the next state can be the same as the current state), and that the next 
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state is determined only by the current state’s transition probabilities (not by prior states). 
The latter is called the memorylessness property or the Markov property. The former implies 
that the probability that the system will transition from the current state is one, so that for 
any i, 

∑ pij = 1. 
j 

Note that the sum above may be fnite or infnite: if the set of states is a fnite set, say 
S = {S0, S1, . . . , SN }, then the above sum runs from j = 0, 1, through N; otherwise the sum 
should be treated as an infnite sum. Irrespective of the fniteness of the set of states S, the 
Markov chain itself is thought of as an infnite sequence. 

(Optional note: Here is a formal defnition using the conditional probability notation, 
Pr(A|B). A stochastic sequence Xn taking values from a set of states S = {S0, S1, . . .} is 
called a Markov chain if for any subset of states Si, Sj, Sk0 , Sk1 , . . . , Skn−1 ∈ S, 

Pr(Xn+1 = Sj|Xn = Si) 

= Pr(Xn+1 = Sj|Xn = Si, Xn−1 = Skn−1 , Xn−2 = Skn−2 , . . . , X0 = Sk0 ) 

= pij. 

Throughout, we only consider what are known as time-homogeneous Markov chains, where 
the probabilities pij are independent of the “time” step n.) 

To connect this to the concept of random walks, let us frst introduce graphs. 

XIII.2 Graphs 

In mathematics, we often use the word graph in a sense completely different from the 
graph or plot of a function. 

A graph (V, E) is a set V of n vertices, together with a set E of m edges between (some) 
vertices. Although vertices are often pictorially represented as points, technically they can 
be whatever things lumpable into a set V, e.g., - people, labels, companies, power stations, 
cities, etc. 

Edges are often pictorially represented as line segments (or curves) connecting two points 
representing two vertices, but technically, they are just a “choice of two vertices” (not nec-
essarily distinct) from V, e.g., corresponding to the above-listed vertex examples, an edge 
can represent - friendship, similarities, spinoffs, wires, roads, etc. 

When the above-mentioned “choice of two vertices” is changed to an ordered tuple, then 
the ordering of the two vertex choices that form an edge is signifcant, i.e., the edge has a 
direction. Thus a directed edge from vertex vi to vertex vj is the tuple (vi, vj). If all edges 
in E are directed, the graph is called a directed graph or a digraph. If a non-negative number, 
a weight, is associated to each edge of a digraph, then we call the graph a weighted digraph. 

Python does not come with a graph data structure built in. Before you begin to think this 
somehow runs counter to the “batteries-included” philosophy of python, let me interrupt. 
Python’s built-in dictionary data structure encapsulates a graph quite cleanly. Here is an 
example of a graph with vertices a, b, c, d: 
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[1]: gd = {'a': ['b', 'd'], # a -> b, a -> d 
'b': ['c', 'd', 'a'] } # b -> c, b -> d, b -> a 

You can use a dict of dicts to incorporate more edge properties, such as assign 
names/labels, or more importantly, weights to obtain a weighted digraph. 

[2]: gd = {'a': {'b': {'weight': 0.1}, 
'd': {'weight': 0.8}}, 

'b': {'d': {'weight': 0.5}, 
'c': {'weight': 0.5}} 

} 

Although we now have a graph data structure using the python dictionary, for this to be 
useful, we would have to implement various graph algorithms on it. Thankfully, there are 
many python packages that implement graph algorithms. Let’s pick one package called 
NetworkX as an example. Please install it before executing the next code cell. NetworkX 
allows us to send in the above dictionary to its digraph constructor. 

[3]: import networkx as nx 

g = nx.DiGraph(gd) # dictionary to graph 

Now g is a DiGraph object with many methods. To see all edges connected to vertex a, a 
dictionary-type access is provided. We can use it to double-check that the object is made 
as intended. 

[4]: g['a'] 

[4]: AtlasView({'b': {'weight': 0.1}, 'd': {'weight': 0.8}}) 

You can plot this graph using NetworkX’s facilities (which uses matplotlib under the 
hood). 

[5]: import matplotlib.pyplot as plt 
%matplotlib inline 

def plot_gph(g): 
pos = nx.spectral_layout(g) 
nx.draw(g, pos, with_labels=True, node_color='orange') 
labels = nx.get_edge_attributes(g, 'weight') 
nx.draw_networkx_edge_labels(g, pos, edge_labels=labels); 

plot_gph(g) 
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XIII.3 Random walks 

Consider a weighted digraph (V, E) where the weight associated to a directed edge e = 
(vi, vj) is a number 0 < pij ≤ 1. Let us extend these numbers to every pair of vertices vi 
and vj such that pij = 0 if (vi, vj) is not an edge of the graph. Let us restrict ourselves to 
the scenario where 

∑ pij = 1 
j 

for any i. 

A random walk on such a directed graph is a sequence of vertices in V generated stochasti-
cally in the following sense. Suppose the nth element of the sequence is the ith vertex vi in 
V. Then one of its outgoing edges (vi, vj) is selected with probability pij, and the (n + 1)th 
element of the random walk sequence is set to vj. This process is repeated to get the full 
random walk, once a starting vertex is selected. 

XIII.4 Conceptual equivalences 

There are three equivalent ways of viewing what is essentially the same concept: 

• a probabilistic transition of states, 
• a vertex-to-vertex probabilistic movement in digraphs, or 
• a non-negative matrix of unit row sums. 

Given a random walk on a weighted digraph, the sequence it generates is a Markov chain. 
Indeed, the digraph’s edge weights give the transition probabilities. The graph vertices 
form the Markov chain states. Conversely, given a Markov chain, there is a corresponding 
random walk. We frst generate a digraph using the Markov chain states as the graph 
vertices. Positive transition probabilities indicate which directed edges should exist in the 
graph and what their edge weight should be. The sequence of states of the Markov chain is 
now identifable as the sequence of vertices generated by a random walk on this digraph. 
This equivalence is betrayed even by our very frst fgure above, where we illustrated a 
Markov chain using a graph. 

To understand why the third concept is equivalent, it is suffcient to note that all infor-
mation to specify either a Markov chain, or a random walk is encapsulated in a single 
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mathematical object, namely the matrix P whose (i, j)th entry is pij. This matrix of proba-
bilities is called a transition matrix (sometimes also called a stochastic matrix) and it can be 
associated either to a Markov chain or a random walk provided its rows sum to one. 

Here is an example of a transition matrix. 

[6]: import numpy as np 
np.set_printoptions(suppress=True) 

# S0 S1 S2 S3 
P = np.array([[0, 0.0, 0.5, 0.5], # S0 

[1.0, 0.0, 0.0, 0.0], # S1 
[0.0, 0.0, 0.0, 1.0], # S2 
[0, 1.0, 0.0, 0.0]]) # S3 

# Here S0, S1, S2, S3 are conceptual labels either 
# for the Markov chain states or the digraph vertices 

Matrix to digraph The above-mentioned conceptual equivalences are often tacitly used 
in graph programs. For instance, in NetworkX, one can easily make a graph out of the 
above transition matrix P as follows. 

[7]: gP = nx.from_numpy_array(P, create_using=nx.DiGraph) 

plot_gph(gP) 

Digraph to matrix We can, of course, also go the other way. For example, consider the 
small graph g we made “by hand” previously: 

[8]: plot_gph(g) 
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[9]: g.nodes # note the ordering of vertices 

[9]: NodeView(('a', 'b', 'd', 'c')) 

This NetworkX object g can produce a matrix of the graph’s edge weights. It is typical to 
make this as a scipy.sparse matrix since one anticipates many zero entries (correspond-
ing to edges that do not exist in a realistic large graph). The result Pg below is a sparse 
matrix, which we convert to a dense matrix, just for printing. 

[10]: Pg = nx.convert_matrix.to_scipy_sparse_matrix(g) 
Pg.todense() 

[10]: matrix([[0. , 0.1, 0.8, 0. ], 
[0. , 0. , 0.5, 0.5], 
[0. , 0. , 0. , 0. ], 
[0. , 0. , 0. , 0. ]]) 

Note how the matrix entries and edge weights in the fgure are in correspondence. The ma-
trix is generally called the adjacency matrix of a weighted graph. (Note that many textbooks 
will defne adjacency matrix entries with 1 in place of the nonzeros above to accommodate 
graphs without weights.) For digraphs in a random walk discussion, we shall refer to this 
adjacency matrix as the transition matrix, as previously noted. 

XIII.5 The example of the gambler 

Let us return to the gambler G with whom we made the acquaintance in the beginning of 
this activity. We formulate a Markov chain for G as follows. 

Let Si be the state of play where G has i chips. In the next step of the game, G can win 
the game and go to Si+1 with probability p, or lose and go to state Si−1 with probability 
q = 1 − p. The only possible states for G to be in are S0, S1, . . . , S10. The directed graph on 
which G is the random walker is as follows. 
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S0 S1 S2 S3 S8 S9 S101
q

p

q

p

q

p

q

p
1

Here we have also indicated two additional pieces of information: G has pledged to quit 
upon reaching state S10, so once the Markov chain reaches S10 it will not go to any other 
state forever. Furthermore, if G’s Markov chain reaches the ruining state of S0, then G can’t 
play any more, so the Markov chain cannot go to any other state forever. 

Let us look at the corresponding transition matrix, say when p = 0.4. 

[11]: def PforG(p=0.4, N=10): 
q = 1 - p 
P = np.diag(q*np.ones(N), k=-1) + np.diag(p*np.ones(N), k=1) 
P[0, :] = 0 
P[0, 0] = 1 
P[N, :] = 0 
P[N, N] = 1 
return P 

PforG(p=0.4) 

[11]: array([[1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], 
[0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], 
[0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0. , 0. , 0. ], 
[0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0. , 0. ], 
[0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0. ], 
[0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0. ], 
[0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0. ], 
[0. , 0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0. ], 
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0. ], 
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4], 
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. ]]) 

In the scenario described in the beginning, G starts with 2 chips and wants to reach a total 
of 10 chips. This translates to the following question: what is the probability that the above 
random walk enters the state S10? It turns out that such questions are so often asked off 
Markov chains that the answer is a basic theoretical result on Markov chains (see the next 
theorem below). 

XIII.6 Getting to a state 

Let A and B be a partitioning of indices such that the subset of states 

SA = {Si : i ∈ A}, SB = {Si : i ∈ B} 

form a disjoint partitioning of the set S of all the states of a Markov chain. The probability 
that the Markov chain attains a state in SA in some fnite number of steps (i.e., if it ever 
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hits SA) starting from a state Si is called a hitting probability of SA and is denoted by hi. Of 
course, if i ∈ A, then hi = 1. What is not obvious is the value of hi when the chain starts 
from i ∈ B. Classic probabilistic arguments prove that the hi values satisfy the system in 
the next theorem. 

Theorem 1. The hitting probability of a subset A of states in a Markov chain is the minimal 
non-negative solution of the system of equations 

hi = ∑ pijhj 
j 

for all i with i ∈ B, and hi = 1 if i ∈ A. Here minimality means that if x is another solution, 
then xi ≥ hi for all i. 

The reasoning that leads to the system of equations in the theorem is as follows: if the 
Markov chain starts from state Si, then in the next step, it can be in any of the states Sj with 
probability pij, from where the hitting probability is hj, so the hitting probability hi from Si 
must be the sum of all pij × hj over all states Sj. This idea can be formalized into a proof of 
Theorem 1. Let me highlight a few more things to note about Theorem 1: 

• First trivial solution: From the defnition of Markov chain, recall that 

∑ pij = 1. 
j 

Hence an obvious solution to the system of equations in Theorem 1 is 

hi = 1 

for all i. However, this solution need not be the minimal one mentioned in the theo-
rem. 

• Second trivial solution: One case where the minimal nonnegative solution is obvious 
is when A is such that pij = 0 for all i ∈ B and j ∈ A, i.e., when it is not possible to 
go from B to A. Then {

1, i ∈ A,
hi = 

0, i ∈ B, 

obviously satisfes the system of equations in Theorem 1. Since the hi values for i ∈ B 
cannot be reduced any further, this is the minimal solution. 

• Collecting hi into a vector h, the system of equations in Theorem 1 can almost be 
written as the eigenvalue equation for eigenvalue 1, 

h = Ph, 

but not quite, because the equation need not hold for indices i ∈ A. Indeed, as stated 
in the theorem, hi must equal 1 if i ∈ A. 

XIII.7 Application to the gambler G 

Setting A = {10} and B = {0, 1, . . . , 9} in the above general theory, we see that G wins 
with probability h2. Let us try to apply Theorem 1 to calculate h2. 
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The approach I present here is not standard, but has the advantage that it uses eigenvector 
calculations that you are familiar with from your prerequisites. Even though the eigenvec-
tor remark I made at the end of the previous section is pessimistic, looking at G’s transition 
matrix, we fnd that the condition hi = 1 for i ∈ A can be lumped together with the re-
maining equations. Indeed, because the last row of P contains only one nonzero entry (of 
1), 

h10 = ∑ p10,jhj 
j 

holds. Therefore in G’s case, h is a solution of the system in Theorem 1 if and only if h is a 
non-negative eigenvector of P corresponding to eigenvalue 1 and scaled to satisfy h10 = 1. 
(Be warned again that this may or may not happen for other Markov chains: see exercises.) 
What gives us further hope in the example of G is that we have a key piece of additional 
information: 

h0 = 0, 

i.e., if G starts with no chips, then G cannot play, so G will stay in state S0 forever. We 
might guess that this condition will help us flter out the irrelevant frst trivial solution 
with hi = 1 for all i. 

Let me make one more remark before we start computing. The system of equations of 
Theorem 1 in the case of G reduces to 

hi = phi+1 + (1 − p)hi−1 

for 1 ≤ i ≤ 9 together with h0 = 0 and h10 = 1. You can make intuitive sense of this 
outside the general framework of the theorem. If G starts with i chips (1 ≤ i ≤ 9) so that 
the probability of hitting A is hi, then in the next step there are two cases: (a) G has i + 1 
chips with probability p, or (b) G has i − 1 chips with probability 1 − p. The probability 
of hitting A in case (a) is p × hi+1, and the probability of hitting A in case (b) is q × hi−1. 
Hence hi must be equal to the sum of these two, thus explaining the theorem’s equation 
hi = phi+1 + (1 − p)hi−1. 

Let us now compute hi using the knowledge that in G’s case, h is a non-negative eigenvec-
tor of P corresponding to eigenvalue 1, scaled to satisfy h10 = 1. 

[12]: from numpy.linalg import eig, inv, det 

P = PforG(p=0.4) 
ew, ev = eig(P) 
ew 

[12]: array([-0.93184127, -0.79267153, -0.57590958, -0.30277358, -0. , 
0.93184127, 0.79267153, 0.30277358, 0.57590958, 1. , 
1. ]) 

The computed set of eigenvalues of P include 1 twice. Since the diagonalization (the factor-
ization produced by eig) was successful, we know that the eigenspace of P corresponding 
to eigenvalue 1 is two-dimensional. If there are vectors h in this eigenspace satisfying 

h0 = 0, h10 = 1, 
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then such vectors clearly solve the system in Theorem 1. We can algorithmically look for 
eigenvectors satisfying these two conditions in a two-dimensional space: it’s a system of 
two equations and two unknowns, made below in the form [ ] 

0
Mc = .

1 

[13]: H = ev[:, abs(ew - 1) < 1e-15] # Eigenvectors of eigenvalue 1 
M = np.array([H[0, :], H[-1, :]]) # Matrix of the two conditions 
det(M) 

[13]: 0.2825542003687932 

The nonzero determinant implies that M is invertible. This means that there is a unique 
solution c and hence a unique vector in the eigenspace satisfying both the conditions, which 
can be immediately computed as follows. 

[14]: def Gchances(p=0.4, N=10): 
P = PforG(p, N) 
ew, ev = eig(P) 
H = ev[:, abs(ew - 1) < 1e-15] 
M = np.array([H[0, :], H[-1, :]]) 
c = inv(M) @ np.array([0, 1]) 
return H @ c 

[15]: h = Gchances(p=0.4) 
h 

[15]: array([0. , 0.00882378, 0.02205946, 0.04191297, 0.07169324, 
0.11636364, 0.18336924, 0.28387764, 0.43464024, 0.66078414, 
1. ]) 

The signifcance of the above-mentioned uniqueness is that we no longer have to check if 
this h is the minimal non-negative solution of Theorem 1, since we have no more degrees of 
freedom to further reduce the above non-negative components. 

We have just solved G’s problem posed in the beginning. 

The answer h, printed in the output above, tells us that the probability of G accumulating 10 
chips starting from 2 chips when p = 0.4 is h[2], whose value is approximately 0.022. 

This is a lousy probability! Have we made a mistake? We began by assuming that the 
casino gives G almost a fair chance at winning each game, at a probability of p = 0.4, 
which is pretty close to the exactly fair chance of p = 0.5 (which we suspect no casino 
would give). Yet, the chance of G getting out with 10 chips is much less than p, per our 
computation. In fact, looking at which printed out entries of h that are above 0.5, we fnd 
that G has more than a 50% chance of making 10 chips only if G starts with 9 chips! 
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XIII.8 Cross checking 

The answer we got above is correct, even if not intuitive. In fact, this is a manifestation of 
the phenomena that goes by the name of Gambler’s Ruin. How can we double-check the 
above answer? One way to double-check the answer is the analytical technique described 
in the optional exercise below. 

Optional exercise: Solve the equations of Theorem 1 in closed form to conclude that the 
probability of G making 10 chips, starting from i chips, is 

1 − (q/p)i 
hi = 

1 − (q/p)10 

whenever p ̸= q. 

I’ll omit more details on this analytical way for verifcation, since this course is aimed at 
learning computational thinking. Instead, let’s consider another computational way. 

To let the computer cross check the answer, we design a completely different algorithm 
whose output “should” approximate the correct result. Namely, we simulate many many 
gambles, get the statistics of the outcomes, and then cross check the frequency of G’s win-
nings. (That this “should” give the right probability is connected to the law of large num-
bers.) 

Here is a simple way to implement many gambles (each gamble is a sequence of games 
until G reaches either S0 or S10) using the built-in random module that comes with python 
(and using the uniform distribution in [0, 1]). 

[16]: 

[17]: 

from random import uniform 

def gamble(init=2, p=0.4, win=10, n=10000): 

"""Let G gamble "n" times, starting with "init" chips.""" 

wl = np.zeros(n) # mark win or lose here for each gamble i 
for i in range(n): 

chips = init 
while chips: 

if uniform(0, 1) > p: # losing game 
chips -= 1 

else: # winning game 
chips += 1 

if chips == win: # reached wanted winnings 
wl[i] = 1 
break 

return wl 

n = 500000 
wl = gamble(n=n) 
print('Proportion of winning gambles:', np.count_nonzero(wl) / n) 
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Proportion of winning gambles: 0.02191 

The number produced as the output is pretty close to the previously obtained h[2]. In-
deed, it gets closer to h[2] with increasing number of gambles. Now that we have built 
more confdence in our answer computed using the eigensolver, let us proceed to examine 
all the components of h more closely. 

XIII.9 Gambler’s Ruin 

Visualizing h in a bar plot, we fnd that G’s computed chances of winning seem to decrease 
exponentially as the starting chip count decreases. 

[18]: plt.bar(range(len(h)), h) 
plt.title('$G$\'s chances of making 10 chips'); 
plt.xlabel('Starting number of chips'); plt.ylabel('Probability'); 

Since G either quits winning or gets ruined with 0 chips (not both), the probability of G’s 
ruin is 1 − hi. 

[19]: plt.bar(range(len(h)), 1-h, color='red') 
plt.title('Chances of $G$\'sruin'); 
plt.xlabel('Starting number of chips'); plt.ylabel('Probability'); 

131 



This exemplifes the concept of Gambler’s Ruin: in a biased game (where p < 1/2), the 
probability of G’s ruin could be much higher than the “intuitive” 1 − p for most starting 
values. 

Note that if all games are unbiased with p = 1/2, then we get the following linear plot, 
which perhaps jives with the intuition more than the unbiased case. 

[20]: plt.bar(range(len(h)), Gchances(p=0.5, N=10)) 
plt.title('$G$\'s chances of making 10 chips in unbiased games'); 
plt.xlabel('Starting number of chips'); plt.ylabel('Probability'); 

XIII.10 Absorbing Markov chains 

To round out our discussion of hitting probabilities, I should tell you that there is another, 
easier, way to algorithmically compute hi in some circumstances. 

In the example of G’s Markov chain, we were able to extract the minimal non-negative 
solution of Theorem 1 uniquely from an eigenspace. Unique representations of solutions 
make for nice algorithmic prescriptions. There is a class of Markov chains for which we 
can always fnd certain hitting probabilities through a unique representation, and we don’t 
even have to compute an eigenspace for it: we just need to solve a linear system. This is 
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the subject of the next theorem (Theorem 2 below) also proved using basic probability 
methods. 

A state Si of a Markov chain is called an absorbing state if pii = 1. Clearly, once the chain 
reaches an absorbing state, it cannot transition to any other state forever. 

An absorbing Markov chain is a Markov chain which has at least one absorbing state and has 
paths made of directed edges from any state to an absorbing state. 

Partition the states in an absorbing Markov chain using index sets A and B, like before, 
except that now A denotes the indices for all the absorbing states (and B indicates the 
remaining states). Then the following partitioning of the transition matrix is both easy to 
conceptualize and easy to implement using numpy’s slicing operations:[ ] 

PAA PAB P = PBA PBB 

Note that PAA is an identity matrix and PAB is the zero matrix, because pii = 1 for all i ∈ A. 

Example: The gambler G has two absorbing states S0 and S10, and G’s Markov chain is an 
absorbing Markov chain. Setting A = {0, 10} and B = {1, . . . , 9}, the blocks of the above 
partitioning for this case are as follows: 

[21]: A = [0, 10] 
B = range(1, 10) 
P = PforG() 
PAA = P[np.ix_(A, A)] 
PBA = P[np.ix_(B, A)] 
PBB = P[np.ix_(B, B)] 

[22]: PBA 

[22]: array([[0.6, 0. ], 
[0. , 0. ], 
[0. , 0. ], 
[0. , 0. ], 
[0. , 0. ], 
[0. , 0. ], 
[0. , 0. ], 
[0. , 0. ], 
[0. , 0.4]]) 

[23]: PBB 

[23]: array([[0. , 0.4, 0. , 0. , 0. , 0. , 0. , 0. , 0. ], 
[0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0. , 0. ], 
[0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0. ], 
[0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0. ], 
[0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0. ], 
[0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0. ], 
[0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0. ], 
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[0. , 0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4], 
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6, 0. ]]) 

[24]: PAA 

[24]: array([[1., 0.], 
[0., 1.]]) 

As already noted above, PAA should always be the identity matrix in an absorbing Markov 
chain per our defnition. 

Now we are ready to state the second result on hitting probabilities, this time with an 
easier algorithmic prescription for computing them. 

Theorem 2. In any fnite absorbing Markov chain, the matrix I − PBB is invertible (where I 
denotes the identity matrix of the same size as PBB). Moreover, letting H denote the matrix 
whose (i, j)th entry equals the probability that the chain hits an absorbing state Sj, j ∈ A, 
starting from another state Si, i ∈ B, in any number of steps, we may compute H by 

H = (I − PBB)
−1PBA. 

Example: In one line of code, we can apply Theorem 2 to gambler G using the matrices 
made just before the theorem: 

[25]: np.linalg.inv(np.eye(len(B)) - PBB) @ PBA 

[25]: array([[0.99117622, 0.00882378], 
[0.97794054, 0.02205946], 
[0.95808703, 0.04191297], 
[0.92830676, 0.07169324], 
[0.88363636, 0.11636364], 
[0.81663076, 0.18336924], 
[0.71612236, 0.28387764], 
[0.56535976, 0.43464024], 
[0.33921586, 0.66078414]]) 

Since the second entry of A represents the winning state S10, the second column above gives 
the probability of hitting S10 from various starting states. Note that that second column 
is the same as the previously computed h. The frst column in the output above gives the 
probability of G’s ruin for various starting states. 

XIII.11 Greedy gambler 

Let us conclude with another manifestation of the Gambler’s Ruin concept that emerges 
when you ask the following question. What happens if G gets greedy and reneges on the 
pledge to quit upon reaching 10 chips? In other words, G continues to play infnitely many 
games unless ruined in between. What is the probability of G’s ruin? 

134 



This is the same as considering N = ∞ case in our previous setting. This case results in an 
infnite set of states. Theorem 1 applies both to fnite and infnite set of states, but we can 
only simulate Markov chains with fnite number of states. Nonetheless, we can certainly 
apply Theorem 2 to compute the hitting probabilities for larger and larger N and get a feel 
for what might happen when N = ∞. 

But frst, we have to make our code better to go to large N. We use scipy’s sparse facilities 
to remake the matrices and improve effciency. 

from scipy.sparse import diags, eye 
from scipy.sparse.linalg import spsolve 

def sparseGmats(p=0.4, N=10000): 

""" Return I - PBB and PBA as sparse matrices """ 

q = 1 - p 
# Note that the first and last row of P are not accurate 
# in this construction, but we're going to trim them away: 
P = diags(q*np.ones(N), offsets=-1, shape=(N+1, N+1)) \ 
+ diags(p*np.ones(N), offsets=1, shape=(N+1, N+1)) 

A = [0, N] 
B = range(1, N) 
I_PBB = (eye(N-1) - P[np.ix_(B, B)]).tocsc() 
PBA = P[np.ix_(B, A)].tocsc() 

return I_PBB, PBA 

def ruinG(p=0.4, N=10000): 

""" Given that the winning probability of each game is "p", 
compute the probability of G's ruin for each starting state """ 

I_PBB, PBA = sparseGmats(p, N) 
return spsolve(I_PBB, PBA[:, 0]) 

[28]: ruinG(N=10) 

[28]: array([0.99117622, 0.97794054, 0.95808703, 0.92830676, 0.88363636, 
0.81663076, 0.71612236, 0.56535976, 0.33921586]) 

[26]: 

[27]: 

After verifying that for the N = 10 case, we obtained the same result, we proceed to 
examine the higher values of N. One quick way to visualize the resulting h-values are as 
plots over starting states. 

[29]: fig = plt.figure() 
ax = plt.gca() 
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hs = ruinG(N=20) 
ax.plot(hs[:21], 'r-', label='N=20') 

hs = ruinG(N=30) 
ax.plot(hs, 'r:', label='N=30') 

hs = ruinG(N=40) 
ax.plot(hs, 'r-.', label='N=40') 

ax.set_ylabel('Probability of $G$\'s ruin') 
ax.set_xlabel('Starting state index') 
ax.legend(); 

Clearly, as N increases, we see a larger range of starting indices for which G hardly stands 
a chance of escaping ruin. 

For a specifc case, suppose G is unable to start with more than 20 chips, but is willing 
to play N games, for larger and larger N. Then we compute G’s least ruin probability, the 
lowest probability of G’s ruin among all possible starting values, namely 

min hi. 
i=0,...,20 

Let us examine how this minimal value changes with N. 

[30]: def least_ruin_prob(p=0.4, N0=20, dbl=11): 

""" Compute least ruin probability starting with N="N0" and 
recompute "dbl" times, doubling N each time. """ 

for i in range(dbl): 
print('N = %5d, least ruin probability = %5.4f' 

%(N0*2**i, min(ruinG(p=p, N=N0*2**i)[:21]))) 

[31]: least_ruin_prob(p=0.4, dbl=7) 
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N = 20, least ruin probability = 0.3334 
N = 40, least ruin probability = 0.9995 
N = 80, least ruin probability = 1.0000 
N = 160, least ruin probability = 1.0000 
N = 320, least ruin probability = 1.0000 
N = 640, least ruin probability = 1.0000 
N = 1280, least ruin probability = 1.0000 

Clearly, G is ruined with certainty, i.e., with probability 1, as N → ∞. 

What if the games are fair? The above results were with p = 0.4. Rerunning the code with 
the fair chance p = 0.5, we again observe convergence, albeit slower, to the inevitable. 

[32]: least_ruin_prob(p=0.5, dbl=11) 

N = 20, least ruin probability = 0.0500 
N = 40, least ruin probability = 0.4750 
N = 80, least ruin probability = 0.7375 
N = 160, least ruin probability = 0.8687 
N = 320, least ruin probability = 0.9344 
N = 640, least ruin probability = 0.9672 
N = 1280, least ruin probability = 0.9836 
N = 2560, least ruin probability = 0.9918 
N = 5120, least ruin probability = 0.9959 
N = 10240, least ruin probability = 0.9979 
N = 20480, least ruin probability = 0.9990 

What is illustrated in this output is often identifed as another, perhaps stronger, manifes-
tation of the Gambler’s Ruin concept: even when the games are fair, G is certain to be ruined if 
G continues to play forever. 
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XIV 

Google’s PageRank 

May 13, 2020 

In the history of the internet, a collection of papers proposing PageRank has been infuen-
tial, in particular, a 1998 paper by Sergey Brin and Lawrence Page, two graduate students, 
now better known as Google co-founders. They proposed an objective metric to order the 
results of a user’s internet search. For those who don’t remember, there was indeed a time 
when “junk results often wash[ed] out any results that a user is interested in,” to quote 
the paper. Of course, search engines now operate in a competitive business world, and 
the algorithms that Google and other companies use to rank their search results currently 
are not public knowledge. But the concept of PageRank is now routinely applied beyond 
Google, not just to the internet, but to general data on graphs and networks. It serves as an 
automatic tool to rank the relative importance of parts of any internet-like giant network. 

We shall view the web (internet) as a directed graph. Each internet location (a webpage) 
is a vertex of the graph. A hyperlink from one webpage to another is a directed edge of 
the graph. From this viewpoint, the central idea of Brin & Page was to exploit the “link 
structure of the web to calculate a quality ranking for each web page.” 

To introduce PageRank, we shall build on our previous discussion of Markov chains (from 
Gambler’s Ruin), which was entirely from the statistical or probabilistic perspective. Below, 
we will connect to theorems of Perron and Frobenius, which are results that one might 
usually learn in a mathematics program. Of course, all of this helps us understand the 
effectiveness of PageRank, a topic that has entered the computer science curricula in recent 
decades. Taken together, we then have an example of propitious convergence of ideas from 
the distinct felds of computer science, mathematics, and statistics. 

XIV.1 Probability distributions on graphs 

Throughout this discussion, we have in mind a directed graph with vertices V1, . . . , VN , 
associated to a Markov chain with an N × N stochastic matrix P = (pij). We consider a 
random walker on this digraph, who we name W. The random walker W is a “stochastic 
being”. We cannot know W’s precise location on the graph; we only know that W’s location 
is determined by a probability distribution on the graph. 

A probability vector is a vector x ∈ RN whose entries xi satisfy 

N 
0 ≤ xi ≤ 1, ∑ xi = 1. 

i=1 

Such a vector represents a probability distribution on the vertices of the graph. We may 
think of xi as the probability that the system is in state Vi. Alternatively, we may think of 
xi as the probability of fnding the random walker W at the digraph vertex Vi. 
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How does the probability of fnding W on the graph change when W takes a step? Here is 
another way of asking the same question: if xi is the probability that the Markov chain is 
in state Vi, then what is the probability that the next state of the Markov chain is Vj? Since 
Vj can be arrived at from Vk with probability pkj, and since the prior state was Vk with 
probability xk, we conclude that the answer should be the sum of pkj × xk over all the prior 
states Vk. In other words, the probability that the next state is Vj equals 

N 

∑ pkjxk, 
k=1 

which is the jth component of Ptx. This argument can be formalized to obtain the following 
basic result. 

Theorem 1. The probability distribution of a random walk on a directed graph with 
stochastic matrix P changes from x to Ptx in each step (where Pt denotes the transpose 
of P). 

Note that if x is a probability vector and P is a transition matrix, then Ptx is guaranteed 
(exercise!) to come out as a probability vector. 

XIV.2 Stationary distributions 

We have just seen that as the random walk progresses, an initial probability distribution x 
changes as follows: 

x, Ptx, (Pt)2x, (Pt)3x, . . . . 

Suppose this sequence converges to a limiting vector s. Then that limit should obviously 
not change if one more Pt is applied to it, i.e., it should satisfy 

Pts = s. 

Any probability vector s satisfying Pts = s is called a stationary distribution, (or a stationary 
probability vector or an equilibrium) of the random walk. Notice that the stationary proba-
bility vector is always an eigenvector of Pt associated to eigenvalue 1. Notice also that the 
limit, if it exists, is independent of the initial distribution x. 

For the random walker W, if the limit of the above sequence exists, then the stationary 
distribution can be used to identify the vertices of the graph with a high probability of 
fnding W in the long run. 

[1]: import numpy as np 
from numpy.linalg import eig, matrix_power, norm 

Example A 
[2]: PA = np.array([[1/2, 1/4, 1/4], 

[1/3, 1/3, 1/3], 
[1/3, 1/3, 1/3]]) 

Does the sequence of probability distributions x, Ptx, (Pt)2x, (Pt)3x, . . . , converge for 
this Markov chain? To answer this, let’s take the matrix powers (Pt)n and compute the 
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Frobenius norm of the successive differences, 

∥(Pt)n+1 − (Pt)n∥F. 

If this approaches 0, then we obtain a numerical indication of convergence. 

[3]: [norm(matrix_power(PA.T, n+1) - matrix_power(PA.T, n), 'fro') for n in␣ 
↪→range(1, 20)] 

[3]: [0.1402709019216955, 
0.023378483653615948, 
0.0038964139422693537, 
0.0006494023237115095, 
0.00010823372061852081, 
1.80389534364696e-05, 
3.0064922394683963e-06, 
5.010820398912459e-07, 
8.351367329688623e-08, 
1.3918945514670359e-08, 
2.3198243477163972e-09, 
3.86637279525466e-10, 
6.44396235375308e-11, 
1.073992260029489e-11, 
1.789976112476022e-12, 
2.9830188647232445e-13, 
4.977570743895776e-14, 
8.26743511340278e-15, 
1.343782689223772e-15] 

This indicates convergence. Let’s check that the convergence actually occurs to a stationary 
distribution s that is an eigenvector of Pt . 

[4]: ew, ev = eig(PA.T) 
ew 

[4]: array([0.16666667, 1. , 0. ]) 

[5]: v = ev[:, abs(ew-1) < 1.e-14]; print(v) 

[[0.68599434] 
[0.51449576] 
[0.51449576]] 

This is the eigenvector corresponding to eigenvalue 1. In order to make this a probability 
distribution, let’s normalize by the sum. 

[6]: sA = v / v.sum() 
sA 
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[6]: array([[0.4], 
[0.3], 
[0.3]]) 

This is the stationary distribution s for this example. To see that the same vector is obtained 
as the limit of (Pt)n , we simply raise the matrix to a large power and examine the result: 

[7]: matrix_power(PA.T, 1000) 

[7]: array([[0.4, 0.4, 0.4], 
[0.3, 0.3, 0.3], 
[0.3, 0.3, 0.3]]) 

The values of s show that the random walker W will, in the limit, be found in state V0 at a 
higher probability (0.4) than the other two states (0.3). 

Example B 
[8]: PB = np.array([[0, 1/3, 1/3, 1/3], 

[0.9, 0, 0, 0.1], 
[0.9, 0.1, 0, 0], 
[0.9, 0, 0.1, 0]]) 

[9]: ew, ev = eig(PB.T); print(ew) 

[-0.9 +0.j 1. +0.j -0.05+0.08660254j -0.05-0.08660254j] 

[10]: # stationary distribution: 
v = ev[:, abs(ew-1) < 1.e-14]; 
sB = v.real / sum(v.real); print(sB) 

[[0.47368421] 
[0.1754386 ] 
[0.1754386 ] 
[0.1754386 ]] 

In this example, there is convergence of the powers to the stationary distribution, but it is 
slower than Example A. We fnd this out by taking higher powers than before: 

[11]: [norm(matrix_power(PB.T, n) - sB, 'fro') for n in range(300, 305)] 

[11]: [2.0819420081737047e-14, 
1.9224558387957245e-14, 
1.6814381771214046e-14, 
1.558237665379239e-14, 
1.3619335994971806e-14] 

Example C 
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[12]: PC = np.array([[0, 1, 0], 
[0, 0, 1], 
[1, 0, 0]]) 

[13]: ew, ev = eig(PC.T); print(ew) 

[-0.5+0.8660254j -0.5-0.8660254j 1. +0.j ] 

[14]: # stationary distribution: 
v = ev[:, abs(ew-1) < 1.e-14].real; sC = v/v.sum(); print(sC) 

[[0.33333333] 
[0.33333333] 
[0.33333333]] 

In this example, we do not see convergence of the powers Pt to the above stationary dis-
tribution. There seems to be no convergence to anything: 

[15]: [norm(matrix_power(PC.T, n+1) - matrix_power(PC.T, n)) for n in range(100,␣ 
↪→105)] 

[15]: [2.449489742783178, 
2.449489742783178, 
2.449489742783178, 
2.449489742783178, 
2.449489742783178] 

These numbers clearly do not seem to be approaching zero, a sign of non-convergence. 
In fact, the transition matrix here is such that all its powers cycle between three matrices 
Pt , (Pt)2 and (Pt)3, thus preventing convergence! 

[16]: [print('The %dth power:\n'%i, matrix_power(PC.T, i)) for i in range(300,␣ 
↪→306)]; 

The 300th power: 
[[1 0 0] 
[0 1 0] 
[0 0 1]] 

The 301th power: 
[[0 0 1] 
[1 0 0] 
[0 1 0]] 

The 302th power: 
[[0 1 0] 
[0 0 1] 
[1 0 0]] 

The 303th power: 
[[1 0 0] 
[0 1 0] 
[0 0 1]] 

The 304th power: 
[[0 0 1] 
[1 0 0] 
[0 1 0]] 

The 305th power: 
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[[0 1 0] 
[0 0 1] 
[1 0 0]] 

Example A Example B Example C 

V0

V1

V2

1/4

1/3
1/31/3

1/3

1/4

1/3

1/3

1/2

V1

V2

V3

V0

0.1

0.1

0.1

1/3

0.9

1/3

0.9

1/3

0.9

V0

V1

V2

1

1

1

Convergent: Convergent: Not 
limn→∞(Pt)nx = s limn→∞(Pt)nx = s convergent:limn→∞(Pt)n 

doesn’t exist 
Stationary distribution: ⎤⎡ 

0.4 
⎤⎡Stationary distribution: 

0.474 
Stationary distribution: ⎤⎡ 

1/3 
s = 

⎢⎢⎣ 
⎥⎥⎦ 

0.175 
0.175

s = ⎣ ⎦ s = ⎣ ⎦0.3 1/3 
0.3 1/3 

0.175 

Summary of the three examples: Note how associating the values of si to vertex Vi pro-
duces something that matches our intuition on where to fnd the random walker in the 
long run. The convergence in Example A is a consequence of Perron’s theorem that we 
discuss next. 

XIV.3 Perron’s theorem 

The following celebrated result in linear algebra was proved by Oskar Perron (about 90 
years before Brin & Page’s paper). Research papers continue to be written on subjects 
surrounding the theorem. The theorem applies to any positive matrix: a square matrix is 
called a positive matrix if all its entries are positive. 

Theorem 2. The following statements hold for any positive matrix A. 

• There is a positive real number µ that is an eigenvalue of A such that any other 
eigenvalue λ of A is smaller in absolute value: |λ| < µ. (This µ is called the dominant 
eigenvalue of A.) 

• The eigenspace of the eigenvalue µ is one-dimensional and contains an eigenvector 
v whose entries vi are all positive. 

1
• The limit lim An exists and equals a matrix whose columns are all scalar multiples 

n→∞ µn 

of v. 
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Graphical illustration If you have never seen Theorem 1 before, you might be mystifed 
how so many strong statements can be concluded simply from the positivity assumption. 
I’d like to give you an idea of the reasoning that leads to these statements, without writing 
out a formal proof, through the following simple example of a 2 × 2 positive matrix. 

[17]: A = np.array([[0.1, 0.9], 
[0.6, 0.4]]) 

ew, ev = eig(A) 
ew 

[17]: array([-0.5, 1. ]) 

We see that the dominant eigenvalue is 1 in this case. To get an idea of why An converges, 
as claimed in the theorem, see what happens when we multiply A by A in terms of the 
frst and second columns (A0 and A1) of A = [A0, A1]: 

A2 = A[A0, A1] = [AA0, AA1] 

When A is multiplied by a positive vector the result is a linear combination of the columns 
of A with positive combination coeffcients. This is best seen using pictures. To this end, 
we defne a function below that plots the columns of A (as two thick arrows) and the region 
in between (a two-dimensional cone) using criss-cross lines. 

Using it we see what happens to the cone region under repeated application of A. 

[18]: import matplotlib.pyplot as plt 
%matplotlib inline 

def plotcone(A0, A1, xlim=(0,1.1), ylim=(0,1.), matlabel='$A$',␣ 
↪→tt='Illustration of convergence of $A^n$'): 

t = np.linspace(0, 3, num=100) 
gridline0 = t[:, np.newaxis] * A0 
gridline1 = t[:, np.newaxis] * A1 
fig = plt.figure(); ax = plt.gca() 
for i in range(20): 

ax.plot(gridline0[:, 0], gridline0[:, 1], 'b') 
ax.plot(gridline1[:, 0], gridline1[:, 1], 'r') 
gridline0 += (1/5) * A1 
gridline1 += (1/5) * A0 

ax.set_xlim(xlim); ax.set_ylim(ylim) 
ax.set_title(tt) 
a0 = ax.arrow(0, 0, A0[0], A0[1], width=0.05, color='blue', alpha=0.3) 
a1 = ax.arrow(0, 0, A1[0], A1[1], width=0.05, color='red', alpha=0.3) 
plt.legend((a0, a1), ('First column vector of '+matlabel, 'Second␣ 

↪→column vector of '+matlabel), loc='lower right'); 

M = A.copy() 
for i in range(5): # plot the cone between columns for each matrix power 

A0 = M[:, 0] 

[19]: 
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A1 = M[:, 1] 
plotcone(A0, A1, matlabel='$A^'+str(i+1)+'$') 
M = M @ A 
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As you can see, repeated application of A eventually squeezes the cone region to a linear 
region. The vectors in the boundary of the region getting squeezed are the columns of 
An as n → ∞, so you have just seen a pictorial illustration of existence of the limit of An , 
and also of the theorem’s claim that in the limit, the columns become multiples of a single 
vector. Moreover, the limiting linear region in the fgure should remain unaltered under 
further applications of A, so it must represent an eigenspace of A. Note also that all of this 
happens in the positive quadrant of the plane, so obviously the squeezed in line is the span 
of a vector v with positive entries, so this should be the positive eigenvector mentioned in 
the theorem. 

This squeezing phenomena happens because A has positive entries. If A had negative 
entries, the region between its column vectors need not get so squeezed and can dance 
all over the place preventing convergence of its powers. Considering another matrix, also 
with dominant eigenvalue 1, but now with a negative entry, you get the picture: 

[20]: B = np.array([[0.1, -1.6], # change sign of one entry of A to get B 
[0.6, 0.4]]) 

plotcone(B[:,0], B[:,1], xlim=(-2.1, 0.5), ylim=(-1.1, 1.1),␣ 
↪→matlabel='$B$', tt='Noncovergence') 

B = B @ B 
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plotcone(B[:,0], B[:,1], xlim=(-2.1, 0.5), ylim=(-1.1, 1.1),␣ 
↪→matlabel='$B^2$', tt='Noncovergence') 

Any overlaps between the cones disappear as you take further powers. 

This completes our graphical illustration of the connection between positivity of entries, 
the convergence of matrix powers, and the resulting capture of a positive eigenvector by 
successively squeezing cones. In the next subsection, where we apply Perron’s theorem to 
transition matrices, we will be more rigorous, and yet, use nothing more than what you 
already know from your linear algebra prerequisites. 

Application to stochastic matrices In this subsection, we consider a Markov chain whose 
transition matrix P = (pij) has positive entries. Accordingly, there is a dominant positive 
eigenvalue µ and corresponding eigenvector v with positive components: Pv = µv. Nor-
malizing v such that its maximum entry vi is one, the ith equation of the system Pv = µv 
reads as 

N 

∑ pijvj = µvi = µ. 
j=1 

We also have 
N N 

∑ pijvj ≤ ∑ pij = 1. 
j=1 j=1 

147 



Putting these together, we conclude that the dominant eigenvalue satisfes µ ≤ 1. But any 
transition matrix P always has 1 as an eigenvalue. This is because the fact that its rows 
sums are one 

N 

∑ pij = 1 
j=1 

can be rewritten in matrix terms as ⎤⎡⎤⎡ 
1 1 

P ⎢⎣ . . . 
⎥⎦ = ⎢⎣ . . . 

⎥⎦ . 
1 1 

Therefore µ must be 1. Let’s highlight this conclusion: 

• µ = 1 is the dominant eigenvalue of any positive transition matrix P and the corresponding 
eigenvector is the vector whose entries are all ones. 

Of course, Perron’s theorem applies to both P and Pt , since both are positive matrices. 
Since the eigenvalues of P and Pt are the same, we can further say this: 

• µ = 1 is also the dominant eigenvalue of Pt (but the eigenvector corresponding to eigen-
value 1 may be different for Pt and P). 

The theorem also tells us that the limit of (Pt)n exists. Relating to our discussion of station-
ary distributions, we conclude: 

• The sequence of probability distributions of a random walk 

x, Ptx, (Pt)2x, (Pt)3x, . . . 

always converges for Markov chains with pij > 0 and the limit s is independent of the initial 
distribution x. 

The theorem also tells us that the limit of Pn exists, and moreover, the limit matrix must 
have columns that are scalar multiples of the eigenvector of the dominant eigenvalue: in 
other words, the columns of limn→∞ Pn must be scalar multiples of the vector of ones. On 
the other hand, the limit of (Pt)n = (Pn)t must have columns that are multiples of the 
eigenvector s satisfying Pts = s, which we previously called the stationary distribution. 
Thus, having pinned down the rows and the columns, we make the following conclusion: 

• The limit of Pn as n → ∞ takes the following form ⎤⎡ 

Pnlim = 
n→∞ 

⎢⎢⎢⎣ 

s1 s2 . . . sN 
s1 s2 . . . sN 
. . . . . . . . . 

s1 s2 . . . sN 

⎥⎥⎥⎦ . 

Example A has a positive transition matrix. It provides an instance where all the previous 
statements can be verifed. For example, limn→∞ Pn is approximated by the matrix below 
which reveals the above pattern of stationary distributions in each row. 

[21]: matrix_power(PA, 1000) # P^1000 for Example A 
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[21]: array([[0.4, 0.3, 0.3], 
[0.4, 0.3, 0.3], 
[0.4, 0.3, 0.3]]) 

[22]: sA # the stationary distribution for Example A 

[22]: array([[0.4], 
[0.3], 
[0.3]]) 

XIV.4 PageRank 

We shall now defne the PageRank of vertices on an (unweighted) directed graph with N 
vertices. 

1. First, set aij = 1 if there is an edge from vertex vi to vj in the graph and set aij = 0 
otherwise. 

2. Next, let 
N 

mi = ∑ aik. 
k=1 

If mi is 0, then the ith vertex is a dangling node (which has no outgoing edges). Defne ⎧ aij ⎪⎨ if mi > 0, 
miwij = ⎪ 1⎩ if mi = 0.
N 

These may be thought of as weights on a directed edge from vi to vj if the edge exists 
(if not, the weight is zero). The weight wij may also be viewed as providing equal 
probabilities to all outgoing edges from vi. 

3. Now that we have a weighted directed graph, we may associate it to a Markov chain, 
setting transition probabilities to wij, but hold on: if we do so, a random walker W 
on the graph can get stuck in vertices with no outgoing edges or in cycles within the 
graph. (This is certain to happen on graphs as complex as the internet.) To avoid 
this situation, one sets a restart probability 0 < r ≪ 1 with which W is allowed to 
jump from one vertex to any other vertex in the graph. (Page called 1 − r the damping 
factor.) 

4. Finally, set the Markov chain transition probabilities by 

r 
pij = + (1 − r)wij.N 

The PageRank of a vertex is defned to be the value of the stationary probability distribution at that 
vertex obtained using the above pij as the transition probabilities. 

Note that the transition matrix (pij) defned above is a positive matrix. Hence, due to 
Perron’s theorem, and our prior discussion on its application to stochastic matrices, the 
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limit of the probability distributions 

x, Ptx, (Pt)2x, (Pt)3x, . . . 

exists, is equal to the stationary probability distribution, which we have just decided to 
call PageRank. In particular, PageRank is independent of the starting distribution x of the 
random walk. Furthermore, we may also arrive at the interpretation of the PageRank of a 
graph vertex as the limiting probability that a relentless random walker visits that vertex. 

Here is a simple implementation for small graphs using the same notation (aij, wij, pij) as 
above. (Think about what would need to change for a giant graph like the internet. We’ll 
consider big graphs in later exercises.) 

[23]: def pagerank(a, r): 
""" Return pagerank based on adjacency matrix "a" (square matrix 
of 0s or 1s) and given restart probability "r". Use only for small 
dense numpy matrices a. """ 

m = a.sum(axis=1) 
dangling = (m==0) 
m[dangling] = 1 

w = (1 / m[:, np.newaxis]) * a 
w[dangling, :] = 1 / a.shape[0] 

p = (1-r) * w + (r / a.shape[0]) 
ew, ev = eig(p.T) 
s = ev[:, abs(ew-1) < 1e-15].real 
return s / s.sum() 

Let’s quickly consider a small example to illustrate PageRank. 

Example D 
[24]: # 0 1 2 3 4 5 6 7 8 (Adjacency Matrix of the above␣ 

↪→graph) 
A = np.array([[0, 1, 0, 0, 1, 0, 0, 0, 0], # 0 

[0, 0, 0, 0, 1, 0, 0, 0, 0], # 1 
[0, 0, 0, 0, 1, 0, 0, 0, 0], # 2 
[0, 0, 0, 0, 1, 0, 0, 0, 0], # 3 
[0, 0, 0, 0, 0, 0, 1, 0, 0], # 4 
[0, 0, 0, 0, 1, 0, 0, 0, 0], # 5 
[0, 0, 0, 0, 0, 1, 0, 0, 0], # 6 
[0, 0, 0, 0, 0, 1, 0, 0, 0], # 7 
[0, 0, 0, 0, 0, 1, 0, 0, 0]]) # 8 

[25]: pagerank(A, 0.1) 
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[25]: array([[0.01111111], 
[0.01611111], 
[0.01111111], 
[0.01111111], 
[0.32328823], 
[0.30297458], 
[0.30207052], 
[0.01111111], 
[0.01111111]]) 

Notice from the output that V4 is ranked highest. A vertex to which many other vertices 
points to usually get a higher PageRank. Notice also how a vertex to which a highly ranked 
vertex points to inherits a high PageRank: this is the case with vertex V6. Vertex V5 is also 
highly ranked because it has its own cluster of vertices (V6, V7, V8) pointing to it which 
included one highly ranked vertex V6. 

It is instructive to look at how PageRank changes as the restart probability is decreased to 
0: 

[26]: pagerank(A, 0.01) 

[26]: array([[0.00111111], 
[0.00166111], 
[0.00111111], 
[0.00111111], 
[0.33239996], 
[0.33019631], 
[0.33018707], 
[0.00111111], 
[0.00111111]]) 

[27]: pagerank(A, 0.0) 

[27]: array([[-0. ], 
[-0. ], 
[-0. ], 
[-0. ], 
[ 0.33333333], 
[ 0.33333333], 
[ 0.33333333], 
[-0. ], 
[-0. ]]) 

This identifes the cycle where the random walker would end up if it were not for the 
restart mechanism. 

On internet search results As I mentioned above, PageRank was proposed specifcally 
to order the world wide web. In view of our previous discussion, when applied to the 
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giant graph of the internet, the PageRank of a webpage can be interpreted as the steady 
state probability that a random web surfer, following hyperlinks from page to page (with 
infnite dedication and with no topical preference), is at that webpage. 

When a user types in a search query, a search engine must frst be able to mine all the 
webpages relevant to the query from its database. (PageRank does not help with this 
task.) Then, it must present these pages in some order to user. If the search engine has 
already computed a ranking of relative importance of each webpage, then it can present the 
results to the user according to that ranking. This is where PageRank helps. It does require 
the search engine to solve for a giant eigenvector (with billions of entries) to compute 
PageRank on the entire world wide web. The results of this computation (which cannot be 
done in real time as the user searches) are stored by the search engine. The stored ranking 
is then used to order the results presented to the user. There are reports that Google does 
this a couple of times a year (but I don’t know how to verify this). 

XIV.5 Perron-Frobenius theorem 

Georg Frobenius generalized Perron’s theorem to nonnegative matrices. The key discovery 
of Frobenius was that although many of the nice properties of positive matrices fail to hold 
for general non-negative matrices, they continue to hold for non-negative matrices whose 
directed graph exhibits a “nice” property. Recall that the directed graph of an N × N 
matrix A = (aij) is a graph with vertices 1, 2, . . . , N which has a directed edge from vertex 
i to vertex j whenever aij is nonzero. The “nice” property is the following. 

A square matrix is called irreducible if its directed graph is such that there is a path made 
of directed edges from any vertex to any other vertex. 

Theorem 3. (Perron-Frobenius) The following statements hold for any irreducible N × N 
matrix A = (aij) whose entries satisfy aij ≥ 0 are all non-negative. 

• The maximum µ of the absolute value of all eigenvalues of A is an eigenvalue of A. 

• The eigenspace of the eigenvalue µ is one-dimensional and contains an eigenvector 
v whose entries vi are all positive. 

k−11 1
• The limit lim ∑ An exists and equals a matrix whose columns are all scalar 

k→∞ k µn 
n=0 

multiples of v. 

Note the main differences in Theorem 3 in comparison to Theorem 2: 

• Unlike positive matrices, now there might be more than one eigenvalue whose abso-
lute value is µ. 

• Unlike positive matrices, we can no longer assert that limit An/µn exists, only that 
the limit of averages of An/µn exists. 
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Example B Example C 

V1

V2

V3

V0

0.1

0.1

0.1

1/3

0.9

1/3

0.9

1/3

0.9

V0

V1

V2

1

1

1

Convergent: limn→∞(Pt)nx = s Not convergent:limn→∞(Pt)n doesn’t exist 
Stationary distribution: 

0.474 
⎤⎡ Stationary distribution: ⎤⎡ 

1/3 
s = 

⎢⎢⎣ 
⎥⎥⎦ 

0.175 
0.175 

s = ⎣1/3 ⎦ 

1/3 
0.175 

Reconsider Examples B & C Note that the Markov chains in both Examples B and C 
have non-negative transition matrices that are irreducible: the irreducibility is obvious 
by looking at the previous fgures of the digraphs for each example. Hence the Perron-
Frobenius theorem applies to both. Therefore, in both cases we may conclude that the 
stationary distribution s is the limit of the averages 

x + Ptx + (Pt)2x + · · · + (Pt)kx 
k + 1 

as k → ∞, for any starting distribution x. Although (Pt)n does not converge for Example 
C, these averages do. For Example B, we observed convergence for (Pt)n so, of course, the 
averages also converge. 

Let me conclude with a few words on nomenclature. In the statistics literature, a Markov 
chain is called an ergodic Markov chain if it is possible to arrive at any state from any other 
state in one or more steps. In other words, a Markov chain is ergodic if its digraph has 
paths made of directed edges from any vertex to any other vertex. This concept is there-
fore equivalent to its transition matrix being irreducible, and indeed, several texts use the 
adjective irreducible instead of ergodic when studying such Markov chains. In computer 
science and in graph theory, a directed graph whose vertices can be connected by a path 
of directed edges is called strongly connected, yet another name for the same concept. We 
have seen several such instances of distinct names for essentially the same concept in this 
and the previous activity. While it may be a nuisance that the names are not standardized, 
it’s not surprising for a concept that emerged as important in different disciplines to get 
distinct names attached to it; it may even speak to the universality of the concept. 
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XV 

Supervised learning by regression 

May 21, 2020 

Machine learning refers to mathematical and statistical techniques to build models of data. A 
program is said to learn from data when it chooses a model or adapts tunable model pa-
rameters to observed data. In broad strokes, machine learning techniques may be divided 
as follows: 

• Supervised learning: Models that can predict labels based on labeled training data 

– Classifcation: Models that predict labels as two or more discrete categories 
– Regression: Models that predict continuous labels 

• Unsupervised learning: Models that identify structure in unlabeled data 

– Clustering: Models that detect and identify distinct groups in the data 
– Dimensionality reduction: Models that identify lower-dimensional structure in 

higher-dimensional data 

In this activity, we focus on supervised learning. Note the two further subdivisions men-
tioned above within the category of supervised learning, and here are two examples within 
each for further orientation: 

• Classifcation example: identify an email as spam or not (discrete label) based on 
counts of trigger words. 

• Regression example: predict the arrival time (continuous label) of a streetcar at a 
station based on past data. 

We shall further focus on regression in this activity. Regression addresses an age-old ftting 
problem: given a set of data, fnd a line (or a curve, or a surface, or a hypersurface in higher 
dimensions) that approximately fts the data. The equation of the line, in the machine 
learning language, is the model of the data that has been “learnt.” The model can then 
“predict” the values, i.e., “labels” at points not covered by the original data set. Finding 
equations of curves that pass through a given set of points is the problem of interpolation, 
which goes at least as far back as Newton (1675). The ftting problem in regression, also 
known at least as far back as Gauss (1809), is a relaxed version of the interpolation problem 
in that it does not require the curves to pass through the given data, and is generally more 
suitable to handle noisy data. These days, when machine learning comes at you with the 
brashness of an overachieving new kid on the block, it is not fashionable to view the subject 
from the perspective of established mathematical techniques with rich histories. Instead, 
it has somehow become more fashionable to view machine learning as some sort of new 
AI miracle. Please do not expect any miracles here. 
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XV.1 Linear Regression 

Let’s start from the linear regression in a form you have seen previously: given data points 
(xi, fi), i = 0, 1, . . . , N, ft a linear equation 

f (x) = a0 + a1x 

to the data, in such a way that the error in the ft 

N 
e = ∑ | f (xi) − fi|2 

i=0 

is minimized. Since the quantity on the right is a sum of squares, this is called the least-
squares error. It is easy to solve this minimization problem. Writing 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
f0 f (x0) 1 x0 [ ] 

Ydata ⎢ . ⎥ Yft ⎢ . ⎥ ⎢ . . ⎥ a0 . . . . 

fN f (xN) 1 xN ⏞ 
a1

= ⎣ . ⎦ , = ⎣ . ⎦ = ⎣ . . ⎦ ⏟⏟⏞ ⏞ ⏟⏟ ⏞ a 
X 

∥Yft − Ydata∥2 ∥Xa − Ydata∥2the error e can also be expressed as e = = = (Xa − 
Ydata)t(Xa − Ydata). Now, either from linear algebra, or from calculus, one concludes that 
e is minimized when 

a = (XtX)−1XtYdata . 

This is the least-squares solution to the linear regression problem. 

In the machine learning language, - fi are (continuous) “labels”, - the “model” is the linear 
formula a0 + a1x, - the “labeled training data” is (xi, fi), and - the “predictions” are values 
of f (x) at various x-values. 

Here is an example. 

[1]: import numpy as np 
from numpy.linalg import inv 
%matplotlib inline 
import matplotlib.pyplot as plt 
rng = np.random.default_rng(123) 

[2]: x = 5 * rng.random(20) 
f = 3 * x + 5 * rng.random(20) 
plt.scatter(x, f); plt.xlabel('x'); plt.ylabel('Continuous labels (f)'); 
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The data has a linear trend, so let’s try to ft a line to it using linear regression formula we 
derived above. 

[3]: X = np.array([np.ones(len(x)), x]).T 
a = inv(X.T @ X) @ X.T @ f # Create the "model" 

[4]: x_predict = np.linspace(0, 5, num=100) 
f_predict = a[0] + a[1] * x_predict # "Predict" using the model 

[5]: plt.scatter(x, f) 
plt.xlabel('x'); plt.ylabel('Continuous labels (f)'); 
plt.plot(x_predict, f_predict, 'c'); 

To have a visual representation of the error that is minimized by this line, we can plot line 
segments (the red thick lines below) whose sum of squared lengths is what we minimized: 

[6]: from matplotlib.collections import LineCollection 
fp = X @ a 
plt.scatter(x, f) 
lc = LineCollection([[(x[i], f[i]), (x[i], fp[i])] 
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for i in range(len(x))], color='r', linewidth=4,␣ 
↪→alpha=0.5) 

plt.gca().add_collection(lc) 
plt.xlabel('x'); plt.ylabel('Continuous labels (f)'); 
plt.plot(x_predict, f_predict, 'c'); 

Let us save there results for later comparison. 

[7]: linear_example = {'data': [x, f], 'model': a} 

XV.2 Higher dimensions 

The process of linear regression is very similar in higher dimensions. To ft some given 
data fi on N + 1 points x⃗i, each of which are m-dimensional, we express the points in 

(1) (2) (m)coordinates x⃗i = (x , x , . . . , x ). The model now is i i i 

(1) (2) (1) (m)f (x , x , . . . , x(m)) = a0 + a1x + · · · + amx . 

Exactly the same algebra as before yields the same solution formula 

a = (XtX)−1XtYdata , 

the only difference now being that ⎡ ⎤ ⎥⎥⎥⎥⎦ 

(1) (2) (m)1 x x · · · x0 0 0 
(1) (2) (m)1 x x · · · x1 1 1 

. . . . . . 

⎤⎡ ⎢⎢⎢⎢⎣ 

a0 ⎢⎣ ⎥⎦. . . , X =a = 

am (1) (2) (m)1 x x · · · xN N N 

Here is a 3D example, where we can still attempt to visualize: 
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[8]: 

[9]: 

[10]: 

[11]: 

x1 = 5 * rng.random(100) 
x2 = 5 * rng.random(100) 
f = 10 - (3*x1 + 2* x2 + 2 * rng.random(100)) 

X = np.array([np.ones(len(x1)), x1, x2]).T 
a = np.linalg.inv(X.T @ X) @ X.T @ f 

from mpl_toolkits.mplot3d import Axes3D 
ax = plt.figure().gca( projection='3d') 
ax.scatter(x1, x2, f) 
ax.set_xlabel('$x_1$'); ax.set_ylabel('$x_2$'); 

ax = plt.figure().gca( projection='3d') 
ax.set_xlabel('$x_1$'); ax.set_ylabel('$x_2$') 
xx1, xx2 = np.meshgrid(x1, x2) 
zz = a[0] + a[1] * xx1 + a[2] * xx2 
ax.plot_wireframe(xx1, xx2, zz, color='c', alpha=0.2) 
ax.scatter(x1, x2, f); ax.set_title('Modeling data by a plane'); 

We save these results for later examination. 
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[12]: planar_example = {'data': [np.array([x1, x2]).T, f], 'model': a} 

XV.3 Curve ftting 

If you know that your data is exponential, you might get better results by ftting with expo-
nentials instead of linear functions. The “linear” regression process can be adapted to use 
exponentials, or gaussians, or indeed any basis functions you feel are particularly appro-
priate for your data set. The linearity in “linear” regression refers to the linear dependence 
of the model on the data (and has nothing to do which whether your model f is linear or 
not). 

Deriving the general formula is done by the same method. Using basis functions ϕj (⃗x), we 
can ft given data fi on N + 1 points x⃗i using the model 

f (⃗x) = a0ϕ0(⃗x) + a1ϕ1(⃗x) + · · · + amϕm (⃗x). 

Again, the previous algebra yields the same solution formula 

a = (XtX)−1XtYdata , 

for the model parameters that provide the minimizer of 

N 
e = ∑ | f (⃗xi) − fi|2. 

i=0 

The only difference now is that ⎤⎡⎤⎡ ϕ0(⃗x0) ϕ1(⃗x0) · · · ϕm (⃗x0)a0 ⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

ϕ0(⃗x1) ϕ1(⃗x1) · · · ϕm (⃗x1) 
. . . . . . 

⎢⎣ ⎥⎦. . . , X =a = . 
am ϕ0(⃗xN) ϕ1(⃗xN) · · · ϕm (⃗xN) 

Here is an example where we ft a quadratic curve to a simple one-dimensional data set, 
i.e., here 

f (x) = a0 + a1x + a2x2 

and the a’s are found by the above formula. 

[13]: x = 5 * rng.random(50) 
f = 3 * np.exp(x/2) + 2 * rng.random(50) 
plt.scatter(x, f); plt.xlabel('x'); plt.ylabel('Continuous labels (f)'); 
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[14]: phi0 = np.ones(len(x)) 
phi1 = x 
phi2 = x**2 

X = np.array([phi0, phi1, phi2]).T 
a = np.linalg.inv(X.T @ X) @ X.T @ f 

[15]: xcurve_predict = np.linspace(0, 5, num=500) 
phi0 = np.ones(len(xcurve_predict)) 
phi1 = xcurve_predict 
phi2 = xcurve_predict**2 

fcurve_predict = a[0] * phi0 + a[1] * phi1 + a[2] * phi2 
plt.scatter(x, f) 
plt.xlabel('x'); plt.ylabel('Continuous labels (f)'); 
plt.plot(xcurve_predict, fcurve_predict, 'c'); 

If we had attempted to ft a straight-line through the data, then we would not have gotten 
such a close ft. Another way of saying this in the prevalent terminology is that linear 
features underft this data, or that the linear model has high bias. Saving this example also 
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for later, we continue. 

[16]: curve_example = {'data': [x, f], 'model': a, 'type': 'quadratic'} 

XV.4 The module scikit-learn 

All the regression computations we did above can be done using the module 
scikit-learn. Of course, the formulas above were simple and easy to implement. The 
power of scikit-learn is not in its linear regression implementation, but rather, in the 
vast range of many other ready-made facilities it provides under a unifed user interface. 
When faced with a package that attempts to do so many things, it’s a good entry strategy 
to confrm that it behaves as we expect in situations we know. This was our purpose in 
using the simple regression as an entry point into scikit-learn. 

Let’s check if our frst-principles computation of regression solutions match what 
scikit-learn produces. 

[17]: from sklearn.linear_model import LinearRegression 
model = LinearRegression(fit_intercept=True) 

We can now ft data to this model using the fit method. Let’s ft the same data we used in 
the frst example of this activity. 

[18]: x, f = linear_example['data'] # Recall the saved data from the first␣ 
↪→example 

model.fit(x[:, np.newaxis], f) # Training step 

[18]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,␣ 
↪→normalize=False) 

[19]: xfit = np.linspace(0, 5, num=100) 
ffit = model.predict(xfit[:, np.newaxis]) # Prediction step 
plt.scatter(x, f); 
plt.xlabel('x'); plt.ylabel('Continuous labels (f)'); 
plt.plot(xfit, ffit, 'c'); 
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Clearly we seem to be getting the same result. We can confrm the results are exactly the 
same by digging into the solution components within the model object, as seen below. 
(Recall that in f (x) = a0 + a1x, the coeffcient a0 is called the intercept.) 

[20]: model.intercept_, model.coef_ 

[20]: (2.9548137487468367, array([2.90310325])) 

This is exactly the same as the values we solved for previously: 

[21]: linear_example['model'] 

[21]: array([2.95481375, 2.90310325]) 

Higher dimensions The ftting process in scikit-learn is similar in higher dimensions. 

[22]: x12, f = planar_example['data'] 
model.fit(x12, f) 

[22]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,␣ 
↪→normalize=False) 

[23]: model.intercept_, model.coef_ 

[23]: (9.167204926561409, array([-3.03592026, -2.03048875])) 

This matches our previously computed results: 

[24]: planar_example['model'] 

[24]: array([ 9.16720493, -3.03592026, -2.03048875]) 

XV.5 More terminology 

Of course, regression for curve ftting is also possible in scikit-learn. The difference now 
is that here you begin to see how things would get easier if you learn their language. 

Scikit-learn uses the word estimator for models in machine learning. In the module, esti-
mators are python objects that implement the methods fit and predict. We have already 
seen both methods in the context of the above regression examples. Additional terminol-
ogy we should know include transformer (objects which can map/transform data into some 
other form) and pipeline (a sequence of transformers followed by an estimator). 

The term feature is probably the most diffcult one to pin down as it is used for too many 
things: data attributes, elements of a data row, columns of a data array, the range of a 
function mapping some data values, etc. When a data set is being ftted with some basis 
functions, linear or not, the word feature is used to refer to the basis. In fact, the process of 
selecting such basis functions is an example of feature engineering. More generally, feature 
engineering is any process by which raw information (data) is converted into numbers or 
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other mathematical objects, things inside a feature matrix. Tidy data in a feature matrix has 
each variable/feature in a column and each observation/sample in a row. 

[25]: from sklearn.pipeline import make_pipeline 
from sklearn.preprocessing import PolynomialFeatures 

Using polynomial features, we create quadratic basis functions. 

[26]: q = PolynomialFeatures(3, include_bias=False) 

Here is an example of a transform(er): 

[27]: data = np.array([5, 7, 9])[:, np.newaxis] 
q.fit_transform(data) 

[27]: array([[ 5., 25., 125.], 
[ 7., 49., 343.], 
[ 9., 81., 729.]]) 

As you can see the feature q performed the data transformation ⎡ ⎤ ⎡ ⎤ 
ϕ0(⃗x0) ϕ1(⃗x0) · · · ϕm (⃗x0)x0 ⎢⎢⎢⎣ 

⎥⎥⎥⎦ −→ X = 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

ϕ0(⃗x1) ϕ1(⃗x1) · · · ϕm (⃗x1) 
. . . . . . 

x1 
. . . 

xN ϕ0(⃗xN) ϕ1(⃗xN) · · · ϕm (⃗xN) 

2for {ϕi(x)} = {x, x , x3}. 

Curve ftting The point of view taken by scikit-learn for curve ftting is that it is a process 
obtained by applying the linear regression formula after applying the above transformer. 
Therefore, one can implement it using a pipeline object where this transformer is chained 
to a linear regression estimator. Here is how this idea plays out for the curve-ftting exam-
ple we saw previously. 

[28]: x, y = curve_example['data'] # load data from the prior example 

# make model/pipeline and fit the data to it: 
quadratic_model = make_pipeline(PolynomialFeatures(2), LinearRegression()) 
quadratic_model.fit(x[:, np.newaxis], y) 

[28]: Pipeline(memory=None, 
steps=[('polynomialfeatures', 

PolynomialFeatures(degree=2, include_bias=True, 
interaction_only=False, order='C')), 

('linearregression', 
LinearRegression(copy_X=True, fit_intercept=True,␣ 

↪→n_jobs=None, 
normalize=False))], 

verbose=False) 
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[29]: yfit = quadratic_model.predict(xfit[:, np.newaxis]) 
plt.scatter(x, y) 
plt.plot(xfit, yfit); 

We can cross-check that the model parameters are exactly the same after ftting by exam-
ining the LinearRegression object in the quadratic model pipeline: 

[30]: quadratic_model.named_steps 

[30]: {'polynomialfeatures': PolynomialFeatures(degree=2, include_bias=True, 
interaction_only=False, 

order='C'), 
'linearregression': LinearRegression(copy_X=True, fit_intercept=True, 

n_jobs=None, normalize=False)} 

[31]: quadratic_model.named_steps['linearregression'].intercept_ 

[31]: 4.963796378670274 

[32]: quadratic_model.named_steps['linearregression'].coef_ 

[32]: array([ 0. , -0.82755299, 1.39570211]) 

These match our previously computed results for quadratic ft: 

[33]: curve_example['model'] # previously saved results from first principles 

[33]: array([ 4.96379638, -0.82755299, 1.39570211]) 

To conclude, we have built some confdence in scikit-learn’s abilities under the hood. There 
is plenty of material online, including [JV-H], on how to use scikit-learn and other machine 
learning packages, and on important pitfalls such as overftting. However, it may be a bit 
harder to fnd out the mathematics behind each software facility: the documentation is 
designed for quick users in a rapidly changing feld, and therefore understandably does 
not get into the math. This may not be comforting to you as students of mathematics, 
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so my focus here and in the next few lectures is to connect these software tools with the 
mathematics you know. 
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XVI 

Unsupervised learning by PCA 

May 27, 2020 

Recall from the previous lecture that unsupervised learning refers to machine learning mod-
els that identify structure in unlabeled data. In this activity, we study Principal Compo-
nent Analysis (PCA) which is a commonly used technique in unsupervised learning, often 
used for discovering structure in high-dimensional data, and for dimensionality reduction. 

In this activity, I will extensively draw upon what you studied in some earlier activities. 
In particular, I will try to detail the connections between PCA and SVD, the differences 
in the jargon, highlight the distinctions between PCA and regression, and illustrate how 
unsupervised machine learning is different from supervised machine learning. 

[1]: import numpy as np 
import matplotlib.pyplot as plt 
%matplotlib inline 
import matplotlib.colors as colors 
from matplotlib.collections import LineCollection 
import matplotlib.cm as cm 
from sklearn.decomposition import PCA 
from scipy.linalg import svd 
from numpy.linalg import norm 
rng = np.random.default_rng(13) 

XVI.1 Defnitions 

• Given a one-dimensional data vector x = [x1, x2, . . . , xm]t , its mean, or sample mean 
is 

m1 
x̄ = ∑ xi. m i=1 

• Consider a multi-dimensional m × n data array X representing 

m samples/observations/rows for n variables/features/columns. 

The jth column of X, denoted by Xj, represents a number of samples of a single 
variable. We say that such an X represents centered data if the sample mean of Xj is 
zero for every column j. Let Ri denote the ith row of the data matrix X. We use Ri to 
defne the principal components of any centered data, as follows. 
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• The frst principal component of any centered data X is defned as a unit vector 
v1 ∈ Rn that maximizes 

m 

∑(v1 · Ri)
2. 

i=1 

• The second principal component of any centered data X (defned when n ≥ 2) is 
a unit vector v2 ∈ Rn that is orthogonal to the frst principal component v1 and 
maximizes 

m 

∑(v2 · Ri)
2, subject to v1 · v2 = 0. 

i=1 

• The third principal component of X (defned when n ≥ 3) is a unit vector v3 ∈ Rn 

that is orthogonal to both v1 and v2 while maximizing ∑i
m 
=1(v3 · Ri)

2. 

You should now see the pattern to defne any number of further principal components. 
Note that if v is a principal component vector, then −v is also one. Note also that principal 
components are also often referred to as principal axes or principal directions. 

To understand why these principal components reveal structure in the data, frst recall that 
the dot product of two vectors a and b is maximal when the vectors are collinear: remember 
that |a · b| = ∥a∥∥b∥| cos(θ)| where θ is the angle between a and b, and | cos(θ)| is maxi-
mal when θ is 0 or integer multiples of π. Hence the frst principal component v1 may be 
interpreted as the vector that is “most collinear” with all the rows/observations/samples 
Ri. A dependency between multiple variables/features/columns hidden inside the many 
samples/observations in X can thus be brought out using v1. While v1 gives the dominant 
dependency, the later principal components reveal further dependencies in spaces orthog-
onal to the previous principal components. You should now begin to see why PCA might 
be able to automatically discover hidden structures in data, one of the primary objectives 
in unsupervised machine learning. 

XVI.2 Two-dimensional example 

Let’s consider a small two-dimensional example where we can graphically visualize all 
aspects. 

[2]: x = 3 * rng.random(20) 
y = x + 0.75* rng.random(20) 
fig = plt.figure(); ax = plt.gca() 
ax.scatter(x, y, color='b') 
ax.scatter(x.mean(), y.mean(), color='r', marker='*', s=150, alpha=0.6);␣ 

↪→ax.axis('equal'); 
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We put the data in the form of m samples/observations/rows for n variables/features/columns. 

[3]: XX = np.array([x, y]).T 
m, n = XX.shape 

Next, we need to center the data. This just means subtracting the mean of each fea-
ture/variable. Note that the mean is the marked (as the red star) in above fgure. 

[4]: X = XX - XX.mean(axis=0) 

For the visual thinker, centering the data just means moving the origin to the mean (the 
red star), as illustrated in the next fgure. 

[5]: def plotX(X, ax=None): 
if ax is None: fig = plt.figure(); ax = plt.gca() 
ax.scatter(X[:, 0], X[:, 1], color='b') 
t = np.linspace(-3, 3, 100); o = np.zeros_like(t) 
ax.plot(t, o, 'k', o, t, 'k', linewidth=0.5); 
ax.scatter(0, 0, color='r', marker='*', s=150, alpha=0.6); 
ax.axis('equal'); 
ax.set(xlim=(-1.5,1.5), ylim=(-1.7,1.7)); 

plotX(X); 
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Now comes the part that’s harder to see, namely the graphical meaning of the maximiza-
tion problem that defnes the frst principal component. Consider the fgure below where 
a number of unit vectors are drawn colored. 

[6]: fig = plt.figure(); ax = plt.gca() 
ax.set_title('The maximization over unit vectors') 
theta = np.linspace(0, 2*np.pi, num=100) # draw unit circle 
ax.plot(np.cos(theta), np.sin(theta), ':r', alpha=0.3) 

theta = np.linspace(0, 2*np.pi, num=19) 
v = np.array([np.cos(theta), np.sin(theta)]) # unit vectors 
f = ((X @ v) ** 2).sum(axis=0) # function to maximize over v 

nrm = colors.Normalize(vmin=np.min(f), vmax=np.max(f)) 
sm = cm.ScalarMappable(norm=nrm, cmap='YlOrRd') 
for i in range(v.shape[1]): # color vectors based on f value 

ax.arrow(0, 0, v[0, i], v[1, i], width=0.025, color=sm.to_rgba(f[i]),␣ 
↪→alpha=0.6) 

plt.colorbar(sm); plotX(X, ax) 

Here, the arrows represent unit vectors v, and they are colored according to the value of 
the following function of the vectors v: 

m 
f (v) = ∑(v · Ri)

2. 
i=1 

From the fgure, there is no doubt that the vectors v for which this function takes the largest 
values indicate the “dominant” direction of the data points. Once we fnd the frst maximal 
vector, then we can restrict to the orthogonal complement of that vector and repeat the 
same maximization to compute further principal components. (In two dimensions, this 
becomes trivial, so we proceed ignoring further components.) 
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Statistical literature usually considers the maximization of the function 

m 
g(v) = 

1 
∑(v · Ri)

2 
m − 1 i=1 

instead of the above f . Of course, the maximizers of f and g are the same. The function g 
represents the variance of the data Ri projected onto v, which is the statistical quantity that 
the frst principal component maximizes. 

How do we solve the maximization problem? The answer is given in the next theorem. 

XVI.3 PCA and SVD 

The key mathematical device for PCA is a tool we have studied in a prior lecture, the SVD. 

Theorem 1. Let X = UΣVt be an SVD of X ∈ Rm×n and let V = [v1, v2, . . . , vn]. If X 
represents centered data, then its ith principal component vector equals (up to a sign) the 
ith right singular vector vi of the SVD of X. 

For an example, we return to the previous two-dimensional centered dataset X and com-
pute its SVD. 

[7]: u, s, vt = svd(X) 

Plotting the frst right singular vector as an arrow through the centered data immediately 
illustrates the theorem’s claim. We fnd that the frst right singular vector is in one of the 
two directions where we expected the maximizer of f , in view of the previous fgure. 

[8]: fig = plt.figure(); ax = plt.gca() 
ax.arrow(0, 0, vt[0, 0], vt[0, 1], width=0.025, color='brown', alpha=0.6) 
plotX(X, ax) 

The second singular vector is of course orthogonal to the one shown. (Recall that the 
columns of a unitary matrix are orthonormal.) 

You might now be thinking that this fgure is beginning to look like the linear regression 
fgure of the previous lecture, especially if one draws a line through that arrow, and com-
pare it with the regression line. Let me check that thinking right away. 
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XVI.4 PCA is different from regression 

PCA and linear regression are fundamentally different. Note these differences: 

• In supervised learning by regression, the data points were expressed as (xi, fi) to 
indicate that the labels fi were dependent on the data xi. 

• In contrast, now the data is viewed as just points on the plane (without any labels) so 
we express the same points as (xi, yi). We do not start with an assumption that one 
data component depends on the other. 

• In supervised learning by regression, the task was to predict values of the label f 
for new values of x. In PCA, the task is to discover what relationship exists, if any, 
between the x and y values. 

So, in spite of these philosophical differences between linear regression and PCA, why is 
it producing similar-looking pictures in this two-dimensional example? 

Actually, the pictures are not quite identical. Let us compute and plot the line obtained 
with linear regression applied to the same points, now viewing one of the variables (the 
second) as dependent on the other (the frst). 

[9]: def plot_reg(X, ax): 

# hypothesizing that f depends on x, perform regression 
x = X[:, 0]; f = X[:, 1] 

X1 = np.array([np.ones(X.shape[0]), x]).T 
a = np.linalg.inv(X1.T @ X1) @ X1.T @ f 
x_predict = np.linspace(-2, 2, num=100) 
f_predict = a[0] + a[1] * x_predict 
plotX(X, ax) 
ax.plot(x_predict, f_predict, 'c'); 
fp = X1 @ a 
lc = LineCollection([[(x[i], f[i]), (x[i], fp[i])] 

for i in range(len(x))], 
color='r', linewidth=4, alpha=0.5) 

ax.add_collection(lc) 
ax.set_title('The minimization behind regression'); 

fig = plt.figure(); ax = plt.gca() 
plot_reg(X, ax) 
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Recall that the line in this linear regression is arrived at by minimizing the sum of the 
squares of the lengths of the (red) vertical line segments. 

In PCA, a different quantity is minimized. Although we defned the principal components 
using a maximization, we can transform it to a minimization as follows. Recall from linear 
algebra that any vector can be decomposed into its projection along a given vector and a 
component in the orthogonal complement. In particular, for the above two dimensional 
data, the vector Ri can be decomposed into its projection along v, (v · Ri)v plus the compo-
nent of Ri in the orthogonal complement of v, which using a unit vector v⊥ perpendicular 
to v, may be expressed as (v⊥ · Ri)v⊥, i.e., 

⊥ ⊥Ri = (v · Ri) v + (v · Ri) v . 

By Pythagoras theorem, 
⊥∥Ri∥2 = (v · Ri)

2 + (v · Ri)
2. 

Since the left hand side is fxed by the data, maximizing (v · Ri)
2 over all v is equivalent to 

minimizing (v⊥ · Ri)
2 over the perpendicular v⊥ . Thus we arrive at the conclusion that the 

frst principal component v that maximizes 

m 

∑(v · Ri)
2 

i=1 

is also the same vector whose v⊥ minimizes 
m 

∑ ⊥(v · Ri)
2. 

i=1 

Below is the graphical illustration of this minimization behind the PCA (left plot). We 
draw little orange line segments from each data point Ri in the direction v⊥ such that its 
length equals (v⊥ · Ri)

2. Please compare it with the previous fgure for linear regression, 
also reproduced aside below (right plot). 

[10]: def plot_pca(X, ax): 
u, s, vt = svd(X) 
t = np.linspace(-3, 3, 100); v1 = vt[0, :] 
ax.plot(t*v1[0], t*v1[1], color='orange') 
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ax.arrow(0, 0, v1[0], v1[1], width=0.04, color='brown', alpha=0.6) 
Xp = v1[:, np.newaxis] * (X @ v1) 
lc = LineCollection([[(X[i, 0], X[i, 1]), (Xp[0, i], Xp[1, i])] 

for i in range(X.shape[0])], 
color='r', linewidth=4, alpha=0.5) 

ax.add_collection(lc) 
plotX(X, ax) 
ax.set_title('The minimization behind PCA'); 

fig = plt.figure(figsize=(12, 4)) 
axl, axr = fig.subplots(1, 2) 
plot_pca(X, axl); plot_reg(X, axr) 

Clearly the two minimizations are different. The result of the different minimizations hap-
pened to be close for the above example. But this need not happen always. The results can 
indeed be quite different, as the quick example below shows. 

[11]: rng = np.random.default_rng(13) 
z0 = 1.5 * rng.random(20); z1 = z0 + 2.7 * rng.random(20) 
ZZ = np.array([z0, z1 ]).T 
Z = ZZ - ZZ.mean(axis=0) 
fig = plt.figure(figsize=(12, 4)) 
axl, axr = fig.subplots(1, 2) 
plot_pca(Z, axl); plot_reg(Z, axr) 

What distinguishes PCA is not simply this difference in the associated minimization prob-
lems. As you proceed with this lecture, you will understand that the power of PCA lies in 
its ability to fnd patterns in data, i.e., to fnd feature sets or basis sets in which data can be 
effciently represented. 
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XVI.5 PCA in scikit-learn 

Instead of getting the principal components from frst principles using the SVD, as we have 
done above, you may just use scikit-learn’s PCA facility to get the same result. 

[12]: from sklearn.decomposition import PCA 

To use it, one constructs a PCA object using some hypothesized n_components which can 
be less than the data dimensions m and n. To draw the analogies with the previous 
computation, let’s apply PCA to the previous data setting n_components=2 (noting that 
min(m, n) = 2 in this example). 

[13]: = PCA(n_components=2)pca 

You can directly give PCA a data set that is not centered. It will do the centering behind 
the scenes. 

[14]: pca.fit(XX); # fit with raw (uncentered) data 

Now, you may ask for the principal components of the data: 

[15]: pca.components_ 

[15]: array([[-0.69180966, -0.72207991], 
[ 0.72207991, -0.69180966]]) 

This matches the principal components we computed using the SVD, reproduced below. 

[16]: vt 

[16]: array([[-0.69180966, -0.72207991], 
[ 0.72207991, -0.69180966]]) 

(Note that since principal components are defned only up to a sign, the vectors need only 
match up to a sign, in general.) 

XVI.6 Mapping PCA and SVD jargon 

To expand on the above seen relationships, let’s consider a larger data set (one that we 
will examine in more detail in the next section), to bring out the correspondences between 
what PCA provides and what svd provides. This will help us understand the concepts from 
different viewpoints. 

[17]: from sklearn.datasets import load_digits 
digits = load_digits() 
XX = digits.data 
X = XX - XX.mean(axis=0) 
m, n = XX.shape; m, n 

[17]: (1797, 64) 
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The following two lines computes PCA (using scikit-learn) and SVD (using scipy). We will 
use the resulting outputs to establish correspondences between them so we can be fuent 
in both languages. 

[18]: pca = PCA(svd_solver='full').fit(XX) 

[19]: u, s, vt = svd(X) 

Correspondences Now we make a series of observations regarding the outputs from 
scipy’s svd applied to centered data and outputs from scikit-learn’s PCA. (Note that if you 
send the data matrix to SVD without centering, these correspondences do not apply.) 

First, the most obvious correspondence is that pca.singular_values_ and the singular 
values from scipy’s svd are the same: 

[20]: norm(pca.singular_values_ - s) 

[20]: 0.0 

Second, the principal components returned by pca are equal to ± (ith right singular vector) 
from the SVD. Let me illustrate this using the above pca and svd outputs. To check that two 
vectors are equal except for the sign “±,” we defne a function that computes the norms 
of the sum and the difference of the vectors and prints them out. Only one of them need be 
zero to have a match up to ±. 

[21]: def vectors_plus_minus_diff(v1, v2): 
print('%2.1f %2.1f' %(norm(v1 - v2), norm(v1 + v2))) 

Using this function we check if the frst seven principal components equal the correspond-
ing singular vector up to ±. Note how one of the printed out norms (either that of the sum 
or that of the difference) is zero. 

[22]: for i in range(7): 
vectors_plus_minus_diff(pca.components_[i, :], vt[i, :]) 

2.0 0.0 
2.0 0.0 
2.0 0.0 
2.0 0.0 
2.0 0.0 
0.0 2.0 
0.0 2.0 

Third, projections of the original data onto the principal axes can be obtained by transform 
(or the fit_transform) method of PCA. Of course, such projections are just V-components 
of the rows of the data X, or simply XV: since X = UΣVt and V has orthonormal columns, 
these projections are also equal to UΣ. Hence we have the following correspondence: 

ithcolumn of transform(XX) = ± ithcolumn of UΣ. 

Here is an illustration of this correspondence for the current example. 
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[23]: # projected data from pca (can also use pca.fit_transform(XX)): 
projX = pca.transform(XX) 

[24]: # projected data from svd: 
us = u[:, :len(s)] @ np.diag(s) 

[25]: # check they are same upto a sign 
for i in range(7): 

vectors_plus_minus_diff(projX[:, i], us[:, i]) 

1134.0 0.0 
1084.5 0.0 
1009.3 0.0 
852.2 0.0 
706.7 0.0 
0.0 651.6 
0.0 610.5 

Fourth, to relate to the low-rank approximation using SVD that we studied in the SVD 
lecture, recall that an SVD of X can be rewritten using outer products as 

min(m,n) 

X = ∑ ∗σjujvj 
j=1 

from which the best rank ℓ approximation to X, denoted by Xℓ, can be extracted simply by 
throwing away the later summands: 

ℓ 

Xℓ = ∑ ∗σjujvj . 
j=1 

Before showing how this is done in scikit-learn, let us compute Xℓ, say for ℓ = 5, using the 
SVD. We implement the above formula, and add the means to compensate for the fact that 
the SVD was taken on centered data. 

[26]: l = 5 
Xl_svd = u[:, :l] @ np.diag(s[:l]) @ vt[:l, :] + XX.mean(axis=0) 

There is a corresponding facility in scikit-learn. First, note that we may give the 
n_components argument to PCA, which tells PCA how many principal components to 
compute. 

[27]: # The rank l approximation needs only l principal components 
pcal = PCA(n_components=l, svd_solver='full').fit(XX) 

Now, to get the best rank ℓ approximation from PCA, we use the transform method, which 
gives the components of the data projected onto the principal axes (and there are 5 prin-
cipal axes now). Then, we can use the inverse_transform method to lift the projected 
components into the original data space of 64 pixels. 

[28]: projX = pcal.transform(XX) 
projX.shape # the shape reflects projected data sizes 
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[28]: (1797, 5) 

[29]: Xl_pca = pcal.inverse_transform(projX) 
Xl_pca.shape # the shape is now the shape of original data 

[29]: (1797, 64) 

The relative difference in norm between Xl_pca and Xl_svd can now be easily verifed to 
be close to machine precision. 

[30]: norm(Xl_pca - Xl_svd) / norm(Xl_pca) 

[30]: 1.0648619605229708e-15 

Let’s summarize this correspondence as follows: The best rank ℓ approximation Xℓ of the 
centered data X satisfes 

Xℓ = inverse_transform(transform(XX) − mean_(XX) 

Just in case this inverse_transform lifting into data space still sounds mysterious, then 
perhaps this reverse engineered formula for it might make it clearer: 

inverse_transform(proj) = proj@pca.components_ + mean_(XX), 

This also can again immediately be verifed in our example: 

[31]: Xl_pca2 = projX @ pcal.components_ + pcal.mean_ 
norm(Xl_pca2 - Xl_pca) 

[31]: 0.0 

Fifth, consider the attribute called the explained_variance array of the pca object. This 
represents variances explained by the principal components (see the covariance matrix 
discussion below for more on this terminology). The elements of this array are related to 
the singular values σi as follows. 

pca.explained_variance_[i] = 
1 

σ2 
im − 1 

[32]: norm(pca.explained_variance_ - (s**2/(m-1))) 

[32]: 0.0 

Sixth, consider another attribute of the pca object called explained_variance_ratio_. It 
is related to singular values as follows: 

σ2 
pca.explained_variance_ratio_[i] = i 

∑j σj 
2 

As is obvious from this defnition, the sum of all the explained variance ratios should be 
one. Here is the verifcation of the formula stated above for the current example: 
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[33]: norm(pca.explained_variance_ratio_ - (s**2)/(s**2).sum()) 

[33]: 6.661408213830422e-17 

Covariance matrix To understand the origin of some of the terms used in pca attributes, 
recall how the covariance matrix is defned: For centered data, the covariance matrix is 

1
C = XtX. 

m − 1 

The “explained variances” are the eigenvalues of C. Of course, since X = UΣVt is an SVD 
of X, the covariance matrix C may be alternately expressed as 

Σ2 
C = V Vt , 

m − 1 

from which we conclude that the ith eigenvalue of C is σi 
2/(m − 1), which matches our 

observation above. 

This observation also tells us that the right singular vectors (the columns of V) are actu-
ally eigenvectors of C, since the above factorization of C is actually a diagonalization of 
C. Therefore, one can alternately compute the right singular vectors, aka, principal com-
ponents, as the eigenvectors of the covariance matrix simply using numpy’s or scipy’s eig. 
Indeed, for the current example, we can immediately cross check that we get the same 
results: 

[34]: ew, ev = np.linalg.eig(X.T @ X / (m-1)) # eigenvalues & eigenvectors of C 
ii = ew.argsort()[::-1] 
ew = ew[ii]; ev = ev[:, ii] # sort by descending order of␣ 

↪→eigenvalues 

[35]: norm(ew - s**2 / (m-1)) # eigenvalues equal singular values squared /␣ 
↪→(m-1) 

[35]: 6.25037049393972e-13 

[36]: for i in range(7): # eigenvectors equal +/- principal components 
vectors_plus_minus_diff(pca.components_[i, :], ev[:, i]) 

2.0 0.0 
2.0 0.0 
2.0 0.0 
0.0 2.0 
2.0 0.0 
0.0 2.0 
0.0 2.0 

What is better, eig or svd? The relationship between PCA/SVD and eigenvectors of the 
covariance matrix discussed above raises a natural question. If both give the same vectors 
(principal components), which one should be recommended for computations? 
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Even though both give the same vectors mathematically, it’s better to use SVD (or scikit-
learn’s PCA, which uses SVD) to avoid round-off errors in the formation of XtX that arise 
in some circumstances. A classical example is the case of a Läuchli matrix, an N × (N − 1) 
rectangular matrix of the form ⎤⎡ 

X = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 1 · · · 1 
ϵ 0 

0 ϵ 
. . . 

. . . 
. . . 

. . . ϵ 
0 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

with a small number ϵ. The matrix XtX then has 1 + ϵ2 on the diagonal, and ones every-
where else. This matrix is very close to being singular numerically. For example, in the 
N = 4 case, the matrix ⎡ ⎤ 

1 + ϵ2 1 1 
XtX = ⎣ 1 1 + ϵ2 1 ⎦ 

1 1 1 + ϵ2 

has eigenvalues 3 + ϵ2, ϵ2, ϵ2 by hand calculation. However, eig is unable to distinguish 
the latter from zero. 

N = 4 
eps = 1e-8 
X = np.diag(eps * np.ones(N), k=-1) 
X[0, :] = 1; X = X[:, :(N-1)]; X 

[37]: array([[1.e+00, 1.e+00, 1.e+00], 
[1.e-08, 0.e+00, 0.e+00], 
[0.e+00, 1.e-08, 0.e+00], 
[0.e+00, 0.e+00, 1.e-08], 
[0.e+00, 0.e+00, 0.e+00]]) 

ew, ev = np.linalg.eig(X.T @ X) 
ii = ew.argsort()[::-1]; ev = ev[:, ii]; ew = ew[ii] 
ew 

[38]: array([ 3.00000000e+00, 0.00000000e+00, -2.22044605e-16]) 

[37]: 

[38]: 

The last two numbers are so close to machine precision that they are indistinguishable 
from 0. Covariance matrices should never have negative eigenvalues, but due to numerical 
diffculties, eig may return a small negative value as an eigenvalue. So in particular, if we 
attempt to compute the singular values by taking square roots of these eigenvalues, we 
might end up taking the square root of a negative number. 

[39]: np.sqrt(ew) 

<ipython-input-39-6f1372a76c3a>:1: RuntimeWarning: invalid value encountered in sqrt 
np.sqrt(ew) 
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[39]: array([1.73205081, 0. , nan]) 

In contrast, the SVD is able to output the singular values fairly close to the exact ones√ 
3 + ϵ2, ϵ, ϵ without diffculty. 

[40]: u, s, vt = svd(X) 
s 

[40]: array([1.73205081e+00, 1.00000000e-08, 1.00000000e-08]) 

XVI.7 Hand-written digits dataset 

Scikit-learn comes with an example dataset representing many images of hand-written 
digits for use as a test problem in optical character recognition. Actually, this is the same 
digits data we have been working with above. Let’s take a closer look at this dataset. 

[41]: from sklearn.datasets import load_digits 
digits = load_digits() 
digits.keys() 

[41]: dict_keys(['data', 'target', 'target_names', 'images', 'DESCR']) 

We used digits.data previously. The images key gives the images of the handwritten 
digits. 

[42]: digits.images.shape, digits.data.shape 

[42]: ((1797, 8, 8), (1797, 64)) 

There are 1797 images, each of 8 x 8 pixels. The fattened array versions of these images 
are in digits.data while the 8 × 8 image versions are in digits.images. Here are the frst 
few of the 1797 images: 

[43]: fig, axes = plt.subplots(10, 10, figsize=(8, 8), subplot_kw={'xticks':[],␣ 
↪→'yticks':[]}) 

for i, ax in enumerate(axes.flat): 
ax.imshow(digits.images[i], cmap='binary') 
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To apply PCA, we need to put these images into the tidy data format of m sam-
ples/observations/rows × n variables/features/columns. We set 

• each pixel to be a feature/variable, 
• each image to be a sample/observation. 

Actually, this is the form the data is contained in digits.data, where each 8 × 8 image is 
one of 1797 samples of a 64-variable dataset. 

[44]: m, n = digits.data.shape 
m, n 

[44]: (1797, 64) 

We construct a PCA object using this data asking specifcally to retain only 10 principal 
components. 

[45]: = PCA(n_components=10).fit(digits.data)pca 

Would you hazard a guess that the 10 principal components are the usual 10 digits? 

Well . . . here is how the 10 principal components look like: 

[46]: fig, axes = plt.subplots(1, 10, figsize=(8, 4), 
subplot_kw={'xticks':[], 'yticks':[]}) 

for i, ax in enumerate(axes.flat): 
ax.imshow(pca.components_[i, :].reshape(8, 8), cmap='binary') 
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Obviously, these outputs don’t look anything like recognizable digits. It is important to 
understand in what sense these garbled images represent something “principal” about the 
original data set. Proceed on to gain this understanding. 

XVI.8 PCA is a feature fnder 

To make sense of the above garbled images as a basis, let’s use the transform method 
(which, as you recall from the correspondences above, computes UΣ). 

[47]: projdgt = pca.transform(digits.data) 
projdgt.shape 

[47]: (1797, 10) 

Each row of projdgt contains 10 coeffcients, which when multiplied by the 10 principal 
components, reveal what’s going on. Of course, we must also correct for the previously 
subtracted mean. The frst row of dgt then yields the following image (left). Compare 
it with the original frst image in the data (right). Of course, this is reminiscent of the 
low-rank approximation of a single image that we discussed in the prior SVD lecture; the 
difference now is that we are applying the same process to 1797 centered images all at once 
(although we are only showing the frst one below). 

[48]: fig = plt.figure(figsize=(6, 2)) 
axl, axr = fig.subplots(1, 2) 
reconstructed_dgts = pca.inverse_transform(projdgt) 
im0 = reconstructed_dgts[0, :] 
# alternately and equivalently, we may set im0 by 
# im0 = dgt[0, :] @ pca.components_ + pca.mean_ 
axl.imshow(im0.reshape(8, 8), cmap='binary') 
axr.imshow(digits.images[0], cmap='binary'); 

Let’s dig a bit more into this. Writing the SVD of the centered image data array X as 

tX = ∑ σkukvk, 
k 

we may read off the the ith row Ri, which represents the ith image in this dataset, as 
follows: 

[Ri]j = Xij = ∑ σk[uk]i[vk]j. 
k 
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The pca object above computed the rank-10 best approximation by restricting the above 
sum to the frst 10 summands. This is what is was implemented above by the line of code 

reconstructed_dgts = pca.inverse_transform(projdgt) 

From the previously discussed fourth correspondence’s equivalent form of the 
inverse_transform, we note that the above statement may equivalently be written as 

reconstructed_dgts = projdgt @ pca.components_ + pca.mean_ 

where the correction for the zero mean is explicit. This also makes it abundantly clear that 
the statement setting reconstructed_dgts is just an implementation of the above formula 
for Ri. 

Viewing the ith image/row Ri as a function f of pixels, it is instructive to view the above 
formula for Ri as the sum 

f (x) = a0ϕ0(x) + a1ϕ1(x) + · · · a9ϕ9(x) 

where 
ak = [σkuk]i, ϕk = vk, 

i.e., the numbers ak = [σkuk]i represent coeffcients in a basis expansion with the basis 
images ϕk set by ϕk = vk, and where x represents one of the 64 pixels. In this viewpoint, 
what PCA has done is to ft the 10-term formula for f to a data set of 1797 images. While 
this is reminiscent of regression, note two important differences: 

• PCA found the basis ϕk (while regression needs ϕk as input). 
• The coeffcients ak change for each data row (unlike in regression where it’s fxed for 

the whole dataset). 

To summarize, PCA automatically fnds an effcient basis (or feature set) to represent the 
data. (In contrast, regression needs you to provide a basis ϕk as input in order to output 
the best-ft coeffcients ak; see e.g., the curve ftting examples we have seen previously.) 
This exemplifes one of the differences between supervised and unsupervised learning. 

XVI.9 PCA is useful for dimensionality reduction 

The left (PCA) and the right (original data) images in the previous fgure strongly suggests 
the following interpretation: the original 64-dimensional dataset might actually be well 
represented in a 10-dimensional space! 

The number 10 was, of course, arbitrary, and somewhat of a red herring in a dataset of 
images of 10 digits. It would be better if the data itself can lead us to some number of 
relevant dimensions it possesses. This is where the explained_variance_ratio becomes 
useful. Let’s return to the full PCA and examine this array. Recall that it is an array that 
sums to one, so its cumulative sums indicate how close we are to fully representing the data. 

[49]: pca = PCA().fit(digits.data) 
plt.plot(np.cumsum(pca.explained_variance_ratio_)) 
plt.grid(True) 
plt.xlabel('number of components') 
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plt.ylabel('cumulative explained variance'); 

Clearly, with 10 components, we are far away from the cumulative sum of 1. We are much 
closer to the point of diminishing returns, retaining about 95% of the variance, if we instead 
choose, say 30 components. 

[50]: pca = PCA(n_components=30).fit(digits.data) 
dgt = pca.fit_transform(digits.data) 
fig = plt.figure(figsize=(6, 2)) 
axl, axr = fig.subplots(1, 2) 
im0 = dgt[0, :] @ pca.components_ + pca.mean_ 
axl.imshow(im0.reshape(8, 8), cmap='binary') 
axr.imshow(digits.images[0], cmap='binary'); 

In other words, the 64-dimensional data set may effectively be reduced to a 30-dimensional 
dataset retaining 95% of the variance. (Per our discussion in the prior SVD lecture, you can, 
of course, also convert this statement on variances into a precise measure of the relative er-
ror in the Frobenius norm.) Summarizing, PCA is also useful as a dimensionality reduction 
tool. 
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XVII 

Latent Semantic Analysis 

June 1, 2020 

In the study of information retrieval systems, a fundamental question is how to extract 
documents from a large collection in response to a user query. A simplistic way is to pick 
out all documents which contain the query words. Is there a more “intelligent” way? Doc-
uments usually have interrelated concepts and if a query could be matched to a concept, 
perhaps the results extracted would look more intelligent. Documents are written in natu-
ral language, using copious amounts of words, yet the number of topics that people write 
about are usually much smaller than the number of words they use. Latent Semantic Anal-
ysis (LSA) is a technique to associate concepts in a space of much lower dimension than a 
space of words in order to help with the complex task of information retrieval. 

Of course, a number of details have to be worked out. How can one associate words 
to a vector space? How can one identify topics in this space? How can one represent 
queries? It should therefore not be surprising that this is a whole feld of study in itself: 
see e.g., [MRS]. Yet, we are able to take a peek into this machinery because the essential 
mathematical tool used in LSA is something you already know, namely the SVD. 

I’m sure yesterday’s news is very much on your mind, with the best and the worst of hu-
manity on display. Shocking police violence and a successful astronaut launch dominated 
the news headlines. Having failed to get the news out of my mind, I am going to use 
sentences from current news for introducing LSA. 

The next graph, obtained from LSA’s interpretation of four news headlines on a two-
dimensional space made in this lecture, may well be a representation of the country’s 
current state. Today’s lecture will show you how to analyze text and graphically display 
words and their apparent connections like those displayed below. 
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If this is a proxy for the country’s current state, where we go from here seems critical in 
this moment. 

XVII.1 Natural language processing 

Using a few headlines, we make a corpus of text documents to illustrate the basics of LSA 
as a python dictionary, called c below. 

[1]: c = {'May31': 
'Two crises convulse a nation: a pandemic and police violence', 

'May30a': 
'Nation’s first astronaut launch to orbit from home soil in nearly a␣ 

↪→decade', 

'May30b': 
'Death of George Floyd at the hands of police set off protests', 

'May27': 
'SpaceX launch of NASA astronauts is postponed over weather'} 

In this corpus, c['May31'] is a document, and the c has three more documents. Each doc-
ument is composed of many words, or terms. We need to simplify the complexities of 
natural language to be able to compute anything. With my apologies to the writers among 
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you, we proceed by taking the view that the order of words, declensions and conjugations, 
and often-used words like articles and prepositions, are all immaterial. Then we view 
concepts as merely associations of the remaining root words, associations marked by their 
joint appearances in documents. LSA is only useful under the assumption that words that 
are close in semantics will occur in similar documents as the corpus of documents become 
large. 

Applying the above-mentioned language simplifcations to even a small corpus is a lot of 
work, if you try to do it from scratch. But thankfully, there are several python modules 
that excel in natural language processing (NLP). Below, I will use spaCy, one of the recent 
additions to the python NLP tool set. (Please install it and also make sure to install their En-
glish dataset en_core_web_sm, say by python3 -m spacy download en_core_web_sm, be-
fore proceeding.) 

[2]: import spacy 
from spacy import displacy 

# Install dataset: python3 -m spacy download en_core_web_sm 
nlp = spacy.load('en_core_web_sm') 

Consider the frst sentence in our corpus. 

[3]: doc0 = nlp('Two crises convulse a nation') 

The spacy module is able to process sentences, and identify nouns, verbs, direct objects, 
and their interrelationships. In the cell below, after processing a sentence, the result is 
saved in an SVG fgure. The saved image is then displayed as an image in the next cell. 

[4]: svg = displacy.render(doc0, style="dep", jupyter=False) 
with open('../figs/sentence0.svg', 'w') as f: f.write(svg) 

Two

NUM

crises

NOUN

convulse

NOUN

a

DET

nation

NOUN

nummod nsubj det

dobj

Within a Jupyter notebook, one may also directly render the resulting image (without 
needing to save the image into a fle) by specifying jupyter=True instead. Here is an 
example. 

[5]: doc1 = nlp('SpaceX launch of NASA astronauts is postponed over weather') 
displacy.render(doc1, style='ent', jupyter=True, options={'distance':90}) 

<IPython.core.display.HTML object> 
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Just in case you are not reading this in a Jupyter notebook and the image does not render 
on your reading device, I am reproducing the image that displacy generated: 

As you can see from the annotated sentence, the module can even identify some named 
entities in the real world: it knows about NASA, but it still does not know about SpaceX! 
(We will fx this later in this lecture by adding our own named entity terms.) 

We shall use the package’s capabilities for tokenization and lemmatization. Tokenization 
is the process of dividing a sentence or a document into words via demarcation charac-
ters like white spaces. Lemmatization is the process of identifying the so-called “lemma” 
of a word, allowing us to group together infected forms of the word into a single item. 
Here is the result of tokenization and lemmatization on the above sentence. Note how the 
originally found words “astronauts” and “postponed” have changed in the output. 

[6]: [w.lemma_ for w in doc1 if not w.is_stop] 

[6]: ['spacex', 'launch', 'NASA', 'astronaut', 'postpone', 'weather'] 

Here we have also removed stop words, a collection of the most common words in a lan-
guage as previously identifed and categorized by the NLP program. In the above exam-
ple, the words “of”, “is”, and “over” have been removed. You can view spacy’s collection 
of all stop words if you use the following import statement. 

from spacy.lang.en.stop_words import STOP_WORDS 

XVII.2 Term-document matrix 

The important mathematical object for LSA is the term-document matrix, a matrix whose 
rows correspond to terms, whose columns correspond to documents, and whose element 
at position (t, d) is 1 if the document in column d contains the term in row t, and is 0 
otherwise. (You will fnd variations on this matrix in the literature, e.g., the tranpose, 
ir refnements beyond 0/1 entries, are often used.) Let’s make this matrix with a quick 
hack (where we have now also asked spacy to ignore punctuations). The matrix will be 
displayed as a pandas data frame to easily visualize term and document labels of rows and 
columns. 

[7]: import pandas as pd 
from scipy.sparse import lil_matrix 

d = {} 
for j, dok in enumerate(c.keys()): 

tokens = [w.lemma_ for w in nlp(c[dok]) 
if not w.is_stop and w.pos_ != 'PUNCT'] 

for t in tokens: 
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[7]: 

d[t] = d.setdefault(t, []) 
d[t] += [j] 

A = lil_matrix((len(d.keys()), len(c.keys())), dtype=int) 
for i, t in enumerate(d.keys()): 

for j in d[t]: 
A[i, j] = 1 

Adf = pd.DataFrame(A.toarray(), index=d.keys(), columns=c.keys()); Adf 

May31 May30a May30b May27 
crisis 1 0 0 0 
convulse 1 0 0 0 
nation 1 1 0 0 
pandemic 1 0 0 0 
police 1 0 1 0 
violence 1 0 0 0 
astronaut 0 1 0 1 
launch 0 1 0 1 
orbit 0 1 0 0 
home 0 1 0 0 
soil 0 1 0 0 
nearly 0 1 0 0 
decade 0 1 0 0 
death 0 0 1 0 
George 0 0 1 0 
Floyd 0 0 1 0 
hand 0 0 1 0 
set 0 0 1 0 
protest 0 0 1 0 
spacex 0 0 0 1 
NASA 0 0 0 1 
postpone 0 0 0 1 
weather 0 0 0 1 

We might want to have a combination of frst and last names treated as a single entity, 
but the code is not yet smart enough to do that. We’ll fx that later, after introducing the 
idea of LSA. For the moment, note how words have been represented as row vectors and 
documents as column vectors. This is enough to understand the basics of LSA, as we see 
next. 

XVII.3 The idea of LSA 

The idea is to perform an SVD of the term-document matrix and use its low-rank approxi-
mation, with a rank k much less than the number of words. The dominant singular vectors 
may then be expected to capture patterns in the association of words. Of course, this is not 
an exact technique, but it does give us something numerical to work with for analysis of 
large amounts of textual data. For our example of the 4-document corpus, we shall use the 
best rank-2 approximation (as discussed in the SVD lecture), the difference now being that 
we don’t actually need the low-rank matrix, but rather the SVD components that go into 
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it. 

[8]: import numpy as np 
import matplotlib.pyplot as plt 
import seaborn; seaborn.set(); 
from numpy.linalg import norm 
from scipy.linalg import svd 

[9]: u, s, vt = svd(A.toarray()) 

Here is the frst important step in creating mathematical objects to represent documents. 
Using the best rank k approximation, the frst k right singular vectors are used to represent 
each document as a k vector. 

[10]: k = 2 # Limit to rank k 
Vt = vt[:k, :] 
pd.DataFrame(Vt, columns=c.keys()) # Documents as k-vectors 

[10]: May31 May30a May30b May27 
0 -0.269907 -0.829243 -0.109002 -0.477101 
1 0.458490 -0.149538 0.854138 -0.194611 

The second important step is to represent words (or terms) as mathematical objects in 
the same space. Unlike documents, the words/terms are represented by the frst k left 
singular vectors, weighted by the associated singular values. The frst fve word tokens 
are displayed below as vectors. 

[11]: US = u[:, :k] @ np.diag(s[:k]) 
usp = pd.DataFrame(US, index=d.keys()) # Words as k-vectors 
usp.head() 

[11]: 0 1 
crisis -0.269907 0.458490 
convulse -0.269907 0.458490 
nation -1.099150 0.308952 
pandemic -0.269907 0.458490 
police -0.378909 1.312628 

Many words are mapped to the same point in such a small example. In other words, there 
is not enough data in our small corpus to distinguish between such words. 

Nonetheless, even in our very small dataset, it is very interesting to see the associations 
between words in terms of how different the word vectors are. Ignoring the magnitude 
of word vectors, one may measure the difference between two word vectors (both drawn 
from the origin) using a device different from the norm. When magnitude is ignored, the 
difference between vectors is captured by the angle the word vectors make with each other, 
or by the cosine of the angle. Two vectors of the same magnitude are farther apart if the 
cosine of their angle is smaller. Remember that it’s very easy to compute the cosine of the 
angle between two unit vectors, since it is equal to their dot product. 

190 



[12]: astronaut = usp.loc['astronaut', :].to_numpy() 
crisis = usp.loc['crisis', :].to_numpy() 
police = usp.loc['police', :].to_numpy() 

Here is an example of an uncanny association the program has made: 

The word crisis is closer to police than to astronaut! This conclusion follows from the 
two cosine computations below. 

[13]: crisis.dot(police) / norm(police) / norm(crisis) 

[13]: 0.9686558216875333 

[14]: crisis.dot(astronaut) / norm(astronaut) / norm(crisis) 

[14]: 0.27103529721595343 

Let’s dig into this a bit more. In our small example, since words are two-dimensional 
vectors, we can plot them to see how they are dispersed in terms of angles measured from 
the origin. Below, the origin is marked as a red star, and points representing the terminal 
point of word vectors are annotated with the word. 

[15]: w = {}; us = np.round(US, 8) # w[(x,y)] = list of words at that point 
usr = list(set([tuple(us[i, :]) for i in range(us.shape[0])])) 
for i in range(len(usr)): 

w[usr[i]] = [] 
for j in range(usp.shape[0]): 

if norm(usp.iloc[j, :] - usr[i]) < 1e-6: 
w[usr[i]] += [usp.index[j]] 

fig = plt.figure(figsize=(10, 8)); ax = fig.gca() 
ax.arrow(0, 0, crisis[0], crisis[1], width=0.015, alpha=0.3) 
ax.arrow(0, 0, police[0], police[1], width=0.015, alpha=0.3) 
ax.arrow(0, 0, astronaut[0], astronaut[1], width=0.015, alpha=0.3) 
ax.scatter(US[: , 0], US[: ,1], alpha=0.5) 
ax.scatter(0, 0, color='r', marker='*', s=150, alpha=0.6); 
for i, key in enumerate(w.keys()): 

ax.annotate(', '.join(w[key]), (key[0], key[1])) 
ax.set_xlim((-1.5, 0.7)); ax.set_ylim((-0.5, 1.5)); 
ax.set_title('Alignment of Word Vectors'); 
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The frst takeaway from this fgure is that the angles the word vectors make is clearly in 
accordance with the previous cosine computation. 

The second is more enigmatic. In our small corpus of four sentences, there were two cate-
gories of news, one of violence, and one of exploration. While we as humans can instinc-
tively make that categorization, it is uncanny that some mathematics and a few simple 
lines of code can separate the words associated to the two categories into different areas 
of a “word space”. The word that appears somewhat in the middle of the two categories 
is nation, as it ought to. (The same fgure, after a rotation, modifcation of arrows, and 
cleaned up positioning, is what I presented at the beginning of the lecture.) You should 
now have an idea of why LSA can be useful when applied to a large corpus with many 
more words, documents, and hidden associations (or latent semantics). 

XVII.4 Language is complex 

Let me return to the news headlines. During this entire spring term, bad news have been 
accumulating, of how the pandemic and its repercussions are battering our country, high-
lighting and amplifying many of our systemic problems, and fnally even more bad news 
of yet another police violence. All this made the few glorious moments last weekend espe-
cially precious. When SpaceX lifted NASA astronauts Bob Behnken and Doug Hurley into 
orbit on a reusable rocket that returned to an autonomous droneship, it was a moment of 
reassurance that our science, industry, and innovation remain peerless. Let me now focus 
on this bit of positive news and add more sentences on these exciting developments to our 
text corpus. 

[16]: c.update( 
{ 
'May30Launch': 
'Go NASA! Go SpaceX! Godspeed, Bob and Doug!', 

'NYTimes': 
'NASA and SpaceX officials more often than not ' + 
'just call the pilots of this historic mission Bob and Doug.', 
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'May30NASAblog': 
'The first stage of the SpaceX rocket has landed ' + 
'successfully on the droneship, Of Course I Still Love You.', 

'May31NYTimes': 
'After a 19 hour trip, NASA astronauts Bob and Doug ' + 
'successfully docked their capsule and entered the space station.', 
}) 

Do you see the complexities of dealing with real examples of natural language? 

The ocean droneship, controlled by an autonomous robot to help the rocket land, has a 
curious name: “Of Course I Still Love You”. Standard tokenization would simply split it 
into component words. It would be better to keep it as a single entity. We will do so below 
with spacy’s facilities. But, before that, just in case you don’t know, that curious name for 
the ship is taken from the novel The Player of Games by Iain M. Banks. Elon Musk gave his 
droneship that name in tribute to Banks. Let me add a sentence from Musk and another 
from Bank’s novel to our text corpus. 

[17]: c.update( 
{ 
'2015Musk': 
'West Coast droneship under construction will ' + 
'be named Of Course I Still Love You', 

'IainBanks': 
'These friends of yours are ships. ' + 
'Yes, both of them. ' + 
'What are they called? ' + 
'Of Course I Still Love You and Just Read The Instructions. ' + 
'They are not warships? ' + 
'With names like that?' 
}) 

To deal with text items like the droneship name, we need to use the phrase matching 
capabilities of spacy. Three examples of terms to match are added to a TerminologyList 
below. Spacy also does some default phrase matching, e.g., it identifes the phrase “nearly 
a decade” as a temporal unit. It is up to us whether we want to use the entire phrase as 
a token or not. Below, we will modify the tokenization step to keep all phrases as tokens 
with _ in place of white space so we can recognize them easily. 

[18]: from spacy.matcher import PhraseMatcher 

terms = ['SpaceX', 
'Of Course I Still Love You', 
'Just Read The Instructions'] 
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patterns = [nlp.make_doc(text) for text in terms] 

matcher = PhraseMatcher(nlp.vocab) 
matcher.add('TerminologyList', None, *patterns) 

Next, we use a slicing feature (called Span) of spacy to capture the matched phrases as 
tokens. We also use the ents attribute provided by spacy to add named entities (a real-
world object with a name) to the document object. 

[19]: from spacy.tokens import Span 

def tokensfromdoc(doc): 
d = nlp(doc) 
matches = matcher(d) 
for match_id, start, end in matches: 

term = Span(d, start, end, label='myterms') 
d.ents = list(d.ents) + [term] 

tokens = [w.lemma_ for w in d 
# no pronouns 
if w.pos_ != 'PRON' \ 
# no punctuations 
and w.pos_ != 'PUNCT' \ 
# not Beginning of a named entity 
and w.ent_iob_ != 'B' \ 
# not Inside a named entity 
and w.ent_iob_ != 'I' \ 
# not a stop word 
and not w.is_stop] 

tokens += [de.string.rstrip().replace(' ', '_') for de in d.ents] 
return tokens 

def dictokens(corpora): 
d = {} 
for j, dok in enumerate(corpora.keys()): 

for t in tokensfromdoc(corpora[dok]): 
d[t] = d.setdefault(t, []) 
d[t] += [j] 

return d 

The above function dictokens makes a dictionary with lemmatized words as keys and 
document numbers as values. This can be used to make the term-document matrix as we 
did for the initial example. 

[20]: def tdmatrix(d, corpora): 
A = lil_matrix((len(d.keys()), len(corpora.keys())), dtype=int) 
for i, t in enumerate(d.keys()): 

for j in d[t]: 
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A[i, j] = 1 
return A 

[21]: d = dictokens(c) 

[22]: d = dictokens(c) 
A = tdmatrix(d, c) 
Adf = pd.DataFrame(A.toarray(), index=d.keys(), columns=c.keys()) 

This array is now a bit too big to meaningfully display here, but here are a few elements of 
one row, which now displays the droneship name as a single token. 

[23]: Adf.loc[['Of_Course_I_Still_Love_You'], 'NYTimes':].T 

[23]: Of_Course_I_Still_Love_You 
NYTimes 0 
May30NASAblog 1 
May31NYTimes 0 
2015Musk 1 
IainBanks 1 

XVII.5 Queries and retrieval 

Returning to the question of information retrieval posed at the beginning of the lecture, 
let’s consider how to handle queries. Free text query, is a form of query popular on internet 
searches, where query terms are typed in without any connecting operators. Query terms 
can be any collection of words extracted from the corpus. A query vector can be made by 
taking the mean of these query word vectors and normalizing it to a unit vector. (Again 
this is not a foolproof strategy, but it is a simple prescription that often works well.) The 
cosine separation between the query vector and each document vector is then computed. 
The most relevant documents are considered to be the ones that make the smallest angle 
with the query vector, so they are returned frst in the output list. Here is a quick imple-
mentation suitable for small datatsets. 

[24]: def retrieve(querytokns, W, Vt, c): 

"""Given a list of query word token numbers "querytokns", 
all words vectors "W" and all document vectors "Vt.T" 
extracted from a corpus c, retrieve the documents 
relevant to the query. """ 

q = W[querytokns, :].mean(axis=0) 
nrm = norm(q) 
q /= nrm 
idx = np.argsort(Vt.T @ q)[::-1] 
kl = list(c.keys()) 
keys = [kl[i] for i in idx] 
docs = [c[k] for k in keys] 
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return docs, keys, idx 

To use this on our current corpus example, let’s make the word and document vectors frst. 

[25]: uu, ss, vvt = svd(A.toarray()) # SVD & rank k approximation 
k = 4 
U = uu[:, :k]; S = ss[:k]; 
Vt = vvt[:k, :] # Document vectors 
W = uu[:, :k] @ np.diag(ss[:k]) # Word vectors 

Here is an example of a query with two words, astronaut and first, and the frst three 
matching documents generated by the above strategy. 

[26]: myquery = np.where((Adf.index=='astronaut') | (Adf.index=='first'))[0] 
docs, keys, idx = retrieve(myquery, W, Vt, c) 
docs[:3] 

[26]: ['Nation’s first astronaut launch to orbit from home soil in nearly a␣ 
↪→decade', 
'SpaceX launch of NASA astronauts is postponed over weather', 
'The first stage of the SpaceX rocket has landed successfully on the␣ 
↪→droneship, 

Of Course I Still Love You.'] 

The frst result has both search words, while the other two has one of the two search words. 
Below is another example, where somewhat surprisingly, a document without the query 
word (but certainly what we would consider a relevant document) is listed within the top 
three matches. 

[27]: myquery = np.where(Adf.index=='droneship')[0] 
docs, keys, idx = retrieve(myquery, W, Vt, c) 
docs[:3] 

[27]: ['The first stage of the SpaceX rocket has landed successfully on the␣ 
↪→droneship, 

Of Course I Still Love You.', 
'These friends of yours are ships. Yes, both of them. What are they␣ 
↪→called? Of 

Course I Still Love You and Just Read The Instructions. They are not␣ 
↪→warships? 

With names like that?', 
'West Coast droneship under construction will be named Of Course I Still␣ 
↪→Love 

You'] 

Let me conclude this introduction to the subject of text analysis and information retrieval 
by noting that the concept of mapping words to vectors is fnding increasingly signifcant 
uses, such as in automatic translation. I have tried to present ideas in minimal examples, 
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but you should be aware that there are many extensions in the literature. Some extensions 
are easy to see as emerging from computational experience. An example is a generalization 
that we will see in an exercise that modifes the term-document matrix to account for the 
number of times a term occurs in a document. The resulting matrix will have frequency-
weighted entries, not just 0 and 1 as above. This is built into scikit-learn’s text analysis 
facilities, which we shall use in the exercise. 
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A 

Exercises 

A.1 Exercise: Sum up integer powers 

Task: Write a code to compute the value of 
N 

∑ in 
n=1 

for any integers i and N. (Solution codes will be ranked in terms of correctness, readability, 
and brevity.) 

How do you know your answer is correct? When writing code it is important to check for 
correctness. Llementary mathematics tells us that 

N N 
n2 = (N + 1)(2N + 1).

6∑ 
1n= 

(If you don’t know this prove it!) So you can easily check that your code gives the correct 
answer, at least for i = 2. In fact, even for a general power i, power sums have been studied 
very well and expressions connecting them to the Riemann zeta function are well known, 
so for this task, there are indeed many sources to double check our code results. 

Python has many styling guidelines for writing good code. You may want to peruse PEP 8 
at your leisure. And take time to behold an easter egg (one of several) within the language: 

[1]: import this 

The Zen of Python, by Tim Peters 

Beautiful is better than ugly. 
Explicit is better than implicit. 
Simple is better than complex. 
Complex is better than complicated. 
Flat is better than nested. 
Sparse is better than dense. 
Readability counts. 
Special cases aren't special enough to break the rules. 
Although practicality beats purity. 
Errors should never pass silently. 
Unless explicitly silenced. 
In the face of ambiguity, refuse the temptation to guess. 
There should be one-- and preferably only one --obvious way to do it. 
Although that way may not be obvious at first unless you're Dutch. 
Now is better than never. 
Although never is often better than *right* now. 
If the implementation is hard to explain, it's a bad idea. 
If the implementation is easy to explain, it may be a good idea. 
Namespaces are one honking great idea -- let's do more of those! 
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A.2 Exercise: Graphing functions 

This exercise checks that you have learnt the basic usage of numpy and matplotlib. 

[1]: import matplotlib.pyplot as plt 
import numpy as np 
%matplotlib inline 

Task 1: Graph a function of one variable Plot the graph of sin(x) for x in the interval 
[0, 10]. √ 
Task 2: Graph a function of two variables Plot the graph of cos( x2 + y2) for (x, y) ∈ 
[−5, 5] × [−5, 5]. 

A.3 Exercise: Passing function arguments 

When programming mathematical algorithms, it is important to know if unnecessary 
copying is being done by your program. Copying large matrices is expensive. Consider 
this simple function, where w could be a matrix or a vector or a list or a string etc. 

[1]: def twice(w): 
"""Replace w by 2*w""" 
w *= 2 

Consider a scenario where you make an object v and then send it to this function, like in 
this example: 

[2]: v = [2, 5, 1] 
twice(v) 

Task: Your task is to determine if v is being copied when you call twice(v) for some v. In 
other words, is a deep copy of v being implicitly made by python when you send v as an 
argument to twice? Answer this for at least two cases: 

• v is a numpy array 
• v is a string 

Explain your observations. 

A.4 Exercise: Piecewise functions 

Task: Write an effcient numpy-based code for computing the values of 

{ 
x sin(x2) if x < 0,

f (x) = 
cos(x) if x ≥ 0 
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at 1000001 uniformly spaced points in the interval [−5, 5]. Time it and then plot the func-
tion. 

[1]: import numpy as np 
import matplotlib.pyplot as plt 
%matplotlib inline 

A.5 Exercise: Row swap 

Task: Consider the following simple python code to interchange rows i and j of a numpy 
array A. 

[1]: def swaprow(i, j, A): 
tmp = A[i, :] 
A[i, :] = A[j, :] 
A[j, :] = tmp 

If there are problems with this (correctness? effciency? elegance? brevity?), explain them, 
and produce a better function. (Please do check for correctness before you check anything 
else.) 

A.6 Exercise: Averaging matrix 

Task: Make an n × n matrix whose entries on the diagonal, k superdiagonals, and k sub-
diagonals, are one, and whose remaining entries are zero. E.g., for k = 2 and n = 6, the 
matrix looks like 

[[1., 1., 1., 0., 0., 0.], 
[1., 1., 1., 1., 0., 0.], 
[1., 1., 1., 1., 1., 0.], 
[0., 1., 1., 1., 1., 1.], 
[0., 0., 1., 1., 1., 1.], 
[0., 0., 0., 1., 1., 1.]] 

Now modify the unit entries in each row to another constant such that all the row sums 
of the matrix equal one. We shall call the resulting matrix an averaging operator A. After 
making the A matrix, do the following tasks: - Apply A to a vector x whose entries are 
xj = (−1)j, say for n = 20, and k = 2. and comment on the resulting vector. 

• Apply A to a vector whose entries are values of f (x) = x2 + 2 sin(10x), say at n = 
1000 equally spaced points in the interval [0, 10] and k = 100. 

In both cases investigate the effect of varying k, report any edge effects, and discuss your 
observations. 
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A.7 Exercise: Differentiation matrix 

Task: Make an (n − 1) × n matrix D with the property that when it is applied to a vector 
f ∈ Rn we get D f ∈ Rn−1 whose entries are 

[D f ]i = fi+1 − fi, i = 0, 1, . . . , n − 1. 

Use the diag facility of numpy to make D fast. Put xj = jh for some positive grid spacing h. 
If fj equals f (xj) for some differentiable function f , then h−1D f produces approximations 
to the derivative of f , so we shall call h−1D the differentiation matrix. 

[1]: import numpy as np 
from numpy import diag 

• Apply D to obtain an approximation of the derivative of f (x) = sin(x), plot the 
result, and verify that you get what you expect. 

• Apply D to obtain an approximation of the derivative of f (x) = x2 + 2 sin(10x) for a 
thousand or more equally spaced values of x. Plot the result. Experiment with what 
happens if you add the averaging operator from the previous exercise into the mix. 

Optional Extra Task: Install scipy if you don’t have it already. Then make D as a sparse 
matrix (that doesn’t store zeros) using the following facility in scipy.sparse module: 

[2]: from scipy.sparse import diags 

Apply the sparse differentiation matrix to the functions described above and note if there 
are any performance gains. 

A.8 Exercise: Pairwise differences 

Task: Given a 1D numpy array x, produce the 2D numpy array D whose entries are 

Dij = xi − xj 

in one line of code. 

[1]: import numpy as np 
x = np.random.rand(5) 

A.9 Exercise: Hausdorff distance 

Task: Given two collections P and Q of points in the plane, compute the Hausdorff dis-
tance between sets P and Q. The Hausdorff distance between P and Q, denoted here by 
H(P, Q), is defned as follows. Let 

h(P, Q) = max min ∥p − q∥ 
p∈P q∈Q 
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where, for any p ∈ R2, the notation ∥p∥ denotes the Euclidean distance 
√ 

p · p. Using this, 
the Hausdorff distance is defned by [ ] 

H(P, Q) = max h(P, Q), h(Q, P) . 

[1]: import numpy as np 
P = np.random.rand(5, 2) 
Q = np.random.rand(7, 2) 

A.10 Exercise: k Nearest Neighbors 

Task 1: Write a function that fnds, given a fnite set of points in the plane and an integer 
k, the k nearest neighbors of each point in the set using numpy’s vectorized facilities. 

Task 2: Apply your function to this set of points with k = 3. Plot an arrow from each point 
to its k-nearest neighbors. 

[1]: import numpy as np 

P = np.array([[0,0], [0.2, 0.22], [0.1, -0.1], 
[1,1], [1.1, 0.9], [0.8, 0.9], [1.1, 0.63], 
[0.58, -0.1], [0.63, 0.1], [0.67, -0.3], [0.8,-0.23], 
[0.8, 0.6]]) 

k = 3 

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

3 nearest neighbors of every point

202 



A.11 Exercise: Predator-prey model 

Suppose the populations of rabbits (denoted by r(t)) and foxes (denoted by x(t)) at time t 
in a jungle are modeled by the ODE system 

dr 
= αr − βrx 

dt 
dx 

= δrx − γx
dt 

where α = 1.1, β = 0.4, δ = 0.1, and γ = 0.1. 

Task 1: Given initial conditions $ r(0) = 5$ and $ x(0) = 2, $ solve for r(t) and x(t) and plot 
the solution for 0 ≤ t ≤ 70. 

Task 2: The phase plot of the solution consists of points (x(t), r(t)) for various t values. 
Prepare a fgure (phase portrait) with phase plots of, say, 10 solutions, one each for randomly 
chosen initial values r(0) and x(0) between 1 and 9. 

Task 3: This system has two equilibria. Solve for them and mark them in your phase 
portrait. 

A.12 Exercise: Column space 

Task 1: You have seen that the SVD of an m × n matrix A gives, among other things, a 
basis for the range (column space). Compute this for the given matrix. 

Another way to obtain a basis for the range is using the QR factorization, also implemented 
in scipy. Carefully go through the linked QR documentation page. Then compute a basis 
for the column space of a given A using QR, and then using the SVD. 

Task 2: Check that the column spaces (not the bases) you obtained in the two ways are the 
same. (How would you check that two given bases span the same space?) 

Task 3: For a 500 × 500 random matrix, which method is faster? 

[1]: import numpy as np 
from scipy.linalg import svd, qr 

A = np.array([[1, -2, 3, -3], [2, -4, 9, -2], [-3, 6, -9, 9]]) 

A.13 Exercise: Null space 

Task 1: Find the null space of the given matrix A using SVD. 

Task 2: Find the null space of the same matrix A using the QR factorization. Use the linear 
algebra theorem that tells us that the null space of A is equal to the orthogonal complement 
of the range of the transpose At . (How would you extract the orthogonal complement from 
a full QR factorization?) 

Task 3: Check that both answers above span the same space. 
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[1]: import numpy as np 
from scipy.linalg import svd, qr 

A = np.array([[1, -2, 9, 5, 4,], [1, -1, 6, 5, -3], [-2, 0, -6, 1, -2],␣ 
↪→[4, 1, 9, 1, -9]]) 

A 

[1]: array([[ 1, -2, 9, 5, 4], 
[ 1, -1, 6, 5, -3], 
[-2, 0, -6, 1, -2], 
[ 4, 1, 9, 1, -9]]) 

A.14 Exercise: Pandas from dictionaries 

[1]: import pandas as pd 

While numpy arrays have an implicitly defned integer index used to access the values, the 
pandas objects have an explicitly defned index associated with the values, a feature shared 
with the python dictionary construct. To begin our pandas exercises, start by converting 
dictionaries to pandas objects. 

Tasks: 

1. Convert d0 to a corresponding pandas object pd0. 

[2]: d0 = {2:'a', 1:'b', 3:'c'} 

2. Sort indices of pd0. 

(Note: Newer versions of pandas do not sort dictionary keys.) 

3. Convert d1, d2 (together) to a pandas object dd. 

[3]: d1 = {'a': 1, 'b': 2} 
d2 = {'b': 3, 'c': 4} 

4. Give examples of indexing and slicing on dd. 

In pandas, indexing refers to accessing columns by their names, in a syntax reminiscent of 
dictionary access by keys, while slicing refers to row access like in numpy. 

5. Give examples of implicit and explicit indexing on dd. 

6. Forward fll and backfll missing values using various axis. 
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A.15 Exercise: Iris fower dataset 

The statistical visualization package seaborn comes with the famous Iris Flower Dataset. 
Your exercise is to give one-line codes to address the two tasks mentioned after the fgure 
below. 

[1]: import pandas as pd 
%matplotlib inline 
import seaborn; seaborn.set() 

iris = seaborn.load_dataset('iris') 

The following fgure is generated by 

seaborn.pairplot(iris, hue='species'); 
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Task 1: Make a bar plot of the mean sepal sizes for each species 

Task 2: Find the min, max and mean of petal sizes for each species 

205 

https://seaborn.pydata.org
https://en.wikipedia.org/wiki/Iris_flower_data_set


A.16 Exercise: Stock prices 

[1]: import pandas as pd 
%matplotlib inline 

If you have installed pandas_datareader, please download current stock prices using this: 

import pandas_datareader.data as web 
s = web.DataReader(['AAPL', 'GOOG', 'TSLA'], data_source='yahoo', start='2020') 

Alternately, load from a fle where data from until yesterday was saved. Download the fle 
from D2L and move it to the right place in order for the following cell to work. 

[2]: s = pd.read_pickle('../../data_external/stock_prices.pkl') 

In either case, you will end up with a data frame s which contains three categories of prices 
for three tech stocks. 

Tasks: 

• Find out if a heirarchical indexing (MultiIndex) is being used in this data. 

• Access and plot the closing price of AAPL on all days in the data. 

• Print the closing price of all three stocks yesterday. 

• Extract a smaller data frame with no MultiIndex containing only TSLA data. 

A.17 Exercise: Passengers of the Titanic 

The Titanic, with over 2000 passengers on board, including hundreds of emigrants to the 
US, as well as some of the world’s richest, sank in 1912. The seaborn library provides a 
smaller-sized, anonymized data set of Titanic’s passengers. Without identifying informa-
tion, we can’t tell the poor immigrant from the wealthy, yet the data manages to tell a story 
in other ways. Your task in this exercise is to answer a series of questions from the data, 
beginning with the mundane and ending with who survived. 

[1]: import numpy as np 
import pandas as pd 
import seaborn 

t = seaborn.load_dataset('titanic') 
t.head() 

survived pclass sex age sibsp parch fare embarked class \ 
0 0 3 male 22.0 1 0 7.2500 S Third 
1 1 1 female 38.0 1 0 71.2833 C First 
2 1 3 female 26.0 0 0 7.9250 S Third 
3 1 1 female 35.0 1 0 53.1000 S First 
4 0 3 male 35.0 0 0 8.0500 S Third 

[2]: 

[2]: 
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who adult_male deck embark_town alive alone 
0 man True NaN Southampton no False 
1 woman False C Cherbourg yes False 
2 woman False NaN Southampton yes True 
3 woman False C Southampton yes False 
4 man True NaN Southampton no True 

Tasks: The exercise is to answer the following questions. 

• How many passengers are described in the data set? 

• How many distinct values are in who column? 

• How many missing values do you fnd in each data column? 

• Does the data contain passengers over 60 old? How many? 

• What is the passenger age distribution? (Plot it.) 

• What are the 3-quantiles of the passenger age distribution? 

(Finite samples are divided into q subsets of nearly equal sizes by q-quantiles. The 2-
quantile is the median.) 

• How will you drop all passengers with no embarked data? 

• What is the average, minimum, and maximum fares paid by the passengers? 

• What are the proportions of passengers in different classes? 

• What is the female to male ratio in each travel class? 

• What fraction survived? 

(This fraction is sometimes called the survival rate - although it is an improper name in the 
sense that there is no “rate” to speak of here; the question is to compute a dimensionless 
fraction.) 

• Are the survival rates of male and female passengers different? 

• Are the survival rates of frst, second, and third class passengers different? 

• How can one print a table of survival rate dependencies on class and gender? 

• How can one print a table with number of survivors and average fare for each gender 
and cabin? 

A.18 Exercise: Animation 

Let x represent a point in the spatial interval [0, 10], let t > 0 represent time, and let 

f (x, t) = 
1 
(x + t)2 + 2 sin(10(x − t)).

2 

The following tasks are to be completed in a .py python fle (not in a jupyter notebook). 
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Task 1: Use matplotlib.animation module to display changes in the plot of f over x with 
respect to time t. 

Task 2: Use the celluloid module to perform the same task. Which is faster? Which is 
more convenient? 

Task 3: Add a text labeling the time at each snapshot that the animation is composed of. 

A.19 Exercise: Insurance company 

An insurance company starts with $1,000 dollars in its reserve. The company earns $100 
per day which is added to the reserve every day. However, the insurance company is 
engaged in very risky business: each day, with probability q = 0.46, the company may 
receive a claim, which will require it to pay $200 from its reserve the day it receives the 
claim. 

Question 1: What is the probability that the insurance company will run out of its reserve 
eventually and be ruined? 

(Hint: The situations of the gambler G of [Gambler’s Ruin] and the insurance company are 
not that different: at the end of each game, gambler G is up or down a chip; and at the end 
of each day, the insurance company reserve is up or down by $100. When G has no chips 
to play, G is ruined; when the insurance company’s reserve drops to $0, it is ruined.) 

Question 2: What should be the company’s reserve in order to make the probability of the 
company’s ruin less than 0.1%? 

A.20 Exercise: Probabilities on small graphs 

Consider random walks on the following small graphs with the indicated probabilities and 
answer the questions posed. 

Task 1: 

What is the probability that you can hit one state from another state (in any number of 
steps) in this Markov chain? Answer by looking at the graph and double check that an 
eigenvector gives what is expected. 

Task 2: 

For each question below, guess the answer from the fgure, and then verify that your com-
putational method gives the expected answer. 

• Starting from B = {3}, what is the probability of hitting A = {0, 1, 2} in any number 
of steps? 

• Starting from from any state in B = {0, 1, 2} what is the probability of hitting A = 
{3} in any number of steps? 

• Is this an absorbing Markov chain? Verify that the answers come out the same using 
the two methods you learnt. 
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Task 3: 

• What are the hitting probabilities of A = {0, 1, 2} from the remaining states? 

• What are the hitting probabilities of A = {4, 5, 6} from the remaining states? 

• What are the hitting probabilities of A = {3} from the remaining states? 

Task 4: 

• Starting from 1 what is the probability of hitting 0 in any number of steps? 

• Starting from 3 what is the probability of hitting 6 in any number of steps? 

A.21 Exercise: Ehrenfest thought experiment 

The following thought experiment is well-known in physics. Begin with a box that is 
divided into two equal halves. Each half contains many air molecules. Perform the follow-
ing experiment repeatedly: in each step, a molecule is chosen at random from one half and 
moved to the other half. If we start with unequal number of molecules in each half, what 
happens in the long run? 

In probability texts, this experiment is conducted with “Ehrenfest Urns”. There are two 
urns that together contain 2k balls. At each step, one of the balls is chosen at random and 
moved from its urn to the other urn. 

Task 1: Model the process as a Markov chain. Choose as states the number of balls in the 
frst urn. Write a function to make the transition matrix P for general k. Print out your 
transition matrix for k = 2 (which should be 5 x 5). Draw the directed graph of the chain 
for k = 2 case. 

Task 2: Is P irreducible? 

Task 3: Does Pn converge as n → ∞? 

Task 4: Plot the stationary distribution of this Markov chain for k = 100. 

A.22 Exercise: Power method for large graphs 

In the lecture, we used the eig function to compute pagerank. Since this is unsuitable for 
large graphs, we pursue an alternate idea, also from the lecture: the pagerank vector, being 
the eigenvector of the dominant eigenvalue of a positive stochastic matrix, is the limit of 
the sequence 

x, (Pt)x, (Pt)2x, (Pt)3x, . . . , 

which we can computationally approach. This is an instance of the power method, a topic 
well studied in numerical analysis. This method only needs to apply the matrix Pt repeat-
edly (and has no need for other operations found in general eigensolvers that carry more 
memory overhead). This exercise shows you the practical problems with using a general 
eigensolver as the graph size increases and asks you to implement the power method to 
be able to solve on large graphs. 
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Task 1: Compute the stationary distribution of the Markov chain from Gambler’s ruin with 
p = 0.4, N = 10. (Do this task with eig.) Do you get more than one stationary distribution? 

Task 2: Consider the adjacency matrix (independent of p) of the random walk and intro-
duce a restart probability. Using it, compute the pagerank for all states of the Markov chain 
with N = 10 and restart probabilities r = 0.1, 0.01, 10−3, and 10−4. 

Task 3: Compute the pagerank of the ruin state for r = 0.1, N = 1000. How much farther 
can you go increasing N in your computing environment, while continuing to use eig? 

Task 4: Implement the power method for a positive stochastic matrix P as a python func-
tion, with the inputs indicated below. 

def powerP(x, aPt, r=0.1, maxn=1000, tol=1e-10): 
""" Apply power iterations to a positive stochastic matrix P. 
INPUTS: 
- x: initial probability distribution for the power method, 
- aPt: function that returns P.T @ x given x 
- r: restart probability, 
- maxn: apply at most 'maxn' power iterations 
- tol: quit if successive iterations differ by less than 'tol'. 

OUTPUT: Vector of pageranks if converged. """ 

This function should start with a random initial probability distribution x and compute 
(Pt)nx for increasing n until ∥(Pt)nx − (Pt)n−1x∥ becomes smaller than a given input tol-
erance. To save memory and fops, you should not create the transition matrix P in memory, 
rather, you should make a function that applies Pt to a vector, and pass that function as one 
of the arguments aPt to the powerP function. 

Apply your function to compute the pagerank of the ruin state for r = 0.1, N = 100000. 

A.23 Exercise: Google’s toy graph 

At SNAP (Stanford Network Analysis Project), you will fnd a large graph data set (with 
over 5 million edges) called the Google Web Graph. (This graph was released by google for a 
programming competition.) Download this graph, examine the fle, and guess the format. 
You will need to load this data into your computer’s memory to solve this exercise. Think 
carefully about what tools you would use so as not to run out of memory. 

Task: Setting restart probability r = 1 − 0.85, compute the pageranks of all vertices on this 
graph. Reuse the power method function you wrote in Exercise: Power method for large 
graphs. 

[1]: import os 
import urllib 
import shutil 
import numpy as np 

[2]: # The file is located here: 
url = "https://snap.stanford.edu/data/web-Google.txt.gz" 
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# Download and copy it here using the code below: 
f = '../../data_external/web-Google.txt.gz' 

if not os.path.exists(f): 
r = urllib.request.urlopen(url) 
fo = open(f, 'wb') 
shutil.copyfileobj(r, fo) 
fo.close() 

A.24 Exercise: Atmospheric carbon dioxide rise 

Task: Reconsider the problem of the assignment on rising atmospheric CO2 levels. Using 
the data you already downloaded for the assignment, now ft a quadratic curve to the 
data by regression. Since the derivative of a quadratic function can be hand-computed, 
you would then be able to estimate the rate of change of the regression ft and address the 
earlier assignment task: provide a policy-maker with a “yes or no” answer on whether the 
rate of increase of CO2 is increasing. 

A.25 Exercise: Ovarian cancer data 

Download and copy the datafle ovariancancer.npy into data_external folder. This fle 
contains data of 216 patients, the frst 121 of which have ovarian cancer, and the remaining 
95 do not. For each patient, expressions of some biomarkers through 4000 spectroscopic 
measurements are provided. The original data source is ccr.cancer.gov. The data is also 
packaged together with Matlab® and they maintain an online documentation page on 
it. High-dimensional biological and genetic datasets are often highly correlated, i.e., pa-
tients can be expected to have signifcant overlap in genes and biomarkers. Therefore such 
datasets will generally beneft from PCA and dimensional reduction. In this exercise, you 
will work with a realistic dataset which exemplifes such a dimensional reduction. 

[1]: import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
%matplotlib inline 
import numpy as np 
X = np.load('../../data_external/ovariancancer.npy') 
X.shape 

[1]: (216, 4000) 

Task 1: Project the 4000-variable data into its frst 3 principal components and view the 
projections in a three-dimensional plot. 

Task 2: Plot the cumulative explained variance for this dataset. What is the percentage of 
variance lost in restricting the data from 4000 to 3 dimensions? How many dimensions are 
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needed to keep 95% of the variance? 

A.26 Exercise: Eigenfaces 

In this exercise you will apply PCA to a large library of facial images to extract dominant 
patterns across images. The dataset is called Labeled Faces in the Wild, or LFW, (source) and 
is popular in computer vision and facial recognition. It is made up of over a thousand 62 x 
47 pixel face images from the internet, the frst few of which are displayed below. 

[1]: import matplotlib.pyplot as plt 
%matplotlib inline 
import numpy as np 
from sklearn.datasets import fetch_lfw_people # this will download␣ 

↪→images if 
faces = fetch_lfw_people(min_faces_per_person=60) # you don't already have␣ 

↪→them 
fig, ax = plt.subplots(4, 7, figsize=(12, 10)) 
for i, axi in enumerate(ax.flat): 

axi.imshow(faces.images[i], cmap='pink') 
axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces. 

↪→target[i]]) 

Task 1: We refer to the principal components of face image datasets as eigenfaces. Display 
the frst 28 eigenfaces of this dataset. (They will have little resemblance to the frst 28 
images displayed above.) 

Task 2: Let N be the least number of dimensions to which can you reduce the dataset 
without exceeding 5% relative error in the Frobenius norm. Find N. (This requires you 
to combine what you learnt in the SVD lecture on the Frobenius norm of the error in best 
low-rank approximation with what you just learnt in the PCA lecture.) 
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Task 3: Repeat PCA, restricting to N eigenfaces (with N as in Task 2), holding back the last 
seven images in the dataset. Compute the representations of these last seven images in 
terms of the N eigenfaces. How do they compare visually with the original seven images? 

Task 4: Restricting to only images of Ariel Sharon and Hugo Chavez, represent (and plot) 
them as points on a three-dimensional space whose axes represent the principal axes 4, 5, 
and 6. Do you see the points somewhat clustered in two groups? (The principal directions 
0, 1, 2, 3 are excluded in this task since they seem to refect lighting, shadows, and generic 
facial features, so will likely not be useful in delineating individuals.) 

A.27 Exercise: Word vectors 

The following corpus contains statements by two Republican presidents, a quote from the 
bible, and three quotes from the internet. 

[1]: c = { \ 
'Lincoln1865': 
'With malice toward none, with charity for all ...' + 
'let us strive on to finish the work we are in ... ' + 
'to do all which may achieve and cherish a just and lasting peace, ' + 
'among ourselves, and with all nations.', 

'TrumpMay26': 
'There is NO WAY (ZERO!) that Mail-In Ballots ' + 
'will be anything less than substantially fraudulent.', 

'Wikipedia': 
'In 1998, Oregon became the first state in the US ' + 
'to conduct all voting exclusively by mail.', 

'FortuneMay26': 
'Over the last two decades, about 0.00006% of total ' + 
'vote-by-mail votes cast were fraudulent.', 

'TheHillApr07': 
'Trump voted by mail in the Florida primary.', 

'KingJamesBible': 
'Wherefore laying aside all malice, and all guile, and ' + 
'hypocrisies, and envies, and all evil speakings', 
} 

Task 1: Use scikit-learn’s CountVectorizer to make the term-document matrix, particu-
larly noting what the rows and columns correspond to (and compare with the LSA lecture). 
Display it as a data frame labeled with words and document keys. Does CountVectorizer 
lemmatize the words? 

Task 2: Combine CountVectorizer (see its doc string for help) with a tokenizer func-
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tion you write using spacy’s lemmatization (per what you learnt in the LSA lecture). Re-
make the term-document matrix. Display your answer. (Your matrix size will depend on 
whether you used stop_words='english' argument of CountVectorizer, and may even 
depend on which version of spacy you are using, since lemmatization has changed across 
versions.) 

Task 3: Use LSA to compute three dimensional representations of all documents and 
words using your term-document matrix from Task 2. Print out your vector representation 
of vote (which will obviously depend on the matrix). 

Task 4: Write a function to compute the cosine of the angle between the spans of two word 
vectors. Compute the cosine of the angle between malice and vote. Compute the cosine 
of the angle between mail and vote. 

Task 5: In order to moderate the infuence of words that appear very frequently, the TF-
IDF matrix in often used instead of the term-document matrix. The term frequency-inverse 
document frequency (TF–IDF) matrix weights the word counts by a measure of how often 
they appear in the documents according to a formula found in scikit-learn user guide. 
Compute the TF-IDF matrix for the above corpus using TfidfVectorizer. 

Task 6: Recompute the two cosines of Task 4, now using the TF-IDF matrix of Task 5 and 
compare. 

[2]: from sklearn.feature_extraction.text import CountVectorizer,␣ 
↪→TfidfVectorizer 

import pandas as pd 
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B 

Projects 

B.1 Assignment: Bisection Method 

Your task is to implement the bisection method for fnding a solution x of the equation 

f (x) = 0. 

Here f is a real-valued function of a single real variable x and the solution of the above 
equation is called a root of f . 

Many nonlinear algebraic equations, such as x = 1 + cos x do not admit a closed form 
solution. But a numerical method can fnd an approximate solution by fnding the root of 
f (x) = x − 1 − cos x. 

Bisection is a numerical method to solve for a root of a function f (x) of a single real variable 
x. Here is its description: 

The Bisection method 

1. Start with an interval [a, b] in which f (x) changes sign. 

2. Then there must be (at least) one root in [a, b]. 

3. Halve the interval and set the midpoint m = (a + b)/2. 

• Does f change sign in left half [a, m]? 
• If Yes: Repeat with the left interval [a, m] (set b = m) 
• If No: Repeat with the right interval [m, b] (set a = m) 

4. At the nth step, the initial interval [a, b] has been halved n times and we know that 
f (x) must have a root inside a small subinterval of length 2−n(b − a). Since the root 
is contained in this subinterval, error ≤ 2−n(b − a). 

5. Hence we may stop the subdivisions when n is such that 

2−n(b − a) ≤ ϵ. 

for some user specifed error tolerance ϵ, and take the midpoint m as the root. 

Hints and suggestions 

1. Write down your steps as a precise algorithm (before you code) in terms of 
for/while, if, else, etc. Use this to map out how you will write your code. 

2. Write a frst version of the code and make sure it is working on a test problem. Your 
code should be in the form of a function 

def bisection(f, a, b, eps, niters): 
# Code goes here. 
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where f, a, b, and eps represent f , a, b and ϵ in the above description, and niters is the 
maximal number of iterations, which in this case is the maximal number of subdivisions 
of the initial interval you will make (whether or not the eps tolerance is met). 

3. Test your bisection code on the function f (x) whose roots you know, say f (x) = 
cos(x). Once you know your current code is working correctly, proceed to the next 
step. If you jump this step, beware that “premature optimization is the root of all 
evil,” according to Donald Knuth. 

4. Refactor/improve/optimize: When halving the interval, can you reuse a previously 
used value of f to make the code more effcient? (This would be important when 
the evaluation of f is expensive.) Also have you made sure you have included com-
ments? Does you function have a docstring? 

B.2 Assignment: Rising CO2 levels in the atmosphere 

Mauna Loa Observatory is located over 3000 meters above the sea level, on the Big Island 
of Hawaii. NOAA, the National Oceanic and Atmospheric Administration, runs this facil-
ity, and has been collecting data on the composition of our atmosphere for years. The rise 
of CO2 in our atmosphere is one of the drivers of climate change as CO2 is a heat-trapping 
gas. NOAA measures CO2 levels at the observatory and has made its data available for all. 

Task 

In this assignment, your task is 

1. to download this data from within python using urllib, 
2. do the necessary data munging to get the data into arrays, 
3. extract the monthly averages of measured CO2 from a data column named average, 
4. plot the monthly averages as a function of time, 
5. estimate the rate of change of CO2 from this data, and 
6. plot your estimate of the rate of change as a function of time. 

The last two items require you to experiment with imperfect techniques to estimate rate 
of change (imperfections that we saw in previous class activities). Please conclude your 
assignment with what your answer would be if a policy-maker wants a “yes or no” answer 
on whether the rate of increase of CO2 is increasing. 

Your product for grading should be a jupyter notebook, written clearly (like a term paper), 
including code and graphs, and with explanations of all your steps to arrive at your graphs 
and conclusions. 

Hints 

• This is where the data is available for download: 

ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt 

• The data has gaps (read the fle header) which you can easily remove using numpy’s 
masking facilities. 
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• The data may not be perfectly equispaced. Use the function interp1d from 
scipy.interpolate to generate values at equispaced time intervals (after installing 
scipy). 

• You will see that although CO2 data has a rising trend, the curve is flled with small 
oscillations. Use your experience from exercises or any other tools you know to cal-
culate rate estimates of the overall trend. 

B.3 Assignment: Growth of confrmed COVID-19 cases 

Task 

Your assignment is to plot a time series of confrmed COVID-19 cases in Oregon, Washing-
ton, and California, using data from [JHU-CSSE]. 

Start by copying the required code to download/update the data from the Overview lec-
ture. Then see what fles you would need to examine to get the data to accomplish your 
goal. 

Product for grading 

Turn in one .ipynb fle containing a jupyter notebook explaining how you produced the 
plot. Also turn in one .png fle of your fnal plot. 

If you were to fnish the assignment today, your plot would look like this: 
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But, of course, the plot you turn in should be the plot obtained that day. And none of us 
know yet how that would look like. 
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B.4 Assignment: World map of COVID-19 

Task 

Your task is to make a chloropleth map visualizing COVID-19 cases worldwide. The coun-
tries of the world should be displayed in the Albers equal area projection. The number of 
cases in each country should be indicated by a reasonable color scale (of your choice). 

Please submit three fles: 

1. A .png image fle of the chloropleth map using the latest available data on the sub-
mission day. 

2. A .py python fle (not jupyter notebook) which generated your .png image fle. 
3. A .mp4 movie fle containing an animation of the choloropleth maps from 

01/22/2020 through the latest date of the data and a .py python fle that you used 
for creating the animation. 

Hints 

• The last task of making the mp4 movie fle is harder than the other two. Begin with 
the easier tasks. 

• An example of a chloropleth map is in the Overview lecture. 
• We have already seen the Albers equal area projection in the lecture Visualizing 

geospatial data. 
• For animation, use your experience from the exercise on animations. 
• Use the Johns Hopkins dataset. 

An example solution with data until May 7, 2020, can be seen in the output of the next 
code cell if you are reading this in a jupyter notebook. 

[1]: from IPython.display import Video 
Video("../figs/covidworldmapanim.mp4") 

[1]: <IPython.core.display.Video object> 

Alternately, the same solution video can be downloaded or visualized at this weblink. 

B.5 Assignment: Neighbor’s color 

Task 1: Consider a simple closed curve divided into n pieces (arcs), each of which is colored 
in either red or blue. In each iteration, one of the arcs is chosen at random. The selected 
arc then chooses one of its neighbors at random and adopts that neighbor’s color. 
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Consider n = 3 frst (as in the fgure above). Model the process as a Markov chain. The 
states consist of all the possible color confgurations on the arcs. Answer these questions: 

• How many states are there? 

• Draw the directed graph of the Markov chain. 

• What are the absorbing states? 

• Is this an absorbing Markov chain? 

Task 2: Now, consider a general n instead of n = 3. 

• How many states are there? 

• Write a python function to compute the probabilities of eventually hitting the ab-
sorbing states for a general n. (Use vectorized operations as much as possible.) 

Task 3: Finally, consider the generalization of the above setting from a closed curve to the 
surface of a torus. The toroidal surface is divided into n × n rectangles, each of which has 
one of k colors (see the fgure below for an example). The process generalizes to selecting 
one of these rectangles at random, the chosen rectangle then adopting a color from one of 
its 8 neighbors, and then repeating. 

[1]: import numpy as np 
import matplotlib.pyplot as plt 
%matplotlib inline 
fig = plt.figure(); ax = fig.gca(projection='3d') 
angs = np.linspace(0, 2.*np.pi, 20) 
theta, phi = np.meshgrid(angs, angs) 
x = (2 + np.cos(theta)) * np.cos(phi) 
y = (2 + np.cos(theta)) * np.sin(phi) 
z = np.sin(theta) 
rng = np.random.default_rng() 
randind = rng.integers(5, size=x.shape) 
colors = np.array(['crimson', 'coral', 'gold', 'blue', 'olive'])[randind] 
ax.plot_surface(x, y, z, facecolors=colors, linewidth=1, edgecolors='k') 
ax.view_init(46, 26); ax.set_zlim(-3,3); 
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Again, model the process as a Markov chain. This Markov chain arises in population 
genetics. It shows you a manifestation of the combinatorial explosion (or the curse of dimen-
sionality) that makes computation by the standard technique quickly infeasible. 

• How many states are there for a given n and k? 

• Is it feasible to extend the python function you wrote in Task 2 to compute the ab-
sorption probabilities for this Markov chain, say for k = 2, n = 10? 

• Imagine cutting, unfolding, and stretching the toroidal surface to a square with an 
n × n grid of color cells, respecting the boundary identifcations inherited from the 
torus. Any state of the Markov chain can thus be implemented as a 2D integer 
numpy array (each entry taking one of k values, representing the colors). Write a 
python function to simulate the process for a general n and k using numpy’s ran-
dom module. You should see colors dispersing, coalescing, migrating etc, with the 
process eventually terminating in an absorbing state. 

• Create an animation displaying the sequence of states obtained in one call of your 
function, say with k = 4, n = 10, starting from some initial state of your choice. (Be 
warned that there are random sequence of states that are too long to ft in memory 
even for small n and k, so build in a fail-safe to avoid a computer crash.) Render the 
animation either on the toroidal grid or on the equivalent fat n × n grid. 

An example of a solution animation can be viewed below: 

[2]: from IPython.display import Video 
Video("../figs/diversityloss.mp4", width=500) 

[2]: <IPython.core.display.Video object> 

If the video does not render on your reading device, you may download it from this we-
blink. 
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