
Lectures on

Mathematical Computing

with Python

Jay Gopalakrishnan

Portland State University

Accessibility Statement
PDXScholar supports the creation, use, and remixing of open educational resources
(OER). Portland State University (PSU) Library acknowledges that many open
educational resources are not created with accessibility in mind, which creates barriers
to teaching and learning. PDXScholar is actively committed to increasing the
accessibility and usability of the works we produce and/or host. We welcome feedback
about accessibility issues our users encounter so that we can work to mitigate them.
Please email us with your questions and comments at pdxscholar@pdx.edu

“Accessibility Statement” is a derivative of Accessibility Statement by BCcampus, and is
licensed under CC BY 4.0.

Accessibility of Lectures on Mathematical Computing
with Python
Lectures on Mathematical Computing with Python meets the criteria outlined below,
which is a set of criteria adapted from BCCampus’ Checklist for Accessibility, licensed
under CC BY 4.0.

This material contains the following accessibility and usability features:

Organization of content

● Content is organized under headings and subheadings, which appear in
sequential order and are reflected in the corresponding Table of Contents

Images

● All images contain alternative text and are in-line with text

Tables

● Tables include header rows and cell padding
● Tables do not include merged or split cells

Font Size and formatting
● Font size is 11 point for body text

mailto:pdxscholar@pdx.edu
https://opentextbc.ca/accessibilitytoolkit/front-matter/accessibility-statement/
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://opentextbc.ca/accessibilitytoolkit/back-matter/appendix-checklist-for-accessibility-toolkit/
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

The Accessibility Statement is licensed under a Creative Commons Attribution 4.0 International
License.

● Font size is 9 or higher is used for footnotes, captions, and text inside tables

Known Issues/Potential barriers to accessibility

● Several Images rely color to convey meaning
● Screenshots of python code are used throughout the text and do not a include a

complete transcript of the text.
● Mathematical equations do not include MathML (Mathematical Markup

Language).

If you have trouble accessing this material, please let us know at pdxscholar@pdx.edu.

This accessibility statement has been adopted and adapted from Accessibility
Statement and Appendix A: Checklist for Accessibility found in Accessibility Toolkit -
2nd Edition by BCcampus, and is licensed under a Creative Commons Attribution 4.0
International License.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:pdxscholar@pdx.edu
https://opentextbc.ca/accessibilitytoolkit/front-matter/accessibility-statement/
https://opentextbc.ca/accessibilitytoolkit/front-matter/accessibility-statement/
https://opentextbc.ca/accessibilitytoolkit/back-matter/appendix-checklist-for-accessibility-toolkit/
https://opentextbc.ca/accessibilitytoolkit
https://opentextbc.ca/accessibilitytoolkit
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© 2020 Jay Gopalakrishnan

This work is licensed under a Creative Commons Attribution–ShareAlike 4.0 International
License.

You are free to:

• Share: copy and redistribute the material in any medium or format, and

• Adapt: remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

• ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

• No additional restrictions: You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

Digital Object Identifer (DOI):

10.15760/pdxopen-28

(https://doi.org/10.15760/pdxopen-28)

Recommendedcitation:

Gopalakrishnan, J., “Lectures on Mathematical Computing with Python” (2020). PDXOpen: Open Educational
Resource 29, Portland State University Library, DOI: 10.15760/pdxopen-28.

2

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.15760/pdxopen-28

Preface

These lectures were prepared for a class of (mostly) second year mathematics and statis-
tics undergraduate students at Portland State University during Spring 2020. The term
was unlike any other. The onslaught of COVID-19 moved the course meetings online, an
emergency transition that few of us were prepared for. Many lectures refect our preoccu-
pations with the damage inficted by the virus. I have not attempted to edit these out since
I felt that a utilitarian course on computing need not be divested from the real world.

These materials offer class activities for studying basics of mathematical computing using
the python programming language, with glimpses into modern topics in scientifc com-
putation and data science. The lectures attempt to illustrate computational thinking by
examples. They do not attempt to introduce programming from the ground up, although
students, by necessity, will learn programming skills from external materials. In my expe-
rience, students are able and eager to learn programming by themselves using the abun-
dant free online resources that introduce python programming. In particular, my students
and I found the two (free and online) books of Jake VanderPlas invaluable. Many sec-
tions of these two books, hyperlinked throughout these lectures, were assigned as required
preparatory reading materials during the course (see List of Preparatory Materials).

Materials usually covered in a frst undergraduate linear algebra course and in a one-
variable differential calculus course form mathematical prerequisites for some lectures.
Concepts like convergence may not be covered rigorously in such prerequisites, but I have
not shied away from talking about them: I feel it is entirely appropriate that a frst en-
counter with such concepts is via computation.

Each lecture has a date of preparation. It may help the reader understand the context in
relation to current events and news headlines. The timestamp also serves as an indicator
of the state of the modules in the ever-changing python ecosystem of modules for scientifc
computation. The specifc version numbers of the modules used are listed overleaf. The
codes may need tinkering with to ensure compatibility with future versions. The materials
are best viewed as offering a starting point for your own adaptation.

If you are an instructor declaring these materials as a resource in your course syllabus, I
would be happy to provide any needed solutions to exercises or datafles. If you fnd errors
please alert me. If you wish to contribute by updating or adding materials, please fork the
public GitHub Repository where these materials reside and send me a pull request.

Jay Gopalakrishnan

(gjay@pdx.edu)

3

https://github.com/jayggg/mth271content
mailto:gjay@pdx.edu

Software Requirements:

• Python >= 3.7

• Jupyter >= 1

Main modules used:

• cartopy==0.18.0b2.dev48+

• geopandas==0.7.0

• gitpython==3.1.0

• matplotlib==3.2.1

• numpy==1.18.2

• pandas==1.0.4

• scipy==1.4.1

• scikit-learn==0.23.1

• seaborn==0.10.0

• spacy==2.2.4

Other (optional) facilities used include line_profler, memory_profler, numexpr, pandas-
datareader, and primesieve.

4

Table of Contents

Lecture Notebooks

• 01 Overview of some tools . 10
• 02 Interacting with python . 20
• 03 Working with git .24
• 04 Conversion table . 29
• 05 Approximating derivatives . 35
• 06 Genome of SARS-CoV-2 virus . 40
• 07 Fibonacci primes . 48
• 08 Numpy blitz . 58
• 09 The SEIR model of infectious diseases . 71
• 10 Singular value decomposition . 83
• 11 Bikes on Tilikum Crossing . 95
• 12 Visualizing geospatial data . 109
• 13 Gambler’s ruin . 120
• 14 Google’s PageRank . 138
• 15 Supervised learning by regression . 154
• 16 Unsupervised learning by PCA . 166
• 17 Latent semantic analysis . 185

Exercises

• Power sum . 198
• Graph functions . 198
• Argument passing . 199
• Piecewise functions . 199
• Row swap . 200
• Averaging matrix . 200
• Differentiation matrix . 200
• Pairwise differences . 201
• Hausdorff distance . 201
• k-nearest neighbors . 202
• Predator-prey model . 202
• Column space . 203
• Null space . 203
• Pandas from dictionaries . 204
• Iris fowers . 204
• Stock prices . 205
• Passengers on the Titanic . 206
• Animate functions . 207

5

• Insurance company. 208
• Probabilities on small graphs . 208
• Ehrenfest urns . 209
• Power method for large graphs . 209
• Google’s toy graph . 210
• Atmospheric carbon dioxide . 211
• Ovarian cancer data . 211
• Eigenfaces . 212
• Word vectors . 213

Projects

• Bisection . 215
• Rise of CO2 in the atmosphere . 216
• COVID-19 cases in the west coast . 217
• World map of COVID-19 cases . 217
• Neighbor’s color . 218

Download

• GitHub Repository of Codes & Notebooks
• OER (Open Educational Resource) Page

6

https://github.com/jayggg/mth271content
https://doi.org/10.15760/pdxopen-28

List of Preparatory Materials for Each Activity

The activities in the table of contents are enumerated again below in a linear ordering with
hyperlinks to external online preparatory materials for each.

Required Preparation Activity

Watch the frst few of the 44 Microsoft 01 Overview of tools
videos on python. Watch a 2014 video by
SIAM: What is data science? Browse basic
language facilities either from the offcial
Python tutorial or from [JV-W].

Read about the iPython shell facilities 02 Interacting with python
from the frst chapter of [JV-H].

Browse Git Handbook 03 Working with git

Using the Python tutorial or [JV-W] work 04 Conversion table
with if, while, for,range, print, lists [],
tuples (), and list comprehension.

Exercise: Power sum

Using Python tutorial or [JV-W], learn 05 Approximating derivatives
about functions, def, and lambda.

Project: Bisection

Using Python tutorial or [JV-W], learn 06 Genome of SARS-CoV-2 virus
about dictionaries {}, strings and fle
operations open, readlines

Project: Rise of CO2 in the atmosphere

Learn about pytest, generator 07 Fibonacci primes
expressions, yield, line and cell magics

Learn numpy basics from [JV-H], ufuncs, 08 Numpy blitz
broadcasting indexing, masking

Exercise: Argument passing
Exercise: Piecewise functions

7

https://youtu.be/7XOhibxgBlQ?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
https://youtu.be/7XOhibxgBlQ?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
https://youtu.be/KUByrBWS2HU
https://docs.python.org/3/tutorial/
https://jakevdp.github.io/WhirlwindTourOfPython/index.html
https://jakevdp.github.io/PythonDataScienceHandbook/01.00-ipython-beyond-normal-python.html
https://guides.github.com/introduction/git-handbook/
https://docs.python.org/3/tutorial/
https://jakevdp.github.io/WhirlwindTourOfPython/index.html
https://docs.python.org/3/tutorial/controlflow.html#if-statements
https://jakevdp.github.io/WhirlwindTourOfPython/07-control-flow-statements.html
https://docs.python.org/3/tutorial/controlflow.html#for-statements
https://docs.python.org/3/library/functions.html#print
https://jakevdp.github.io/WhirlwindTourOfPython/11-list-comprehensions.html
https://docs.python.org/3/tutorial/
https://jakevdp.github.io/WhirlwindTourOfPython/index.html
https://jakevdp.github.io/WhirlwindTourOfPython/08-defining-functions.html
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/tutorial/
https://jakevdp.github.io/WhirlwindTourOfPython/index.html
https://jakevdp.github.io/WhirlwindTourOfPython/06-built-in-data-structures.html
https://jakevdp.github.io/WhirlwindTourOfPython/14-strings-and-regular-expressions.html
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/codecs.html?highlight=.readlines#codecs.StreamReader
https://docs.pytest.org/en/latest/index.html
https://jakevdp.github.io/WhirlwindTourOfPython/12-generators.html
https://jakevdp.github.io/WhirlwindTourOfPython/12-generators.html
https://jakevdp.github.io/PythonDataScienceHandbook/01.03-magic-commands.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.02-the-basics-of-numpy-arrays.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.03-computation-on-arrays-ufuncs.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arrays-broadcasting.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.07-fancy-indexing.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.06-boolean-arrays-and-masks.html

Required Preparation Activity

Learn sorting, partitioning [JV-H], and
quick ways to make matrices from
[numpy.org].

Learn how to make simple plots using
matplotlib. Read about aggregation and
masking from [JV-H]

Get an overview of scipy facilities. Online
scipy lecture notes are very helpful.
Familiarize yourselves with scipy’s
sparse and integrate modules.

Learn numpy facilities for matrix
factorizations, eigenvalues etc.

Introduce yourselves to the data analysis
module pandas.

Reinforce your pandas skills.

Familiarize yourselves with geopandas,
cartopy, and matplotlib.animation.

Review scipy.sparse. Introduce
yourselves to NetworkX.

Exercise: Row Swap

Exercise: Averaging Matrix
Exercise: Differentiation Matrix

Exercise: Graphing functions

Exercise: Pairwise differences
Exercise: Hausdorff distance
Exercise: k-nearest neighbors

09 SEIR model of infectious diseases

Exercise: Predator-prey model

10 Singular value decomposition

Exercise: Column space
Exercise: Null space

Exercise: Pandas from dictionaries

Exercise: Iris fower dataset

11 Bikes on Tilikum Crossing
Exercise: Stock prices
Exercise: Passengers on the Titanic

Project: Growth of COVID-19 cases in the
west coast

12 Visualizing geospatial data

Exercise: Animate functions

Project: World map of COVID-19 cases

13 Gambler’s Ruin

Exercise: Insurance Company
Exercise: Probabilities on small graphs
Exercise: Ehrenfest thought experiment

8

https://jakevdp.github.io/PythonDataScienceHandbook/02.08-sorting.html
https://numpy.org/devdocs/reference/routines.array-creation.html
https://numpy.org/devdocs/reference/routines.array-creation.html
https://jakevdp.github.io/PythonDataScienceHandbook/04.01-simple-line-plots.html
https://jakevdp.github.io/PythonDataScienceHandbook/04.01-simple-line-plots.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.00-introduction-to-numpy.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.00-introduction-to-numpy.html
https://docs.scipy.org/doc/scipy/reference/tutorial/index.html
https://scipy-lectures.org
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/integrate.html
https://numpy.org/doc/1.18/reference/routines.linalg.html
https://numpy.org/doc/1.18/reference/routines.linalg.html
https://numpy.org/doc/1.18/reference/generated/numpy.linalg.eig.html#numpy.linalg.eig
https://jakevdp.github.io/PythonDataScienceHandbook/03.00-introduction-to-pandas.html
https://jakevdp.github.io/PythonDataScienceHandbook/03.00-introduction-to-pandas.html
https://geopandas.org
https://scitools.org.uk/cartopy/docs/latest/
https://matplotlib.org/3.2.1/api/animation_api.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
http://networkx.github.io

Required Preparation Activity

Be acquainted with scipy.sparse’s matrix
format, specifcally COO and CSR
formats.

Read the good introduction to machine
learning from [JV-H]

Read about unsupervised machine
learning, focusing specifcally on PCA.
Also review the prior lecture on SVD.

Learn about text features in machine
learning from [JV-H].

Project: Neighbor’s color

Exercise: Power method for large graphs
Exercise: Google’s toy graph

15 Supervised learning by regression

Exercise: Atmospheric carbon dioxide

16 Unsupervised learning by PCA

Exercise: Ovarian cancer data
Exercise: Eigenfaces

17 Latent semantic analysis

Exercise: Word vectors

9

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://jakevdp.github.io/PythonDataScienceHandbook/05.01-what-is-machine-learning.html
https://jakevdp.github.io/PythonDataScienceHandbook/05.01-what-is-machine-learning.html
https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html
https://jakevdp.github.io/PythonDataScienceHandbook/05.04-feature-engineering.html

I

Overview of some tools

March 31, 2020

This lecture is an introductory overview to give you a sense of the broad utility of a few
python tools you will encounter in later lectures. Each lecture or class activity is guided by
a Jupyter Notebook (like this document), which combines executable code, mathematical
formulae, and text notes. This overview notebook also serves to check and verify that you
have a working installation of some of the python modules we will need to use later. We
shall delve into basic programming using python (after this overview and a few further
start-up notes) starting from a later lecture.

The ability to program, analyze and compute with data are life skills. They are useful well
beyond your mathematics curriculum. To illustrate this claim, let us begin by considering
the most pressing current issue in our minds as we begin these lectures: the progression
of COVID-19 disease worldwide. The skills you will learn in depth later can be applied
to understand many types of data, including the data on COVID-19 disease progression.
In this overview, we shall use a few python tools to quickly obtain and visualize data on
COVID-19 disease worldwide. The live data on COVID-19 (which is changing in as yet
unknown ways) will also be used in several later activities.

Specifcally, this notebook contains all the code needed to perform these tasks:

• download today’s data on COVID-19 from a cloud repository,
• make a data frame object out of the data,
• use a geospatial module to put the data on a world map,
• download county maps from US Census Bureau, and
• visualize the COVID-19 data restricted to Oregon.

The material here is intended just to give you an overview of the various tools we will learn
in depth later. There is no expectation that you can immediately digest the code here. The
goal of this overview is merely to whet your appetite and motivate you to allocate time to
learn the materials yet to come.

I.1 The modules you need

These are the python modules we shall use below.

• matplotlib (for various plotting & visualization tools in python)
• descartes (for specialized visualization of maps using matplotlib)
• gitpython (to work in python with Git repositories)
• pandas (to make data frame structures out of raw data)
• geopandas (for analysis of geospatial data)
• urllib (for fetching resources at an internet url)

10

https://jupyter.org/

Please install these modules if you do not have them already. (If you do not have these
installed, attempting to run the next cell will give you an error.)

[1]: import pandas as pd
import os
from git import Repo
import matplotlib.pyplot as plt
import geopandas as gpd
import urllib
import shutil
%matplotlib inline

I.2 Get the data

The Johns Hopkins University Center for Systems Science and Engineering has curated
data on COVID-19 from multiple sources and provided it online as a “git” repository in
a cloud server at https://github.com/CSSEGISandData/COVID-19. (We shall learn a bit
more about git in a later lecture.) These days, as the disease progresses, new data is being
pushed into this repository every day.

Git repositories in the cloud server can be cloned to get an identical local copy on our
computers. Let us begin by cloning a copy of the Johns Hopkins COVID-19 data repository
into a location in your computer. Please specify this location in your computer in the
variable called covidfolder below. Once you have cloned the repository, the next time
you run the same line of code, it does not clone it again. Instead, it only pulls updates
from the cloud to sync your local copy with the remote original.

[2]: # your local folder into which you want to download the covid data

covidfolder = '../../data_external/covid19'

Remember this location where you have stored the COVID-19 data. You will need to return
to it when you use the data during activities in later days, including assignment projects.

[3]: if os.path.isdir(covidfolder): # if repo exists, pull newest data
repo = Repo(covidfolder)
repo.remotes.origin.pull()

else: # otherwise, clone from remote
repo = Repo.clone_from('https://github.com/CSSEGISandData/COVID-19.

↪→git',
covidfolder)

datadir = repo.working_dir + '/csse_covid_19_data/
↪→csse_covid_19_daily_reports'

The folder datadir contains many fles (all of which can be listed here using the command
os.listdir(datadir) if needed). The flenames begin with a date like 03-27-2020 and
ends in .csv. The ending suffx csv stands for “comma separated values”, a common
simple format for storing uncompressed data.

11

https://github.com/CSSEGISandData/COVID-19

I.3 Examine the data for a specifc date

The python module pandas, the workhorse for all data science tasks in python, can make a
DataFrame object out of each such .csv fles. You will learn more about pandas later in the
course. For now, let us pick a recent date, say March 27, 2020, and examine the COVID-19
data for that date.

[4]: c = pd.read_csv(datadir+'/03-27-2020.csv')

The DataFrame object c has over 3000 rows. An examination of the frst fve rows already
tells us a lot about the data layout:

[5]:

[5]:

c.head()

FIPS Admin2 Province_State Country_Region Last_Update ␣
↪→\

0 45001.0 Abbeville South Carolina US 2020-03-27 22:14:55
1 22001.0 Acadia Louisiana US 2020-03-27 22:14:55
2 51001.0 Accomack Virginia US 2020-03-27 22:14:55
3 16001.0 Ada Idaho US 2020-03-27 22:14:55
4 19001.0 Adair Iowa US 2020-03-27 22:14:55

Lat Long_ Confirmed Deaths Recovered Active \
0 34.223334 -82.461707 4 0 0 0
1 30.295065 -92.414197 8 1 0 0
2 37.767072 -75.632346 2 0 0 0
3 43.452658 -116.241552 54 0 0 0
4 41.330756 -94.471059 1 0 0 0

Combined_Key
0 Abbeville, South Carolina, US
1 Acadia, Louisiana, US
2 Accomack, Virginia, US
3 Ada, Idaho, US
4 Adair, Iowa, US

Note that depending on how the output is rendered where you are reading this, the later
columns may be line-wrapped or may be visible only after scrolling to the edges. This
object c, whose head part is printed above, looks like a structured array. There are features
corresponding to locations, as specifed in latitude Lat and longitude Long_. The columns
Confirmed, Deaths, and Recovered represents the number of confrmed cases, deaths, and
recovered cases due to COVID-19 at a corresponding location.

I.4 Put the data on a map

Data like that in c contains geospatial information. One way to visualize geospatial data is
to indicate the quantity of interest on a map. We shall visualize the data in the Confirmed
column by positioning a marker at its geographical location and make the marker size
correspond to the number of confrmed cases at that position. The module geopandas

12

(gpd) is well-suited for visualizing geospatial data. It is built on top of the pandas library.
So it is easy to convert our pandas object c to a geopandas object.

[6]:

[6]:

[7]:

make a geometry object from Lat, Long
geo = gpd.points_from_xy(c['Long_'], c['Lat'])
give the geometry to geopandas together with c
gc = gpd.GeoDataFrame(c, geometry=geo)
gc.head()

FIPS Admin2 Province_State Country_Region Last_Update ␣
↪→\

0 45001.0 Abbeville South Carolina US 2020-03-27 22:14:55
1 22001.0 Acadia Louisiana US 2020-03-27 22:14:55
2 51001.0 Accomack Virginia US 2020-03-27 22:14:55
3 16001.0 Ada Idaho US 2020-03-27 22:14:55
4 19001.0 Adair Iowa US 2020-03-27 22:14:55

Lat Long_ Confirmed Deaths Recovered Active \
0 34.223334 -82.461707 4 0 0 0
1 30.295065 -92.414197 8 1 0 0
2 37.767072 -75.632346 2 0 0 0
3 43.452658 -116.241552 54 0 0 0
4 41.330756 -94.471059 1 0 0 0

Combined_Key geometry
0 Abbeville, South Carolina, US POINT (-82.46171 34.22333)
1 Acadia, Louisiana, US POINT (-92.41420 30.29506)
2 Accomack, Virginia, US POINT (-75.63235 37.76707)
3 Ada, Idaho, US POINT (-116.24155 43.45266)
4 Adair, Iowa, US POINT (-94.47106 41.33076)

The only difference between gc and c is the last column, which contains the new geometry
objects representing points on the globe. Next, in order to place markers at these points on
a map of the world, we need to get a simple low resolution world map:

world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
world.plot();

13

You can download and use maps with better resolution from Natural Earth, but that will
be too far of a digression for this overview. On top of the above low resolution map, we
can now put the markers whose sizes are proportional to the number of confrmed cases.

[8]: base = world.plot(alpha=0.3)
msz = 500 * gc['Confirmed'] / gc['Confirmed'].max()
gc.plot(ax=base, column='Confirmed', markersize=msz, alpha=0.7);

These python tools have made it incredibly easy for us to immediately identify the COVID-
19 trouble spots in the world. Moreover, these visualizations can be updated easily by
re-running this code as data becomes available for other days.

I.5 Restricting to Oregon

Focusing on our part of the world, let us see how to restrict the COVID-19 data in the data
frame c to Oregon.

[9]: co = c[c['Province_State']=='Oregon']

The variable co now contains the data restricted to Oregon. However, we are now pre-
sented with a problem. To visualize the restricted data, we need a map of Oregon. The
module geopandas does not carry any information about Oregon and its counties. How-
ever this information is available from the United States Census Bureau. (By the way, the
2020 census is happening now! Do not forget to respond to their survey. They are one of
our authoritative sources of quality data.)

To visualize the COVID-19 information on a map of Oregon, we need to get the county
boundary information from the census bureau. This illustrates a common situation that
arises when trying to analyze data: it is often necessary to procure and merge data from
multiple sources in order to understand a real-world phenomena.

A quick internet search reveals the census page with county information. The information
is available in an online fle cb_2018_us_county_500k.zip at the URL below. Python al-
lows you to download this fle using its urllib module without even needing to leave this
notebook.

[10]: # url of the data
census_url = 'https://www2.census.gov/geo/tiger/GENZ2018/shp/

↪→cb_2018_us_county_500k.zip'

14

http://www.naturalearthdata.com/
https://www.census.gov/

location of your download
your_download_folder = '../../data_external'
if not os.path.isdir(your_download_folder):

os.mkdir(your_download_folder)
us_county_file = your_download_folder + '/cb_2018_us_county_500k.zip'

download if the file doesn't already exist
if not os.path.isfile(us_county_file):

with urllib.request.urlopen(census_url) as response,␣
↪→open(us_county_file, 'wb') as out_file:

shutil.copyfileobj(response, out_file)

Now, your local computer has a zip fle, which has among its contents, fles with geometry
information on the county boundaries, which can be read by geopandas. We let geopandas
directly read in the zip fle: it knows which information to extract from the zip archive to
make a data frame with geometry.

[11]:

[11]:

us_counties = gpd.read_file(f"zip://{us_county_file}")
us_counties.head()

STATEFP COUNTYFP COUNTYNS AFFGEOID GEOID NAME LSAD ␣
↪→ALAND \

0 21 007 00516850 0500000US21007 21007 Ballard 06 ␣
↪→639387454

1 21 017 00516855 0500000US21017 21017 Bourbon 06 ␣
↪→750439351

2 21 031 00516862 0500000US21031 21031 Butler 06 ␣
↪→1103571974

3 21 065 00516879 0500000US21065 21065 Estill 06 ␣
↪→655509930

4 21 069 00516881 0500000US21069 21069 Fleming 06 ␣
↪→902727151

AWATER geometry
0 69473325 POLYGON ((-89.18137 37.04630, -89.17938 37.053...
1 4829777 POLYGON ((-84.44266 38.28324, -84.44114 38.283...
2 13943044 POLYGON ((-86.94486 37.07341, -86.94346 37.074...
3 6516335 POLYGON ((-84.12662 37.64540, -84.12483 37.646...
4 7182793 POLYGON ((-83.98428 38.44549, -83.98246 38.450...

The object us_counties has information about all the counties. Now, we need to re-
strict this data to just that of Oregon. Looking at the columns, we fnd something called
STATEFP. Searching through the government pages, we fnd that STATEFP refers to a 2-
character state FIPS code. The FIPS code refers to Federal Information Processing Standard
which was a “standard” at one time, then deemed obsolete, but still continues to be used
today. All that aside, it suffces to note that Oregon’s FIPS code is 41. Once we know this,

15

https://www.census.gov/programs-surveys/geography/technical-documentation/records-layout/nlt-record-layouts.html
https://en.wikipedia.org/wiki/FIPS_county_code

python makes it is easy to restrict the data to Oregon:

[12]: ore = us_counties[us_counties['STATEFP']=='41']
ore.plot();

Now we have the Oregon data in two data frames, ore and co. We must combine the two
data frames. This is again a situation so often encountered when dealing with real data
that there is a facility for it in pandas called merge. Both data has FIPS codes: in ore you
fnd it under column GEOID, and in co you fnd it called FIPS. The merged data frame is
represented by the variable orco below:

[13]: ore = ore.astype({'GEOID': 'int64'}).rename(columns={'GEOID' : 'FIPS'})
co = co.astype({'FIPS': 'int64'})
orco = pd.merge(ore, co.iloc[:,:-1], on='FIPS')

The orco object now has both the geometry information as well as the COVID-19 informa-
tion, making it extremely easy to visualize.

[14]: # plot coloring counties by number of confirmed cases

fig, ax = plt.subplots(figsize=(12, 8))
orco.plot(ax=ax, column='Confirmed', legend=True,

legend_kwds={'label': '# confimed cases',
'orientation':'horizontal'})

label the counties

for x, y, county in zip(orco['Long_'], orco['Lat'], orco['NAME']):
ax.text(x, y, county, color='grey')

ax.set_title('Confirmed COVID-19 cases in Oregon as of March 27 2020')
ax.set_xlabel('Latitude'); ax.set_ylabel('Longitude');

16

This is an example of a chloropleth map, a map where regions are colored or shaded in
proportion to some data variable. It is an often-used data visualization tool.

I.6 Ask the data

Different ways of displaying data often give different insights. There are many visualiza-
tion tools in the python ecosystem and you will become more acquainted with these as we
proceed.

Meanwhile, you might have many questions whose answers already lie in the data we
have downloaded. For example, you may wonder how Oregon is doing in terms of
COVID-19 outbreak compared to the other two west coast states. Here is the answer ex-
tracted from the same data:

17

https://en.wikipedia.org/wiki/Choropleth_map

2020-02-01

2020-02-15

2020-03-01

2020-03-15

2020-04-01

Dates

0

1000

2000

3000

4000

5000

6000

7000

Confirmed COVID-19 cases until 2020-03-30

Oregon
Washington
California

How does the progression of infections in New York compare with Hubei where the dis-
ease started? Again the answer based on the data we have up to today is easy to extract,
and is displayed next.

2020-02-01

2020-02-15

2020-03-01

2020-03-15

2020-04-01

Dates

0

10000

20000

30000

40000

50000

60000

70000
Confirmed COVID-19 cases until 2020-03-30

New York
Hubei

Of course, the COVID-19 situation is evolving, so these fgures are immediately outdated
after today’s class. This situation is evolving in as yet unknown ways. I am sure that you,
like me, want to know more about how these plots will change in the next few months.
You will be able to generate plots like this and learn many more data analysis skills from
these lectures. As you amass more technical skills, let me encourage you to answer your

18

own questions on COVID-19 by returning to this overview, pulling the most recent data,
and modifying the code here to your needs. In fact, some later assignments will require
you to work further with this Johns Hopkins COVID-19 worldwide dataset. Visualizing
the COVID-19 data for any other state, or indeed, any other region in the world, is easily
accomplished by some small modifcations to the code of this lecture.

19

II

Interacting with Python

March 31, 2020

Python is a modern, general-purpose, object-oriented, high-level programming language
with a clean and expressive syntax. The following features make for easy code develop-
ment and debugging in python:

• Python code is interpreted: There is no need to compile the code. Your code is read by
a python interpreter and made into executable instructions for your computer in real
time.

• Python is dynamically typed: There is no need to declare the type of a variable or the
type of an input to a function.

• Python has automatic garbage collection or memory management: There is no need to
explicitly allocate memory for variables before you use them or deallocate them after
use.

However, keep in mind that these features also make pure python code slower (than, say
C) in repetitious loops because of repeated checking for the type of objects. Therefore
many python modules (such as numpy, which we shall see in detail soon), have C or other
compiled code, which is then wrapped in python to take advantage of python’s usability
without losing speed.

There are at least four ways to interact with your Python 3 installation.

1. Use a python shell
2. Use an iPython shell
3. Put code in a python fle ending in .py
4. Write code + text in Jupyter notebook

II.1 Python shell

Type the python command you use in your system (python or python3) to get this shell. I
will use python3 since that is what my system requires, but please do make sure to replace
it by python if that’s what is needed on your system. Here is an image of the interactive
python shell within a terminal.

20

http://www.python.org/

Note the following from the interactive session displayed in the fgure above:

• Computing the square root of a number using sqrt is successful only after import-
ing math. Most of the functionality in Python is provided by modules, like the math
module. Some modules, like math, come with python, while others must be installed
after python is installed.

• Strings that begin with # (like “# works!” in the fgure) differentiate comments from
code. This is the case in a python shell and also in the other forms of interacting with
python discussed below.

• The dir command shows the facilities provided by a module. As you can see, the
math module contains many functions in addition to sqrt.

II.2 iPython shell

A more powerful shell interactive environment is provided by the iPython shell (type in
ipython or ipython3 into your command prompt, or launch it from Anaconda navigator).
The iPython shell has features like auto-completion, coloring, history of commands, au-
tomatic help by tacking on ?, ability to interact with your operating system’s commands,
etc.

21

II.3 Jupyter Notebook

The Jupyter notebook is a web-browser based graphical environment consisting of cells,
which can consist of code, or text. The text cells should contain text in markdown syntax,
which allows you to type not just words in bold and italic, but also tables, mathematical
formula using latex, etc. The code cells of Jupyter can contain code in various languages,
but here we will exclusively focus on code cells with Python 3.

For example, this block of text that begins with this sentence marks the beginning of a
jupyter notebook cell containing markdown content. If you are viewing this from jupyter,
click on jupyter’s top menu -> Cell -> Cell Type to see what is the type of the current cell,
or to change the cell type. Computations must be done in a code cell, not a markdown cell.
For example, to compute √

π)7cos(π

we open a code cell next with the following two lines of python code:

[1]: from math import cos, sqrt, pi

cos(pi*sqrt(pi))**7

[1]: 0.14008146171564725

This seamless integration of text and code makes Jupyter attractive for developing a repro-
ducible environment for scientifc computing.

22

https://en.wikipedia.org/wiki/Markdown
https://www.latex-project.org

II.4 Python fle

Open your favorite text editor, type in some python code, and then save the fle as
myfirstpy.py. Here is a simple example of such a fle.

#------- myfirstpy.py ---------------------------------
from math import cos, sqrt, pi

print('Hello, I can compute! ')
x = 3
y = cos(pi*sqrt(pi)*x)**7
print('Starting from x =', x, 'we have computed y=', y)
#--

One executes such a python fle by typing the following on the command line

python3 ../pyfiles/myfirstpy.py

Note that depending on your operating system, you may have to replace the above com-
mand by python ..\pyfiles\myfirstpy.py or similar variants.

You can also execute the python fle in a platform-independent way from within this Jupyter
notebook by loading the contents of the fle into a cell. This is done using line magic com-
mand %load ../pyfiles/myfirstpy.py. Once you type in this command into a code cell
and execute the cell, the contents of the fle will be copied into the cell (and simultaneously,
the load command will be commented out). Then, returning to the cell and executing the
cell a second time runs the same code that was in the fle.

[2]: # %load ../pyfiles/myfirstpy.py
from math import cos, sqrt, pi

print('Hello, I can compute! ')
x = 3
y = cos(pi*sqrt(pi)*x)**7
print('Starting from x =', x, 'we have computed y=', y)

Hello, I can compute!
Starting from x = 3 we have computed y= -0.013884089495354414

The above output cell should display the same output as what one would have obtained
if we executed the python fle on the command line.

For larger projects (including take-home assignments), you will need to create such python
fles with many lines of python code. Therefore it is essential that you know how to create
and execute python fles in your system.

23

https://pyfiles/myfirstpy.py
https://myfirstpy.py
https://myfirstpy.py

III

Working with git

April 2, 2020

Git a distributed version control system (and is a program often used independently of
python). A version control system tracks the history of changes in projects with many fles,
including data fles, and codes, which many people access simultaneously. Git facilitates
identifcation of changes made, fetching revisions from a cloud repository in git format,
and pushing revisions to the cloud.

GitHub is a cloud server that specializes in serving data in the form of git repositories.
Many other such cloud services exists, such as Atlassian’s BitBucket.

The notebooks that form these lectures are in a git repository served from GitHub. In this
notebook, we describe how to access materials from this remote git repository. We will
also use this opportunity to introduce some object-oriented terminology like classes, objects,
constructor, data members, and methods, which are pervasive in python. Those already
familiar with this terminology and GitHub may skip to the next activity.

III.1 Our materials in GitHub

Lecture notes, exercises, codes, and all accompanying materials can be found in the GitHub
repository at https://github.com/jayggg/mth271content

One of the reasons we use git is that many continuously updated datasets, like the COVID-
19 dataset, are served in git format. Another reason is that we may want to use current
news and fresh data in our activities. Such activities may be prepared with very little lead
time, so cloud git repositories are ideal for pushing in new materials as they get devel-
oped: once they are in the cloud, you have immediate access to them. After a lecture, the
materials may be revised and updated per your feedback and these revisions will also be
available for you from GitHub. Therefore, it is useful to be conversant with GitHub.

Let us spend a few minutes today on how to fetch materials from the git repository. In
particular, executing this notebook will pull the updated data from GitHub and place it in
a location you specify (below).

If you want to know more about git, there are many resources online, such as the Git
Handbook. The most common way to fetch materials from a remote repository is using
git’s command line tools, but for our purposes, the python code in this notebook will
suffce.

24

https://github.com
https://bitbucket.org
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://github.com/jayggg/mth271content

III.2 Git Repo class in python

We shall use the python module gitpython to work with git. (We already used this mod-
ule in the frst overview lecture. The documentation of gitpython contains a lot of infor-
mation on how to use its facilities. The main facility is the class called Repo which it uses
to represent git repositories.

[1]: from git import Repo

Python is an object-oriented language. Everything in the workspace is an object. An
object is an instance of a class. The defnition and features of the class Repo were imported
into this workspace by the above line of code. A class has members, which could be data
members or attributes (which themselves are objects residing in the class’ memory layout),
or function members, called methods, which provide functionalities of the class.

You can query the functionalities of Repo using help. Open a cell and type in

help(Repo)

You will see that the ouput contains the extensive documentation for objects of class Repo,
including all its available methods.

Below, we will use the method called clone_from. Here is the class documentation for that
method:

[2]: help(Repo.clone_from)

Help on method clone_from in module git.repo.base:

clone_from(url, to_path, progress=None, env=None, multi_options=None, **kwargs) method of
builtins.type instance

Create a clone from the given URL

:param url: valid git url, see http://www.kernel.org/pub/software/scm/git/docs/git-
clone.html#URLS

:param to_path: Path to which the repository should be cloned to
:param progress: See 'git.remote.Remote.push'.
:param env: Optional dictionary containing the desired environment variables.

Note: Provided variables will be used to update the execution
environment for `git`. If some variable is not specified in `env`
and is defined in `os.environ`, value from `os.environ` will be used.
If you want to unset some variable, consider providing empty string
as its value.

:param multi_options: See ``clone`` method
:param kwargs: see the ``clone`` method
:return: Repo instance pointing to the cloned directory

Classes have a special method called constructor, which you would fnd listed among its
methods as __init__.

[3]: help(Repo.__init__)

Help on function __init__ in module git.repo.base:

__init__(self, path=None, odbt=<class 'git.db.GitCmdObjectDB'>, search_parent_directories=False,
expand_vars=True)

Create a new Repo instance

25

https://gitpython.readthedocs.io/en/stable/
http://www.kernel.org/pub/software/scm/git/docs/git

:param path:
the path to either the root git directory or the bare git repo::

repo = Repo("/Users/mtrier/Development/git-python")
repo = Repo("/Users/mtrier/Development/git-python.git")
repo = Repo("~/Development/git-python.git")
repo = Repo("$REPOSITORIES/Development/git-python.git")
repo = Repo("C:\Users\mtrier\Development\git-python\.git")

- In *Cygwin*, path may be a `'cygdrive/...'` prefixed path.
- If it evaluates to false, :envvar:`GIT_DIR` is used, and if this also evals to false,

the current-directory is used.
:param odbt:

Object DataBase type - a type which is constructed by providing
the directory containing the database objects, i.e. .git/objects. It will
be used to access all object data

:param search_parent_directories:
if True, all parent directories will be searched for a valid repo as well.

Please note that this was the default behaviour in older versions of GitPython,
which is considered a bug though.

:raise InvalidGitRepositoryError:
:raise NoSuchPathError:
:return: git.Repo

The __init__ method is called when you type in Repo(...) with the arguments allowed
in __init__. Below, we will see how to initialize a Repo object using our github repository.

III.3 Your local copy of the repository

Next, each of you need to specify a location on your computer where you want the course
materials to reside. This location can be specifed as a string, where subfolders are delin-
eated by forward slash. Please revise the string below to suit your needs.

[4]: coursefolder = '/Users/Jay/tmpdir/'

Python provides a module os to perform operating system dependent tasks in a portable
(platform-independent) way. If you did not give the full name of the folder, os can attempt
to produce it as follows:

[5]: import os
os.path.abspath(coursefolder)

[5]: '/Users/Jay/tmpdir'

Please double-check that the output is what you expected on your operating system: if not,
please go back and revise coursefolder before proceeding. (Windows users should see
forward slashes converted to double backslashes, while mac and linux users will usually
retain the forward slashes.)

We proceed to download the course materials from GitHub. These materials will be stored
in a subfolder of coursefolder called mth271content, which is the name of the git reposi-
tory.

26

[6]: repodir = os.path.join(os.path.abspath(coursefolder), 'mth271content')
repodir # full path name of the subfolder

[6]: '/Users/Jay/tmpdir/mth271content'

Again, the value of the string variable repodir output above describes the location on your
computer where your copy of the course materials from GitHub will reside.

III.4 Two cases

Now there are two cases to consider:

1. Are you downloading the remote git repository for the frst time?
2. Or, are you returning to the remote repository to update the materials?

In Case 1, you want to clone the repository. This will create a local copy (on your computer)
of the remote cloud repository.

In Case 2, you want to pull updates (only) from the repository, i.e., only changes in the
remote cloud that you don’t have in your existing local copy.

To decide which case you are in, I will assume the following. If the folder whose name is
the value of the string repodir already exists, then I will assume you are in Case 2. Oth-
erwise, you are in Case 1. To fnd out if a folder exists, we can use another facility from
os:

[7]: os.path.isdir(repodir)

[7]: True

The output above should be False if you are running this notebook for the frst time, per
my assumption above. When you run it after you have executed this notebook successfully
at least once, you would already have cloned the repository, so the folder will exist.

III.5 Clone or pull

The code below uses the conditionals if and else (included in the prerequisite reading for
this lecture) to check if the folder exists: If it does not exist, a new local copy of the GitHub
repository is cloned into your local hard drive. If it exists, then only the differences (or
updates) between your local copy and the remote repository are fetched, so that your local
copy is up to date with the remote.

[8]: if os.path.isdir(repodir): # if repo exists, pull newest data
repo = Repo(repodir)
repo.remotes.origin.pull()

else: # otherwise, clone from remote
repo = Repo.clone_from('https://github.com/jayggg/mth271content',

repodir)

• Here repo is an object of class Repo.
• Repo(repodir) invokes the constructor, namely the __init__ method.

27

• Repo.clone_from(...) calls the clone_from(...) method.

Now you have the updated course materials in your computer in a local folder. The object
repo stores information about this folder, which you gave to the constructor in the string
variable repodir, in a data member called working_dir. You can access any data members
of an object in memory, and you do so just like you access a method, using a dot . followed
by the member name. Here is an example:

[9]: repo.working_dir

[9]: '/Users/Jay/tmpdir/mth271content'

Note how the Repo object was either initialized with repodir (if that folder exists) or set to
clone a remote repository at a URL.

III.6 Updated and future materials

The following instructions are for those of you who want to keep tracking the git repository
closely in the future. Suppose you want to update your local folder with new materials
from GitHub. But at the same time, you want to experiment and modify the notebooks as
you like. This can create conficting versions, which we should know how to handle.

Consider the situation where I have pushed changes to a fle into the remote git repository
that you want your local folder to refect. But you have been working with the same fle
locally and have made changes to it - perhaps you have put a note to yourself to look
something up, or perhaps you have found a better explanation, or better code, than what I
gave. You want to keep your changes.

You should know that once you modify a fle that is tracked by git as a local copy of a
remote fle, and you ask git to update, git will refuse to overwrite your changes. Because the
remote version of the fle and the local version of the fle are now in confict, a simple git
pull command will fail. Git provides constructs to help resolve such conficts, but let’s try
to keep things simple today. The following method is a solution that doubles the number
of fles, but has the advantage of simplicity:

Go to the repodir location in your computer. Copy the jupyter subfolder as, say
jupyterCopy. Overwrite the copy of this notebook (called 03_Working_with_git.ipynb)
in the jupyterCopy folder with this fle, which you saved after making your changes to
variables like coursefolder above. Note that jupyerCopy is untracked by git: there is
no remote folder in the cloud repository with that name. So any changes you make in
jupyterCopy will be left untouched by git. So you can freely change any jupyter notebooks
within this folder. The next time you run this fle from jupyterCopy it will pull updates
from the remote repository into the original jupyter folder. This way you get your up-
dates from the cloud in jupyter and at the same time get to retain your modifcations in
jupyterCopy.

Alternately, if you like working on the command line, instead of running this notebook,
you can run the python fle update_course.py on the command line. You should move this
fle outside of the repository and save it after changing the value of the string coursefolder
to your specifc local folder name.

28

http://web.pdx.edu/~gjay/teaching/mth271_2020/pyfiles/update_course.py

IV

Conversion table

April 2, 2020

This elementary activity is intended to check and consolidate your understanding of very
basic python language features. It is modeled after a similar activity in [HPL] and involves
a simple temperature conversion formula. You may have seen kitchen cheat sheets (or have
one yourself) like the following:

Fahrenheit Celsius

cool oven 200 F 90 C
very slow oven 250 F 120 C
slow oven 300-325 F 150-160 C
moderately slow oven 325-350 F 160-180 C
moderate oven 350-375 F 180-190 C
moderately hot oven 375-400 F 190-200 C
hot oven 400-450 F 200-230 C
very hot oven 450-500 F 230-260 C

This is modeled after a conversion table at the website Cooking Conversions for Old Time
Recipes, which many found particularly useful for translating old recipes from Europe.
Of course, the “old continent” has already moved on to the newer, more rational, metric
system, so all European recipes, old and new, are bound to have temperatures in Celsius
(C). Even if recipes don’t peak your interest, do know that every scientist must learn to
work with the metric system.

Celsius values can be converted to the Fahrenheit system by the formula

9
F = C + 32.

5

The task in this activity is to print a table of F and C values per this formula. While ac-
complishing this task, you will recall basic python language features, like while loop, for
loop, range, print, list and tuples, zip, and list comprehension.

IV.1 Using the while loop

We start by making a table of F and C values, starting from 0 C to 250 C, using the while
loop.

[1]: print('F C')

29

https://hplgit.github.io/primer.html/doc/pub/half/book.pdf
https://preparednessmama.com/old-time-cookbook-conversions/
https://preparednessmama.com/old-time-cookbook-conversions/

C = 0
while C <= 250:

F = 9 * C / 5 + 32
print(F, C)
C += 10

F C
32.0 0
50.0 10
68.0 20
86.0 30
104.0 40
122.0 50
140.0 60
158.0 70
176.0 80
194.0 90
212.0 100
230.0 110
248.0 120
266.0 130
284.0 140
302.0 150
320.0 160
338.0 170
356.0 180
374.0 190
392.0 200
410.0 210
428.0 220
446.0 230
464.0 240
482.0 250

This cell shows how to add, multiply, assign, increment, print, and run a while loop. Such
basic language features are introduced very well in the prerequisite reading for this lecture,
the offcial python tutorial’s section titled “An informal introduction to Python.” (Note
that all pointers to prerequisite reading materials are listed together just after the table of
contents in the beginning.)

IV.2 Adjusting the printed output

Examining the output above, we note that it is not perfectly aligned like a printed table.
Here is how we can use print’s features to format or align them to our tastes.

Formatting options like %10.3f can be used for alignment. It’s easy to describe this by an
example:

%10.3f: print 3 decimals, field width 10
%9.2e: print 2 decimals, field width 9, scientific notation

Type help(print) to recall these and other options. Below, we use a fxed width of 4 to
format F and C values.

[2]: print(' F C')

C = 0

30

https://docs.python.org/3/tutorial/introduction.html

while C <= 250:
F = 9 * C / 5 + 32
print('%4.0f %4.0f' % (F, C))
C += 10

F C
32 0
50 10
68 20
86 30

104 40
122 50
140 60
158 70
176 80
194 90
212 100
230 110
248 120
266 130
284 140
302 150
320 160
338 170
356 180
374 190
392 200
410 210
428 220
446 230
464 240
482 250

IV.3 Do the same using for loop

In addition to the while loop construct, python also has a for loop, which is often safer
from an accidental bug sending the system into an infnite loop. Also recall the very useful
range construct. The loop statement

for i in range(4):

runs over i=0,1,2,3 implicitly using range’s default starting value 0 and the default step-
ping value 1. For our temperature conversion task, we step by 10 degrees instead of the
default value of 1:

[3]: print(' F C')
for C in range(0, 250, 10):

F = 9 * C / 5 + 32
print('%4.0f %4.0f' % (F, C))

F C
32 0
50 10
68 20
86 30

104 40
122 50
140 60
158 70
176 80

31

194 90
212 100
230 110
248 120
266 130
284 140
302 150
320 160
338 170
356 180
374 190
392 200
410 210
428 220
446 230
464 240

IV.4 Is there a temperature whose F and C values are equal?

As you can see from the above values, for a 10 degree increase in the C column, we see
a corresponding 18 degree increase in the F column. Due to the these different rates of
increase, we should see the values coincide by going to lower C values. Focusing on lower
C values, let us run the for loop again:

[4]: print(' F C')
for C in range(-50, 50, 5):

F = 9 * C / 5 + 32
print('%4.0f %4.0f' % (F, C))

F C
-58 -50
-49 -45
-40 -40
-31 -35
-22 -30
-13 -25
-4 -20
5 -15

14 -10
23 -5
32 0
41 5
50 10
59 15
68 20
77 25
86 30
95 35

104 40
113 45

As you see from the output above, at −40 degrees, the Fahrenheit scale and the Celsius
scale coincide. If you have lived in Minnesota, you probably know how −40 feels like, and
you likely already know the fact we just discovered above (it’s common for Minnesotans
to throw around this tidbit while commiserating in the cold).

32

IV.5 Store in a list

If we want to use the above-printed tables later, we would have to run a loop again. Our
conversion problem is so small that there is no cost to run as many loops as we like, but
in many practical problems, loops contains expensive computations. So one often wants
to store the quantities computed in the loop in order to reuse them later. Lists are good
constructs for this.

First we should note that python has lists and also tuples. Only the former can be modifed
after creation. Here is an example of a list:

[5]: Cs = [0, 10] # create list using []
Cs.append(20) # modify by appending an entry
Cs

[5]: [0, 10, 20]

And here is an example of a tuple:

[6]: Cs = (0, 10) # create a tuple using ()

You access a tuple element just like a list element, so Cs[0] will give the frst element
whether or not Cs is a list or a tuple. But the statement Cs[0] = -10 that changes an
element of the container will work only if Cs is a list. We say that a list is mutable, while
a tuple is immutable. Tuples are generally faster than lists, but lists are more fexible than
tuples.

Here is an example of how to store the computed C and F values within a loop into lists.

[7]: Cs = [] # empty list
Fs = []

for C in range(0, 250, 25):
Cs.append(C)
Fs.append(9 * C / 5 + 32)

The lists Cs and Fs can be accessed later:

[8]: print(Cs)

[0, 25, 50, 75, 100, 125, 150, 175, 200, 225]

[9]: print(Fs)

[32.0, 77.0, 122.0, 167.0, 212.0, 257.0, 302.0, 347.0, 392.0, 437.0]

This is not as pretty an output as before. But we can easily run a loop and print the stored
values in any format we like. This is a good opportunity to show off a pythonic feature zip
that allows you to traverse two lists simultaneously:

33

[10]: print(' F C')
for C, F in zip(Cs, Fs):

print('%4.0f %4.0f' % (F, C))

F C
32 0
77 25

122 50
167 75
212 100
257 125
302 150
347 175
392 200
437 225

IV.6 List comprehension

An alternate and very interesting way to make lists in python is by the list comprehension
feature. Codes with list comprehension read almost like English. Let’s illustrate this by
creating the list of F values from the existing list Cs of C values. Instead of making Fs in a
loop as above, in a list comprehension, we just say that each value of the list Fs is obtained
applying a formula for each C in a list Cs:

[11]: Fs = [9 * C / 5 + 32 for C in Cs]

Note how this makes for compact code without sacrifcing readability: constructs like this
are why your hear so much praise for python’s expressiveness. For mathematicians, the
list comprehension syntax is also reminiscent of the set notation in mathematics: the set
(list) Fs is described in mathematical notation by { }

9
Fs = C + 32 : C ∈ Cs .

5

Note how similar it is to the list comprehension code. (Feel free to check that the Fs com-
puted by the above one-liner is the same as the Fs we computed previously within a loop.)

34

V

Approximating the derivative

April 7, 2020

In calculus, you learnt about the derivative and its central role in modeling processes
where a rate of change is important. How do we compute the derivate on a computer?

Recall what you did in your frst calculus course to compute the derivative. You memo-
rized derivatives of simple functions like cos x, sin x, exp x, xn etc. Then you learnt rules
like product rule, quotient rule, chain rule etc. In the end you could systematically com-
pute derivatives of complicated functions by reducing it to simpler components and ap-
plying the rules. We could teach the computer the same rules and come up with an algo-
rithm for computing derivatives. This is the idea behind automatic differentiation. Python
modules like sympy can compute derivatives symbolically in this fashion. However, this
approach has its limits.

In the real world, we often encounter complicated functions, such as functions that cannot
be represented in terms of simple component functions, or functions whose values you can
only query from some proprietary company code, or functions whose values are based off
a table, like for instance this function.

2020-01-01

2020-01-15

2020-02-01

2020-02-15

2020-03-01

2020-03-15

2020-04-01

Date

400

500

600

700

800

900

Price of TSLA stock

Daily Closing
Weekly Mean

This function represents Tesla’s stock prices this year until yesterday (which I got, in case
you are curious, using just a few lines of python code). The function is complicated (not

35

http://web.pdx.edu/~gjay/teaching/mth271_2020/pyfiles/stock_price.py

to mention depressing - it refects the market downturn due to the pandemic). But its
rate of change drives some investment decisions. Instead of the oscillatory daily stock
values, analysts often look at the rate of change of trend lines (like the rolling weekly
means above), a function certainly not expressible in terms of a few simple functions like
sines or cosines.

In this activity, we look at computing a numerical approximation to the derivative using
something you learnt in calculus.

V.1 Numerical differentiation

Suppose f is a function of a single real variable x. Its derivative at any point x is the slope
of the tangent of its graph at x. This slope, as you no doubt recall from calculus, can be
numerically approximated by the slope of a secant line:

f (x + h/2) − f (x − h/2)
f ′ (x) ≈

h

Below is a plot of the tangent line of some function f at x, whose slope is f ′ (x), together
with the secant line whose slope is the approximation on the right hand side above. Clearly
as the spacing h decreases, the secant line becomes a better and better approximation to
the tangent line.

The right hand side formula

f (x + h/2) − f (x − h/2)
h

can be implemented in python as long as we can compute the values f (x + h/2) and f (x −
h/2). As h → 0, we should a good obtain approximation to f ′ (x).

V.2 Second derivative

We take one further step and approximate the second derivative by

′′ (x) ≈
f ′ (x + h/2) − f ′ (x − h/2)

f (h) ()
f (x+h/2+h/2)− f (x+h/2−h/2) f (x−h/2)− f (x−h/2−h/2)−h h ≈

h
f (x + h) − 2 f (x) + f (x − h)≈

h2

This is the Central Difference Formula for the second derivative.

The frst task in this activity is to write a function to compute the above-stated second
derivative approximation,

f (x − h) − 2 f (x) + f (x + h)
h2

given any function f of a single variable x. The parameter h should also be input, but can
take a default value of 10−6.

36

The prerequisite reading for this activity included python functions, keyword arguments,
positional arguments, and lambda functions. Let’s apply all of these concepts while com-
puting the derivative approximation. Note that python allows you to pass functions them-
selves as arguments to other functions. Therefore, without knowing what specifc function
f to apply the central difference formula, we can write a generic function D2 for implement-
ing the formula for any f .

[1]: def D2(f, x, h=1E-6):
return (f(x-h) - 2*f(x) + f(x+h)) / (h*h)

Let’s apply the formula to some nice function, say the sine function.

[2]: from math import sin

D2(sin, 0.2)

[2]: -0.19864665468105613

Of course we know that second derivative of sin(x) is negative of itself, so a quick test of
correctness is to compare the above value to that of − sin(0.2).

[3]: -sin(0.2)

[3]: -0.19866933079506122

How do we apply D2 to, say, sin(2x)? One way is to defne a function returning sin(2 ∗ x)
and then pass it to D2, as follows.

[4]: def g(x):
return sin(2*x)

D2(g, 0.2)

[4]: -1.5576429035490946

An alternate way is using a lambda function. This gives a one-liner without damaging code
readability.

[5]: D2(lambda x: sin(2*x), 0.2) # central diff approximation

[5]: -1.5576429035490946

Of course, in either case the computed value approximates the actual value of sin′′ (2x) =
−4 sin(2x), thus verifying our code.

[6]: -4*sin(2* 0.2) # actual 2nd derivative value

[6]: -1.557673369234602

37

V.3 Error

The error in the approximation formula we just implemented is

′′ (x) −
f (x − h) − 2 f (x) + f (x + h)

ε(x) = f
h2

Although we can’t know the error ε(x) without knowing the true value f ′′ (x), calculus
gives you all the tools to bound this error.

Substituting the Taylor expansions

h2 h3 h4
′′′ (x) + ′′′′ (x) + ·f (x + h) = f (x) + h f ′ (x) + f ′′ (x) + f f · ·

2 6 24

and
h2 h3 h4

′′ (x) − ′′′′ (x) + ·f (x − h) = f (x) − h f ′ (x) + f f ′′′ (x) + f · ·
2 6 24

into the defnition of ε(x), we fnd that the after several cancellations, the dominant term
is O(h2) as h → 0.

This means that if h is halved, the error should decrease by a factor of 4. Let us take a look
at the error in the derivative approximations applied to a simple function

f (x) = x−6

at, say x = 1. I am sure you can compute the exact derivative using your calculus knowl-
edge. In the code below, we subtract this exact derivative from the computed derivative
approximation to obtain the error.

[7]: print(' h D2 Result Error')
for k in range(4,8):

h = 2**(-k)
d2g = D2(lambda x: x**-6, 1, h=h)
e = d2g - 42
print('%.0e %.5f %7.6f' %(h, d2g, e))

h D2 Result Error
6e-02 42.99863 0.998629
3e-02 42.24698 0.246977
2e-02 42.06158 0.061579
8e-03 42.01538 0.015384

Clearly, we observe that the error decreases by a factor of 4 when h is halved. This is in
accordance with what we expected from the Taylor expansion analysis above.

V.4 Limitations

A serious limitation of numerical differentiation formulas like this can be seen when we
take values of h really close to 0. Although the limiting process in calculus relies on h going
to 0, your computer is not equipped to deal with very small numbers. This creates issues.
Instead of halving h, let us aggressively reduce h by a factor of 10, going down to 10−13

and look at the results.

38

[8]: for k in range(1,14):
h = 10**(-k)
d2g = D2(lambda x: x**-6,1, h)
print('%.0e %18.5f' %(h, d2g))

1e-01 44.61504
1e-02 42.02521
1e-03 42.00025
1e-04 42.00000
1e-05 41.99999
1e-06 42.00074
1e-07 41.94423
1e-08 47.73959
1e-09 -666.13381
1e-10 0.00000
1e-11 0.00000
1e-12 -666133814.77509
1e-13 66613381477.50939

Although a mathematical argument led us to expect better approximations as h → 0, we
fnd that the results from our computer for h < 10−8 are totally wrong! The problem is
that computers cannot do exact arithmetic: the infnite real number system is replaced
by a fnite set of numbers allowed in the so-called IEEE standard. This causes errors,
called round-off errors that are different from the approximation error ε(x) we discussed.
Specifcally, what happened was that for small h we subtracted very closeby numbers,
creating round-off errors; we then multiplied by a big number (1/h2) amplifying these
round-off errors. We shall not deal in depth with round-off errors in this course, but it
pays to be wary of them.

39

VI

Genome of SARS-CoV-2

April 7, 2020

Since most data come in fles and streams, a data scientist must be able to effectively work
with them. Python provides many facilities to make this easy. In this class activity, we
will review some of python’s fle, string, and dictionary facilities by examining a fle con-
taining the genetic code of the virus that has been disrupting our lives this term. Here is
a transmission electron micrograph showing the virus (a public domain image from the
CDC, credited to H. A. Bullock and A. Tamin).

The genetic code of each living organism is a long sequence of simple molecules called nu-
cleotides or bases. Although many nucleotides exist in nature, only 4 nucleotides, labeled
A, C, G, and T, have been found in DNA. They are abbreviations of Adenine, Cytosine,
Guanine, and Thymine. Although it is diffcult to put viruses in the category of living
organisms, they also have genetic codes made up of nucleotides.

VI.1 Get the genome

The NCBI (National Center for Biotechnology Information) has recently started maintain-
ing a data hub for genetic sequences related to the virus causing COVID-19. Recall that the

40

https://phil.cdc.gov/Details.aspx?pid=23354
https://phil.cdc.gov/Details.aspx?pid=23354
https://www.scientificamerican.com/article/are-viruses-alive-2004/
https://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs/

name of the virus is SARS-CoV-2 (which is different from the name of the disease, COVID-
19), or “Severe Acute Respiratory Syndrome Coronavirus 2” in full. Searching the NCBI
website with the proper virus name will help you locate many publicly available data sets.

Let’s download NCBI’s Reference Sequence NC_045512 giving the complete genome ex-
tracted from a sample of SARS-CoV-2 from the Wuhan seafood market, called the Wuhan-
Hu-1 isolate. Here is a code using urllib that will attempt to directly download from the
url specifed below. It is unclear if this url would serve as a stable permanent link. In the
event you have problems executing the next cell, please just head over to the webpage for
NC_045512, click on “FASTA” (a data format) and then click on “Send to” a fle. Then save
the fle in the same relative location mentioned below in f within the folder where we have
been putting all the data fles in this course.

[1]: # NCBI url:

url = 'https://www.ncbi.nlm.nih.gov/sviewer/viewer.cgi?tool=portal&' + \
'save=file&log$=seqview&db=nuccore&report=fasta&id=1798174254&' + \
'extrafeat=null&conwithfeat=on&hide-cdd=on'

your local downloaded file:

f = '../../data_external/SARS-CoV-2-Wuhan-NC_045512.2.fasta'

[2]: import os
import urllib
import shutil

if not os.path.isdir('../../data_external/'):
os.mkdir('../../data_external/')

r = urllib.request.urlopen(url)
fo = open(f, 'wb')
shutil.copyfileobj(r, fo)
fo.close()

As mentioned in the page describing the data, this fle gives the RNA of the virus.

[3]: lines = open(f, 'r').readlines()

The fle has been opened in read-only mode. The variable lines contains a list of all the
lines of the fle. Here are the frst fve lines:

[4]: lines[0:5]

[4]: ['>NC_045512.2 Severe acute respiratory syndrome coronavirus 2 isolate␣
↪→Wuhan-

Hu-1, complete genome\n',

41

https://www.ncbi.nlm.nih.gov/nuccore/NC_045512
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512

␣
↪→'ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAA\n',

␣
↪→'CGAACTTTAAAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATAAC\n',

␣
↪→'TAATTACTGTCGTTGACAGGACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTG\n',

␣
↪→'TTGCAGCCGATCATCAGCACATCTAGGTTTCGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTC\n']

The frst line is a description of the data. The long genetic code is broken up into the
following lines. We need to strip end-of-line characters from each such line to re-assemble
the RNA string. Here is a way to strip off the end-of-line character:

[5]: lines[1].strip()

[5]: 'ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAA'

Let’s do so for every line starting ignoring the frst. Since lines is a list object, ignoring the
frst element of the list is done by lines[1:]. (If you don’t know this already, you must
review the list access constructs.) The following code uses the string operation join to put
together the lines into one long string. This is the RNA of the virus.

[6]: rna = ''.join([line.strip() for line in lines[1:]])

The frst thousand characters and the last thousand characters of the RNA of the coron-
avirus are printed below:

[7]: rna[:1000]

[7]: 'ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAACGAACTTTA
AAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATAACTAATTACTGTCGTTGACAG
GACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAGGTT
TCGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAACACACGTCCAACTCAGTTTG
CCTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGGAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACA
TCTTAAAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAACTTGAACAGCCCTATGTGTTCATCA
AACGTTCGGATGCTCGAACTGCACCTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGT
CGTAGTGGTGAGACACTTGGTGTCCTTGTCCCTCATGTGGGCGAAATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAA
GAACGGTAATAAAGGAGCTGGTGGCCATAGTTACGGCGCCGATCTAAAGTCATTTGACTTAGGCGACGAGCTTGGCACTG
ATCCTTATGAAGATTTTCAAGAAAACTGGAACACTAAACATAGCAGTGGTGTTACCCGTGAACTCATGCGTGAGCTTAAC
GGAGGGGCATACACTCGCTATGTCGATAACAACTTCTGTGGCCCTGATGGCTACCCTCTTGAGTGCATTAAAGACCTTCT
AGCACGTGCTGGTAAAGCTTCATGCACTTTGTCCGAACAACTGGACTTTATTGACACTAAGAGGGGTGTATACTGCTGCC
GTGAACATGAGCATGAAATTGCTTGGTACACGGAACGTTCT'

[8]: rna[-1000:]

[8]: 'GCTGGCAATGGCGGTGATGCTGCTCTTGCTTTGCTGCTGCTTGACAGATTGAACCAGCTTGAGAGCAAAATGTCTGGTA
AAGGCCAACAACAACAAGGCCAAACTGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAAAAACGTACT
GCCACTAAAGCATACAATGTAACACAAGCTTTCGGCAGACGTGGTCCAGAACAAACCCAAGGAAATTTTGGGGACCAGGA

42

https://docs.python.org/3/tutorial/introduction.html#lists

ACTAATCAGACAAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAGCGTTCTTCGGAA
TGTCGCGCATTGGCATGGAAGTCACACCTTCGGGAACGTGGTTGACCTACACAGGTGCCATCAAATTGGATGACAAAGAT
CCAAATTTCAAAGATCAAGTCATTTTGCTGAATAAGCATATTGACGCATACAAAACATTCCCACCAACAGAGCCTAAAAA
GGACAAAAAGAAGAAGGCTGATGAAACTCAAGCCTTACCGCAGAGACAGAAGAAACAGCAAACTGTGACTCTTCTTCCTG
CTGCAGATTTGGATGATTTCTCCAAACAATTGCAACAATCCATGAGCAGTGCTGACTCAACTCAGGCCTAAACTCATGCA
GACCACACAAGGCAGATGGGCTATATAAACGTTTTCGCTTTTCCGTTTACGATATATAGTCTACTCTTGTGCAGAATGAA
TTCTCGTAACTACATAGCACAAGTAGATGTAGTTAACTTTAATCTCACATAGCAATCTTTAATCAGTGTGTAACATTAGG
GAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTACGATCGAGTGTACAGTGAACAATGCTAGGGAGA
GCTGCCTATATGGAAGAGCCCTAATGTGTAAAATTAATTTTAGTAGTGCTATCCCCATGTGATTTTAATAGCTTCTTAGG
AGAATGACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'

Here is the total length of the RNA:

[9]: len(rna)

[9]: 29903

While the human genome is over 3 billion in length, the genome of this virus does not even
reach the length of 30000.

VI.2 Finding a protein

When describing RNA, the T (Thymine) is often replaced by U (Uracil). This is done for
example in an interesting New York Times article that came out last Friday. The article
explains how this RNA code makes infected host cells produce a variety of proteins. Sci-
entists have a good understanding of what some of these proteins do, but not all.

Here is a quote from the article on a protein it nicknamed Virus Liberator. ORF7a

When new viruses try to escape a cell, the cell can snare them with
proteins called tetherin. Some research suggests that ORF7a cuts
down an infected cell’s supply of tetherin, allowing more of the
viruses to escape. Researchers have also found that the protein can
trigger infected cells to commit suicide - which contributes to the
damage Covid-19 causes to the lungs.

The article then gives the ORF7a sequence, which I have copied and pasted into the next
cell, adding some string breaks. Note how the article has used lower case characters and
the character u instead of T.

[10]: orf7a = 'augaaaauuauucuuuucuuggcacugauaacacucgcuacuugugagcuuuaucacuaccaag'␣
↪→+ \

'aguguguuagagguacaacaguacuuuuaaaagaaccuugcucuucuggaacauacgagggcaa'␣
↪→+ \

'uucaccauuucauccucuagcugauaacaaauuugcacugacuugcuuuagcacucaauuugcu'␣
↪→+ \

'uuugcuuguccugacggcguaaaacacgucuaucaguuacgugccagaucaguuucaccuaaac'␣
↪→+ \

43

https://www.nytimes.com/interactive/2020/04/03/science/coronavirus-genome-bad-news-wrapped-in-protein.html

'uguucaucagacaagaggaaguucaagaacuuuacucuccaauuuuucuuauuguugcggcaau'␣
↪→+ \

'aguguuuauaacacuuugcuucacacucaaaagaaagacagaaugauugaacuuucauuaauug'␣
↪→+ \

'acuucuauuugugcuuuuuagccuuucugcuauuccuuguuuuaauuaugcuuauuaucuuuug'␣
↪→+ \

'guucucacuugaacugcaagaucauaaugaaacuugucacgccuaaacgaac'

The next task in this class activity is to fnd if this sequence occurs in the RNA we just
downloaded, and if it does, where it occurs. To this end, we frst make the replacements
required to read the string in terms of A, T, G, and C.

[11]: s=orf7a.replace('u', 'T').replace('a', 'A').replace('g', 'G').replace('c',␣
↪→'C')

s

[11]: 'ATGAAAATTATTCTTTTCTTGGCACTGATAACACTCGCTACTTGTGAGCTTTATCACTACCAAGAGTGTGTTAGAGGTA
CAACAGTACTTTTAAAAGAACCTTGCTCTTCTGGAACATACGAGGGCAATTCACCATTTCATCCTCTAGCTGATAACAAA
TTTGCACTGACTTGCTTTAGCACTCAATTTGCTTTTGCTTGTCCTGACGGCGTAAAACACGTCTATCAGTTACGTGCCAG
ATCAGTTTCACCTAAACTGTTCATCAGACAAGAGGAAGTTCAAGAACTTTACTCTCCAATTTTTCTTATTGTTGCGGCAA
TAGTGTTTATAACACTTTGCTTCACACTCAAAAGAAAGACAGAATGATTGAACTTTCATTAATTGACTTCTATTTGTGCT
TTTTAGCCTTTCTGCTATTCCTTGTTTTAATTATGCTTATTATCTTTTGGTTCTCACTTGAACTGCAAGATCATAATGAA
ACTTGTCACGCCTAAACGAAC'

The next step is now a triviality in view of python’s exceptional string handling mecha-
nisms:

[12]: s in rna

[12]: True

We may also easily fnd the location of the ORF7a sequence and read off the entire string
beginning with the sequence.

[13]: rna.find(s)

[13]: 27393

[14]: rna[27393:]

[14]: 'ATGAAAATTATTCTTTTCTTGGCACTGATAACACTCGCTACTTGTGAGCTTTATCACTACCAAGAGTGTGTTAGAGGTA
CAACAGTACTTTTAAAAGAACCTTGCTCTTCTGGAACATACGAGGGCAATTCACCATTTCATCCTCTAGCTGATAACAAA
TTTGCACTGACTTGCTTTAGCACTCAATTTGCTTTTGCTTGTCCTGACGGCGTAAAACACGTCTATCAGTTACGTGCCAG
ATCAGTTTCACCTAAACTGTTCATCAGACAAGAGGAAGTTCAAGAACTTTACTCTCCAATTTTTCTTATTGTTGCGGCAA
TAGTGTTTATAACACTTTGCTTCACACTCAAAAGAAAGACAGAATGATTGAACTTTCATTAATTGACTTCTATTTGTGCT
TTTTAGCCTTTCTGCTATTCCTTGTTTTAATTATGCTTATTATCTTTTGGTTCTCACTTGAACTGCAAGATCATAATGAA
ACTTGTCACGCCTAAACGAACATGAAATTTCTTGTTTTCTTAGGAATCATCACAACTGTAGCTGCATTTCACCAAGAATG
TAGTTTACAGTCATGTACTCAACATCAACCATATGTAGTTGATGACCCGTGTCCTATTCACTTCTATTCTAAATGGTATA

44

TTAGAGTAGGAGCTAGAAAATCAGCACCTTTAATTGAATTGTGCGTGGATGAGGCTGGTTCTAAATCACCCATTCAGTAC
ATCGATATCGGTAATTATACAGTTTCCTGTTTACCTTTTACAATTAATTGCCAGGAACCTAAATTGGGTAGTCTTGTAGT
GCGTTGTTCGTTCTATGAAGACTTTTTAGAGTATCATGACGTTCGTGTTGTTTTAGATTTCATCTAAACGAACAAACTAA
AATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGCAGTA
ACCAGAATGGAGAACGCAGTGGGGCGCGATCAAAACAACGTCGGCCCCAAGGTTTACCCAATAATACTGCGTCTTGGTTC
ACCGCTCTCACTCAACATGGCAAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAATTAACACCAATAGCAGTCC
AGATGACCAAATTGGCTACTACCGAAGAGCTACCAGACGAATTCGTGGTGGTGACGGTAAAATGAAAGATCTCAGTCCAA
GATGGTATTTCTACTACCTAGGAACTGGGCCAGAAGCTGGACTTCCCTATGGTGCTAACAAAGACGGCATCATATGGGTT
GCAACTGAGGGAGCCTTGAATACACCAAAAGATCACATTGGCACCCGCAATCCTGCTAACAATGCTGCAATCGTGCTACA
ACTTCCTCAAGGAACAACATTGCCAAAAGGCTTCTACGCAGAAGGGAGCAGAGGCGGCAGTCAAGCCTCTTCTCGTTCCT
CATCACGTAGTCGCAACAGTTCAAGAAATTCAACTCCAGGCAGCAGTAGGGGAACTTCTCCTGCTAGAATGGCTGGCAAT
GGCGGTGATGCTGCTCTTGCTTTGCTGCTGCTTGACAGATTGAACCAGCTTGAGAGCAAAATGTCTGGTAAAGGCCAACA
ACAACAAGGCCAAACTGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAAAAACGTACTGCCACTAAAG
CATACAATGTAACACAAGCTTTCGGCAGACGTGGTCCAGAACAAACCCAAGGAAATTTTGGGGACCAGGAACTAATCAGA
CAAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAGCGTTCTTCGGAATGTCGCGCAT
TGGCATGGAAGTCACACCTTCGGGAACGTGGTTGACCTACACAGGTGCCATCAAATTGGATGACAAAGATCCAAATTTCA
AAGATCAAGTCATTTTGCTGAATAAGCATATTGACGCATACAAAACATTCCCACCAACAGAGCCTAAAAAGGACAAAAAG
AAGAAGGCTGATGAAACTCAAGCCTTACCGCAGAGACAGAAGAAACAGCAAACTGTGACTCTTCTTCCTGCTGCAGATTT
GGATGATTTCTCCAAACAATTGCAACAATCCATGAGCAGTGCTGACTCAACTCAGGCCTAAACTCATGCAGACCACACAA
GGCAGATGGGCTATATAAACGTTTTCGCTTTTCCGTTTACGATATATAGTCTACTCTTGTGCAGAATGAATTCTCGTAAC
TACATAGCACAAGTAGATGTAGTTAACTTTAATCTCACATAGCAATCTTTAATCAGTGTGTAACATTAGGGAGGACTTGA
AAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTACGATCGAGTGTACAGTGAACAATGCTAGGGAGAGCTGCCTATA
TGGAAGAGCCCTAATGTGTAAAATTAATTTTAGTAGTGCTATCCCCATGTGATTTTAATAGCTTCTTAGGAGAATGACAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'

VI.3 Nucleotide frequencies

The frequency of a base or a nucleotide in a genetic code is the number of times it occurs
divided by the length of the code. The varying frequency of different nucleotides, called
the nucleotide bias varies between organisms and is known to have biological implica-
tions. Biologists also often talk of the GC content, the percentage of nitrogeneous bases (G
and C) in an RNA or DNA to get insights into its stability.

The next task in this activity is to make a python dictionary, called freq, whose keys are
the nucleotide characters and whose values are the number of times it occurs in the virus
RNA. Once you have made it, freq['A'], for example, should output the frequency of
nucleotide A.

[15]: freq = {b: rna.count(b)/len(rna) for b in 'ATGC'}

[16]: freq

[16]: {'A': 0.29943483931378123,
'T': 0.32083737417650404,
'G': 0.19606728421897468,
'C': 0.18366050229074005}

45

VI.4 A Washington sample

A more recent dataset at NCBI, apparently just submitted for peer-review on April 3,
claims to contain the genome of a virus sample from our neighboring state of Washing-
ton. You can fnd it labeled there as the data set MT293201. Let us take a look. (Again,
if the url below fails, please head over the NCBI webpage, fnd and download the corre-
sponding data fle for this sample, again in FASTA format, and save it using the name f2
below.)

[17]: url2 = 'https://www.ncbi.nlm.nih.gov/sviewer/viewer.cgi?' + \
'tool=portal&save=file&log$=seqview&db=nuccore&report=fasta&' + \
'id=1828694245&extrafeat=null&conwithfeat=on&hide-cdd=on'

f2 = '../../data_external/SARS-CoV-2-Washington_MT293201.1.fasta'

[18]: r2 = urllib.request.urlopen(url2)
fo2 = open(f2, 'wb')
shutil.copyfileobj(r2, fo2)

You might have already heard in the news that there are multiple strains of the virus
around the globe. Let’s investigate this genetic code a bit closer.

Is this the same genetic code as from the Wuhan sample? Let’s repeat the previous pro-
cedure on this new fle to make a string object that contains the RNA from the Washington
sample. We shall call it rna2 below.

[19]: lines = open(f2, 'r').readlines()
rna2 = ''.join([line.strip() for line in lines[1:]])

We should note that not all data sets uses just ATGC. There is a standard notation that ex-
tends the four letters, e.g., N is used to indicate any nucleotide. So, it might be a good idea
to answer this question frst: what are the distinct characters in the new rna2? There can be
very simply done in python if you use the set data structure, which removes duplicates.

[20]: set(rna2)

[20]: {'A', 'C', 'G', 'T'}

The next natural question might be this. Are the lengths of rna and rna2 the same?

[21]: len(rna2), len(rna)

[21]: (29846, 29903)

We could also look at the frst and last 30 characters and check if they are the same, like so:

[22]: rna2[:30], rna2[-30:]

[22]: ('AACCTTTAAACTTTCGATCTCTTGTAGATC', 'TTTAATAGCTTCTTAGGAGAATGACAAAAA')

46

https://www.ncbi.nlm.nih.gov/nuccore/MT293201
https://en.wikipedia.org/wiki/Nucleic_acid_sequence

[23]: rna[:30], rna[-30:]

[23]: ('ATTAAAGGTTTATACCTTCCCAGGTAACAA', 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')

Clearly, rna and rna2 are different strings.

Compare their nucleotide frequencies
[24]: freq2 = {b: rna2.count(b)/len(rna2) for b in 'ATGC'}

[25]: freq2

[25]: {'A': 0.29866648797158746,
'T': 0.3214166052402332,
'G': 0.1963077129263553,
'C': 0.18360919386182403}

Although the Washington genome is not identical to the Wuhan one, their nucleotide fre-
quencies are very close to the Wuhan one, reproduced here:

[26]: freq

[26]: {'A': 0.29943483931378123,
'T': 0.32083737417650404,
'G': 0.19606728421897468,
'C': 0.18366050229074005}

Does it contain ORF7a?
[27]: s in rna2

[27]: True

[28]: rna2.find(s)

[28]: 27364

Thus, we located the same ORF7a instruction in this virus at a different location. Although
the genetic code from the Washington sample and the Wuhan sample are different, they
can make the same protein ORF7a and their nucleotide frequencies are very close.

This activity provided you with just a glimpse into the large feld of bioinformatics, which
studies, among other things, patterns of nucleotide arrangements. If you are interested in
this feld, you should take a look at Biopython, a bioinformatics python package.

47

http://biopython.org

VII

Fibonacci primes

April 9, 2020

Fibonacci numbers appear in so many unexpected places that I am sure you have already
seen them. They are elements of the Fibonacci sequence Fn defned by

F0 = 0, F1 = 1,
Fn = Fn−1 + Fn−2, for n > 1.

Obviously, this recursive formula gives infnitely many Fibonacci numbers. We also know
that there are infnitely many prime numbers: the ancient Greeks knew it (actually proved
it) in 300 BC!

But, to this day, we still do not know if there are infnitely many prime numbers in the Fibonacci
sequence. These numbers form the set of Fibonacci primes. Its (in)fniteness is one of the
still unsolved problems in mathematics.

In this activity, you will compute a few initial Fibonacci primes, while reviewing some
python features along the way, such as generator expressions, yield, next, all, line mag-
ics, modules, and test functions. Packages we shall come across include memory_profiler,
primesieve, and pytest.

VII.1 Generator expressions

Representing sequences is one of the elementary tasks any programming language should
be able to do well. Python lists can certainly be used for this. For example, the following
list comprehension gives elements of the sequence

ni , n = 0, 1, 2, . . . , N − 1

succinctly:

[1]: i=2; N=10

L = [n**i for n in range(1, N)]

If you change the brackets to parentheses, then instead of a list comprehension, you get a
different object called generator expression.

[2]: G = (n**i for n in range(1, N))

Both L and G are examples of iterators, an abstraction of a sequence of things with the
ability to tell, given an element, what is the next element of the sequence. Since both L and

48

https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics

G are iterators, you will generally not see a difference in the results if you run a loop to
print their values, or if you use them within a list comprehension.

[3]: [l for l in L]

[3]: [1, 4, 9, 16, 25, 36, 49, 64, 81]

[4]: [g for g in G]

[4]: [1, 4, 9, 16, 25, 36, 49, 64, 81]

However, if you run the last statement again, what happens?

[5]: [g for g in G]

[5]: []

The difference between the generator expression G and the list L is that a generator expres-
sion does not actually compute the values until they are needed. Once an element of the
sequence is computed, the next time, the generator can only compute the next element in
the sequence. If the end of a fnite sequence was already reached in a previous use of the
generator, then there are no more elements of the sequence to compute. This is why we
got the empty output above.

VII.2 Generator functions

Just as list comprehensions can be viewed as abbreviations of loops, generator expressions
can also be viewed so using the yield statement. The statement

G = (n**i for n in range(1, N))

is an abbreviation of the following function with a loop where you fnd yield in the loca-
tion where you might have expected a return statement.

[6]: def GG():
for n in range(1, N):

yield n**i

[7]: G2 = GG()
print(*G2) # see that you get the same values as before

1 4 9 16 25 36 49 64 81

The yield statement tells python that this function does not just return a value, but rather
a value that is an element of a sequence, or an iterator. Internally, in order for something
to be an iterator in python, it must have a well-defned __next__() method: even though
you did not explicitly defne anything called __next__ when you defned GG, python seeing
yield defnes one for you behind the scenes.

49

Recall that you have seen another method whose name also began with two underscores,
the special __init__ method, which allows you to construct a object using the name of the
class followed by parentheses. The __next__ method is also a “special” method in that it
allows you to call next on the iterator to get its next value, like so:

[8]: G2 = GG()

get the first 3 values of the sequence using next:

next(G2), next(G2), next(G2)

[8]: (1, 4, 9)

[9]: print(*G2) # print the remaining values of the sequence

16 25 36 49 64 81

As you can see, a generator “remembers” where it left off in a prior iteration.

VII.3 Disposable generators or reusable lists?

It might seem that generators are dangerous disposable objects that are somehow inferior
to resuable lists which have all the same properties. Here is an example that checks that
thinking:

[10]: i = -20
N = 10**8

To compute the sum
108

1
∑ n20 ,
n=1

would you use the following list comprehension?

sum([n**i for n in range(1, N)])

If you do, you would need to store the created list in memory. If you install the
memory_profiler and use it as described in the prerequisite reading material from [JV-
H], then you can see memory usage easily. If you don’t have a GB of RAM free, be warned
that running this list comprehension (mentioned above, and in the cell after next) might
crash your computer.

[11]: %load_ext memory_profiler

[12]: %memit sum([n**i for n in range(1, N)])

peak memory: 3884.82 MiB, increment: 3842.59 MiB

50

https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html
https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html

Per offcial standards, memory should be reported in mebibytes (MiB), a power of two that
is close to 103 (“mebi” is made up of words “mega” and “binary”), although the commer-
ical world continues to use 10-based MB, GB, etc. The “increment” reported in the above
output in MiB is the difference between the peak memory and the memory used just before
memit was called: that gives the memory used by the statement.

Clearly we should not need so much memory for such a simple task. A better solution
is offered by the generator expression. It has no memory issues since it doesn’t store all
the elements of the sequence at once. Moreover, we can decide to stop iterating when the
numbers in the sequence get below machine precision, thus getting to the sum faster.

[13]: G3 = (n**i for n in range(1, N))

s = 0

for g in G3:
s += g
if g < 1e-15:

break

print(s)

1.0000009539620338

VII.4 Infnite sequences

By now you are wondering, if we can work with a sequence of 108 entries, then why can
we not work with an infnite sequence. Yes, python makes it easy for you to make an
infnite sequence construct:

[14]: def natural_numbers():
n = 0
while True:

yield n
n += 1

[15]: for n in natural_numbers():
print(n)
if n >= 5: break # don't go into infinite loop!

0
1
2
3
4
5

In fact the function count in module itertools does just this. Python does assume that
you are smart enough to use these without sending yourself into infnite loops. If you want

51

https://docs.python.org/3.8/library/itertools.html#itertools.count

to stay safe, then avoid using while True, replacing it with while n < max where max is
some maximum number, a sentinel, that you never plan to exceed.

VII.5 Fibonacci generator

To generate Fn satisfying

F0 = 0, F1 = 1, ∀n > 1 : Fn = Fn−1 + Fn−2,

we use a generator that keeps in memory two prior elements of the sequence, as follows.

[16]: def fibonacci(max):
f, fnext = 0, 1
while f < max:

yield f
f, fnext = fnext, f + fnext

[17]: Fn = fibonacci(10000)
print(*Fn)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

Note that we have used python’s tuple swap idiom in the defnition of fibonacci above.
To understand it, note the evaluation order of expressions

expr3, expr4 = expr1, expr2

per the offcial documentation. The tuple swap idiom is an example (yet another) of how
python achieves brevity without compromising elegance or readability.

VII.6 Prime number generator

Let’s make a generator for the infnite prime number sequence. This classic example is
beautifully discussed in [JV-H], which I suggest you read, if you have not already. Here is
a standard method to generate the set P of all primes less than some N. Suppose at any
stage of the generator algorithm, a subset P = {2, 3, . . . , q} of primes up to and including
q have been found. The prime number generator should fnd the next prime number by
checking if any element of P divides n for a number n greater than q: if the remainder in
the division of n by p is nonzero for all p ∈ P, then n is the next prime.

For example, at some stage, suppose P is this:

[18]: P = [2, 3]

Then, the next number n = 4 has remainders 4%p given by

[19]: [4 % p for p in P]

[19]: [0, 1]

Clearly not all of the remainders are nonzero:

52

https://docs.python.org/3.8/reference/expressions.html#evaluation-order
https://jakevdp.github.io/WhirlwindTourOfPython/12-generators.html

[20]: all([4 % p for p in P])

[20]: False

Hence the generator would conclude that the number 4 is not a prime, and proceed to the
next case n = 5, which it would conclude is a prime because:

[21]: all([5 % p for p in P])

[21]: True

This is implemented below.

[22]: def prime_numbers(N):
primes = []
q = 1
for n in range(q+1, N):

if all(n % p > 0 for p in primes):
primes.append(n)
q = n
yield n

[23]: list(prime_numbers(70))

[23]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67]

VII.7 First few Fibonacci primes

Now we can generate all primes less than any number N and all Fibonacci numbers less
than N. Listing Fibonacci primes less than N then becomes possible by simply intersecting
the two sets. Python does have a set data structure which comes with a handy intersection
method, so the code is trivial:

[24]: def fibonacci_primes(N):
F = set(fibonacci(N))
P = set(prime_numbers(N))
print('Intersecting', len(P), 'primes with', len(F), 'fibonaccis.')
return P.intersection(F)

fibonacci_primes(100000)

Intersecting 9592 primes with 25 fibonaccis.

[24]: {2, 3, 5, 13, 89, 233, 1597, 28657}

VII.8 Verifcation

Verifcation refers to the process of cross checking that a program behaves as expected in
a few chosen cases. It is the developer’s responsibility to ensure that a code is correct.

53

Part of this responsibility involves designing and adding test functions that verify that the
code produces the correct output in a few cases where correct output is known. Complex
codebases with multiple fles often have a suite of test functions. After a development
team member changes one fle, if the test suite does not pass all tests, it is a sign that the
change has broken the code functionality due to some unanticipated repercussions of the
change in other parts of the code.

How do you know that the result of your fibonacci_primes is correct? We could design
checks, say by verifying that our prime number routine is correct for the frst few primes,
plus a similar check for Fibonacci numbers. Or, we could look up the known Fibonacci
prime numbers and see if we have got the frst few correctly. Design of such tests is the
process of verifcation. While there no standard method for it, one often used principle is
to code with all cases in mind and test using known cases.

Let us use the Online Encylopedia of Integer Sequences (OEIS) which reports the currently
known values of n for which Fn is prime. It is listed there as sequence A001605. Here are
the frst 10 elements of this sequence:

[25]: nFP = [3, 4, 5, 7, 11, 13, 17, 23, 29, 43]

Based on this we can write a test function. A test function has a name that begins with test
and does not take any argument. In the test function below you see a statement of the
form assert Proposition, Error, which will raise an AssertionError and print Error
if Proposition evaluates to False (and if True, then assert lets execution continues to the
next line). The test checks if our list of initial Fibonacci primes coincides with the one
implied by nFP above.

[26]: def test_fibonacci_prime():
N = 10000
F = list(fibonacci(N))
nFP = [3, 4, 5, 7, 11, 13, 17, 23, 29, 43]

our_list = fibonacci_primes(N)
known_list = set([F[n] for n in nFP if n < len(F)])

assert len(known_list.difference(our_list))==0, 'We have a bug!'
print('Passed test!')

[27]: test_fibonacci_prime()

Intersecting 1229 primes with 20 fibonaccis.
Passed test!

One of the python modules that facilitates automated testing in python codes is the pytest
module. If you run pytest within a folder (directory), it will run all test functions it fnds in
all fles of the form test_*.py or *_test.py in the current directory and its subdirectories.
Please install pytest in the usual way you install any other python package.

To illustrate its use, let us make up a simple project structure as follows. This also serves as
your introduction to modules in python. Please create a folder fibonacci_primes and fles

54

https://oeis.org/A001605
https://docs.pytest.org/en/latest/index.html
https://docs.pytest.org/en/latest/index.html
https://test_*.py

my_simple_primes.py, fibonacci.py and test_fibonacci_primes.py within the folder as
shown below:

fibonacci_primes <- create this folder within ../pyfiles
|-- fibonacci.py <- define functions fibonacci & fibonacci_primes
|-- my_simple_primes.py <- copy prime_numbers function definition here
|-- test_fibonacci_primes.py <- copy test_fibonacci_prime function here

Individual fles may be thought of as python modules and you can import from them
the way you have been importing from external packages. Since fibonacci.py uses
prime_numbers which is now in a different fle my_simple_primes.py, you should add
the line

from my_simple_primes import prime_numbers

at the top of fibonacci.py. Additionally, since test_fibonacci_primes.py uses the func-
tions fibonacci and fibonacci_primes, in order for the test function to fnd these function
defnitions, you should include the line

from fibonacci import fibonacci, fibonacci_primes

at the top of test_fibonacci_primes.py.

Now you have a project called fibonacci_primes on which you can apply automated
testing programs like pytest, as shown in the next cell. Note that a test function will run
silently if all tests pass (without printing any outputs).

[28]: !pytest ../pyfiles/fibonacci_primes

================================ test session starts ================================
platform darwin -- Python 3.8.0, pytest-5.3.2, py-1.8.0, pluggy-0.13.1
rootdir: /Users/jay/Dropbox/Jay/teaching/2019-20/MTH271/mth271content
collected 1 item

../pyfiles/fibonacci_primes/test_fibonacci_prime.py .

[100%]

================================= 1 passed in 0.07s =================================

To see how the output would be like if a test fails, you might want to run this again after
deliberately creating a bug: for example, set the initializer for Fibonacci recurrence to 2
instead of 1 in the fle fibonacci.py and then return to run the above pytest to see what
happens.

VII.9 There must be a module for it!

While coding up the prime number generator, did you get that nagging question in your
mind, the one that we all get when coding up a basic algorithmic task in python? May be
there is already a module for this?

Yes, indeed, the few lines we implemented above to get the prime numbers actually form
an ancient algorithm, called the Sieve of Eratosthenes, which is implemented in many
places. An example is a python binding for a C library called primesieve. (You might

55

https://docs.python.org/3/tutorial/modules.html
https://github.com/kimwalisch/primesieve-python
https://fibonacci.py
https://test_fibonacci_primes.py
https://test_fibonacci_primes.py
https://fibonacci.py
https://my_simple_primes.py
https://fibonacci.py
https://test_fibonacci_primes.py
https://my_simple_primes.py
https://fibonacci.py
https://test_fibonacci_primes.py
https://fibonacci.py
https://my_simple_primes.py

need to install python-primesieve and primesieve depending on your system.) After you
install it, the following two lines will give you the same prime number list.

[29]: from primesieve import primes # do after you have installed primesieve
list(primes(70))

[29]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67]

This package is many times faster than our simple code with a python loop above, as
you can verify using another %magic. (Recall that iPython/Jupyter facilties like %timeit
and %memit are called line magics. You can read more about line and cell magics in your
[JV-H].)

[30]: %timeit primes(1000)

3.15 µs ± 53.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

[31]: %timeit list(prime_numbers(1000))

1.2 ms ± 37 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

VII.10 The Fibonaccis among primes (or vice versa)?

Finding bigger and bigger primes is kind of like fnding rare bit coins. Indeed, the diffculty
of factoring the product of two large prime numbers is the basis of several encryption tech-
niques. There is a world-wide effort to fnd more and more primes. For example, GIMPS,
the Great Internet Mersenne Prime Search, discovered the largest (currently) known prime
number, 282,589,933 − 1, having 24,862,048 digits (on December 7, 2018, using a computer in
Ocala, Florida, whose owner decided to download the free GIMPS software to stress test
his computer).

Our simple function fibonacci_primes was not designed to go above a fnite maximal N,
so of course, it can make no contribution to answering the unsolved question on fniteness
of the set of Fibonacci primes. To write a code to fnd larger and larger Fibonacci primes,
one might consider two options:

1. Look for prime numbers within the set of Fibonacci numbers.

OR

2. Look for Fibonacci numbers within the set of prime numbers.

The few Fibonacci numbers we saw above looked quite sparse so Option 1 might look
good, but it would require us to test whether a number is prime or not, which as we saw
involves quite a bit of effort as the numbers get larger.

Option 2 could work as a good strategy, especially when more and more primes are dis-
covered, provided we know how to test if a number is in the Fibonacci sequence. Using
some completely elementary mathematics (and without having to use any fancy theorems
you haven’t yet studied) you can prove the following. (Do be warned that proving this is
not a 5-minute exercise; if you can do it in 5 minutes, I’d love to hear!)

56

https://jakevdp.github.io/PythonDataScienceHandbook/01.03-magic-commands.html
https://www.mersenne.org

Theorem 1. A number F is a Fibonacci number if and only if 5F2 + 4 or 5F2 − 4 is a perfect
square.

Let’s close by implementing this check for a number to be a perfect square using math.sqrt
and let’s use it together with primesieve to get a Fibonacci prime.

[32]: import primesieve, math

def is_square(n):
s = int(math.sqrt(n))
return s*s == n

it = primesieve.Iterator()
it.skipto(2**28-1)
p = it.next_prime()

while p < 2**30-1:
if is_square(5*p*p+4) or is_square(5*p*p-4):

print('¡¡ Got one !! ', p, 'is a Fibonacci prime!')
p = it.next_prime()

¡¡ Got one !! 433494437 is a Fibonacci prime!

Do feel free to experiment increasing the 2**30 limit above. But may be it is now time
to manage your expectations a bit. A few decades ago, 231 − 1 was the largest integer
representable on most computers. Now that 64-bit computing is common, we can go up
to 263 − 1 (and a bit more with unsigned integers). To go beyond, not only will we need
much faster programs, but also specialized software to represent larger integers and do
arithmetic with them.

57

VIII

Numpy blitz

April 14, 2020

Numpy arrays are more effcient than lists because all elements of numpy arrays are of the
same pre-determined type. Numpy also provides effcient ufuncs (universal functions)
which are vectorized functions that loop over array elements with loops pre-compiled in
C. Numpy also exhibits some syntactic features that a mathematician may consider a nui-
sance, but knowing how to work with numpy is key for almost all scientifc computation
in python. It takes some practice to be comfortable with numpy and practice is what we
are aiming for in this activity. This activity is structured as a list of questions. You will
be in a position to appreciate these questions (and their answers) after going through this
lecture’s prerequistes on numpy yourself.

[1]: import numpy as np
import math

VIII.0.1 Are lists and numpy arrays different?

[2]: A = [0.1, 1.3, 0.4, 0.5] # list
a = np.array(A) # numpy array

type(a), type(A)

[2]: (numpy.ndarray, list)

Here is how you fnd out the common data type of elements of a numpy array (and there
is no such analogue for list, since list elements can be of different types).

[3]: a.dtype # a's common element type (A.dtype is undefined!)

[3]: dtype('float64')

VIII.0.2 What is the difference between 2*a and 2*A?

[4]: 2*a

[4]: array([0.2, 2.6, 0.8, 1.])

[5]: 2*A

58

[5]: [0.1, 1.3, 0.4, 0.5, 0.1, 1.3, 0.4, 0.5]

VIII.0.3 How best to compute sin(x)e−x for many x?

Here is one option:

[sin(x[i]) * exp(-x[i]) for i in range(n)]

And here is another:

np.sin(x) * np.exp(-x)

Which is better?

[6]: n = 100000
x = np.linspace(0, 2*np.pi, n)

[7]: # list comprehension
%timeit y = [math.sin(x[i]) * math.exp(-x[i]) for i in range(n)]

use numpy ufuncs
%timeit y = np.sin(x) * np.exp(-x)

53.4 ms ± 1.7 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
1.29 ms ± 39.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

The functions np.sin and np.exp are examples of numpy’s universal functions (ufuncs)
that act directly on arrays. While np.sin are unary ufunc, there are many binary ufuncs
like np.add: when you write x+y, you are actually calling the binary ufunc np.add(x, y).
Ufuncs are vectorized functions.

VIII.1 What is vectorization?

Vectorization refers to one or both of the following, depending on context:

1. A convenience feature: Apply an operation to all elements of a collection at once.

2. A performance feature: Use hardware instruction sets to execute single instruction
on multiple data (SIMD).

A numpy ufunc like np.sin is vectorized in both the above senses: (1) you can apply it
directly to an array thus avoiding python loops (unlike math.sin which can be applied
to just a single value), and (2) numpy’s C implementation of np.sin uses some SIMD
instruction sets, allowing you to get automatic speed up when running on hardware that
supports the instructions. If the latter still sounds mysterious, here is more explanation
than you probably need: most chips today come with a SIMD instruction to process 4
numbers (foat64) at once (and fancier chips can do more), so a loop over an array of N
foats can fnish in N/4 iterations if you utilize that instruction.

To examine the difference between the convenience feature and the performance feature,
consider the following function, which is written to apply to just one number:

59

https://github.com/numpy/numpy/blob/master/numpy/core/src/umath/simd.inc.src

[8]: def f(v): # apply f to one scalar value v
return math.sin(v) * math.exp(-v)

To gain (1), the convenience feature, there are at least two options other than using ufuncs:

a) Use map

A function f acting on a scalar value can be made into a function that acts on a vector of
values using the functional programming tool map(f, x), which returns an iterator that
applies f to every element of x.

[9]: vectorizedf = map(f, x) # apply same f to a vector of values x

b) Use numpy’s vectorize

[10]: F = np.vectorize(f) # F can be applied to a array x

Both options (a) and (b) provide the convenience feature (1), letting you avoid python
loops, and allows you to write expressive short codes.

However, neither option (a) nor (b) gives you the full performance of numpy’s ufuncs.

[11]: # use map
%timeit y = list(map(f, x))

use numpy's vectorize
%timeit y = F(x)

use numpy's ufunc
%timeit y = np.sin(x) * np.exp(-x)

36.1 ms ± 1.56 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
27.6 ms ± 1.54 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
1.27 ms ± 52.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

VIII.1.1 Is range as effcient as np.arange?

[12]: %timeit for x in range(1000000): x**3
%timeit for x in np.arange(1000000): x**3

266 ms ± 856 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
270 ms ± 16 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

There was a time (in Python 2) when range was not as effcient, but those times have
passed.

VIII.1.2 Have you really understood indexing and slicing?

• A slice a[b:e:s] of a refers to the array of elements from the beginning index b
(included) till ending index e (excluded), stepping s elements.

60

https://docs.python.org/3/library/functions.html#map

• The defaults b=0, e=len(a), and s=1 may be omitted in a slice specifcation.

• Negative indices count from the end of the array: a[-1] is the last element of a and
a[-k] = a[len(a)-k].

• Positive indices count from the begining as usual.

[13]: a = np.random.randint(0,9,5)
a

[13]: array([8, 0, 3, 4, 5])

If you have understood these, then you should be able to say what the expected results are
from each of the following statements.

a[::]
a[-1]
a[len(a)-1]
a[-3:]
a[-4:-1:2]
slice = range(-4,-1,2)
a[-4:-1:2], a[slice]

Verify your answers:

[14]: a[::]

[14]: array([8, 0, 3, 4, 5])

[15]: a[-3:]

[15]: array([3, 4, 5])

[16]: a[-1], a[len(a)-1]

[16]: (5, 5)

[17]: a[-4:-1:2]

[17]: array([0, 4])

[18]: slice = range(-4,-1,2) # Think of b:e:s specification as a range.
a[-4:-1:2], a[slice] # In older versions, a[slice] may not work

but will work with slice=arange(-4,-1,2).

[18]: (array([0, 4]), array([0, 4]))

61

VIII.1.3 Do you really know what = does?

[19]: a = np.array([1,2,3])
b = np.array([3,4,5,6])

After assigning a to b by =, what happens when you change an element of a?

[20]: a = b
a[0] = 1
a

[20]: array([1, 4, 5, 6])

We certainly expected the 3 to become 1 in a. Did you also expect the following?

[21]: b

[21]: array([1, 4, 5, 6])

If this surprises you, listen to what I have say next carefully.

VIII.1.4 What is a python variable anyway?

In most languages, each variable has its own memory address. For example consider this
simple C++ code (ignore it if you don’t know C++).

#include <vector>
std::vector<int> a{1,2,3}, b{3,4,5,6};
// Objects a and b each have their own memory addresses.
// Assignment a=b copies contents of b's memory into a.
a = b;
// a's memory address has not changed, but its contents have.

If you have programmed in C or C++, you might have gotten used to variables being
permanently linked to their memory locations.

In contrast, python variables are just names. In python, variables like a and b are names
which are not associated to fxed memory addresses. Names can be bound to one object in
memory, and later to another. Multiple names can be bound to the same object (sometimes
known as aliasing in other languages). The upshot of this is that in python, the assignment
“=” changes names, but need not copy memory contents.

[22]: a = np.array([1,2,3]) # This is Object1 and "a" is a name for it.
b = np.array([3,4,5,6]) # This is Object2 and "b" is a name for it.

We can double check that these objects occupy different memory locations using python’s
id function.

[23]: id(a), id(b)

62

https://docs.python.org/3.8/reference/executionmodel.html

[23]: (140447422075168, 140447424972400)

Consider what happens when you say a=b:

[24]: a = b # a is no longer a name for Object1, it is now a name for Object2.

[25]: id(a), id(b)

[25]: (140447424972400, 140447424972400)

Names a and b are now both bound to the same “Object2”. (And we no longer have a
way to access “Object1”!) Now, when we change a, or when we change b, we are really
changing the same object.

VIII.1.5 What if I really want to copy data?

[26]: a = np.array([1,2,3]) # Object1
b = np.array([3,4,5,6]) # Object2
a = b.copy() # Copies Object2, and binds a to the copy
a[0] = 2 # Only the copied (new) object is changed

[27]: a, b

[27]: (array([2, 4, 5, 6]), array([3, 4, 5, 6]))

VIII.1.6 Does numpy have matrices?

Of course, numpy is all about vectors and matrices (and even higher-order tensors). Two-
dimensional data, or tabular data, or matrix data of the form ⎤⎡ ⎢⎣

A0,0 · · · A0,n−1
. . .

. . .
. . .

Am−1,0 · · · Am−1,n−1

⎥⎦

can be represented in python - either as list of lists - or as a numpy array.

The numpy array is more effcient than list of lists and has constructs for some matrix
operations. (Note that you might fnd a numpy.matrix class, distinct from the array class,
in some older codes, but be warned that it is deprecated. Due to problems arising from
mixing matrix and array objects in python codes, we will not use the deprecated matrix
class in this course. You should not use it in work you turn in.)

[28]: Amat = [[1,2],
[3,4]]

Amat

[28]: [[1, 2], [3, 4]]

63

[29]: amat = np.array(Amat)
amat

[29]: array([[1, 2],
[3, 4]])

[30]: type(A), type(a)

[30]: (list, numpy.ndarray)

Note that 2D and 1D numpy arrays are of the same type called numpy.ndarray.

VIII.1.7 Multiply a list or a matrix?

What is the difference between 2*Amat and 2*amat, for the objects Amat (list of lists) and
amat (numpy array) just made above?

[31]: 2*Amat

[31]: [[1, 2], [3, 4], [1, 2], [3, 4]]

[32]: 2*amat

[32]: array([[2, 4],
[6, 8]])

VIII.1.8 How do I matrix multiply?

[33]: amat

[33]: array([[1, 2],
[3, 4]])

[34]: amat * amat

[34]: array([[1, 4],
[9, 16]])

Look at the output: is this really matrix multiplication?! This is one thing that drives math-
ematicians crazy when they look at numpy for the frst time. Mathematicians want the
multiplication operator * to mean matrix multiplication when it is applied to numpy ar-
rays. Unfortunately python’s default * does element-by-element multiplication, not ma-
trix multiplication. Since the frst proposal for numpy, decades ago, many battles have
been waged to resolve this embarrassment.

Finally, a few years ago, there came some good news. Since Python 3.5, the @ symbol was
dedicated to mean the matrix multiplication operator. You can read more about it at PEP
465.

64

https://www.python.org/dev/peps/pep-0465/
https://www.python.org/dev/peps/pep-0465/

[35]: import sys
print(sys.version) # check if you have version >= 3.5 before trying @

3.8.0 (v3.8.0:fa919fdf25, Oct 14 2019, 10:23:27)
[Clang 6.0 (clang-600.0.57)]

[36]: amat @ amat

[36]: array([[7, 10],
[15, 22]])

Naturally, many of us needed matrix multiplication before the @ came along, so as you
must have guessed, there is another way to do matrix multiplication:

[37]: np.dot(amat, amat) # dot(A,B) = matrix A multiplied by matrix B

[37]: array([[7, 10],
[15, 22]])

[38]: amat.dot(amat)

[38]: array([[7, 10],
[15, 22]])

I think you will agree with me that this is not as neat as @.

You should know that the embarrassment continues in matrix powers. If you thought amat
** 2 should give you a matrix power equaling the product of amat with itself, think again.

[39]: amat**2 # not equal to matrix power !!

[39]: array([[1, 4],
[9, 16]])

Numpy provides a matrix_power routine to compute Mn for matrices M (and integers n).

[40]: np.linalg.matrix_power(amat, 2)

[40]: array([[7, 10],
[15, 22]])

It does the job, but leaves elegance by the wayside.

VIII.1.9 How to slice 2D arrays?

Slicing in two-dimensional arrays is similar to slicing one-dimensional arrays. If rslice
and cslice are 1D slices (or ranges) like the ones we used for one-dimensional arrays, then
when applied to a 2D array A,

A[rslice, cslice]

65

https://clang-600.0.57

the result is a submatrix of A using row indices in rslice and column indices in cslice.

[41]: A = np.array([[7, 8, 5, 1], [2, 5, 5, 2], [9, 6, 8, 9]])
A

[41]: array([[7, 8, 5, 1],
[2, 5, 5, 2],
[9, 6, 8, 9]])

[42]: A[1, :], A[:, 2]

[42]: (array([2, 5, 5, 2]), array([5, 5, 8]))

[43]: A[:3:2, :3]

[43]: array([[7, 8, 5],
[9, 6, 8]])

VIII.1.10 How are 2D arrays stored?

Like other programming facilities, numpy stores 2D array data internally as a 1D array,
in order to get a contiguous memory block for convenient storage. For 2D arrays, Fortran
and Matlab uses column-major ordering, while C uses row-major ordering. For example,
the 2D array

[[7, 8, 5, 1],
[2, 5, 5, 2],
[9, 6, 8, 9]]

in row-major ordering looks like

7, 8, 5, 1, 2, 5, 5, 2, 9, 6, 8, 9

while in column-major ordering, it looks as follows.

7, 2, 9, 8, 5, 6, 5, 5, 8, 1, 2, 9

Numpy, by default, stores arrays in row-major ordering (like C). This thinking is refected
in some numpy’s methods: e.g., when you ask numpy to reshape or fatten a array, the
result is what you expect as if it were stored in row-major ordering.

[44]: M = np.array([[7, 8, 5, 1], [2, 5, 5, 2], [9, 6, 8, 9]])
M

[44]: array([[7, 8, 5, 1],
[2, 5, 5, 2],
[9, 6, 8, 9]])

[45]: M.reshape(2, 6) # Just a different view of the same data

66

https://VIII.1.10

[45]: array([[7, 8, 5, 1, 2, 5],
[5, 2, 9, 6, 8, 9]])

[46]: M.ravel() # The 1D data of M in row-major ordering

[46]: array([7, 8, 5, 1, 2, 5, 5, 2, 9, 6, 8, 9])

But the actual situation is more complicated since numpy allows users to override the default
storage ordering. You can decide to store an array like in C or like in Fortran. Here is how
to store the same array in Fortran’s column-major ordering.

[47]: A = np.array(M, order='F')
A

[47]: array([[7, 8, 5, 1],
[2, 5, 5, 2],
[9, 6, 8, 9]])

Obviously, it is the same matrix. How the data is stored internally is mostly immaterial
(except for some performance optimizations). The behavior (of most) of numpy methods
does not change even if the user has opted to store the array in a different ordering. If you
really need to see a matrix’s internal ordering, you can do so by calling the ravel method
with keyword argument order='A'.

[48]: A.ravel(order='A') # A's internal ordering is Fortran style

[48]: array([7, 2, 9, 8, 5, 6, 5, 5, 8, 1, 2, 9])

[49]: M.ravel(order='A') # M's internal ordering is default C-style

[49]: array([7, 8, 5, 1, 2, 5, 5, 2, 9, 6, 8, 9])

VIII.1.11 Can I put booleans as indices?

If a numpy array is given indices that are boolean (instead of integers), then rows or
columns are selected based on True indices. This is called masking. It is very useful
together with vectorized conditionals.

[50]: N = np.arange(25).reshape(5,5)
N

[50]: array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])

How will you isolate elements in N whose value is between 7 and 18?

67

https://VIII.1.11

[51]: mask = (N>7) & (N<18)
mask

[51]: array([[False, False, False, False, False],
[False, False, False, True, True],
[True, True, True, True, True],
[True, True, True, False, False],
[False, False, False, False, False]])

These are the elements we needed:

[52]: N[mask]

[52]: array([8, 9, 10, 11, 12, 13, 14, 15, 16, 17])

And these are their locations:

[53]: i, j = np.where(mask) # Returns i and j indices where mask[i,j] is True.
i, j # 1st True value of mask is at i[0],j[0],

2nd True value of mask is at i[1],j[1], etc.

[53]: (array([1, 1, 2, 2, 2, 2, 2, 3, 3, 3]), array([3, 4, 0, 1, 2, 3, 4, 0, 1,␣
↪→2]))

VIII.1.12 How do I represent higher order tensors?

Numpy can work with general-dimensional arrays, not just 1D or 2D arrays. For an n-
dimensional array, the shape of a numpy array is a tuple of n integers giving the sizes in
each dimension.

data = np.random.randint(low=0, high=10, size=30) # 1D array

T2 = np.reshape(data, (6, 5)) # 2D array
T2

[55]: array([[5, 3, 6, 8, 6],
[2, 5, 0, 3, 1],
[3, 6, 5, 3, 6],
[3, 8, 2, 1, 8],
[2, 5, 3, 1, 7],
[8, 9, 0, 4, 9]])

T3 = np.reshape(data, (2, 3, 5)) # 3D array
T3

[56]: array([[[5, 3, 6, 8, 6],
[2, 5, 0, 3, 1],
[3, 6, 5, 3, 6]],

[54]:

[55]:

[56]:

68

https://VIII.1.12

[[3, 8, 2, 1, 8],
[2, 5, 3, 1, 7],
[8, 9, 0, 4, 9]]])

[57]: print('T3 is a ', T3.ndim, 'dimensional array of shape ', T3.shape)
print('T2 is a ', T2.ndim, 'dimensional array of shape ', T2.shape)
print('data is a ', data.ndim, 'dimensional array of shape ', data.shape)

T3 is a 3 dimensional array of shape (2, 3, 5)
T2 is a 2 dimensional array of shape (6, 5)
data is a 1 dimensional array of shape (30,)

Here are a few other features of numpy arrays to note:

• Every numpy array has attributes ndim and shape.
• A scalar c, or np.array(c) is considered to have ndim=0 and shape=().
• A vector of length n, when viewed as a row vector has ndim=1 and shape=(n,).
• A vector of length n, when viewed as a column vector has ndim=2 and shape=(n, 1).
• You can convert a row vector a to a column vector by a[:, np.newaxis].
• Use newaxis to add a new dimension, e.g., T3[:, :, np.newaxis, :] has shape=(2,

3, 1, 5).

VIII.1.13 Would you like to add matrices of different shapes?

In mathematics, it would be an illegal operation to add matrices of different shapes. But it
is not surprising that we would want to: e.g., viewing the number 10 as a 1x1 matrix and
considering a matrix A of any other size, wouldn’t it be nice to say 10 + A to add 10 to all
elements of A? Wouldn’t it also be nice to be able to use + to add a vector to all columns
of a matrix with more than one columns? All this and more is made possible in numpy by
broadcasting rules, which extend the possibilities of vectorized operations. A very clear
explanation of broadcasting is in [JV-H].

To see if you can add up (or apply another binary ufunc) differently shaped arrays, follow
this algorithm, which uses the ndim and shape attributes we just saw.

Step 1. If two arrays differ in their ndim, then revise the shape of the one with lower ndim
by prepending 1 on the left until the ndims are equal.

Step 2. If shape[i] (after its possible revision from Step 1) of the two arrays are unequal
and one of them equals 1, then increase the latter to match the other shape[i].

If the resulting revised shapes of the arrays are still unequal, then broadcasting fails and
you can’t add them. In Step 1, when we increase ndim by prepending a 1 to shape, we
are not really changing the array: we are just imagining it with one extra dimension. In
Step 2, when we increase shape[i] from 1 to something larger, we are imagining the array
elements repeated along the i-th dimension (without actually performing an operation
copying the elements). Here are a few examples to illustrate these rules.

Example 1:

a + b = [1, 8, 3] + [1]

69

https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arrays-broadcasting.html
https://VIII.1.13

[0, 6, 5]
a.ndim=2
a.shape=(2, 3)

Step 2: a.shape=(2, 3)

a + b = [1, 8, 3] +
[0, 6, 5]

Example 2:

a + b = [1, 8, 3] +
[0, 6, 5]
a.ndim=2
a.shape=(2, 3)

Step 1: a.shape=(2, 3)

Step 2: a.shape=(2, 3)

a + b = [1, 8, 3] +
[0, 6, 5]

Example 3:

a + b = [1, 8, 3] +
[0, 6, 5]
a.ndim=2
a.shape=(2, 3)

Step 1: a.shape=(2, 3)

Step 2: a.shape=(2, 3)

[8]
b.ndim=2
b.shape=(2, 1)

b.shape=(2, 3)

[1, 1, 1] =
[8, 8, 8]

[1]

b.ndim=0
b.shape=()

b.shape=(1, 1)

b.shape=(2, 3)

[1, 1, 1] =
[1, 1, 1]

[1, 3]

b.ndim=1
b.shape=(2,)

b.shape=(1, 2)

b.shape=(2, 2)

<= No need for Step 1 modification
<= Apply Step 2 to equalize shape

[2, 9, 4]
[8, 14, 13]

<= Apply Step 1 to equalize ndim
(prepend 1 until ndim equalizes)

<= Next apply Step 2 to equalize shape

[2, 9, 4]
[1, 7, 5]

<= Apply Step 1 to equalize ndim

<= Next apply Step 2 to equalize shape

<= Still unequal: broadcasting fails

As a simple exercise to further fx ideas, follow the above procedure and see if you can
explain whether broadcasting rules apply, or not, to the following (with T2 and T3 as set
previously).

• T2 + T3
• T3 + 1
• T2[:3,:] + T3

70

IX

The SEIR model of infectious diseases

April 22, 2020

Recent news of COVID-19 has brought to our attention the stories of the many earlier
pandemics the world has seen. A classic case is a strain of infuenza that invaded New
York City during 1968-1969, then dubbed the Hong Kong fu. The following data (from
[DM]) shows the number of deaths that winter in New York City believed to be due to this
fu.

[1]: import matplotlib.pyplot as plt
%matplotlib inline
import seaborn; seaborn.set();
plt.bar(range(1,14), [14,28,50,66,156,190,156,108,68,77,33,65,24])
plt.xlabel('Week'); plt.ylabel('Excess deaths');
plt.xticks(range(1,14)); plt.title('1968-69 Influenza in New York City');

Notice how the data from Week 1 to Week 13 roughly fts into a bell-shaped curve. You
have, by now, no doubt heard enough times that we all must do our part to fatten the curve.
The bell-shaped curve, which has been identifed in many disease progressions, is the
curve we want to fatten. Some mathematical models of epidemic evolution, for instance
the well-known “SIR model” discussed in [DM], produces such bell curves. Flattening
the curve can then be interpreted as bringing relevant model parameters into a range that
produces a shallow bell.

Mathematical models are often used as tools for prediction. However, we should be wary
that models only approximate a few features of reality, and only when realistic parameter
values (which are often missing) are supplied. Yet, as the saying goes, “All models are

71

https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-background-hong-kong-flu
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-background-hong-kong-flu
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong

wrong, but some are useful.” Even if a model is far away from the “truth”, the “whole
truth”, it helps us understand the process being modeled by revealing the consequences
of various hypotheses. Hence mathematical models are key instruments of computational
thinking.

In this activity, we will study a mathematical model called the SEIR model of infectious dis-
ease progression. In the last few weeks, many researchers have been furiously working to ft
the emerging COVID-19 data into variants of the SEIR model. A number of contributions
can be viewed at the Bulletin of World Health Organization (WHO) which now maintains
a special COVID-19 Open archive.

A number that emerges from models like the SIR or the SEIR model, called R0, or the basic
reproduction number often makes its appearance in popular science. It is even explained
in a flm from 2011 called the Contagion, which has now gained in popularity in view of
its almost prescient plot. The epidemiological defnition of R0 is the average number of sec-
ondary cases produced by one infected individual introduced into a population entirely of
susceptible individuals. One suspects from this defnition that if R0 > 1, then there will be
an epidemic outbreak. We will see that this number also naturally emerges from a math-
ematical model. A quite readable review of R0 (written before the COVID-19 pandemic)
gives an R0 of 14.5 for a measles outbreak in Ghana in the sixties. By all current accounts,
the R0 for COVID-19 appears to be between 2 and 3.

IX.1 Construction of the SEIR model

The SEIR model divides the population into four categories, called “S”, “E”, “I”, and “R”.

• Category “S” consists of individuals who are susceptible to the disease being mod-
eled.

• Category “E” consists of individuals who are exposed to the disease. Diseases (like
COVID-19) often have an incubation period or a latency period and this category
accommodates it. (The SIR model does not have this category.)

• Category “I” consists of individuals infected with the disease and are capable of
infecting others.

• Category “R” consists of individuals who can be removed from the system, e.g., be-
cause they have gained immunity to the disease, or because they have succumbed to
the disease.

S
Susceptible

E
Exposed

I
Infected

R
Recovered

λ σ γ

The model then postulates rules on how populations in each category can move to other
categories. Let us consider the following simple set of rules.

• Assume that individuals move from S to E at the exposure rate λ, i.e., the population
in category S decreases with respect to time t at the rate λ × S and the population in E

72

https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://www.who.int/bulletin/en/
https://www.who.int/bulletin/online_first/COVID-19/en/
https://en.wikipedia.org/wiki/Contagion_(2011_film)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002118/

correspondingly increases at the same rate:

dS
= −λS + · · ·

dt
dE

= +λS + · · ·
dt

where “· · ·” serves to remind us that there may be other unmodeled factors. In this
discussion, the number of individuals in each category (S, E, etc.) is denoted in italic
type by the same letter (S, E etc.).

• The exposure rate λ should grow with I, the number of infected individuals. A
standard hypothesis is that λ is the product of the transmission rate (or the rate of
contact) β and the probability of infection given that contact occurred, which is I/N
in a total population of N individuals, i.e.,

β I
λ = .

N
• The incubation rate σ is the rate at which exposed hosts become infected, i.e.,

dE
= +λS−σE + · · ·

dt
dI

= +σE + · · ·
dt

• The recovery rate γ is the rate at which infected individuals move to the R category:

dI
= +σE−γI + · · ·

dt
dR

= +γI + · · ·
dt

Collecting the above-derived equations (and omitting the unknown/unmodeled “· · ·”),
we have the following basic SEIR model system:

dS β I
= − S,

dt N
dE β I

= S − σE,
dt N
dI

= σE − γI
dt

dR
= γI

dt

The three critical parameters in the model are β, σ, and γ.

Note that we have left several features unmodeled: exposed individuals in “E” might con-
tribute to λ to spread the infection; some exposed individuals in “E” might move directly

73

to the “R” category; some infected individuals in category “I” might not gain perfect im-
munity and so may move back to susceptible category “S.” Despite these limitations, even
this basic SEIR model can provide some useful insights on the disease evolution.

IX.2 Initial value problem

A system of ordinary differential equations (ODE) like the above, together with some ini-
tial conditions (values of the variables of the model at initial starting time, say t = 0), make
up an initial value problem, or IVP. IVPs are ubiquitous in modeling systems that evolve in
time. They encapsulate how a future state of a system is determined by the present state
(the initial data) plus certain rules on how quantities evolve (the ODEs).

Before we talk about a python module to numerically solve an IVP, let us make a simpli-
fcation. The total population N in the system (the sum of individuals in all categories)
is likely to be a huge number. Instead of working with such large numbers, let us divide
each side of each equation by N and work instead with the proportions

S E I R
s = , e = , i = , r = .

N N N N

The equivalent ODE system to be solved for the unknown functions s(t), e(t), i(t), and r(t),
has now become

ds
= −β i s,

dt
de

= β i s − σ e,
dt
di

= σ e − γ i
dt
dr

= γ i.
dt

When supplemented with some initial conditions, say

s(0) = 0.99, e(0) = 0.01, i(0) = 0, r(0) = 0,

we have completed our formulation of the IVP to be solved. Note that the above initial
conditions correspond to a starting scenario where just 1% of the population is exposed.

IX.3 Solving the IVP using scipy module

[2]: from scipy.integrate import solve_ivp
import numpy as np

Scipy’s integrate module provides a solve_ivp facility for solving IVPs like the above.
The facility assumes you have an IVP of the form

⃗dY
dt

= ⃗ f (t, Y⃗), t0 ≤ t ≤ t1,

Y⃗ (t0) = Y⃗ 0, t = t0,

74

where you know the function ⃗ f : [t0, t1] × Rn → Rn and the initial data Y⃗0. It can then
compute an approximation of the solution ⃗Y(t) for t in the interval [t0, t1] using numerical
ODE solvers that you might learn about if you take a numerical analysis course. Type in
help(solve_ivp) into a cell to get more information on how to use this function.

Let us apply this to the SEIR model. To ft to the setting required for solve_ivp, we put ⎤⎡ ⎢⎢⎣

s
e
i
r

⎥⎥⎦Y⃗ =

and ⎡ ⎤
−β i s,

β i s − σ e,
σ e − γ i

γ i

⎢⎢⎣
⎥⎥⎦f⃗ (t, Y⃗) = .

We have to give this f⃗ as a function argument to solve_ivp. Let’s frst defne this f⃗ , called
seir_f in the code below, keeping in mind that we also need to provide some values of
β, σ, and γ before we can solve it. We pass these values as additional arguments to seir_f.

def seir_f(t, y, beta, sigma, gamma):
s, e, i, r = y
return np.array([-beta * i * s,

-sigma * e + beta * i * s,
-gamma * i + sigma * e,
gamma * i])

try some parameter values
beta = 1
sigma = 1
gamma = 0.1

[3]:

[4]:

Following the documentation from help(solve_ivp) we now proceed to solve by calling
solve_ivp as follows.

[5]: sol = solve_ivp(seir_f, [0, 60], [0.99, 0.01, 0, 0],
rtol=1e-6, args=(beta, sigma, gamma))

Examining the resulting solution object sol you will notice that it has a numpy array as its
data member sol.y containing the values of the computed solution ⃗Y(t) at values of t con-
tained in another data member sol.t. We can easily send these arrays to the matplotlib
module to get a plot of the solution.

[6]: fig = plt.figure(); ax = fig.gca()
curves = ax.plot(sol.t, sol.y.T)
ax.legend(curves, ['S', 'E', 'I', 'R']);

75

As you can see, even with 1% exposed population, the number of infections rapidly rise.
However, with more time, they begin to fall, making for a bell-shaped curve, like the one
from the previously mentioned New York City data.

IX.4 Parameter study

Having a function to compute and plot E and I together makes it easy to study the vari-
ations in solutions with respect to the three parameters. Let’s make such a function by
putting together the previous steps.

[7]: def plot_ei(beta=1, sigma=1, gamma=0.1, s0=0.99,
e0=0.01, i0=0, r0=0, t1=60):

apply ODE solver
sol = solve_ivp(seir_f, [0, t1], [s0, e0, i0, r0], rtol=1e-7,

args=(beta, sigma, gamma))
plot I and E components
fig = plt.figure(); ax = fig.gca()
ax.plot(sol.t, sol.y[1, :].T, color='brown',

linestyle='dashed', label='Exposed')
ax.plot(sol.t, sol.y[2, :].T, color='red', label='Infected')
ax.legend()
return ax

[8]: plot_ei(); # baseline with the default parameters above

76

[9]: plot_ei(beta=0.5); # what happens if beta is reduced?

[10]: plot_ei(gamma=0.5); # what happens if gamma is increased?

[11]: plot_ei(sigma=0.1); # what's the effect of sigma?

77

IX.5 Equilibria

In the study of evolution of dynamical systems like the SEIR model, equilibria play an
important role. An equilibrium state is a value of the vector Y⃗ (i.e., values of s, e, i, and
r) for which the rate of change dY⃗ /dt = 0, i.e., if the system happens to enter an exact
equilibrium, then it no longer changes.

For our SEIR system, an equilibrium state s, e, i, r satisfes ⎡⎤⎡ ⎤
0 −β i s, ⎢⎢⎣
⎥⎥⎦ =

⎢⎢⎣
⎥⎥⎦

0
0

β i s − σ e,
σ e − γ i .

0 γ i

You should be able to conclude (exercise!) that the only solutions for this system are of the
form

s ≡ constant, e = i = 0, r ≡ constant.

In other words, since e = i = 0, all equilibria of our model are disease-free equilibria. This
matches our previous observations from our simulations. After a transitional phase, where
i and e increases and decreases per the bell-curve, the system settles into an equilibrium of
the form above.

There are other scenarios where an infection persists and never quite disappears from the
population. Such equilibria where the disease is endemic are sometimes called endemic
equilibria.

As an example, suppose our model represents a city’s population, and suppose travel into
and out of the city is allowed. Then we must add terms that represent the infux of travel-
ers in each category (the number of people entering minus the number of people leaving).
Even if we assume that infected people do not travel, a small infux into susceptible cate-
gory S and exposed category E will disturb the disease-free equilibrium of our model. Let
us add terms a and b representing these infuxes and see what happens.

[12]: def seir_f2(t, y, beta, sigma, gamma, a, b):
s, e, i, r = y
return np.array([-beta * i * s + a,

-sigma * e + beta * i * s + b,

78

-gamma * i + sigma * e,
gamma * i - (a + b)])

def plot_ei2(beta=1, sigma=1, gamma=0.1, a=0.005, b=0.001, t1=150):
sol = solve_ivp(seir_f2, [0, t1], [0.99, 0.01, 0, 0], rtol=1e-7,

args=(beta, sigma, gamma, a, b))
fig = plt.figure(); ax = fig.gca()
ax.plot(sol.t, sol.y[1, :].T, color='brown', linestyle='dashed',␣

↪→label='Exposed')
ax.plot(sol.t, sol.y[2, :].T, color='red', label='Infected')
ax.legend()

[13]: plot_ei2(a=0.005, b=0.001)

As you can see from this output, the percentage of the population with the disease now
remains at around 5% and never quite vanishes, an example of an endemic equilibrium.

IX.6 The emergence of R0

The stability of equilibria is another important consideration in the study of dynamical sys-
tems. Loosely speaking, an equilibrium is considered stable if a solution, when perturbed
from the equilibrium, moves back to it over time. Returning to our simple model ⎡⎤⎡ ⎤

−β i s,s ⎢⎢⎣
⎥⎥⎦ =

⎢⎢⎣
⎥⎥⎦

d
dt

β i s − σ e,
σ e − γ i

e
i
r γ i

suppose we want to guess the stability of one of the previously discussed disease-free
equilibrium states,

s = s0, e = i = 0, r = r0.

where s0 and r0 are some constants. Adding the e and the i equations, we observe that

d(e + i)
= (β s − γ) i.

dt

79

Thus, despite a perturbation brought about by a small surge in the infected population
(resulting in a small positive i value), if the above derivative is negative, i.e., if

β s0 − γ < 0,

then, the value of e + i will decrease to its equilibrium value. This simple argument already
hints at the relevance of the number

β
R0 = s0,

γ

which is the basic reproductive number for this model. In some texts, R0 is defned (to
match the epidemiological defnition) using an initial population that is 100% susceptible,
in which case s0 = 1 and R0 = β/γ.

The argument sketched above was not a proof that the system will return to the disease-
free equilibrium, but rather a sketch to show you why R0 naturally emerges from the
model, using only the calculus tools you have already studied. (Nonetheless, one can
indeed rigorously prove that if R0 < 1, the disease-free equilibrium is stable, see e.g.,
[HSW].)

IX.7 The effect of R0: outbreak or no outbreak

The simple argument sketched above shows that if R0 = βs0/γ > 1 then e + i will increase
(at least for some time), while if R0 < 1, then e + i will decrease. Let us return to the code
and examine the results from the model to see if there is agreement.

Here is an example where R0 = βs0/γ < 1.

[14]: plot_ei(beta=0.6, gamma=1, s0=0.9, i0=0.1);

Clearly, the infected population, despite a positive bump in infections, decays as seen be-
low. In other words, when R0 < 1 there is no outbreak.

Next, consider an example where R0 > 1.

[15]: plot_ei(beta=1, gamma=0.5, s0=0.9, i0=0.1);

80

https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2005.0042

This output clearly shows that the small percentage of introduced infections rapidly in-
crease. (If you worry about the small initial dip in i observed in the output, do please
try to plot e + i to convince yourselves.) The system eventually goes on to attain (the
unique) disease-free equilibrium, but only after inficting some damage. Summarizing,
when R0 > 1, we can expect an epidemic outbreak.

Regarding the impact of vaccinations (provided a vaccine exists) the model does have
something to say. If a fraction, say v, of the population is vaccinated, then that population
moves directly from the S category to the R category. Therefore, changing s0 to s0(1 − v),
we see that R0 reduces to R0 = βs0(1 − v)/γ. A vaccine would therefore be effective to
prevent an epidemic outbreak if enough people are vaccinated, i.e., if v is suffciently large
in order to bring R0 under 1.

IX.8 Application to COVID-19

There are a number of diffculties in applying the SEIR model to the COVID-19 epidemic
we are now facing. One diffculty is in applying it to a single country: we would have to
carefully develop terms that model infow due to travel to or from the country. Of course,
this problem disappears if we consider the entire world as our system. But other problems
remain. As you must have heard in the news, we now suspect that exposed individuals
in E category, who are not symptomatic, might be spreading the infection (i.e., λ might
depend not only on I, but also on E). Our model does not take this into account. Although
we can easily add terms to model this, without accurate testing of both symptomatic and
asymptomatic populations, it is impossible to conclude the required parameter values.
Notwithstanding these (signifcant) limitations, we can forge ahead to see what a simula-
tion would give us, provided we can gather some data on the remaining parameter values.

A recent submission to the Bulletin of WHO uses an R0 of 2.2, which was reported in an
earlier paper, published in January 2020, in the New England Journal of Medicine. Other
reported values now found in the internet seem to be higher. (Inexact parameter values
are indeed one of the diffculties in dealing with real-word problems.) Nonetheless, let us
continue with R0 = β/γ = 2.2. Let us also use the values of σ and γ that others have used:

• σ = 1/5.2 days−1,
• γ = 1/2.3 days−1,

81

http://dx.doi.org/10.2471/BLT.20.255695
https://www.nejm.org/doi/full/10.1056/NEJMoa2001316
https://www.nejm.org/doi/full/10.1056/NEJMoa2001316
http://dx.doi.org/10.2471/BLT.20.255695

• β = R0γ = 2.2γ.

Finally, let us additionally assume a scenario where 0.02% of the world’s population is in-
fected at the start of the simulation, and thrice that many are exposed. (The current number
of active infections worldwide appear to be around 0.02% of the world’s population.) Here
are the outputs of the simulation under these values.

[16]: ax = plot_ei(beta=2.2/2.3, sigma=1/5.2, gamma=1/2.3,
i0=0.02/100, e0=3*0.02/100, t1=100)

ax.set_xlabel('days'); ax.set_ylabel('population fraction');

These output curves seem to suggest that the infection will proceed well into the next two
months before subsiding.

The social distancing and other governmental measures that we are now practicing can be
viewed from the perspective of this simple SEIR model. They are designed to reduce the
transmission rate β. Please go ahead and experiment to see what you get with lower β
values that you can imagine.

You will see that lowering β by a little has two effects:

• it reduces the peak value of the curves (multiply the percentage value by the world’s
population ≈ 7.5 billion, to see the effect in terms of the reduction in number of
people affected), and

• it moves the location of the infection peak farther out in time (i.e., the infection per-
sists longer but in lower numbers).

On the other hand, lowering β by a lot (enough to make R0 < 1) will take you to a regime
where e + i decreases, indicating the other side of the peak, where we really want the world
to be as soon as possible.

82

X

The Singular Value Decomposition

April 27, 2020

One of the early and natural ideas in software development for scientifc computation was
the idea of packaging linear algebra software around robust implementations of matrix
factorizations, divested from specifc applications. This enabled durable linear algebra
tools like LAPACK to be developed with a stable interface, usable across numerous appli-
cation domains. Commercial software like Matlab™, as well as open-source software like
octave, numpy and scipy, all take full advantage of these developments. What does this
mean for you as an aspiring data scientist? When you are faced with a specifc computa-
tional task, if you are able to reformulate your task using off-the-shelf implementations of
matrix factorizations, then you might already be half-way to fnishing your task.

You already know about some matrix factorizations. In your introductory linear algebra
prerequisites, you learnt about eigenvalues and eigenvectors. The computation of eigen-
values and eigenvectors is indeed the computation of a matrix factorization. This factor-
ization is called a diagonalization or an eigenvalue decomposition of an n × n matrix A
and it takes the form

A = XDX−1

where D is a diagonal matrix and X is an invertible matrix, both of the same size as A. The
eigenvalues of A are found in the diagonal entries of D and the eigenvectors are columns
of X, as can be see by rewriting the factorization as

AX = XD.

The importance of eigenvalues in varied applications is usually highlighted well in a frst
linear algebra course.

Another important factorization is the SVD, or the singular value decomposition, which
often does not get the emphasis it deserves in lower division courses. In some ways the
SVD is even more important that a diagonalization. This is because not all matrices have a
diagonalization. In contrast, using basic real analysis results, one can prove that any matrix
has an SVD. We shall see that from an SVD, one can read off the important properties of a
matrix and easily construct compressed approximations of the matrix. The two theorems
stated below without proof are usually proved in a linear algebra course and can be found
in many texts (see e.g., [TB]).

X.1 Defnition of SVD

The SVD is a factorization of an m × n matrix A of the form

A = UΣV∗

83

http://www.netlib.org/lapack/
https://people.maths.ox.ac.uk/trefethen/text.html

where Σ is am m × n diagonal matrix, and U and V are unitary matrices of sized m × m
and n × n, respectively. (Recall that a square matrix Q is called unitary if its inverse equals
Q∗, the conjugate transpose of Q.) The diagonal entries of Σ are non-negative and positive
ones are called the singular values of A. It is a convention to list the singular values in
non-increasing order along the diagonal. The columns of U and V are called the left and
right singular vectors, respectively.

Here is how we compute SVD using scipy.

from scipy.linalg import svd
import numpy as np
np.set_printoptions(precision=3, suppress=True)

a = np.random.rand(4, 5) + 1j * np.random.rand(4, 5)
u, s, vh = svd(a)

u @ u.T.conjugate() # u is unitary. Its columns are left singular␣
↪→vectors

[3]: array([[1.+0.j, 0.-0.j, 0.-0.j, 0.+0.j],
[0.+0.j, 1.+0.j, 0.-0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j, 0.-0.j],
[0.-0.j, 0.-0.j, 0.+0.j, 1.+0.j]])

vh @ vh.T.conjugate() # Rows of vh are right singular vectors

[4]: array([[1.+0.j, -0.+0.j, -0.+0.j, -0.-0.j, 0.-0.j],
[-0.-0.j, 1.+0.j, 0.-0.j, -0.-0.j, 0.+0.j],
[-0.-0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
[-0.+0.j, -0.+0.j, 0.-0.j, 1.+0.j, -0.-0.j],
[0.+0.j, 0.-0.j, 0.+0.j, -0.+0.j, 1.+0.j]])

s # Only the diagonal entries of Sigma are returned in s

[5]: array([3.632, 1.088, 0.748, 0.473])

[1]:

[2]:

[3]:

[4]:

[5]:

X.2 The algebra of SVD

An outer product of an x ∈ Rm and y ∈ Rn , is the m × n matrix xy ∗ (which being the
product of m × 1 and 1 × n matrices, is of shape m × n). Reversing the order of x and y ∗ in
the product, we of course get the familiar inner product, which is a 1 × 1 matrix, or a scalar.

Although the outer product is an m × n matrix, with mn entries, it only takes m + n entries
to completely specify it (namely the entries of x vector and the y vector). Note that the
columns of the outer product xy ∗ are

ȳ1x, ȳ2x, . . . , ȳ x.n

In other words all columns are scalar multiples of the same vector x. Therefore, whenever
x is a nontrivial vector, the dimension of the range (or the column space) of the matrix is 1.

84

Recall from your linear algebra prerequisite that this dimension is what we call rank. All
outer products are of unit rank (unless one of the vectors is trivial).

A very useful way to think of the SVD is to expand the factorization as follows. Naming
the columns of U and V as ui and vj, we have

⎤⎡
σ1 min(m,n)

A = UΣV∗ = [u1, . . . , um]
⎢⎣ σ2 ⎥⎦ ∗ [v1, . . . , vn] ∗ = ∑ σl ulvl . . . l=1 .

Thus the SVD can be viewed as a sum of unit rank outer products. Each summand in-
creases rank (if the corresponding singular value is nonzero) until the rank of A is reached.
Let’s see this in action for a small matrix.

[6]: a = np.random.rand(4, 5)
u, s, vh = svd(a)

Numpy’s broadcasting rules do not make it easy to make the outer product ulv ∗ simply. l
Yet, once you follow the broadcasting rules carefully, you will see that all that is needed is
a placement of a newaxis in the right places.

[7]: u[0, :, np.newaxis] @ vh[np.newaxis, 0, :]

[7]: array([[0.249, 0.213, 0.163, 0.211, 0.214],
[-0.205, -0.176, -0.134, -0.174, -0.177],
[0.196, 0.168, 0.128, 0.167, 0.169],
[0.365, 0.313, 0.238, 0.31 , 0.314]])

Alternately, you can use the facility that numpy itself provides specifcally for the outer
product, namely np.outer.

[8]: np.outer(u[0, :], vh[0, :])

[8]: array([[0.249, 0.213, 0.163, 0.211, 0.214],
[-0.205, -0.176, -0.134, -0.174, -0.177],
[0.196, 0.168, 0.128, 0.167, 0.169],
[0.365, 0.313, 0.238, 0.31 , 0.314]])

Executing the sum ∑l σl(ulv ∗ l), we fnd that it is equal to a:

[9]: ar = np.zeros_like(a)
for i in range(4):

ar += np.outer(u[:, i], s[i] * vh[i, :])

[10]: a - ar # a and ar are identical

[10]: array([[-0., 0., -0., -0., -0.],
[-0., -0., -0., -0., -0.],

85

[-0., -0., -0., -0., 0.],
[-0., -0., -0., 0., -0.]])

The factors of the SVD tell us all the important properties of the matrix immediately, as we
see next. If you enjoy linear algebra, I encourage you to prove the following simple result
yourself.

Theorem 1. Suppose A = UΣV∗ is the SVD of an m × n matrix A. Then the following
statements hold.

1. The rank r of A is the number of nonzero singular values.
2. A basis for the range (column space) of A is {u1, u2, . . . , ur}.
3. A basis for the null space (kernel) of A is {vr+1, . . . , vn−1, vn}.
4. The singular values of A are non-negative square roots of eigenvalues of A∗ A.

Notice how the rank-nullity theorem (something you may have been tortured with in your
frst linear algebra course) follows as a trivial consequence of items (2) and (3).

X.3 The geometry of SVD

The geometry of any linear operator in Rn is easy to describe: application of a matrix trans-
forms (hyper)spheres to (hyper)ellipses - if you did not know this, you will momentarily
see this from the code below. Unitary operators are special in that they are coordinate
changes that maps (hyper)spheres to (hyper)spheres. In general unitary operators don’t
change angles - they include operations like rotation and refection in higher dimensions.

The presence of unitary factors in the SVD is signifcant. The SVD provides a geometrical
decomposition of a linear operator into factors U and V∗ that do not change the shapes,
and a factor Σ that stretches axial directions (so that the shape change is transparent). Let
us see this in action for a 2 × 2 matrix.

[11]: a = np.array([[0.1, 0.5], [0.4, 0.8]])
u, s, vh = svd(a)

To see how the geometry gets transformed (squashed) by the linear operator (matrix) a,
we frst plot the unit circle and the parts of the x and y axis within it. Then, we track how
these points are mapped by a, as well as by each of the components of the SVD of a.

[12]: import matplotlib.pyplot as plt
%matplotlib inline

def show(c):
plt.plot(c[0, :], c[1, :])
plt.axis('image');

plot the unit circle and axis segments:

86

t = np.linspace(0, 3.5 * np.pi , num=300)
l = np.linspace(-1, 1, num=10)
z = np.zeros_like(l)
c = np.array([np.concatenate([l, np.cos(t), z]),

np.concatenate([z, np.sin(t), l])])
show(c)

This is what a does to this geometry:

[13]: show(a @ c)

87

Now, let us see this transformation as a composition of the following three geometrical
operations:

[14]: show(vh @ c)

[15]: show(np.diag(s) @ c)

[16]: show(u @ c)

88

When you compose these operations, you indeed get the transformation generated by a.

[17]: show(u @ np.diag(s) @ vh @ c)

X.4 Low rank approximation

There are many ways of expressing a matrix as a sum of low rank matrices, e.g.,

[] [] [] [] []
a b a 0 0 b 0 0 0 0

= + + + . c d 0 0 0 0 c 0 0 d

Each of the matrices on the right can have rank at most one.

As we have already seen, the SVD also expresses A as a sum of rank-one outer products.
However, the way the SVD does this, is special in that a low-rank minimizer can be read off
the SVD, as described in the following (Eckart-Young-Mirksy) theorem. Here we compare
matrices of the same size using the Frobenius norm ()1/2

∥A∥F = ∑ |Aij|2 .
i,j

The theorem answers the following question: how close can we get to A using matrices
whose rank is much lower than the rank of A?

Theorem 2. Suppose A be an m × n matrix (complex or real). For any 0 ≤ ℓ ≤ r = rank(A),
defne the matrix

ℓ

Aℓ = ∑ ∗σjujvj ,
j=1

89

using the singular values σj and the left and right singular vectors uj, vj of A, i.e., Aℓ is the
sum of the frst ℓ terms of the SVD when written as a sum of outer products. Then, the
minimum of ∥A − B∥F over all m × n matrices B of rank not more than ℓ is attained by

)1/2 ∥A − Aℓ∥F and the minimum is (σℓ
2
+1 + · · · + σr

2 .

This matrix approximation result is perhaps best visualized using images. Think of an im-
age as a matrix. Using matplotlib’s imread we can load PNG images. Here is an example.

[18]: cats = plt.imread('../figs/GeoLea.png')
cats.shape

[18]: (1040, 758, 4)

This is a 3-dimensional array because images are represented using RGBA values at each
pixel (red, green, blue and an alpha value for transparency). However this image of my
cats is actually a black and white image, so all RGB values are the same, as can be verifed
immediately:

[19]: np.linalg.norm(cats[..., 0] - cats[..., 2], 'fro')

[19]: 0.0

The above line contains two features that you might want to note: the use of the ellipsis to
leave the dimension of a numpy slice unspecifed, and the way to compute the Frobenius
norm in numpy. Restricting to the frst of the three identical image channels, we continue:

[20]: c = cats[..., 0]
plt.imshow(c, cmap='gray');

90

https://docs.python.org/dev/library/constants.html#Ellipsis

Let us take the SVD of this 1040 x 758 matrix.

[21]: u, s, vh = svd(c)

[22]: plt.plot(s);

You can see a sharp drop in the magnitude of the singular values. This is a good indication
that the later summands in the SVD representation of A,

min(m,n)
∗A = ∑ σjujvj

j=1

are adding much less to A than the frst few summands. Therefore, we should be able to
represent the same A using the frst few outer products.

[23]: # Rank 20 approximation of the cats:
l = 20; cl = u[:, :l] @ np.diag(s[:l]) @ vh[:l, :]
plt.imshow(cl, cmap='gray');

91

[24]: # Rank 50 approximation of the cats:
l = 50; cl = u[:, :l] @ np.diag(s[:l]) @ vh[:l, :]
plt.imshow(cl, cmap='gray');

If you increase the rank l to 100, you will fnd that the result is visually indistinguishable
from the original.

Returning to Theorem 2, notice that the theorem also gives one the ability to specify an
error tolerance and let that dictate the choice of the rank ℓ. E.g., if I do not want the error
in my low-rank approximation to be more than some specifc ε, then I need only choose ℓ

92

so that
(σ2 · + σ2)1/2 ≤ ε.ℓ+1 + · · r

As an example, suppose I declare I want a low-rank approximation within the following
relative error in Frobenius norm:

[25]: relative_error = 1.e-1

Then we can fnd the needed ℓ using an aggregation and masking (see [JV-H] for the prereq-
uisite material on this) as follows.

[26]: s2 = s**2
total = np.sum(s2)
diff = np.sqrt((total - np.add.accumulate(s2)) / total)
l = np.argmax(diff < relative_error) + 1
l

[26]: 41

Then here is the needed low rank approximation:

[27]: cl = u[:, :l] @ np.diag(s[:l]) @ vh[:l, :]

You can check that the error is indeed less than the prescribed error tolerance.

[28]: np.linalg.norm(c - cl, 'fro') / np.linalg.norm(c, 'fro')

[28]: 0.09942439

As you can see, the low rank approximation does give some image compression. The
number of entries needed to store a rank ℓ approximation cl of an m × n matrix is mℓ +
ℓ + ℓn:

[29]: u.shape[0] * l + l + l * vh.shape[0]

[29]: 73759

In contrast, to store the original image (single channel) we would need to minimally store
mn numbers:

[30]: c.shape[0] * c.shape[1]

[30]: 788320

Comparing the two previous output, we can certainly conclude that we have some com-
pression. However, for image compression, there are better algorithms.

The utility of the low-rank approximation technique using the SVD is not really in im-
age compression, but rather in other applications needing a condensed operator. Being an
compressed approximation of an operator (i.e., a matrix) is much more than being just a
compressed visual image. For example, one can not only reduce the storage for a matrix,

93

https://jakevdp.github.io/PythonDataScienceHandbook/02.00-introduction-to-numpy.html

but also reduce the time to apply the operator to a vector using a low-rank approximation.
Because the SVD tells us the essentials of an operator in lower dimensional spaces, it con-
tinues to fnd new applications in many modern emerging concepts, some of which we
shall see in later lectures.

94

XI

Bikes on Tilikum Crossing

May 1, 2020

A car-free bridge is still considered a ridiculous idea in many parts of our country. Port-
landers beg to differ. Portland’s newest bridge, the Tilikum Crossing, opened in 2015, and is
highly multimodal, allowing travel for pedestrians, bikes, electric scooters, trains, street-
cars, and buses (but the modality of travel by personal car is missing). Bike lanes were not
an afterthought, but rather an integral part of the bridge design. One therefore expects to
see a good amount of bike traffc on Tilikum.

In this activity, we examine the data collected by the bicycle counters on the Tilikum. Port-
land is divided into east side and west side by the north-fowing Willamette river and the
Tilikum connects the two sides with both eastbound and westbound lanes. Here is a photo
of the bike counter (the black display, located in between the streetcar and the bike lane)
on the bridge.

Portlanders use the numbers displayed live on this little device to boast about Portland’s
bike scene in comparison to other cities. The data from the device can also be used in more

95

complex ways. The goal of this lesson is to share the excitement of extracting knowledge
or information from data - it is more fun than a Sherlock Holmes tale. In this activity, you
get to be Mr. Holmes while you wrangle with the data and feel the thrill of uncovering
the following facts that even many of the locals don’t know about. (a) Most of those who
bike to work on Tilikum live on the east side. (b) Recreational bikers on Tilikum prefer
afternoon rides. (c) There are fewer bikers on the bridge after social distancing and they
appear to use the bridge during afternoons.

Comparison with Seattle’s Fremont bridge bike counter data reveals more, as we shall
see: (a) there are fewer bikers on Portland’s Tilikum than on Seattle’s Fremont bridge in
general. (b) During peak hours, bikers are distributed more evenly on Seattle’s Fremont
bridge travel lanes than on Tilikum. (c) The bike usage on both bridges have shifted to a
recreational pattern after social distancing.

The BikePed Portal provides some of the data collected from the counter for the public,
but currently only subsampled data can be downloaded from there. Here we shall instead
use the full raw data set collected by the counters, which is not yet publicly downloadable.
I gratefully acknowledge Dr. Tammy Lee and TREC for making this data accessible. This
activity is motivated by the material in Working with Time Series section of [JV-H].

[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn; seaborn.set()

XI.1 Initial examination of the data

As you have seen in previous activities, the frst step in dealing with real data is data
wrangling to make the data ft our tools. The case of this data is no different. (If you haven’t
yet heard of Hadley Wickham’s famous paper Tidy Data, J. Stat. Software, I recommend
you take a look. It begins with the sentence, “A huge amount of effort is spent cleaning
data to get it ready for analysis . . .”)

[2]:

[2]:

metadata file (small file)
tm = pd.read_csv('../../data_external/tilikum_metadata.csv')

data file (large file)
td = pd.read_csv('../../data_external/tilikum_20200501.csv')
td.head()

id start_time end_time measure_period␣
↪→ \

0 36586735 2015-08-09 08:00:00+00 2015-08-09 08:15:00+00 00:15:00
1 36586736 2015-08-09 08:15:00+00 2015-08-09 08:30:00+00 00:15:00
2 36586737 2015-08-09 08:30:00+00 2015-08-09 08:45:00+00 00:15:00
3 36586738 2015-08-09 08:45:00+00 2015-08-09 09:00:00+00 00:15:00
4 36586739 2015-08-09 09:00:00+00 2015-08-09 09:15:00+00 00:15:00

96

http://bikeped.trec.pdx.edu
https://trec.pdx.edu/
https://jakevdp.github.io/PythonDataScienceHandbook/03.11-working-with-time-series.html
https://jakevdp.github.io/PythonDataScienceHandbook/
https://www.jstatsoft.org/article/view/v059i10

[3]:

[3]:

[4]:

[4]:

volume flow_detector_id
0 0 1903
1 0 1903
2 0 1903
3 0 1903
4 0 1903

td.tail()

id start_time end_time \
324700 96966870 2020-04-30 05:45:00+00 2020-04-30 06:00:00+00
324701 96966871 2020-04-30 06:00:00+00 2020-04-30 06:15:00+00
324702 96966872 2020-04-30 06:15:00+00 2020-04-30 06:30:00+00
324703 96966873 2020-04-30 06:30:00+00 2020-04-30 06:45:00+00
324704 96966874 2020-04-30 06:45:00+00 2020-04-30 07:00:00+00

measure_period volume flow_detector_id
324700 00:15:00 4 1905
324701 00:15:00 0 1905
324702 00:15:00 0 1905
324703 00:15:00 0 1905
324704 00:15:00 0 1905

Looking through frst few (of the over 300,000) data entries above, and then examining the
meta data fle contents in tm, we conclude that volume gives the bike counts. The volume is
for 15-minute intervals as seen from measure_period. A quick check indicates that every
data entry has a starting and ending time that conforms to a 15-minute measurement.

dif = pd.to_datetime(td['end_time']) - pd.to_datetime(td['start_time'])
(dif == dif[0]).all()

True

Therefore, let us rename start_time to just time and drop the redundant data in end_time
and measure_period (as well as the id) columns.

[5]: td = td.rename(columns={'start_time':'time'}).drop(columns=['end_time',␣
↪→'measure_period', 'id'])

The meta data also tells us to expect three detectors and three values of flow_detector_id.
Here are a few entries from the meta data:

[6]: tm.T.loc[['detector_description', 'flow_detector_id', 'detector_make',␣
↪→'detector_name', 'facility_description'], :]

[6]: 0 \
detector_description Inbound towards East
flow_detector_id 1903

97

detector_make EcoCounter
detector_name Tilikum Crossing 1 EB
facility_description South bike lane of Tilikum Crossing Bridge

1 \
detector_description Inbound towards West
flow_detector_id 1904
detector_make EcoCounter
detector_name Tilikum Crossing (EAST)
facility_description North bike lane of Tilikum Crossing Bridge

2
detector_description Inbound towards West
flow_detector_id 1905
detector_make EcoCounter
detector_name Tilikum Crossing 2 WB
facility_description North bike lane of Tilikum Crossing Bridge

Although there are three values of flow_detector_id listed above, one of these values
never seems to appear in the data fle. You can check that it does not as follows:

[7]: (td.flow_detector_id==1904).sum()

[7]: 0

Therefore, going through the meta data again, we conclude that eastbound and westbound
bikes pass through the fow detectors with id-numbers 1903 and 1905, respectively.

The next step is to reshape the data into the form of a time series. The start_time seems
like a good candidate for indexing a time series. But it’s a red herring. A closer look will
tell you that the times are repeated in the data set. This is because there are distinct data
entries for the eastbound and westbound volumes with the same time stamp. So we will
make two data sets (since our data is not gigabytes long, memory will not be an issue), a
tE for eastbound volume and tW for westbound volume.

[8]: tE = td.loc[td['flow_detector_id']==1903, ['time', 'volume']]
tE.index = pd.DatetimeIndex(pd.to_datetime(tE['time'])).tz_convert('US/

↪→Pacific')
tE = tE.drop(columns=['time']).rename(columns={'volume':'Eastbound'})

[9]: tW = td.loc[td['flow_detector_id']==1905, ['time', 'volume']]
tW.index = pd.DatetimeIndex(pd.to_datetime(tW['time'])).tz_convert('US/

↪→Pacific')
tW = tW.drop(columns=['time']).rename(columns={'volume':'Westbound'})

Note that we have now indexed eastbound and westbound data by time stamps, and re-
named volume to Eastbound and Westbound respectively in each case.

We are now ready for a frst look at the full time series. Let us consider the eastbound data

98

frst.

[10]: tE.plot();

Clearly, we have problems with this data. A spike of 7000 bikers passing through in 15
minutes, even for a bike-crazed city like Portland, just does not seem right. Zooming in,
we fnd the situation even more disturbing, with a lot of zero readings before the spike:

[11]: tE['2018-11-25':'2019-06-01'].plot();

There are reports from TriMet of construction in 2018 and city traffc advisories in 2019 that
might all affect bike counter operation, but since the data set seems to have no means to in-
dicate these outages, we are forced to come up with some strategy ourselves for discarding
the false-looking entries from the data.

First, exploiting pandas’ ability to work with missing values, we declare the entries for the
dates in the above plot to be missing. Note that missing data is not the same as zero data.
When the bike counter is not working, the data should ideally be marked as missing, not
zero. Since our suspicion is that outages might have resulted in defective counts, we shall
effectively remove all data entries for these dates from the data set, as follows:

[12]: tE['2018-11-25':'2019-06-01'] = np.nan

99

https://trimet.org
https://www.portlandoregon.gov/transportation/article/728559

Next, we shall declare all entries with a volume of more than 1000 bikes per 15 minute to
be a missing/defective value on both the westbound and eastbound data.

[13]: tE[tE > 1000] = np.nan
tW[tW > 1000] = np.nan

XI.2 Visualize cleaned up data

After the preparations above, we are now ready to visualize. Let us merge the east and
west two data sets on the same time stamp axis.

[14]: t = pd.merge(tE, tW, on='time')
t.plot(alpha=0.7, style=['-',':']);

Examining the above graph, we still see spikes that look unreasonably high in the be-
ginning of the data, but they may actually be real because at the offcial opening of the
bridge there were 30,000 to 40,000 people and at least 13,000 bikes milling around. Simi-
larly, the other spikes may be real data. One can try to explain them, e.g., by consulting
https://bikeportland.org/events/, from which you might conclude that the spike on Au-
gust 25, 2019 is due to a Green Loop event, and that large spike on June 29, 2019 might be
due to all the people coming over for the World Naked Bike Ride; or was it some afterparty
of Loud’n Lit event? I can’t really tell. We’ll just leave it at that, and blame the remaining
spikes on the groovy bike scene of Portland.

The quarter-hour samples look too dense in the plot above. A better picture of the situation
is obtained by extracting weekly counts of bikes in both directions from the data.

[15]: t.resample('W').sum().plot(style=['-',':'], title='Weekly bike counts on␣
↪→Tilikum');

100

https://www.oregonlive.com/multimedia/2015/08/tilikum_crossing_public_treate.html
https://www.oregonlive.com/multimedia/2015/08/tilikum_crossing_public_treate.html
https://bikeportland.org/event/sunday-parkways-green-loop-downtown
https://bikeportland.org/events

XI.3 The pattern of use

The Tilikum is being used both by people who commute to work using a bicycle as well as
recreational bicycle users. We can understand more about this division among bikers by
dividing the data into weekend and weekday entries.

The only technical skills you need for this are numpy.where and an understanding of
pandas.Timestamp objects. (Please ensure you have studied Working with Time Series
section of [JV-H] before proceeding.) Combined with a use of pandas.groupby, we can
then extract the mean biker volumes for each 15-minute interval during the day.

The result is the distribution plotted below.

[16]: def weekplot(d, onlyweekend=False, title=None):
weekend = np.where(d.index.weekday < 5, 'Weekday', 'Weekend')
by_time = d.groupby([weekend, d.index.time]).mean()
if onlyweekend:

if title is None: title = 'Bikes per 15-min during weekends'
by_time.loc['Weekend'].plot(title=title)

else:
if title is None: title = 'Bikes per 15-min during weekdays'
by_time.loc['Weekday'].plot(title=title)

weekplot(t)

101

https://jakevdp.github.io/PythonDataScienceHandbook/03.11-working-with-time-series.html
https://jakevdp.github.io/PythonDataScienceHandbook/03.11-working-with-time-series.html

The hourly distribution is distinctly “bimodal”. There is a group of westbound commuters
(on their way to work) on the bridge in the morning, and a group (probably the same
people) traveling eastbound after work. If you look closely, you will fnd that there are two
slightly smaller bumps indicating that there are some (although many fewer) eastbound
morning bikers and westbound evening bikers across the bridge. Yet, on the whole, the
data leads us to the interesting conclusion that the overwhelming majority of the bike
commuters on the Tilikum live on the east side and commute to the west for work and
return daily.

Often the purpose of understanding data is to guide policy and action. What might one
do with the pattern we have just discovered? The current numbers are small enough not
to pose a bike traffc problem. But envision a future where the bike counts will grow. If
it grows maintaining the same lop-sided utilization pattern, what are the city’s options
to encourage optimal bridge usage? Bike traffc fow control modifcations? Generation
of more jobs on the east side? More residential zoning near the west end of the bridge?
These are complex issues where an urban planner’s expertise is needed. Nonetheless, I
hope to have convinced you of the importance of going from data (clicks on a counter) to
knowledge (patterns of use).

Next, let us look at the non-commuter, recreational, use, assuming that they occur in the
weekends. In sharp contrast to the weekday distribution, below we fnd that the weekend
distribution has just one peak.

[17]: weekplot(t, onlyweekend=True)

102

Both the eastbound and westbound lanes seem to fnd a good amount of use in the week-
end. There is, most defnitely, a preference for recreational riding in the afternoon. I sup-
pose that is not a major surprise in Portland as afternoons are most often when we are
given a reprieve from the battleship gray of the cloud cover.

XI.4 Changes due to isolation

As you know, on March 18, 2020, in-person instructional activities at all universities in
Oregon were suspended, and on March 23 our governor issued the “Stay Home, Save
Lives” executive order. Since the Tilikum is near two major universities in Portland, we
expect the weekday bike traffc to be impacted by these measures. Let us examine what
the data tells us.

[18]: weekplot(t.loc[:'2020-03-17'], title='Before social distancing')

[19]: weekplot(t.loc['2020-03-17':], title='After social distancing')

103

https://govsite-assets.s3.amazonaws.com/jkAULYKcSh6DoDF8wBM0_EO%2020-12.pdf
https://govsite-assets.s3.amazonaws.com/jkAULYKcSh6DoDF8wBM0_EO%2020-12.pdf

Clearly, the strong bimodal distribution has weakened considerably after we all started
isolating ourselves. This perhaps comes as no surprise, since both universities on the west
side of Tilikum have switched to remote classes. It makes sense that there are fewer west-
bound commuters in the morning. What about the afternoon peak? One could imagine
various explanations for this: people isolating themselves all morning, getting restless in
the afternoon, especially with such unusually good weather we were having in April, and
deciding to take their bikes out for some fresh air. Whatever be the case, we can summa-
rize our conclusion from the data as follows: social distancing has changed the weekday
bike use on Tilikum from a commuter to a recreational pattern.

Of course, we can also compare the overall statistics before and after social distancing, but
the results are too blunt to point out differences like the above. From the statistics outputs
below, we see that the average number of bikers per quarter-hour in each direction has
decreased by about 1:

[20]: t.loc[:'2020-03-17'].mean() - t.loc['2020-03-17':].mean()

[20]: Eastbound 0.868757
Westbound 1.247903
dtype: float64

The data can also tell us the reduction in terms of number of bikers per week, although
we should perhaps use it with some caution as not enough weeks have passed after social
distancing started to form a robust sample.

[21]: t.loc[:'2020-03-17'].resample('W').sum().mean() - t.loc['2020-03-17':].
↪→resample('W').sum().mean()

[21]: Eastbound 208.005903
Westbound 1088.181228
dtype: float64

The westbound lane certainly seems to have suffered more reduction in traffc after social
distancing, whichever way we slice it.

104

XI.5 Comparison with Seattle’s Fremont bridge

Although Portland claims to be the frst city in the US to adopt the open data program,
Seattle’s open data program is something to envy. Seattle’s Fremont bridge bike counter
data, even way back from 2012, is readily available for anyone to download, thanks to their
open data program (at the URL below). Let’s take a peek at their data.

[22]: import os
import shutil
import urllib

url = "https://data.seattle.gov/api/views/65db-xm6k/rows.csv?
↪→accessType=DOWNLOAD"

f = "../../data_external/Fremont_Bridge_Bicycle_Counter.csv"

if not os.path.isdir('../../data_external/'):
os.mkdir('../../data_external/')

if not os.path.exists(f):
with open(f, 'wb') as fo:

r = urllib.request.urlopen(url)
shutil.copyfileobj(r, fo)

sd = pd.read_csv(f)
sd.tail()

Date Fremont Bridge Total \
66403 04/30/2020 07:00:00 PM 156.0
66404 04/30/2020 08:00:00 PM 51.0
66405 04/30/2020 09:00:00 PM 25.0
66406 04/30/2020 10:00:00 PM 15.0
66407 04/30/2020 11:00:00 PM 13.0

Fremont Bridge East Sidewalk Fremont Bridge West Sidewalk
66403 68.0 88.0
66404 30.0 21.0
66405 17.0 8.0
66406 4.0 11.0
66407 6.0 7.0

Let’s do some quick clean up and renaming.

sd = sd.rename(columns={'Date' : 'time',
'Fremont Bridge East Sidewalk' : 'East',
'Fremont Bridge West Sidewalk' : 'West'})

sd.index = pd.to_datetime(sd.loc[:, 'time'])
sd = sd.drop(columns=['time', 'Fremont Bridge Total'])
sd.head()

[23]:

[23]:

[24]:

105

https://www.smartcitypdx.com/open-data-program

[24]: East West
time
2012-10-03 00:00:00 4.0 9.0
2012-10-03 01:00:00 4.0 6.0
2012-10-03 02:00:00 1.0 1.0
2012-10-03 03:00:00 2.0 3.0
2012-10-03 04:00:00 6.0 1.0

XI.5.1 Volume comparison

Note that the Seattle data gives counts per hour, not counts per 15-minutes like the Tilikum
data. To compare the general statistics, we should resample the Tilikum to get hourly
counts.

[25]:

[25]:

[26]:

[26]:

[27]:

th = t.resample('H').sum()
th.describe() # Portland's Tilikum

Eastbound Westbound
count 41423.000000 41423.000000
mean 28.467856 34.979504
std 53.384867 55.594878
min 0.000000 0.000000
25% 0.000000 2.000000
50% 7.000000 14.000000
75% 32.000000 46.000000
max 2606.000000 1577.000000

sd.describe() # Seattle's Fremont

East West
count 66398.000000 66398.000000
mean 51.653047 61.499277
std 66.661856 90.060985
min 0.000000 0.000000
25% 6.000000 7.000000
50% 28.000000 30.000000
75% 69.000000 74.000000
max 698.000000 850.000000

The Tilikum data is spikier than Seattle’s Fremont data (compare the max values in the
above outputs), but the average volumes (mean) are clearly higher in Seattle. That the
volume is higher in Seattle in even more clear if we plot weekly counts on both bridges on
the same axis.

sw = sd.resample('W').sum()
tw = t.resample('W').sum()
fig, axs = plt.subplots(1, 2, figsize=(13, 3), sharey=True)
plt.subplots_adjust(wspace=0.05)

106

sw.plot(ax=axs[0], title='Fremont bridge (Seattle) bikes/week');
tw.plot(ax=axs[1], title='Tilikum bridge (Portland) bikes/week');

XI.5.2 Daily patterns

There is a striking difference in the distribution of the average number of bikes/hour dur-
ing weekdays on the two bridges.

[28]: weekplot(sd, title='Fremont (Seattle) on weekdays (Bikes/hr)')
weekplot(th, title='Tilikum (Portland) on weekdays (Bikes/hr)')

The Fremont bridge has good bike traffc fow in both directions during the peak hours,

107

unlike the Tilikum. We conclude that during peak hours, bikers are distributed more
evenly on Seattle’s Fremont bridge travel lanes than on Portland’s Tilikum.

XI.5.3 Changes after social distancing

[29]: weekplot(sd['2020-03-17':], title='Fremont (Seattle): Weekdays after␣
↪→social distancing'); plt.ylabel('Bikes/hour');

weekplot(th['2020-03-17':], title='Tilikum (Portland): Weekdays after␣
↪→social distancing'); plt.ylabel('Bikes/hour');

Somewhat remarkably, despite all the above-seen differences, the weekday bike counts of
both cities respond to social distancing in quite the same fashion: the bimodal weekday
distribution of commuting to work has become a unimodal afternoon recreation pattern.

108

XII

Visualizing geospatial data

May 6, 2020

Geospatial data refers to data which has a geographic component in it. Usually this means
that the data entries are associated to some point on the surface of the earth. Therefore,
geospatial data are usually visualized on maps.

Because the earth is round, in order to make a fat map, one must transform the earth’s
surface to a fat surface. Such transformations are called projections by cartographers (not
to be confused with linear projections from linear algebra). Mathematicians know that a
transformation between topologically different regions must be discontinous somewhere.
So these projections, while very useful, cannot be perfect replicas of reality. It is useful
to know this and a bit more about python modules for projections while attempting to
visualize geospatial data on the globe.

Many references, including Geographic Data with Basemap of [JV-H], use the python mod-
ule basemap. However in recent years, the module basemap has been deprecated in favor
of the new python mapping project called Cartopy. Therefore, this activity aims at tak-
ing a quick look at cartopy. Cartopy, together with geopandas, a package built on top of
pandas, shows promise in easing geospatial visualization. They are nonetheless relatively
new efforts. You will notice that their documentation, while constantly improving, is not
as mature as, say numpy. There will likely be a number of changes in the provided facili-
ties as these efforts take hold. Our goal in this activity is to get acquainted with these new
developments for visualizing geospatial data.

[1]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd
import geopandas as gpd
from cartopy import crs

XII.1 Geometry representation

The GeoDataFrame class of geopandas is a pandas data frame with a special column repre-
senting geometry. This column is a GeoSeries object, which may be viewed as a pandas
series where each entry is a set of shapes. The shapes are geometric objects like a a set of
points, lines, a single polygon, or many polygons. These shapes are objects made using
the shapely package. Together they allow easy interaction with matplotlib for plotting
geospatial data.

109

https://jakevdp.github.io/PythonDataScienceHandbook/04.13-geographic-data-with-basemap.html
https://jakevdp.github.io/PythonDataScienceHandbook/
https://scitools.org.uk/cartopy/docs/v0.15/index.html
https://geopandas.org/
https://github.com/Toblerity/Shapely

Here is a GeoDataFrame object we have already used in 01 Overview:

[2]: world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
type(world)

[2]: geopandas.geodataframe.GeoDataFrame

The above-mentioned special column of the world data frame is this.

[3]: type(world.geometry)

[3]: geopandas.geoseries.GeoSeries

A GeoDataFrame can have many columns of type GeoSeries, but there can only be one ac-
tive geometry column, which is what is returned by the attribute GeoDataFrame.geometry.
Note also that the name of this active GeoSeries can be anything (not necessarily
geometry), but in the world object, the column happens to be called geometry, as can be
seen below.

world.geometry.name

'geometry'

world.head()

pop_est continent name iso_a3 gdp_md_est \
0 920938 Oceania Fiji FJI 8374.0
1 53950935 Africa Tanzania TZA 150600.0
2 603253 Africa W. Sahara ESH 906.5
3 35623680 North America Canada CAN 1674000.0
4 326625791 North America United States of America USA 18560000.0

geometry
0 MULTIPOLYGON (((180.00000 -16.06713, 180.00000...
1 POLYGON ((33.90371 -0.95000, 34.07262 -1.05982...
2 POLYGON ((-8.66559 27.65643, -8.66512 27.58948...
3 MULTIPOLYGON (((-122.84000 49.00000, -122.9742...
4 MULTIPOLYGON (((-122.84000 49.00000, -120.0000...

The plot method of the data frame is redefned in a GeoDataFrame to use the geometry
objects in the active geometry column. So to plot this map, all we have to do is use the
plot method:

world.plot()

[6]: <matplotlib.axes._subplots.AxesSubplot at 0x119f93ca0>

[4]:

[4]:

[5]:

[5]:

[6]:

110

A GeoDataFrame has more attributes than a regular pandas data frame. For example, it
stores the centroids of the shapes in the active geometry column.

[7]: type(world.centroid)

[7]: geopandas.geoseries.GeoSeries

This is a GeoSeries that did not show up when we queried world.head(), but it is an
attribute of world. We can, of course, make it an additional column of world by in the
usual pandas way.

[8]:

[8]: world['centroids'] = world.centroid
world.head()

pop_est continent name iso_a3 gdp_md_est \
0 920938 Oceania Fiji FJI 8374.0
1 53950935 Africa Tanzania TZA 150600.0
2 603253 Africa W. Sahara ESH 906.5
3 35623680 North America Canada CAN 1674000.0
4 326625791 North America United States of America USA 18560000.0

geometry \
0 MULTIPOLYGON (((180.00000 -16.06713, 180.00000...
1 POLYGON ((33.90371 -0.95000, 34.07262 -1.05982...
2 POLYGON ((-8.66559 27.65643, -8.66512 27.58948...
3 MULTIPOLYGON (((-122.84000 49.00000, -122.9742...
4 MULTIPOLYGON (((-122.84000 49.00000, -120.0000...

centroids
0 POINT (163.85316 -17.31631)
1 POINT (34.75299 -6.25773)
2 POINT (-12.13783 24.29117)
3 POINT (-98.14238 61.46908)
4 POINT (-112.59944 45.70563)

Now, world has two GeoSeries columns. If we make the centroids column the active
geometry column, then the output of the plot method changes since it uses the active
column’s geometry specifcations.

111

[9]: world = world.set_geometry('centroids') # change the active geometry␣
↪→column

world.plot();

XII.2 Coordinate Reference Systems

An essential data structure of cartopy is CRS, or Coordinate Reference Systems, the name
used by cartopy (and other python projects) for the projections used in maps. A CRS often
used as default is the the Plate Carrée projection, which cartopy provides as follows.

[10]: crs.PlateCarree()

[10]: <cartopy.crs.PlateCarree at 0x11c140a90>

As you guessed from the above output, the CRS object is able to plot itself using matplotlib.
This points to one avenue for visualizing geospatial data that has no need for geopandas.
Cartopy produces a matplotlib axis on which you can overlay your data as you see ft:
if your data has latitude and longitude associated to it, cartopy can apply the relevant
projection automatically to place it at the proper place in the fgure. Below, we will focus
on alternative visualization methods using geopandas and facilities to interact between
cartopy and geopandas.

The world object of class GeoDataFrame comes with a CRS attribute, another attribute that
does not show up in world.head() output.

[11]: world.crs

[11]: <Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84

112

- Prime Meridian: Greenwich

We see that the CRS above is codenamed EPSG:4326. Here EPSG stands
for European Petroleum Survey Group. They maintain several data sets at
https://spatialreference.org/ref/epsg/. Each set in “EPSG Geodetic Parameter Dataset is
a collection of defnitions of coordinate reference systems and coordinate transformations
which may be global, regional, national or local in application.”

EPSG-number 4326 that we have here belongs to the WGS 84 coordinate system, the latest
in the World Geodetic System (WGS) where the earth is represented as an oblate spheroid
with coordinates in decimal degrees (Lat, Lon).

Changing the active geometry from previously set centroids to the original geometry col-
umn, let us plot the world again in order to compare the result with another CRS.

[12]: world = world.set_geometry('geometry') # set the active geometry
world.plot(); plt.title('World in WGS 84 CRS');

We compare this output with another very well-known projection, the Mercator projection,
which has the nice property that it is conformal, i.e., it preserves angles. EPSG has made
available a Web Mercator projection. We can easily convert world from the WGS 84 to the
Mercator CRS:

[13]: world_Mercator = world.to_crs("EPSG:3395")
world_Mercator.plot();
plt.title('World in Mercator CRS');

113

https://en.wikipedia.org/wiki/World_Geodetic_System
https://spatialreference.org/ref/epsg

Generations of school kids have grown up with this Mercator map. Note how the Merca-
tor projection distorts the size of objects as the latitude increases from the equator to the
poles. Some countries near equator look smaller than they really are. For example, Brazil
is actually larger than the contiguous United States, but it looks smaller in the Mercator
projection. If you have time for a digression, have a look into the many discussions online,
e.g., The Problem With Our Maps, on how the false sizes on maps (perhaps inadvertently)
shape our views on countries.

XII.3 Two other CRS

The Azimuthal Equidistant and Albers Equal Area coordinate reference systems show areas of
the globe in better proportions than the Mercator projection, as their names suggest. These
are implemented in cartopy. We want to leverage geopandas’ ability to work with cartopy
in the next step. We don’t always get meaningful plots after an arbitrary CRS to CRS con-
version, but what is offcially possible is laid out in the current geopandas documentation,
which would be a good source to check back on for future changes.

First, for conversion from the default WGS 84 to the azimuthal equidistant CRS, we create
a cartopy CRS object.

[14]: ae = crs.AzimuthalEquidistant()
type(ae)

[14]: cartopy.crs.AzimuthalEquidistant

Then we convert the cartopy object to a form usable by geopandas through an intermediate
step. That step offers a glimpse of what lies at the core of many of the mapping tools, the
PROJ project. (All these dependencies made installing geopandas more involved, as you
recall from our early install sessions.)

114

https://www.visualcapitalist.com/problem-with-our-maps/
https://geopandas.org/index.html
https://proj.org

[15]: aeproj4 = ae.proj4_init # Convert to`proj4` string/dict usable␣
↪→in gpd

world_ae = world.to_crs(aeproj4) # Then call to_crs method
world_ae.plot()

[15]: <matplotlib.axes._subplots.AxesSubplot at 0x12794f3a0>

This represents the geopandas object world_ae, which is the world object whose geometry
has been converted to the azimuthal equidistant CRS. From the above output, it we see that
the azimuthal equidistant projection shows the central view in good proportions, with ob-
vious distortions farther out although the distortions are evocative of the globe. However,
this CRS is often diffcult to use for showing data that is spread over the populous parts of
the globe. (You can change the central view as shown in the next cell.) See, for example,
how diffcult it is to get the far east, the west, and Europe, together in any perspective, due
to the vastness of the intermediate Pacifc ocean.

[16]: crs.AzimuthalEquidistant(central_longitude=200, central_latitude=10)

[16]: <cartopy.crs.AzimuthalEquidistant at 0x127856310>

It is therefore useful to get to know another projection from cartopy called
AlbersEqualArea projection.

[17]: aea = crs.AlbersEqualArea()
aea

[17]: <cartopy.crs.AlbersEqualArea at 0x127a86e50>

Finally, as an illustration of how to plot geopandas geometries into an axis generated

115

by cartopy, we will convert or project the existing geometry objects in world_ae to
AlbersEqualArea CRS as shown below.

[18]: aea_geo = [aea.project_geometry(ii, src_crs=ae)
for ii in world_ae['geometry'].values]

Since cartopy works directly with matplotlib, we can immediately render the resulting
geometries in matplotlib’s axis.

[19]: fig, ax = plt.subplots(subplot_kw={'projection': aea})
ax.add_geometries(aea_geo, crs=aea);

We can alternately produce essentially the same plot using geopandas as follows.

[20]: gpd.GeoDataFrame(world, geometry=aea_geo, crs=aea.proj4_init).plot();

XII.4 Mapping COVID-19 cases on the globe

As an application of the above-discussed geospatial visualization techniques, we will now
make a map of COVID-19 cases throughout the world using the AlbersEqualArea coordi-
nate reference system.

116

[21]: import os
from git import Repo

[22]:

[23]:

[23]:

First update your data folder by pulling the newest reports of COVID-19 from the GitHub
repository maintained by Johns Hopkins’ researchers.

covidfolder = '../../data_external/covid19'
if os.path.isdir(covidfolder): # if repo exists, pull newest data

repo = Repo(covidfolder)
repo.remotes.origin.pull()

else: # otherwise, clone from remote
repo = Repo.clone_from('https://github.com/CSSEGISandData/COVID-19.

↪→git',
covidfolder)

datadir = repo.working_dir + '/csse_covid_19_data/
↪→csse_covid_19_time_series'

f = datadir + '/time_series_covid19_confirmed_global.csv'

c = pd.read_csv(os.path.abspath(f))
c = c.rename(columns={'Country/Region': 'country'}).iloc[:, 1:]
c.head()

country Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 \
0 Afghanistan 33.93911 67.709953 0 0 0 0
1 Albania 41.15330 20.168300 0 0 0 0
2 Algeria 28.03390 1.659600 0 0 0 0
3 Andorra 42.50630 1.521800 0 0 0 0
4 Angola -11.20270 17.873900 0 0 0 0

1/26/20 1/27/20 1/28/20 ... 7/14/20 7/15/20 7/16/20 7/17/20 \
0 0 0 0 ... 34740 34994 35070 35229
1 0 0 0 ... 3667 3752 3851 3906
2 0 0 0 ... 20216 20770 21355 21948
3 0 0 0 ... 861 862 877 880
4 0 0 0 ... 541 576 607 638

7/18/20 7/19/20 7/20/20 7/21/20 7/22/20 7/23/20
0 35301 35475 35526 35615 35727 35928
1 4008 4090 4171 4290 4358 4466
2 22549 23084 23691 24278 24872 25484
3 880 880 884 884 889 889
4 687 705 749 779 812 851

[5 rows x 187 columns]

Some countries are repeated (as their provinces are being counted in separate data entries),
as can be seen from the following nonzero difference:

117

[24]: len(c['country']) - len(set(c['country']))

[24]: 78

Therefore, we sum up each country’s confrmed COVID-19 counts for each day using a
pandas groupby operation. Of course, it doesn’t make sense to sum up the latitudes and
longitudes, so we take their average values within countries. (Taking the mean of latitudes
and longitudes will do for our current purposes, but it is defnitely not a perfect solution,
which is why I’ll be asking you to improve on it by making a chloropleth map in the next
assignment.)

[25]: cg = c.groupby('country')[c.columns[3:]].sum()
cg['Lat'] = c.groupby('country')['Lat'].mean()
cg['Long'] = c.groupby('country')['Long'].mean()

This newly created data frame has no GeoSeries. We use the latitude and longitude infor-
mation to create point geometries. With this information, we can make a GeoDataFrame.

[26]: geo = gpd.points_from_xy(cg['Long'], cg['Lat'])
c_aea_geo = [aea.project_geometry(ii) for ii in geo]
cg = gpd.GeoDataFrame(cg, geometry=c_aea_geo, crs=aea.proj4_init)

Now, in cg, we have a GeoDataFrame object that should know how to plot its data columns
in the data’s associated places on the globe.

[27]: def covidworldmap(date):

fig, ax = plt.subplots(figsize=(12, 10))
put the world map on an axis
w = gpd.GeoDataFrame(world, geometry=aea_geo, crs=aea.proj4_init)
w.plot(ax=ax, color='midnightblue', edgecolor='darkslategray')
ax.set_facecolor('dimgray')
mx = cg.iloc[:, :-3].max().max() # get max across data

set marker sizes, with a min marker size for cases > 1000
msz = 500 * np.where(cg[date]-1000, np.maximum(cg[date]/mx, 0.001), 0)
cg.plot(ax=ax, cmap='Wistia', markersize=msz, alpha=0.5)

ax.set_xticks([]) # remove axis marks
ax.set_yticks([]);

[28]: covidworldmap('5/5/20')

118

The world is now littered with COVID-19 cases. I wish the world and our country had
fared better, but the data doesn’t lie.

119

XIII

Gambler’s Ruin

May 11, 2020

A gambler G starts with two chips at a table game in a casino, pledging to quit once 8 more
chips are won. G can either win a chip or lose a chip in each game, with probabilities p
and 1 − p, respectively (independent of past game history). What is the probability that G
accumulates a total of 10 chips playing the game repeatedly, without being ruined while
trying? The ruining state is one where G has no chips and can no longer play. What is the
probability that G is ruined while trying to get to 10 chips?

The goal of this activity is to introduce you to the rich subject of Markov chains, and in the
process also get you acquainted with graphs, random walks, and stochastic matrices, with
the gambler G as an entry point example. Since a probability course is not a prerequisite
for this course, I will try to present the results colloquially and without proofs, with my
advance apologies to the probabilists among you. The two theorems you will fnd stated
below are proved using probabilistic tools (see, for example, [S]) and is material one might
usually fnd in a statistics program. In the next activity, I will connect this to material from
other felds.

XIII.1 Markov chains

A Markov chain is an abstraction used to model systems that transition from a current state
to the next state according to some given probability. It has proven itself to be a powerful
construct in statistics due to its wide applicability. Specifcally, given

• a set of states S = {S0, S1, . . .},
• and a set of numbers 0 ≤ pij ≤ 1,

a Markov chain is a sequence whose elements are taken from S in such a way that probability
to go from state Si to Sj is pij. The number pij is called the transition probability. The states
and transition probabilities are often represented in diagrams like this:

S0 S1 S2 S3 S4p00
p01 p12

p13

p20

p33

p32

p34

p43

The assumptions when considering a Markov chain are that the system is required to move
from state to state (the next state can be the same as the current state), and that the next

120

https://www.springer.com/gp/book/9783540893318

state is determined only by the current state’s transition probabilities (not by prior states).
The latter is called the memorylessness property or the Markov property. The former implies
that the probability that the system will transition from the current state is one, so that for
any i,

∑ pij = 1.
j

Note that the sum above may be fnite or infnite: if the set of states is a fnite set, say
S = {S0, S1, . . . , SN }, then the above sum runs from j = 0, 1, through N; otherwise the sum
should be treated as an infnite sum. Irrespective of the fniteness of the set of states S, the
Markov chain itself is thought of as an infnite sequence.

(Optional note: Here is a formal defnition using the conditional probability notation,
Pr(A|B). A stochastic sequence Xn taking values from a set of states S = {S0, S1, . . .} is
called a Markov chain if for any subset of states Si, Sj, Sk0 , Sk1 , . . . , Skn−1 ∈ S,

Pr(Xn+1 = Sj|Xn = Si)

= Pr(Xn+1 = Sj|Xn = Si, Xn−1 = Skn−1 , Xn−2 = Skn−2 , . . . , X0 = Sk0)

= pij.

Throughout, we only consider what are known as time-homogeneous Markov chains, where
the probabilities pij are independent of the “time” step n.)

To connect this to the concept of random walks, let us frst introduce graphs.

XIII.2 Graphs

In mathematics, we often use the word graph in a sense completely different from the
graph or plot of a function.

A graph (V, E) is a set V of n vertices, together with a set E of m edges between (some)
vertices. Although vertices are often pictorially represented as points, technically they can
be whatever things lumpable into a set V, e.g., - people, labels, companies, power stations,
cities, etc.

Edges are often pictorially represented as line segments (or curves) connecting two points
representing two vertices, but technically, they are just a “choice of two vertices” (not nec-
essarily distinct) from V, e.g., corresponding to the above-listed vertex examples, an edge
can represent - friendship, similarities, spinoffs, wires, roads, etc.

When the above-mentioned “choice of two vertices” is changed to an ordered tuple, then
the ordering of the two vertex choices that form an edge is signifcant, i.e., the edge has a
direction. Thus a directed edge from vertex vi to vertex vj is the tuple (vi, vj). If all edges
in E are directed, the graph is called a directed graph or a digraph. If a non-negative number,
a weight, is associated to each edge of a digraph, then we call the graph a weighted digraph.

Python does not come with a graph data structure built in. Before you begin to think this
somehow runs counter to the “batteries-included” philosophy of python, let me interrupt.
Python’s built-in dictionary data structure encapsulates a graph quite cleanly. Here is an
example of a graph with vertices a, b, c, d:

121

[1]: gd = {'a': ['b', 'd'], # a -> b, a -> d
'b': ['c', 'd', 'a'] } # b -> c, b -> d, b -> a

You can use a dict of dicts to incorporate more edge properties, such as assign
names/labels, or more importantly, weights to obtain a weighted digraph.

[2]: gd = {'a': {'b': {'weight': 0.1},
'd': {'weight': 0.8}},

'b': {'d': {'weight': 0.5},
'c': {'weight': 0.5}}

}

Although we now have a graph data structure using the python dictionary, for this to be
useful, we would have to implement various graph algorithms on it. Thankfully, there are
many python packages that implement graph algorithms. Let’s pick one package called
NetworkX as an example. Please install it before executing the next code cell. NetworkX
allows us to send in the above dictionary to its digraph constructor.

[3]: import networkx as nx

g = nx.DiGraph(gd) # dictionary to graph

Now g is a DiGraph object with many methods. To see all edges connected to vertex a, a
dictionary-type access is provided. We can use it to double-check that the object is made
as intended.

[4]: g['a']

[4]: AtlasView({'b': {'weight': 0.1}, 'd': {'weight': 0.8}})

You can plot this graph using NetworkX’s facilities (which uses matplotlib under the
hood).

[5]: import matplotlib.pyplot as plt
%matplotlib inline

def plot_gph(g):
pos = nx.spectral_layout(g)
nx.draw(g, pos, with_labels=True, node_color='orange')
labels = nx.get_edge_attributes(g, 'weight')
nx.draw_networkx_edge_labels(g, pos, edge_labels=labels);

plot_gph(g)

122

http://networkx.github.io

XIII.3 Random walks

Consider a weighted digraph (V, E) where the weight associated to a directed edge e =
(vi, vj) is a number 0 < pij ≤ 1. Let us extend these numbers to every pair of vertices vi
and vj such that pij = 0 if (vi, vj) is not an edge of the graph. Let us restrict ourselves to
the scenario where

∑ pij = 1
j

for any i.

A random walk on such a directed graph is a sequence of vertices in V generated stochasti-
cally in the following sense. Suppose the nth element of the sequence is the ith vertex vi in
V. Then one of its outgoing edges (vi, vj) is selected with probability pij, and the (n + 1)th
element of the random walk sequence is set to vj. This process is repeated to get the full
random walk, once a starting vertex is selected.

XIII.4 Conceptual equivalences

There are three equivalent ways of viewing what is essentially the same concept:

• a probabilistic transition of states,
• a vertex-to-vertex probabilistic movement in digraphs, or
• a non-negative matrix of unit row sums.

Given a random walk on a weighted digraph, the sequence it generates is a Markov chain.
Indeed, the digraph’s edge weights give the transition probabilities. The graph vertices
form the Markov chain states. Conversely, given a Markov chain, there is a corresponding
random walk. We frst generate a digraph using the Markov chain states as the graph
vertices. Positive transition probabilities indicate which directed edges should exist in the
graph and what their edge weight should be. The sequence of states of the Markov chain is
now identifable as the sequence of vertices generated by a random walk on this digraph.
This equivalence is betrayed even by our very frst fgure above, where we illustrated a
Markov chain using a graph.

To understand why the third concept is equivalent, it is suffcient to note that all infor-
mation to specify either a Markov chain, or a random walk is encapsulated in a single

123

mathematical object, namely the matrix P whose (i, j)th entry is pij. This matrix of proba-
bilities is called a transition matrix (sometimes also called a stochastic matrix) and it can be
associated either to a Markov chain or a random walk provided its rows sum to one.

Here is an example of a transition matrix.

[6]: import numpy as np
np.set_printoptions(suppress=True)

S0 S1 S2 S3
P = np.array([[0, 0.0, 0.5, 0.5], # S0

[1.0, 0.0, 0.0, 0.0], # S1
[0.0, 0.0, 0.0, 1.0], # S2
[0, 1.0, 0.0, 0.0]]) # S3

Here S0, S1, S2, S3 are conceptual labels either
for the Markov chain states or the digraph vertices

Matrix to digraph The above-mentioned conceptual equivalences are often tacitly used
in graph programs. For instance, in NetworkX, one can easily make a graph out of the
above transition matrix P as follows.

[7]: gP = nx.from_numpy_array(P, create_using=nx.DiGraph)

plot_gph(gP)

Digraph to matrix We can, of course, also go the other way. For example, consider the
small graph g we made “by hand” previously:

[8]: plot_gph(g)

124

[9]: g.nodes # note the ordering of vertices

[9]: NodeView(('a', 'b', 'd', 'c'))

This NetworkX object g can produce a matrix of the graph’s edge weights. It is typical to
make this as a scipy.sparse matrix since one anticipates many zero entries (correspond-
ing to edges that do not exist in a realistic large graph). The result Pg below is a sparse
matrix, which we convert to a dense matrix, just for printing.

[10]: Pg = nx.convert_matrix.to_scipy_sparse_matrix(g)
Pg.todense()

[10]: matrix([[0. , 0.1, 0.8, 0.],
[0. , 0. , 0.5, 0.5],
[0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0.]])

Note how the matrix entries and edge weights in the fgure are in correspondence. The ma-
trix is generally called the adjacency matrix of a weighted graph. (Note that many textbooks
will defne adjacency matrix entries with 1 in place of the nonzeros above to accommodate
graphs without weights.) For digraphs in a random walk discussion, we shall refer to this
adjacency matrix as the transition matrix, as previously noted.

XIII.5 The example of the gambler

Let us return to the gambler G with whom we made the acquaintance in the beginning of
this activity. We formulate a Markov chain for G as follows.

Let Si be the state of play where G has i chips. In the next step of the game, G can win
the game and go to Si+1 with probability p, or lose and go to state Si−1 with probability
q = 1 − p. The only possible states for G to be in are S0, S1, . . . , S10. The directed graph on
which G is the random walker is as follows.

125

S0 S1 S2 S3 S8 S9 S101
q

p

q

p

q

p

q

p
1

Here we have also indicated two additional pieces of information: G has pledged to quit
upon reaching state S10, so once the Markov chain reaches S10 it will not go to any other
state forever. Furthermore, if G’s Markov chain reaches the ruining state of S0, then G can’t
play any more, so the Markov chain cannot go to any other state forever.

Let us look at the corresponding transition matrix, say when p = 0.4.

[11]: def PforG(p=0.4, N=10):
q = 1 - p
P = np.diag(q*np.ones(N), k=-1) + np.diag(p*np.ones(N), k=1)
P[0, :] = 0
P[0, 0] = 1
P[N, :] = 0
P[N, N] = 1
return P

PforG(p=0.4)

[11]: array([[1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.],
[0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.],
[0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0. , 0. , 0.],
[0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0.],
[0. , 0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0.],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0.],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1.]])

In the scenario described in the beginning, G starts with 2 chips and wants to reach a total
of 10 chips. This translates to the following question: what is the probability that the above
random walk enters the state S10? It turns out that such questions are so often asked off
Markov chains that the answer is a basic theoretical result on Markov chains (see the next
theorem below).

XIII.6 Getting to a state

Let A and B be a partitioning of indices such that the subset of states

SA = {Si : i ∈ A}, SB = {Si : i ∈ B}

form a disjoint partitioning of the set S of all the states of a Markov chain. The probability
that the Markov chain attains a state in SA in some fnite number of steps (i.e., if it ever

126

hits SA) starting from a state Si is called a hitting probability of SA and is denoted by hi. Of
course, if i ∈ A, then hi = 1. What is not obvious is the value of hi when the chain starts
from i ∈ B. Classic probabilistic arguments prove that the hi values satisfy the system in
the next theorem.

Theorem 1. The hitting probability of a subset A of states in a Markov chain is the minimal
non-negative solution of the system of equations

hi = ∑ pijhj
j

for all i with i ∈ B, and hi = 1 if i ∈ A. Here minimality means that if x is another solution,
then xi ≥ hi for all i.

The reasoning that leads to the system of equations in the theorem is as follows: if the
Markov chain starts from state Si, then in the next step, it can be in any of the states Sj with
probability pij, from where the hitting probability is hj, so the hitting probability hi from Si
must be the sum of all pij × hj over all states Sj. This idea can be formalized into a proof of
Theorem 1. Let me highlight a few more things to note about Theorem 1:

• First trivial solution: From the defnition of Markov chain, recall that

∑ pij = 1.
j

Hence an obvious solution to the system of equations in Theorem 1 is

hi = 1

for all i. However, this solution need not be the minimal one mentioned in the theo-
rem.

• Second trivial solution: One case where the minimal nonnegative solution is obvious
is when A is such that pij = 0 for all i ∈ B and j ∈ A, i.e., when it is not possible to
go from B to A. Then {

1, i ∈ A,
hi =

0, i ∈ B,

obviously satisfes the system of equations in Theorem 1. Since the hi values for i ∈ B
cannot be reduced any further, this is the minimal solution.

• Collecting hi into a vector h, the system of equations in Theorem 1 can almost be
written as the eigenvalue equation for eigenvalue 1,

h = Ph,

but not quite, because the equation need not hold for indices i ∈ A. Indeed, as stated
in the theorem, hi must equal 1 if i ∈ A.

XIII.7 Application to the gambler G

Setting A = {10} and B = {0, 1, . . . , 9} in the above general theory, we see that G wins
with probability h2. Let us try to apply Theorem 1 to calculate h2.

127

The approach I present here is not standard, but has the advantage that it uses eigenvector
calculations that you are familiar with from your prerequisites. Even though the eigenvec-
tor remark I made at the end of the previous section is pessimistic, looking at G’s transition
matrix, we fnd that the condition hi = 1 for i ∈ A can be lumped together with the re-
maining equations. Indeed, because the last row of P contains only one nonzero entry (of
1),

h10 = ∑ p10,jhj
j

holds. Therefore in G’s case, h is a solution of the system in Theorem 1 if and only if h is a
non-negative eigenvector of P corresponding to eigenvalue 1 and scaled to satisfy h10 = 1.
(Be warned again that this may or may not happen for other Markov chains: see exercises.)
What gives us further hope in the example of G is that we have a key piece of additional
information:

h0 = 0,

i.e., if G starts with no chips, then G cannot play, so G will stay in state S0 forever. We
might guess that this condition will help us flter out the irrelevant frst trivial solution
with hi = 1 for all i.

Let me make one more remark before we start computing. The system of equations of
Theorem 1 in the case of G reduces to

hi = phi+1 + (1 − p)hi−1

for 1 ≤ i ≤ 9 together with h0 = 0 and h10 = 1. You can make intuitive sense of this
outside the general framework of the theorem. If G starts with i chips (1 ≤ i ≤ 9) so that
the probability of hitting A is hi, then in the next step there are two cases: (a) G has i + 1
chips with probability p, or (b) G has i − 1 chips with probability 1 − p. The probability
of hitting A in case (a) is p × hi+1, and the probability of hitting A in case (b) is q × hi−1.
Hence hi must be equal to the sum of these two, thus explaining the theorem’s equation
hi = phi+1 + (1 − p)hi−1.

Let us now compute hi using the knowledge that in G’s case, h is a non-negative eigenvec-
tor of P corresponding to eigenvalue 1, scaled to satisfy h10 = 1.

[12]: from numpy.linalg import eig, inv, det

P = PforG(p=0.4)
ew, ev = eig(P)
ew

[12]: array([-0.93184127, -0.79267153, -0.57590958, -0.30277358, -0. ,
0.93184127, 0.79267153, 0.30277358, 0.57590958, 1. ,
1.])

The computed set of eigenvalues of P include 1 twice. Since the diagonalization (the factor-
ization produced by eig) was successful, we know that the eigenspace of P corresponding
to eigenvalue 1 is two-dimensional. If there are vectors h in this eigenspace satisfying

h0 = 0, h10 = 1,

128

then such vectors clearly solve the system in Theorem 1. We can algorithmically look for
eigenvectors satisfying these two conditions in a two-dimensional space: it’s a system of
two equations and two unknowns, made below in the form []

0
Mc = .

1

[13]: H = ev[:, abs(ew - 1) < 1e-15] # Eigenvectors of eigenvalue 1
M = np.array([H[0, :], H[-1, :]]) # Matrix of the two conditions
det(M)

[13]: 0.2825542003687932

The nonzero determinant implies that M is invertible. This means that there is a unique
solution c and hence a unique vector in the eigenspace satisfying both the conditions, which
can be immediately computed as follows.

[14]: def Gchances(p=0.4, N=10):
P = PforG(p, N)
ew, ev = eig(P)
H = ev[:, abs(ew - 1) < 1e-15]
M = np.array([H[0, :], H[-1, :]])
c = inv(M) @ np.array([0, 1])
return H @ c

[15]: h = Gchances(p=0.4)
h

[15]: array([0. , 0.00882378, 0.02205946, 0.04191297, 0.07169324,
0.11636364, 0.18336924, 0.28387764, 0.43464024, 0.66078414,
1.])

The signifcance of the above-mentioned uniqueness is that we no longer have to check if
this h is the minimal non-negative solution of Theorem 1, since we have no more degrees of
freedom to further reduce the above non-negative components.

We have just solved G’s problem posed in the beginning.

The answer h, printed in the output above, tells us that the probability of G accumulating 10
chips starting from 2 chips when p = 0.4 is h[2], whose value is approximately 0.022.

This is a lousy probability! Have we made a mistake? We began by assuming that the
casino gives G almost a fair chance at winning each game, at a probability of p = 0.4,
which is pretty close to the exactly fair chance of p = 0.5 (which we suspect no casino
would give). Yet, the chance of G getting out with 10 chips is much less than p, per our
computation. In fact, looking at which printed out entries of h that are above 0.5, we fnd
that G has more than a 50% chance of making 10 chips only if G starts with 9 chips!

129

XIII.8 Cross checking

The answer we got above is correct, even if not intuitive. In fact, this is a manifestation of
the phenomena that goes by the name of Gambler’s Ruin. How can we double-check the
above answer? One way to double-check the answer is the analytical technique described
in the optional exercise below.

Optional exercise: Solve the equations of Theorem 1 in closed form to conclude that the
probability of G making 10 chips, starting from i chips, is

1 − (q/p)i
hi =

1 − (q/p)10

whenever p ̸= q.

I’ll omit more details on this analytical way for verifcation, since this course is aimed at
learning computational thinking. Instead, let’s consider another computational way.

To let the computer cross check the answer, we design a completely different algorithm
whose output “should” approximate the correct result. Namely, we simulate many many
gambles, get the statistics of the outcomes, and then cross check the frequency of G’s win-
nings. (That this “should” give the right probability is connected to the law of large num-
bers.)

Here is a simple way to implement many gambles (each gamble is a sequence of games
until G reaches either S0 or S10) using the built-in random module that comes with python
(and using the uniform distribution in [0, 1]).

[16]:

[17]:

from random import uniform

def gamble(init=2, p=0.4, win=10, n=10000):

"""Let G gamble "n" times, starting with "init" chips."""

wl = np.zeros(n) # mark win or lose here for each gamble i
for i in range(n):

chips = init
while chips:

if uniform(0, 1) > p: # losing game
chips -= 1

else: # winning game
chips += 1

if chips == win: # reached wanted winnings
wl[i] = 1
break

return wl

n = 500000
wl = gamble(n=n)
print('Proportion of winning gambles:', np.count_nonzero(wl) / n)

130

Proportion of winning gambles: 0.02191

The number produced as the output is pretty close to the previously obtained h[2]. In-
deed, it gets closer to h[2] with increasing number of gambles. Now that we have built
more confdence in our answer computed using the eigensolver, let us proceed to examine
all the components of h more closely.

XIII.9 Gambler’s Ruin

Visualizing h in a bar plot, we fnd that G’s computed chances of winning seem to decrease
exponentially as the starting chip count decreases.

[18]: plt.bar(range(len(h)), h)
plt.title('G\'s chances of making 10 chips');
plt.xlabel('Starting number of chips'); plt.ylabel('Probability');

Since G either quits winning or gets ruined with 0 chips (not both), the probability of G’s
ruin is 1 − hi.

[19]: plt.bar(range(len(h)), 1-h, color='red')
plt.title('Chances of G\'sruin');
plt.xlabel('Starting number of chips'); plt.ylabel('Probability');

131

This exemplifes the concept of Gambler’s Ruin: in a biased game (where p < 1/2), the
probability of G’s ruin could be much higher than the “intuitive” 1 − p for most starting
values.

Note that if all games are unbiased with p = 1/2, then we get the following linear plot,
which perhaps jives with the intuition more than the unbiased case.

[20]: plt.bar(range(len(h)), Gchances(p=0.5, N=10))
plt.title('G\'s chances of making 10 chips in unbiased games');
plt.xlabel('Starting number of chips'); plt.ylabel('Probability');

XIII.10 Absorbing Markov chains

To round out our discussion of hitting probabilities, I should tell you that there is another,
easier, way to algorithmically compute hi in some circumstances.

In the example of G’s Markov chain, we were able to extract the minimal non-negative
solution of Theorem 1 uniquely from an eigenspace. Unique representations of solutions
make for nice algorithmic prescriptions. There is a class of Markov chains for which we
can always fnd certain hitting probabilities through a unique representation, and we don’t
even have to compute an eigenspace for it: we just need to solve a linear system. This is

132

the subject of the next theorem (Theorem 2 below) also proved using basic probability
methods.

A state Si of a Markov chain is called an absorbing state if pii = 1. Clearly, once the chain
reaches an absorbing state, it cannot transition to any other state forever.

An absorbing Markov chain is a Markov chain which has at least one absorbing state and has
paths made of directed edges from any state to an absorbing state.

Partition the states in an absorbing Markov chain using index sets A and B, like before,
except that now A denotes the indices for all the absorbing states (and B indicates the
remaining states). Then the following partitioning of the transition matrix is both easy to
conceptualize and easy to implement using numpy’s slicing operations:[]

PAA PAB P = PBA PBB

Note that PAA is an identity matrix and PAB is the zero matrix, because pii = 1 for all i ∈ A.

Example: The gambler G has two absorbing states S0 and S10, and G’s Markov chain is an
absorbing Markov chain. Setting A = {0, 10} and B = {1, . . . , 9}, the blocks of the above
partitioning for this case are as follows:

[21]: A = [0, 10]
B = range(1, 10)
P = PforG()
PAA = P[np.ix_(A, A)]
PBA = P[np.ix_(B, A)]
PBB = P[np.ix_(B, B)]

[22]: PBA

[22]: array([[0.6, 0.],
[0. , 0.],
[0. , 0.],
[0. , 0.],
[0. , 0.],
[0. , 0.],
[0. , 0.],
[0. , 0.],
[0. , 0.4]])

[23]: PBB

[23]: array([[0. , 0.4, 0. , 0. , 0. , 0. , 0. , 0. , 0.],
[0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0. , 0.],
[0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0. , 0.],
[0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0. , 0.],
[0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0. , 0.],
[0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4, 0.],

133

[0. , 0. , 0. , 0. , 0. , 0. , 0.6, 0. , 0.4],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6, 0.]])

[24]: PAA

[24]: array([[1., 0.],
[0., 1.]])

As already noted above, PAA should always be the identity matrix in an absorbing Markov
chain per our defnition.

Now we are ready to state the second result on hitting probabilities, this time with an
easier algorithmic prescription for computing them.

Theorem 2. In any fnite absorbing Markov chain, the matrix I − PBB is invertible (where I
denotes the identity matrix of the same size as PBB). Moreover, letting H denote the matrix
whose (i, j)th entry equals the probability that the chain hits an absorbing state Sj, j ∈ A,
starting from another state Si, i ∈ B, in any number of steps, we may compute H by

H = (I − PBB)
−1PBA.

Example: In one line of code, we can apply Theorem 2 to gambler G using the matrices
made just before the theorem:

[25]: np.linalg.inv(np.eye(len(B)) - PBB) @ PBA

[25]: array([[0.99117622, 0.00882378],
[0.97794054, 0.02205946],
[0.95808703, 0.04191297],
[0.92830676, 0.07169324],
[0.88363636, 0.11636364],
[0.81663076, 0.18336924],
[0.71612236, 0.28387764],
[0.56535976, 0.43464024],
[0.33921586, 0.66078414]])

Since the second entry of A represents the winning state S10, the second column above gives
the probability of hitting S10 from various starting states. Note that that second column
is the same as the previously computed h. The frst column in the output above gives the
probability of G’s ruin for various starting states.

XIII.11 Greedy gambler

Let us conclude with another manifestation of the Gambler’s Ruin concept that emerges
when you ask the following question. What happens if G gets greedy and reneges on the
pledge to quit upon reaching 10 chips? In other words, G continues to play infnitely many
games unless ruined in between. What is the probability of G’s ruin?

134

This is the same as considering N = ∞ case in our previous setting. This case results in an
infnite set of states. Theorem 1 applies both to fnite and infnite set of states, but we can
only simulate Markov chains with fnite number of states. Nonetheless, we can certainly
apply Theorem 2 to compute the hitting probabilities for larger and larger N and get a feel
for what might happen when N = ∞.

But frst, we have to make our code better to go to large N. We use scipy’s sparse facilities
to remake the matrices and improve effciency.

from scipy.sparse import diags, eye
from scipy.sparse.linalg import spsolve

def sparseGmats(p=0.4, N=10000):

""" Return I - PBB and PBA as sparse matrices """

q = 1 - p
Note that the first and last row of P are not accurate
in this construction, but we're going to trim them away:
P = diags(q*np.ones(N), offsets=-1, shape=(N+1, N+1)) \
+ diags(p*np.ones(N), offsets=1, shape=(N+1, N+1))

A = [0, N]
B = range(1, N)
I_PBB = (eye(N-1) - P[np.ix_(B, B)]).tocsc()
PBA = P[np.ix_(B, A)].tocsc()

return I_PBB, PBA

def ruinG(p=0.4, N=10000):

""" Given that the winning probability of each game is "p",
compute the probability of G's ruin for each starting state """

I_PBB, PBA = sparseGmats(p, N)
return spsolve(I_PBB, PBA[:, 0])

[28]: ruinG(N=10)

[28]: array([0.99117622, 0.97794054, 0.95808703, 0.92830676, 0.88363636,
0.81663076, 0.71612236, 0.56535976, 0.33921586])

[26]:

[27]:

After verifying that for the N = 10 case, we obtained the same result, we proceed to
examine the higher values of N. One quick way to visualize the resulting h-values are as
plots over starting states.

[29]: fig = plt.figure()
ax = plt.gca()

135

hs = ruinG(N=20)
ax.plot(hs[:21], 'r-', label='N=20')

hs = ruinG(N=30)
ax.plot(hs, 'r:', label='N=30')

hs = ruinG(N=40)
ax.plot(hs, 'r-.', label='N=40')

ax.set_ylabel('Probability of G\'s ruin')
ax.set_xlabel('Starting state index')
ax.legend();

Clearly, as N increases, we see a larger range of starting indices for which G hardly stands
a chance of escaping ruin.

For a specifc case, suppose G is unable to start with more than 20 chips, but is willing
to play N games, for larger and larger N. Then we compute G’s least ruin probability, the
lowest probability of G’s ruin among all possible starting values, namely

min hi.
i=0,...,20

Let us examine how this minimal value changes with N.

[30]: def least_ruin_prob(p=0.4, N0=20, dbl=11):

""" Compute least ruin probability starting with N="N0" and
recompute "dbl" times, doubling N each time. """

for i in range(dbl):
print('N = %5d, least ruin probability = %5.4f'

%(N0*2**i, min(ruinG(p=p, N=N0*2**i)[:21])))

[31]: least_ruin_prob(p=0.4, dbl=7)

136

N = 20, least ruin probability = 0.3334
N = 40, least ruin probability = 0.9995
N = 80, least ruin probability = 1.0000
N = 160, least ruin probability = 1.0000
N = 320, least ruin probability = 1.0000
N = 640, least ruin probability = 1.0000
N = 1280, least ruin probability = 1.0000

Clearly, G is ruined with certainty, i.e., with probability 1, as N → ∞.

What if the games are fair? The above results were with p = 0.4. Rerunning the code with
the fair chance p = 0.5, we again observe convergence, albeit slower, to the inevitable.

[32]: least_ruin_prob(p=0.5, dbl=11)

N = 20, least ruin probability = 0.0500
N = 40, least ruin probability = 0.4750
N = 80, least ruin probability = 0.7375
N = 160, least ruin probability = 0.8687
N = 320, least ruin probability = 0.9344
N = 640, least ruin probability = 0.9672
N = 1280, least ruin probability = 0.9836
N = 2560, least ruin probability = 0.9918
N = 5120, least ruin probability = 0.9959
N = 10240, least ruin probability = 0.9979
N = 20480, least ruin probability = 0.9990

What is illustrated in this output is often identifed as another, perhaps stronger, manifes-
tation of the Gambler’s Ruin concept: even when the games are fair, G is certain to be ruined if
G continues to play forever.

137

XIV

Google’s PageRank

May 13, 2020

In the history of the internet, a collection of papers proposing PageRank has been infuen-
tial, in particular, a 1998 paper by Sergey Brin and Lawrence Page, two graduate students,
now better known as Google co-founders. They proposed an objective metric to order the
results of a user’s internet search. For those who don’t remember, there was indeed a time
when “junk results often wash[ed] out any results that a user is interested in,” to quote
the paper. Of course, search engines now operate in a competitive business world, and
the algorithms that Google and other companies use to rank their search results currently
are not public knowledge. But the concept of PageRank is now routinely applied beyond
Google, not just to the internet, but to general data on graphs and networks. It serves as an
automatic tool to rank the relative importance of parts of any internet-like giant network.

We shall view the web (internet) as a directed graph. Each internet location (a webpage)
is a vertex of the graph. A hyperlink from one webpage to another is a directed edge of
the graph. From this viewpoint, the central idea of Brin & Page was to exploit the “link
structure of the web to calculate a quality ranking for each web page.”

To introduce PageRank, we shall build on our previous discussion of Markov chains (from
Gambler’s Ruin), which was entirely from the statistical or probabilistic perspective. Below,
we will connect to theorems of Perron and Frobenius, which are results that one might
usually learn in a mathematics program. Of course, all of this helps us understand the
effectiveness of PageRank, a topic that has entered the computer science curricula in recent
decades. Taken together, we then have an example of propitious convergence of ideas from
the distinct felds of computer science, mathematics, and statistics.

XIV.1 Probability distributions on graphs

Throughout this discussion, we have in mind a directed graph with vertices V1, . . . , VN ,
associated to a Markov chain with an N × N stochastic matrix P = (pij). We consider a
random walker on this digraph, who we name W. The random walker W is a “stochastic
being”. We cannot know W’s precise location on the graph; we only know that W’s location
is determined by a probability distribution on the graph.

A probability vector is a vector x ∈ RN whose entries xi satisfy

N
0 ≤ xi ≤ 1, ∑ xi = 1.

i=1

Such a vector represents a probability distribution on the vertices of the graph. We may
think of xi as the probability that the system is in state Vi. Alternatively, we may think of
xi as the probability of fnding the random walker W at the digraph vertex Vi.

138

How does the probability of fnding W on the graph change when W takes a step? Here is
another way of asking the same question: if xi is the probability that the Markov chain is
in state Vi, then what is the probability that the next state of the Markov chain is Vj? Since
Vj can be arrived at from Vk with probability pkj, and since the prior state was Vk with
probability xk, we conclude that the answer should be the sum of pkj × xk over all the prior
states Vk. In other words, the probability that the next state is Vj equals

N

∑ pkjxk,
k=1

which is the jth component of Ptx. This argument can be formalized to obtain the following
basic result.

Theorem 1. The probability distribution of a random walk on a directed graph with
stochastic matrix P changes from x to Ptx in each step (where Pt denotes the transpose
of P).

Note that if x is a probability vector and P is a transition matrix, then Ptx is guaranteed
(exercise!) to come out as a probability vector.

XIV.2 Stationary distributions

We have just seen that as the random walk progresses, an initial probability distribution x
changes as follows:

x, Ptx, (Pt)2x, (Pt)3x,

Suppose this sequence converges to a limiting vector s. Then that limit should obviously
not change if one more Pt is applied to it, i.e., it should satisfy

Pts = s.

Any probability vector s satisfying Pts = s is called a stationary distribution, (or a stationary
probability vector or an equilibrium) of the random walk. Notice that the stationary proba-
bility vector is always an eigenvector of Pt associated to eigenvalue 1. Notice also that the
limit, if it exists, is independent of the initial distribution x.

For the random walker W, if the limit of the above sequence exists, then the stationary
distribution can be used to identify the vertices of the graph with a high probability of
fnding W in the long run.

[1]: import numpy as np
from numpy.linalg import eig, matrix_power, norm

Example A
[2]: PA = np.array([[1/2, 1/4, 1/4],

[1/3, 1/3, 1/3],
[1/3, 1/3, 1/3]])

Does the sequence of probability distributions x, Ptx, (Pt)2x, (Pt)3x, . . . , converge for
this Markov chain? To answer this, let’s take the matrix powers (Pt)n and compute the

139

Frobenius norm of the successive differences,

∥(Pt)n+1 − (Pt)n∥F.

If this approaches 0, then we obtain a numerical indication of convergence.

[3]: [norm(matrix_power(PA.T, n+1) - matrix_power(PA.T, n), 'fro') for n in␣
↪→range(1, 20)]

[3]: [0.1402709019216955,
0.023378483653615948,
0.0038964139422693537,
0.0006494023237115095,
0.00010823372061852081,
1.80389534364696e-05,
3.0064922394683963e-06,
5.010820398912459e-07,
8.351367329688623e-08,
1.3918945514670359e-08,
2.3198243477163972e-09,
3.86637279525466e-10,
6.44396235375308e-11,
1.073992260029489e-11,
1.789976112476022e-12,
2.9830188647232445e-13,
4.977570743895776e-14,
8.26743511340278e-15,
1.343782689223772e-15]

This indicates convergence. Let’s check that the convergence actually occurs to a stationary
distribution s that is an eigenvector of Pt .

[4]: ew, ev = eig(PA.T)
ew

[4]: array([0.16666667, 1. , 0.])

[5]: v = ev[:, abs(ew-1) < 1.e-14]; print(v)

[[0.68599434]
[0.51449576]
[0.51449576]]

This is the eigenvector corresponding to eigenvalue 1. In order to make this a probability
distribution, let’s normalize by the sum.

[6]: sA = v / v.sum()
sA

140

[6]: array([[0.4],
[0.3],
[0.3]])

This is the stationary distribution s for this example. To see that the same vector is obtained
as the limit of (Pt)n , we simply raise the matrix to a large power and examine the result:

[7]: matrix_power(PA.T, 1000)

[7]: array([[0.4, 0.4, 0.4],
[0.3, 0.3, 0.3],
[0.3, 0.3, 0.3]])

The values of s show that the random walker W will, in the limit, be found in state V0 at a
higher probability (0.4) than the other two states (0.3).

Example B
[8]: PB = np.array([[0, 1/3, 1/3, 1/3],

[0.9, 0, 0, 0.1],
[0.9, 0.1, 0, 0],
[0.9, 0, 0.1, 0]])

[9]: ew, ev = eig(PB.T); print(ew)

[-0.9 +0.j 1. +0.j -0.05+0.08660254j -0.05-0.08660254j]

[10]: # stationary distribution:
v = ev[:, abs(ew-1) < 1.e-14];
sB = v.real / sum(v.real); print(sB)

[[0.47368421]
[0.1754386]
[0.1754386]
[0.1754386]]

In this example, there is convergence of the powers to the stationary distribution, but it is
slower than Example A. We fnd this out by taking higher powers than before:

[11]: [norm(matrix_power(PB.T, n) - sB, 'fro') for n in range(300, 305)]

[11]: [2.0819420081737047e-14,
1.9224558387957245e-14,
1.6814381771214046e-14,
1.558237665379239e-14,
1.3619335994971806e-14]

Example C

141

[12]: PC = np.array([[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])

[13]: ew, ev = eig(PC.T); print(ew)

[-0.5+0.8660254j -0.5-0.8660254j 1. +0.j]

[14]: # stationary distribution:
v = ev[:, abs(ew-1) < 1.e-14].real; sC = v/v.sum(); print(sC)

[[0.33333333]
[0.33333333]
[0.33333333]]

In this example, we do not see convergence of the powers Pt to the above stationary dis-
tribution. There seems to be no convergence to anything:

[15]: [norm(matrix_power(PC.T, n+1) - matrix_power(PC.T, n)) for n in range(100,␣
↪→105)]

[15]: [2.449489742783178,
2.449489742783178,
2.449489742783178,
2.449489742783178,
2.449489742783178]

These numbers clearly do not seem to be approaching zero, a sign of non-convergence.
In fact, the transition matrix here is such that all its powers cycle between three matrices
Pt , (Pt)2 and (Pt)3, thus preventing convergence!

[16]: [print('The %dth power:\n'%i, matrix_power(PC.T, i)) for i in range(300,␣
↪→306)];

The 300th power:
[[1 0 0]
[0 1 0]
[0 0 1]]

The 301th power:
[[0 0 1]
[1 0 0]
[0 1 0]]

The 302th power:
[[0 1 0]
[0 0 1]
[1 0 0]]

The 303th power:
[[1 0 0]
[0 1 0]
[0 0 1]]

The 304th power:
[[0 0 1]
[1 0 0]
[0 1 0]]

The 305th power:

142

[[0 1 0]
[0 0 1]
[1 0 0]]

Example A Example B Example C

V0

V1

V2

1/4

1/3
1/31/3

1/3

1/4

1/3

1/3

1/2

V1

V2

V3

V0

0.1

0.1

0.1

1/3

0.9

1/3

0.9

1/3

0.9

V0

V1

V2

1

1

1

Convergent: Convergent: Not
limn→∞(Pt)nx = s limn→∞(Pt)nx = s convergent:limn→∞(Pt)n

doesn’t exist
Stationary distribution: ⎤⎡

0.4
⎤⎡Stationary distribution:

0.474
Stationary distribution: ⎤⎡

1/3
s =

⎢⎢⎣
⎥⎥⎦

0.175
0.175

s = ⎣ ⎦ s = ⎣ ⎦0.3 1/3
0.3 1/3

0.175

Summary of the three examples: Note how associating the values of si to vertex Vi pro-
duces something that matches our intuition on where to fnd the random walker in the
long run. The convergence in Example A is a consequence of Perron’s theorem that we
discuss next.

XIV.3 Perron’s theorem

The following celebrated result in linear algebra was proved by Oskar Perron (about 90
years before Brin & Page’s paper). Research papers continue to be written on subjects
surrounding the theorem. The theorem applies to any positive matrix: a square matrix is
called a positive matrix if all its entries are positive.

Theorem 2. The following statements hold for any positive matrix A.

• There is a positive real number µ that is an eigenvalue of A such that any other
eigenvalue λ of A is smaller in absolute value: |λ| < µ. (This µ is called the dominant
eigenvalue of A.)

• The eigenspace of the eigenvalue µ is one-dimensional and contains an eigenvector
v whose entries vi are all positive.

1
• The limit lim An exists and equals a matrix whose columns are all scalar multiples

n→∞ µn

of v.

143

Graphical illustration If you have never seen Theorem 1 before, you might be mystifed
how so many strong statements can be concluded simply from the positivity assumption.
I’d like to give you an idea of the reasoning that leads to these statements, without writing
out a formal proof, through the following simple example of a 2 × 2 positive matrix.

[17]: A = np.array([[0.1, 0.9],
[0.6, 0.4]])

ew, ev = eig(A)
ew

[17]: array([-0.5, 1.])

We see that the dominant eigenvalue is 1 in this case. To get an idea of why An converges,
as claimed in the theorem, see what happens when we multiply A by A in terms of the
frst and second columns (A0 and A1) of A = [A0, A1]:

A2 = A[A0, A1] = [AA0, AA1]

When A is multiplied by a positive vector the result is a linear combination of the columns
of A with positive combination coeffcients. This is best seen using pictures. To this end,
we defne a function below that plots the columns of A (as two thick arrows) and the region
in between (a two-dimensional cone) using criss-cross lines.

Using it we see what happens to the cone region under repeated application of A.

[18]: import matplotlib.pyplot as plt
%matplotlib inline

def plotcone(A0, A1, xlim=(0,1.1), ylim=(0,1.), matlabel='A',␣
↪→tt='Illustration of convergence of A^n'):

t = np.linspace(0, 3, num=100)
gridline0 = t[:, np.newaxis] * A0
gridline1 = t[:, np.newaxis] * A1
fig = plt.figure(); ax = plt.gca()
for i in range(20):

ax.plot(gridline0[:, 0], gridline0[:, 1], 'b')
ax.plot(gridline1[:, 0], gridline1[:, 1], 'r')
gridline0 += (1/5) * A1
gridline1 += (1/5) * A0

ax.set_xlim(xlim); ax.set_ylim(ylim)
ax.set_title(tt)
a0 = ax.arrow(0, 0, A0[0], A0[1], width=0.05, color='blue', alpha=0.3)
a1 = ax.arrow(0, 0, A1[0], A1[1], width=0.05, color='red', alpha=0.3)
plt.legend((a0, a1), ('First column vector of '+matlabel, 'Second␣

↪→column vector of '+matlabel), loc='lower right');

M = A.copy()
for i in range(5): # plot the cone between columns for each matrix power

A0 = M[:, 0]

[19]:

144

A1 = M[:, 1]
plotcone(A0, A1, matlabel='$A^'+str(i+1)+'$')
M = M @ A

145

As you can see, repeated application of A eventually squeezes the cone region to a linear
region. The vectors in the boundary of the region getting squeezed are the columns of
An as n → ∞, so you have just seen a pictorial illustration of existence of the limit of An ,
and also of the theorem’s claim that in the limit, the columns become multiples of a single
vector. Moreover, the limiting linear region in the fgure should remain unaltered under
further applications of A, so it must represent an eigenspace of A. Note also that all of this
happens in the positive quadrant of the plane, so obviously the squeezed in line is the span
of a vector v with positive entries, so this should be the positive eigenvector mentioned in
the theorem.

This squeezing phenomena happens because A has positive entries. If A had negative
entries, the region between its column vectors need not get so squeezed and can dance
all over the place preventing convergence of its powers. Considering another matrix, also
with dominant eigenvalue 1, but now with a negative entry, you get the picture:

[20]: B = np.array([[0.1, -1.6], # change sign of one entry of A to get B
[0.6, 0.4]])

plotcone(B[:,0], B[:,1], xlim=(-2.1, 0.5), ylim=(-1.1, 1.1),␣
↪→matlabel='B', tt='Noncovergence')

B = B @ B

146

plotcone(B[:,0], B[:,1], xlim=(-2.1, 0.5), ylim=(-1.1, 1.1),␣
↪→matlabel='B^2', tt='Noncovergence')

Any overlaps between the cones disappear as you take further powers.

This completes our graphical illustration of the connection between positivity of entries,
the convergence of matrix powers, and the resulting capture of a positive eigenvector by
successively squeezing cones. In the next subsection, where we apply Perron’s theorem to
transition matrices, we will be more rigorous, and yet, use nothing more than what you
already know from your linear algebra prerequisites.

Application to stochastic matrices In this subsection, we consider a Markov chain whose
transition matrix P = (pij) has positive entries. Accordingly, there is a dominant positive
eigenvalue µ and corresponding eigenvector v with positive components: Pv = µv. Nor-
malizing v such that its maximum entry vi is one, the ith equation of the system Pv = µv
reads as

N

∑ pijvj = µvi = µ.
j=1

We also have
N N

∑ pijvj ≤ ∑ pij = 1.
j=1 j=1

147

Putting these together, we conclude that the dominant eigenvalue satisfes µ ≤ 1. But any
transition matrix P always has 1 as an eigenvalue. This is because the fact that its rows
sums are one

N

∑ pij = 1
j=1

can be rewritten in matrix terms as ⎤⎡⎤⎡
1 1

P ⎢⎣ . . .
⎥⎦ = ⎢⎣ . . .

⎥⎦ .
1 1

Therefore µ must be 1. Let’s highlight this conclusion:

• µ = 1 is the dominant eigenvalue of any positive transition matrix P and the corresponding
eigenvector is the vector whose entries are all ones.

Of course, Perron’s theorem applies to both P and Pt , since both are positive matrices.
Since the eigenvalues of P and Pt are the same, we can further say this:

• µ = 1 is also the dominant eigenvalue of Pt (but the eigenvector corresponding to eigen-
value 1 may be different for Pt and P).

The theorem also tells us that the limit of (Pt)n exists. Relating to our discussion of station-
ary distributions, we conclude:

• The sequence of probability distributions of a random walk

x, Ptx, (Pt)2x, (Pt)3x, . . .

always converges for Markov chains with pij > 0 and the limit s is independent of the initial
distribution x.

The theorem also tells us that the limit of Pn exists, and moreover, the limit matrix must
have columns that are scalar multiples of the eigenvector of the dominant eigenvalue: in
other words, the columns of limn→∞ Pn must be scalar multiples of the vector of ones. On
the other hand, the limit of (Pt)n = (Pn)t must have columns that are multiples of the
eigenvector s satisfying Pts = s, which we previously called the stationary distribution.
Thus, having pinned down the rows and the columns, we make the following conclusion:

• The limit of Pn as n → ∞ takes the following form ⎤⎡

Pnlim =
n→∞

⎢⎢⎢⎣

s1 s2 . . . sN
s1 s2 . . . sN
.

s1 s2 . . . sN

⎥⎥⎥⎦ .

Example A has a positive transition matrix. It provides an instance where all the previous
statements can be verifed. For example, limn→∞ Pn is approximated by the matrix below
which reveals the above pattern of stationary distributions in each row.

[21]: matrix_power(PA, 1000) # P^1000 for Example A

148

[21]: array([[0.4, 0.3, 0.3],
[0.4, 0.3, 0.3],
[0.4, 0.3, 0.3]])

[22]: sA # the stationary distribution for Example A

[22]: array([[0.4],
[0.3],
[0.3]])

XIV.4 PageRank

We shall now defne the PageRank of vertices on an (unweighted) directed graph with N
vertices.

1. First, set aij = 1 if there is an edge from vertex vi to vj in the graph and set aij = 0
otherwise.

2. Next, let
N

mi = ∑ aik.
k=1

If mi is 0, then the ith vertex is a dangling node (which has no outgoing edges). Defne ⎧ aij ⎪⎨ if mi > 0,
miwij = ⎪ 1⎩ if mi = 0.
N

These may be thought of as weights on a directed edge from vi to vj if the edge exists
(if not, the weight is zero). The weight wij may also be viewed as providing equal
probabilities to all outgoing edges from vi.

3. Now that we have a weighted directed graph, we may associate it to a Markov chain,
setting transition probabilities to wij, but hold on: if we do so, a random walker W
on the graph can get stuck in vertices with no outgoing edges or in cycles within the
graph. (This is certain to happen on graphs as complex as the internet.) To avoid
this situation, one sets a restart probability 0 < r ≪ 1 with which W is allowed to
jump from one vertex to any other vertex in the graph. (Page called 1 − r the damping
factor.)

4. Finally, set the Markov chain transition probabilities by

r
pij = + (1 − r)wij.N

The PageRank of a vertex is defned to be the value of the stationary probability distribution at that
vertex obtained using the above pij as the transition probabilities.

Note that the transition matrix (pij) defned above is a positive matrix. Hence, due to
Perron’s theorem, and our prior discussion on its application to stochastic matrices, the

149

limit of the probability distributions

x, Ptx, (Pt)2x, (Pt)3x, . . .

exists, is equal to the stationary probability distribution, which we have just decided to
call PageRank. In particular, PageRank is independent of the starting distribution x of the
random walk. Furthermore, we may also arrive at the interpretation of the PageRank of a
graph vertex as the limiting probability that a relentless random walker visits that vertex.

Here is a simple implementation for small graphs using the same notation (aij, wij, pij) as
above. (Think about what would need to change for a giant graph like the internet. We’ll
consider big graphs in later exercises.)

[23]: def pagerank(a, r):
""" Return pagerank based on adjacency matrix "a" (square matrix
of 0s or 1s) and given restart probability "r". Use only for small
dense numpy matrices a. """

m = a.sum(axis=1)
dangling = (m==0)
m[dangling] = 1

w = (1 / m[:, np.newaxis]) * a
w[dangling, :] = 1 / a.shape[0]

p = (1-r) * w + (r / a.shape[0])
ew, ev = eig(p.T)
s = ev[:, abs(ew-1) < 1e-15].real
return s / s.sum()

Let’s quickly consider a small example to illustrate PageRank.

Example D
[24]: # 0 1 2 3 4 5 6 7 8 (Adjacency Matrix of the above␣

↪→graph)
A = np.array([[0, 1, 0, 0, 1, 0, 0, 0, 0], # 0

[0, 0, 0, 0, 1, 0, 0, 0, 0], # 1
[0, 0, 0, 0, 1, 0, 0, 0, 0], # 2
[0, 0, 0, 0, 1, 0, 0, 0, 0], # 3
[0, 0, 0, 0, 0, 0, 1, 0, 0], # 4
[0, 0, 0, 0, 1, 0, 0, 0, 0], # 5
[0, 0, 0, 0, 0, 1, 0, 0, 0], # 6
[0, 0, 0, 0, 0, 1, 0, 0, 0], # 7
[0, 0, 0, 0, 0, 1, 0, 0, 0]]) # 8

[25]: pagerank(A, 0.1)

150

[25]: array([[0.01111111],
[0.01611111],
[0.01111111],
[0.01111111],
[0.32328823],
[0.30297458],
[0.30207052],
[0.01111111],
[0.01111111]])

Notice from the output that V4 is ranked highest. A vertex to which many other vertices
points to usually get a higher PageRank. Notice also how a vertex to which a highly ranked
vertex points to inherits a high PageRank: this is the case with vertex V6. Vertex V5 is also
highly ranked because it has its own cluster of vertices (V6, V7, V8) pointing to it which
included one highly ranked vertex V6.

It is instructive to look at how PageRank changes as the restart probability is decreased to
0:

[26]: pagerank(A, 0.01)

[26]: array([[0.00111111],
[0.00166111],
[0.00111111],
[0.00111111],
[0.33239996],
[0.33019631],
[0.33018707],
[0.00111111],
[0.00111111]])

[27]: pagerank(A, 0.0)

[27]: array([[-0.],
[-0.],
[-0.],
[-0.],
[0.33333333],
[0.33333333],
[0.33333333],
[-0.],
[-0.]])

This identifes the cycle where the random walker would end up if it were not for the
restart mechanism.

On internet search results As I mentioned above, PageRank was proposed specifcally
to order the world wide web. In view of our previous discussion, when applied to the

151

giant graph of the internet, the PageRank of a webpage can be interpreted as the steady
state probability that a random web surfer, following hyperlinks from page to page (with
infnite dedication and with no topical preference), is at that webpage.

When a user types in a search query, a search engine must frst be able to mine all the
webpages relevant to the query from its database. (PageRank does not help with this
task.) Then, it must present these pages in some order to user. If the search engine has
already computed a ranking of relative importance of each webpage, then it can present the
results to the user according to that ranking. This is where PageRank helps. It does require
the search engine to solve for a giant eigenvector (with billions of entries) to compute
PageRank on the entire world wide web. The results of this computation (which cannot be
done in real time as the user searches) are stored by the search engine. The stored ranking
is then used to order the results presented to the user. There are reports that Google does
this a couple of times a year (but I don’t know how to verify this).

XIV.5 Perron-Frobenius theorem

Georg Frobenius generalized Perron’s theorem to nonnegative matrices. The key discovery
of Frobenius was that although many of the nice properties of positive matrices fail to hold
for general non-negative matrices, they continue to hold for non-negative matrices whose
directed graph exhibits a “nice” property. Recall that the directed graph of an N × N
matrix A = (aij) is a graph with vertices 1, 2, . . . , N which has a directed edge from vertex
i to vertex j whenever aij is nonzero. The “nice” property is the following.

A square matrix is called irreducible if its directed graph is such that there is a path made
of directed edges from any vertex to any other vertex.

Theorem 3. (Perron-Frobenius) The following statements hold for any irreducible N × N
matrix A = (aij) whose entries satisfy aij ≥ 0 are all non-negative.

• The maximum µ of the absolute value of all eigenvalues of A is an eigenvalue of A.

• The eigenspace of the eigenvalue µ is one-dimensional and contains an eigenvector
v whose entries vi are all positive.

k−11 1
• The limit lim ∑ An exists and equals a matrix whose columns are all scalar

k→∞ k µn
n=0

multiples of v.

Note the main differences in Theorem 3 in comparison to Theorem 2:

• Unlike positive matrices, now there might be more than one eigenvalue whose abso-
lute value is µ.

• Unlike positive matrices, we can no longer assert that limit An/µn exists, only that
the limit of averages of An/µn exists.

152

Example B Example C

V1

V2

V3

V0

0.1

0.1

0.1

1/3

0.9

1/3

0.9

1/3

0.9

V0

V1

V2

1

1

1

Convergent: limn→∞(Pt)nx = s Not convergent:limn→∞(Pt)n doesn’t exist
Stationary distribution:

0.474
⎤⎡ Stationary distribution: ⎤⎡

1/3
s =

⎢⎢⎣
⎥⎥⎦

0.175
0.175

s = ⎣1/3 ⎦

1/3
0.175

Reconsider Examples B & C Note that the Markov chains in both Examples B and C
have non-negative transition matrices that are irreducible: the irreducibility is obvious
by looking at the previous fgures of the digraphs for each example. Hence the Perron-
Frobenius theorem applies to both. Therefore, in both cases we may conclude that the
stationary distribution s is the limit of the averages

x + Ptx + (Pt)2x + · · · + (Pt)kx
k + 1

as k → ∞, for any starting distribution x. Although (Pt)n does not converge for Example
C, these averages do. For Example B, we observed convergence for (Pt)n so, of course, the
averages also converge.

Let me conclude with a few words on nomenclature. In the statistics literature, a Markov
chain is called an ergodic Markov chain if it is possible to arrive at any state from any other
state in one or more steps. In other words, a Markov chain is ergodic if its digraph has
paths made of directed edges from any vertex to any other vertex. This concept is there-
fore equivalent to its transition matrix being irreducible, and indeed, several texts use the
adjective irreducible instead of ergodic when studying such Markov chains. In computer
science and in graph theory, a directed graph whose vertices can be connected by a path
of directed edges is called strongly connected, yet another name for the same concept. We
have seen several such instances of distinct names for essentially the same concept in this
and the previous activity. While it may be a nuisance that the names are not standardized,
it’s not surprising for a concept that emerged as important in different disciplines to get
distinct names attached to it; it may even speak to the universality of the concept.

153

XV

Supervised learning by regression

May 21, 2020

Machine learning refers to mathematical and statistical techniques to build models of data. A
program is said to learn from data when it chooses a model or adapts tunable model pa-
rameters to observed data. In broad strokes, machine learning techniques may be divided
as follows:

• Supervised learning: Models that can predict labels based on labeled training data

– Classifcation: Models that predict labels as two or more discrete categories
– Regression: Models that predict continuous labels

• Unsupervised learning: Models that identify structure in unlabeled data

– Clustering: Models that detect and identify distinct groups in the data
– Dimensionality reduction: Models that identify lower-dimensional structure in

higher-dimensional data

In this activity, we focus on supervised learning. Note the two further subdivisions men-
tioned above within the category of supervised learning, and here are two examples within
each for further orientation:

• Classifcation example: identify an email as spam or not (discrete label) based on
counts of trigger words.

• Regression example: predict the arrival time (continuous label) of a streetcar at a
station based on past data.

We shall further focus on regression in this activity. Regression addresses an age-old ftting
problem: given a set of data, fnd a line (or a curve, or a surface, or a hypersurface in higher
dimensions) that approximately fts the data. The equation of the line, in the machine
learning language, is the model of the data that has been “learnt.” The model can then
“predict” the values, i.e., “labels” at points not covered by the original data set. Finding
equations of curves that pass through a given set of points is the problem of interpolation,
which goes at least as far back as Newton (1675). The ftting problem in regression, also
known at least as far back as Gauss (1809), is a relaxed version of the interpolation problem
in that it does not require the curves to pass through the given data, and is generally more
suitable to handle noisy data. These days, when machine learning comes at you with the
brashness of an overachieving new kid on the block, it is not fashionable to view the subject
from the perspective of established mathematical techniques with rich histories. Instead,
it has somehow become more fashionable to view machine learning as some sort of new
AI miracle. Please do not expect any miracles here.

154

XV.1 Linear Regression

Let’s start from the linear regression in a form you have seen previously: given data points
(xi, fi), i = 0, 1, . . . , N, ft a linear equation

f (x) = a0 + a1x

to the data, in such a way that the error in the ft

N
e = ∑ | f (xi) − fi|2

i=0

is minimized. Since the quantity on the right is a sum of squares, this is called the least-
squares error. It is easy to solve this minimization problem. Writing

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
f0 f (x0) 1 x0 []

Ydata ⎢ . ⎥ Yft ⎢ . ⎥ ⎢ . . ⎥ a0

fN f (xN) 1 xN ⏞
a1

= ⎣ . ⎦ , = ⎣ . ⎦ = ⎣ . . ⎦ ⏟⏟⏞ ⏞ ⏟⏟ ⏞ a
X

∥Yft − Ydata∥2 ∥Xa − Ydata∥2the error e can also be expressed as e = = = (Xa −
Ydata)t(Xa − Ydata). Now, either from linear algebra, or from calculus, one concludes that
e is minimized when

a = (XtX)−1XtYdata .

This is the least-squares solution to the linear regression problem.

In the machine learning language, - fi are (continuous) “labels”, - the “model” is the linear
formula a0 + a1x, - the “labeled training data” is (xi, fi), and - the “predictions” are values
of f (x) at various x-values.

Here is an example.

[1]: import numpy as np
from numpy.linalg import inv
%matplotlib inline
import matplotlib.pyplot as plt
rng = np.random.default_rng(123)

[2]: x = 5 * rng.random(20)
f = 3 * x + 5 * rng.random(20)
plt.scatter(x, f); plt.xlabel('x'); plt.ylabel('Continuous labels (f)');

155

The data has a linear trend, so let’s try to ft a line to it using linear regression formula we
derived above.

[3]: X = np.array([np.ones(len(x)), x]).T
a = inv(X.T @ X) @ X.T @ f # Create the "model"

[4]: x_predict = np.linspace(0, 5, num=100)
f_predict = a[0] + a[1] * x_predict # "Predict" using the model

[5]: plt.scatter(x, f)
plt.xlabel('x'); plt.ylabel('Continuous labels (f)');
plt.plot(x_predict, f_predict, 'c');

To have a visual representation of the error that is minimized by this line, we can plot line
segments (the red thick lines below) whose sum of squared lengths is what we minimized:

[6]: from matplotlib.collections import LineCollection
fp = X @ a
plt.scatter(x, f)
lc = LineCollection([[(x[i], f[i]), (x[i], fp[i])]

156

for i in range(len(x))], color='r', linewidth=4,␣
↪→alpha=0.5)

plt.gca().add_collection(lc)
plt.xlabel('x'); plt.ylabel('Continuous labels (f)');
plt.plot(x_predict, f_predict, 'c');

Let us save there results for later comparison.

[7]: linear_example = {'data': [x, f], 'model': a}

XV.2 Higher dimensions

The process of linear regression is very similar in higher dimensions. To ft some given
data fi on N + 1 points x⃗i, each of which are m-dimensional, we express the points in

(1) (2) (m)coordinates x⃗i = (x , x , . . . , x). The model now is i i i

(1) (2) (1) (m)f (x , x , . . . , x(m)) = a0 + a1x + · · · + amx .

Exactly the same algebra as before yields the same solution formula

a = (XtX)−1XtYdata ,

the only difference now being that ⎡ ⎤ ⎥⎥⎥⎥⎦

(1) (2) (m)1 x x · · · x0 0 0
(1) (2) (m)1 x x · · · x1 1 1

.

⎤⎡ ⎢⎢⎢⎢⎣

a0 ⎢⎣ ⎥⎦. . . , X =a =

am (1) (2) (m)1 x x · · · xN N N

Here is a 3D example, where we can still attempt to visualize:

157

[8]:

[9]:

[10]:

[11]:

x1 = 5 * rng.random(100)
x2 = 5 * rng.random(100)
f = 10 - (3*x1 + 2* x2 + 2 * rng.random(100))

X = np.array([np.ones(len(x1)), x1, x2]).T
a = np.linalg.inv(X.T @ X) @ X.T @ f

from mpl_toolkits.mplot3d import Axes3D
ax = plt.figure().gca(projection='3d')
ax.scatter(x1, x2, f)
ax.set_xlabel('x_1'); ax.set_ylabel('x_2');

ax = plt.figure().gca(projection='3d')
ax.set_xlabel('x_1'); ax.set_ylabel('x_2')
xx1, xx2 = np.meshgrid(x1, x2)
zz = a[0] + a[1] * xx1 + a[2] * xx2
ax.plot_wireframe(xx1, xx2, zz, color='c', alpha=0.2)
ax.scatter(x1, x2, f); ax.set_title('Modeling data by a plane');

We save these results for later examination.

158

[12]: planar_example = {'data': [np.array([x1, x2]).T, f], 'model': a}

XV.3 Curve ftting

If you know that your data is exponential, you might get better results by ftting with expo-
nentials instead of linear functions. The “linear” regression process can be adapted to use
exponentials, or gaussians, or indeed any basis functions you feel are particularly appro-
priate for your data set. The linearity in “linear” regression refers to the linear dependence
of the model on the data (and has nothing to do which whether your model f is linear or
not).

Deriving the general formula is done by the same method. Using basis functions ϕj (⃗x), we
can ft given data fi on N + 1 points x⃗i using the model

f (⃗x) = a0ϕ0(⃗x) + a1ϕ1(⃗x) + · · · + amϕm (⃗x).

Again, the previous algebra yields the same solution formula

a = (XtX)−1XtYdata ,

for the model parameters that provide the minimizer of

N
e = ∑ | f (⃗xi) − fi|2.

i=0

The only difference now is that ⎤⎡⎤⎡ ϕ0(⃗x0) ϕ1(⃗x0) · · · ϕm (⃗x0)a0 ⎢⎢⎢⎣

⎥⎥⎥⎦

ϕ0(⃗x1) ϕ1(⃗x1) · · · ϕm (⃗x1)
.

⎢⎣ ⎥⎦. . . , X =a = .
am ϕ0(⃗xN) ϕ1(⃗xN) · · · ϕm (⃗xN)

Here is an example where we ft a quadratic curve to a simple one-dimensional data set,
i.e., here

f (x) = a0 + a1x + a2x2

and the a’s are found by the above formula.

[13]: x = 5 * rng.random(50)
f = 3 * np.exp(x/2) + 2 * rng.random(50)
plt.scatter(x, f); plt.xlabel('x'); plt.ylabel('Continuous labels (f)');

159

[14]: phi0 = np.ones(len(x))
phi1 = x
phi2 = x**2

X = np.array([phi0, phi1, phi2]).T
a = np.linalg.inv(X.T @ X) @ X.T @ f

[15]: xcurve_predict = np.linspace(0, 5, num=500)
phi0 = np.ones(len(xcurve_predict))
phi1 = xcurve_predict
phi2 = xcurve_predict**2

fcurve_predict = a[0] * phi0 + a[1] * phi1 + a[2] * phi2
plt.scatter(x, f)
plt.xlabel('x'); plt.ylabel('Continuous labels (f)');
plt.plot(xcurve_predict, fcurve_predict, 'c');

If we had attempted to ft a straight-line through the data, then we would not have gotten
such a close ft. Another way of saying this in the prevalent terminology is that linear
features underft this data, or that the linear model has high bias. Saving this example also

160

for later, we continue.

[16]: curve_example = {'data': [x, f], 'model': a, 'type': 'quadratic'}

XV.4 The module scikit-learn

All the regression computations we did above can be done using the module
scikit-learn. Of course, the formulas above were simple and easy to implement. The
power of scikit-learn is not in its linear regression implementation, but rather, in the
vast range of many other ready-made facilities it provides under a unifed user interface.
When faced with a package that attempts to do so many things, it’s a good entry strategy
to confrm that it behaves as we expect in situations we know. This was our purpose in
using the simple regression as an entry point into scikit-learn.

Let’s check if our frst-principles computation of regression solutions match what
scikit-learn produces.

[17]: from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True)

We can now ft data to this model using the fit method. Let’s ft the same data we used in
the frst example of this activity.

[18]: x, f = linear_example['data'] # Recall the saved data from the first␣
↪→example

model.fit(x[:, np.newaxis], f) # Training step

[18]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,␣
↪→normalize=False)

[19]: xfit = np.linspace(0, 5, num=100)
ffit = model.predict(xfit[:, np.newaxis]) # Prediction step
plt.scatter(x, f);
plt.xlabel('x'); plt.ylabel('Continuous labels (f)');
plt.plot(xfit, ffit, 'c');

161

Clearly we seem to be getting the same result. We can confrm the results are exactly the
same by digging into the solution components within the model object, as seen below.
(Recall that in f (x) = a0 + a1x, the coeffcient a0 is called the intercept.)

[20]: model.intercept_, model.coef_

[20]: (2.9548137487468367, array([2.90310325]))

This is exactly the same as the values we solved for previously:

[21]: linear_example['model']

[21]: array([2.95481375, 2.90310325])

Higher dimensions The ftting process in scikit-learn is similar in higher dimensions.

[22]: x12, f = planar_example['data']
model.fit(x12, f)

[22]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,␣
↪→normalize=False)

[23]: model.intercept_, model.coef_

[23]: (9.167204926561409, array([-3.03592026, -2.03048875]))

This matches our previously computed results:

[24]: planar_example['model']

[24]: array([9.16720493, -3.03592026, -2.03048875])

XV.5 More terminology

Of course, regression for curve ftting is also possible in scikit-learn. The difference now
is that here you begin to see how things would get easier if you learn their language.

Scikit-learn uses the word estimator for models in machine learning. In the module, esti-
mators are python objects that implement the methods fit and predict. We have already
seen both methods in the context of the above regression examples. Additional terminol-
ogy we should know include transformer (objects which can map/transform data into some
other form) and pipeline (a sequence of transformers followed by an estimator).

The term feature is probably the most diffcult one to pin down as it is used for too many
things: data attributes, elements of a data row, columns of a data array, the range of a
function mapping some data values, etc. When a data set is being ftted with some basis
functions, linear or not, the word feature is used to refer to the basis. In fact, the process of
selecting such basis functions is an example of feature engineering. More generally, feature
engineering is any process by which raw information (data) is converted into numbers or

162

other mathematical objects, things inside a feature matrix. Tidy data in a feature matrix has
each variable/feature in a column and each observation/sample in a row.

[25]: from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures

Using polynomial features, we create quadratic basis functions.

[26]: q = PolynomialFeatures(3, include_bias=False)

Here is an example of a transform(er):

[27]: data = np.array([5, 7, 9])[:, np.newaxis]
q.fit_transform(data)

[27]: array([[5., 25., 125.],
[7., 49., 343.],
[9., 81., 729.]])

As you can see the feature q performed the data transformation ⎡ ⎤ ⎡ ⎤
ϕ0(⃗x0) ϕ1(⃗x0) · · · ϕm (⃗x0)x0 ⎢⎢⎢⎣

⎥⎥⎥⎦ −→ X =
⎢⎢⎢⎣

⎥⎥⎥⎦

ϕ0(⃗x1) ϕ1(⃗x1) · · · ϕm (⃗x1)
.

x1
. . .

xN ϕ0(⃗xN) ϕ1(⃗xN) · · · ϕm (⃗xN)

2for {ϕi(x)} = {x, x , x3}.

Curve ftting The point of view taken by scikit-learn for curve ftting is that it is a process
obtained by applying the linear regression formula after applying the above transformer.
Therefore, one can implement it using a pipeline object where this transformer is chained
to a linear regression estimator. Here is how this idea plays out for the curve-ftting exam-
ple we saw previously.

[28]: x, y = curve_example['data'] # load data from the prior example

make model/pipeline and fit the data to it:
quadratic_model = make_pipeline(PolynomialFeatures(2), LinearRegression())
quadratic_model.fit(x[:, np.newaxis], y)

[28]: Pipeline(memory=None,
steps=[('polynomialfeatures',

PolynomialFeatures(degree=2, include_bias=True,
interaction_only=False, order='C')),

('linearregression',
LinearRegression(copy_X=True, fit_intercept=True,␣

↪→n_jobs=None,
normalize=False))],

verbose=False)

163

[29]: yfit = quadratic_model.predict(xfit[:, np.newaxis])
plt.scatter(x, y)
plt.plot(xfit, yfit);

We can cross-check that the model parameters are exactly the same after ftting by exam-
ining the LinearRegression object in the quadratic model pipeline:

[30]: quadratic_model.named_steps

[30]: {'polynomialfeatures': PolynomialFeatures(degree=2, include_bias=True,
interaction_only=False,

order='C'),
'linearregression': LinearRegression(copy_X=True, fit_intercept=True,

n_jobs=None, normalize=False)}

[31]: quadratic_model.named_steps['linearregression'].intercept_

[31]: 4.963796378670274

[32]: quadratic_model.named_steps['linearregression'].coef_

[32]: array([0. , -0.82755299, 1.39570211])

These match our previously computed results for quadratic ft:

[33]: curve_example['model'] # previously saved results from first principles

[33]: array([4.96379638, -0.82755299, 1.39570211])

To conclude, we have built some confdence in scikit-learn’s abilities under the hood. There
is plenty of material online, including [JV-H], on how to use scikit-learn and other machine
learning packages, and on important pitfalls such as overftting. However, it may be a bit
harder to fnd out the mathematics behind each software facility: the documentation is
designed for quick users in a rapidly changing feld, and therefore understandably does
not get into the math. This may not be comforting to you as students of mathematics,

164

https://jakevdp.github.io/PythonDataScienceHandbook/05.00-machine-learning.html

so my focus here and in the next few lectures is to connect these software tools with the
mathematics you know.

165

XVI

Unsupervised learning by PCA

May 27, 2020

Recall from the previous lecture that unsupervised learning refers to machine learning mod-
els that identify structure in unlabeled data. In this activity, we study Principal Compo-
nent Analysis (PCA) which is a commonly used technique in unsupervised learning, often
used for discovering structure in high-dimensional data, and for dimensionality reduction.

In this activity, I will extensively draw upon what you studied in some earlier activities.
In particular, I will try to detail the connections between PCA and SVD, the differences
in the jargon, highlight the distinctions between PCA and regression, and illustrate how
unsupervised machine learning is different from supervised machine learning.

[1]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib.colors as colors
from matplotlib.collections import LineCollection
import matplotlib.cm as cm
from sklearn.decomposition import PCA
from scipy.linalg import svd
from numpy.linalg import norm
rng = np.random.default_rng(13)

XVI.1 Defnitions

• Given a one-dimensional data vector x = [x1, x2, . . . , xm]t , its mean, or sample mean
is

m1
x̄ = ∑ xi. m i=1

• Consider a multi-dimensional m × n data array X representing

m samples/observations/rows for n variables/features/columns.

The jth column of X, denoted by Xj, represents a number of samples of a single
variable. We say that such an X represents centered data if the sample mean of Xj is
zero for every column j. Let Ri denote the ith row of the data matrix X. We use Ri to
defne the principal components of any centered data, as follows.

166

• The frst principal component of any centered data X is defned as a unit vector
v1 ∈ Rn that maximizes

m

∑(v1 · Ri)
2.

i=1

• The second principal component of any centered data X (defned when n ≥ 2) is
a unit vector v2 ∈ Rn that is orthogonal to the frst principal component v1 and
maximizes

m

∑(v2 · Ri)
2, subject to v1 · v2 = 0.

i=1

• The third principal component of X (defned when n ≥ 3) is a unit vector v3 ∈ Rn

that is orthogonal to both v1 and v2 while maximizing ∑i
m
=1(v3 · Ri)

2.

You should now see the pattern to defne any number of further principal components.
Note that if v is a principal component vector, then −v is also one. Note also that principal
components are also often referred to as principal axes or principal directions.

To understand why these principal components reveal structure in the data, frst recall that
the dot product of two vectors a and b is maximal when the vectors are collinear: remember
that |a · b| = ∥a∥∥b∥| cos(θ)| where θ is the angle between a and b, and | cos(θ)| is maxi-
mal when θ is 0 or integer multiples of π. Hence the frst principal component v1 may be
interpreted as the vector that is “most collinear” with all the rows/observations/samples
Ri. A dependency between multiple variables/features/columns hidden inside the many
samples/observations in X can thus be brought out using v1. While v1 gives the dominant
dependency, the later principal components reveal further dependencies in spaces orthog-
onal to the previous principal components. You should now begin to see why PCA might
be able to automatically discover hidden structures in data, one of the primary objectives
in unsupervised machine learning.

XVI.2 Two-dimensional example

Let’s consider a small two-dimensional example where we can graphically visualize all
aspects.

[2]: x = 3 * rng.random(20)
y = x + 0.75* rng.random(20)
fig = plt.figure(); ax = plt.gca()
ax.scatter(x, y, color='b')
ax.scatter(x.mean(), y.mean(), color='r', marker='*', s=150, alpha=0.6);␣

↪→ax.axis('equal');

167

We put the data in the form of m samples/observations/rows for n variables/features/columns.

[3]: XX = np.array([x, y]).T
m, n = XX.shape

Next, we need to center the data. This just means subtracting the mean of each fea-
ture/variable. Note that the mean is the marked (as the red star) in above fgure.

[4]: X = XX - XX.mean(axis=0)

For the visual thinker, centering the data just means moving the origin to the mean (the
red star), as illustrated in the next fgure.

[5]: def plotX(X, ax=None):
if ax is None: fig = plt.figure(); ax = plt.gca()
ax.scatter(X[:, 0], X[:, 1], color='b')
t = np.linspace(-3, 3, 100); o = np.zeros_like(t)
ax.plot(t, o, 'k', o, t, 'k', linewidth=0.5);
ax.scatter(0, 0, color='r', marker='*', s=150, alpha=0.6);
ax.axis('equal');
ax.set(xlim=(-1.5,1.5), ylim=(-1.7,1.7));

plotX(X);

168

Now comes the part that’s harder to see, namely the graphical meaning of the maximiza-
tion problem that defnes the frst principal component. Consider the fgure below where
a number of unit vectors are drawn colored.

[6]: fig = plt.figure(); ax = plt.gca()
ax.set_title('The maximization over unit vectors')
theta = np.linspace(0, 2*np.pi, num=100) # draw unit circle
ax.plot(np.cos(theta), np.sin(theta), ':r', alpha=0.3)

theta = np.linspace(0, 2*np.pi, num=19)
v = np.array([np.cos(theta), np.sin(theta)]) # unit vectors
f = ((X @ v) ** 2).sum(axis=0) # function to maximize over v

nrm = colors.Normalize(vmin=np.min(f), vmax=np.max(f))
sm = cm.ScalarMappable(norm=nrm, cmap='YlOrRd')
for i in range(v.shape[1]): # color vectors based on f value

ax.arrow(0, 0, v[0, i], v[1, i], width=0.025, color=sm.to_rgba(f[i]),␣
↪→alpha=0.6)

plt.colorbar(sm); plotX(X, ax)

Here, the arrows represent unit vectors v, and they are colored according to the value of
the following function of the vectors v:

m
f (v) = ∑(v · Ri)

2.
i=1

From the fgure, there is no doubt that the vectors v for which this function takes the largest
values indicate the “dominant” direction of the data points. Once we fnd the frst maximal
vector, then we can restrict to the orthogonal complement of that vector and repeat the
same maximization to compute further principal components. (In two dimensions, this
becomes trivial, so we proceed ignoring further components.)

169

Statistical literature usually considers the maximization of the function

m
g(v) =

1
∑(v · Ri)

2
m − 1 i=1

instead of the above f . Of course, the maximizers of f and g are the same. The function g
represents the variance of the data Ri projected onto v, which is the statistical quantity that
the frst principal component maximizes.

How do we solve the maximization problem? The answer is given in the next theorem.

XVI.3 PCA and SVD

The key mathematical device for PCA is a tool we have studied in a prior lecture, the SVD.

Theorem 1. Let X = UΣVt be an SVD of X ∈ Rm×n and let V = [v1, v2, . . . , vn]. If X
represents centered data, then its ith principal component vector equals (up to a sign) the
ith right singular vector vi of the SVD of X.

For an example, we return to the previous two-dimensional centered dataset X and com-
pute its SVD.

[7]: u, s, vt = svd(X)

Plotting the frst right singular vector as an arrow through the centered data immediately
illustrates the theorem’s claim. We fnd that the frst right singular vector is in one of the
two directions where we expected the maximizer of f , in view of the previous fgure.

[8]: fig = plt.figure(); ax = plt.gca()
ax.arrow(0, 0, vt[0, 0], vt[0, 1], width=0.025, color='brown', alpha=0.6)
plotX(X, ax)

The second singular vector is of course orthogonal to the one shown. (Recall that the
columns of a unitary matrix are orthonormal.)

You might now be thinking that this fgure is beginning to look like the linear regression
fgure of the previous lecture, especially if one draws a line through that arrow, and com-
pare it with the regression line. Let me check that thinking right away.

170

XVI.4 PCA is different from regression

PCA and linear regression are fundamentally different. Note these differences:

• In supervised learning by regression, the data points were expressed as (xi, fi) to
indicate that the labels fi were dependent on the data xi.

• In contrast, now the data is viewed as just points on the plane (without any labels) so
we express the same points as (xi, yi). We do not start with an assumption that one
data component depends on the other.

• In supervised learning by regression, the task was to predict values of the label f
for new values of x. In PCA, the task is to discover what relationship exists, if any,
between the x and y values.

So, in spite of these philosophical differences between linear regression and PCA, why is
it producing similar-looking pictures in this two-dimensional example?

Actually, the pictures are not quite identical. Let us compute and plot the line obtained
with linear regression applied to the same points, now viewing one of the variables (the
second) as dependent on the other (the frst).

[9]: def plot_reg(X, ax):

hypothesizing that f depends on x, perform regression
x = X[:, 0]; f = X[:, 1]

X1 = np.array([np.ones(X.shape[0]), x]).T
a = np.linalg.inv(X1.T @ X1) @ X1.T @ f
x_predict = np.linspace(-2, 2, num=100)
f_predict = a[0] + a[1] * x_predict
plotX(X, ax)
ax.plot(x_predict, f_predict, 'c');
fp = X1 @ a
lc = LineCollection([[(x[i], f[i]), (x[i], fp[i])]

for i in range(len(x))],
color='r', linewidth=4, alpha=0.5)

ax.add_collection(lc)
ax.set_title('The minimization behind regression');

fig = plt.figure(); ax = plt.gca()
plot_reg(X, ax)

171

Recall that the line in this linear regression is arrived at by minimizing the sum of the
squares of the lengths of the (red) vertical line segments.

In PCA, a different quantity is minimized. Although we defned the principal components
using a maximization, we can transform it to a minimization as follows. Recall from linear
algebra that any vector can be decomposed into its projection along a given vector and a
component in the orthogonal complement. In particular, for the above two dimensional
data, the vector Ri can be decomposed into its projection along v, (v · Ri)v plus the compo-
nent of Ri in the orthogonal complement of v, which using a unit vector v⊥ perpendicular
to v, may be expressed as (v⊥ · Ri)v⊥, i.e.,

⊥ ⊥Ri = (v · Ri) v + (v · Ri) v .

By Pythagoras theorem,
⊥∥Ri∥2 = (v · Ri)

2 + (v · Ri)
2.

Since the left hand side is fxed by the data, maximizing (v · Ri)
2 over all v is equivalent to

minimizing (v⊥ · Ri)
2 over the perpendicular v⊥ . Thus we arrive at the conclusion that the

frst principal component v that maximizes

m

∑(v · Ri)
2

i=1

is also the same vector whose v⊥ minimizes
m

∑ ⊥(v · Ri)
2.

i=1

Below is the graphical illustration of this minimization behind the PCA (left plot). We
draw little orange line segments from each data point Ri in the direction v⊥ such that its
length equals (v⊥ · Ri)

2. Please compare it with the previous fgure for linear regression,
also reproduced aside below (right plot).

[10]: def plot_pca(X, ax):
u, s, vt = svd(X)
t = np.linspace(-3, 3, 100); v1 = vt[0, :]
ax.plot(t*v1[0], t*v1[1], color='orange')

172

ax.arrow(0, 0, v1[0], v1[1], width=0.04, color='brown', alpha=0.6)
Xp = v1[:, np.newaxis] * (X @ v1)
lc = LineCollection([[(X[i, 0], X[i, 1]), (Xp[0, i], Xp[1, i])]

for i in range(X.shape[0])],
color='r', linewidth=4, alpha=0.5)

ax.add_collection(lc)
plotX(X, ax)
ax.set_title('The minimization behind PCA');

fig = plt.figure(figsize=(12, 4))
axl, axr = fig.subplots(1, 2)
plot_pca(X, axl); plot_reg(X, axr)

Clearly the two minimizations are different. The result of the different minimizations hap-
pened to be close for the above example. But this need not happen always. The results can
indeed be quite different, as the quick example below shows.

[11]: rng = np.random.default_rng(13)
z0 = 1.5 * rng.random(20); z1 = z0 + 2.7 * rng.random(20)
ZZ = np.array([z0, z1]).T
Z = ZZ - ZZ.mean(axis=0)
fig = plt.figure(figsize=(12, 4))
axl, axr = fig.subplots(1, 2)
plot_pca(Z, axl); plot_reg(Z, axr)

What distinguishes PCA is not simply this difference in the associated minimization prob-
lems. As you proceed with this lecture, you will understand that the power of PCA lies in
its ability to fnd patterns in data, i.e., to fnd feature sets or basis sets in which data can be
effciently represented.

173

XVI.5 PCA in scikit-learn

Instead of getting the principal components from frst principles using the SVD, as we have
done above, you may just use scikit-learn’s PCA facility to get the same result.

[12]: from sklearn.decomposition import PCA

To use it, one constructs a PCA object using some hypothesized n_components which can
be less than the data dimensions m and n. To draw the analogies with the previous
computation, let’s apply PCA to the previous data setting n_components=2 (noting that
min(m, n) = 2 in this example).

[13]: = PCA(n_components=2)pca

You can directly give PCA a data set that is not centered. It will do the centering behind
the scenes.

[14]: pca.fit(XX); # fit with raw (uncentered) data

Now, you may ask for the principal components of the data:

[15]: pca.components_

[15]: array([[-0.69180966, -0.72207991],
[0.72207991, -0.69180966]])

This matches the principal components we computed using the SVD, reproduced below.

[16]: vt

[16]: array([[-0.69180966, -0.72207991],
[0.72207991, -0.69180966]])

(Note that since principal components are defned only up to a sign, the vectors need only
match up to a sign, in general.)

XVI.6 Mapping PCA and SVD jargon

To expand on the above seen relationships, let’s consider a larger data set (one that we
will examine in more detail in the next section), to bring out the correspondences between
what PCA provides and what svd provides. This will help us understand the concepts from
different viewpoints.

[17]: from sklearn.datasets import load_digits
digits = load_digits()
XX = digits.data
X = XX - XX.mean(axis=0)
m, n = XX.shape; m, n

[17]: (1797, 64)

174

The following two lines computes PCA (using scikit-learn) and SVD (using scipy). We will
use the resulting outputs to establish correspondences between them so we can be fuent
in both languages.

[18]: pca = PCA(svd_solver='full').fit(XX)

[19]: u, s, vt = svd(X)

Correspondences Now we make a series of observations regarding the outputs from
scipy’s svd applied to centered data and outputs from scikit-learn’s PCA. (Note that if you
send the data matrix to SVD without centering, these correspondences do not apply.)

First, the most obvious correspondence is that pca.singular_values_ and the singular
values from scipy’s svd are the same:

[20]: norm(pca.singular_values_ - s)

[20]: 0.0

Second, the principal components returned by pca are equal to ± (ith right singular vector)
from the SVD. Let me illustrate this using the above pca and svd outputs. To check that two
vectors are equal except for the sign “±,” we defne a function that computes the norms
of the sum and the difference of the vectors and prints them out. Only one of them need be
zero to have a match up to ±.

[21]: def vectors_plus_minus_diff(v1, v2):
print('%2.1f %2.1f' %(norm(v1 - v2), norm(v1 + v2)))

Using this function we check if the frst seven principal components equal the correspond-
ing singular vector up to ±. Note how one of the printed out norms (either that of the sum
or that of the difference) is zero.

[22]: for i in range(7):
vectors_plus_minus_diff(pca.components_[i, :], vt[i, :])

2.0 0.0
2.0 0.0
2.0 0.0
2.0 0.0
2.0 0.0
0.0 2.0
0.0 2.0

Third, projections of the original data onto the principal axes can be obtained by transform
(or the fit_transform) method of PCA. Of course, such projections are just V-components
of the rows of the data X, or simply XV: since X = UΣVt and V has orthonormal columns,
these projections are also equal to UΣ. Hence we have the following correspondence:

ithcolumn of transform(XX) = ± ithcolumn of UΣ.

Here is an illustration of this correspondence for the current example.

175

[23]: # projected data from pca (can also use pca.fit_transform(XX)):
projX = pca.transform(XX)

[24]: # projected data from svd:
us = u[:, :len(s)] @ np.diag(s)

[25]: # check they are same upto a sign
for i in range(7):

vectors_plus_minus_diff(projX[:, i], us[:, i])

1134.0 0.0
1084.5 0.0
1009.3 0.0
852.2 0.0
706.7 0.0
0.0 651.6
0.0 610.5

Fourth, to relate to the low-rank approximation using SVD that we studied in the SVD
lecture, recall that an SVD of X can be rewritten using outer products as

min(m,n)

X = ∑ ∗σjujvj
j=1

from which the best rank ℓ approximation to X, denoted by Xℓ, can be extracted simply by
throwing away the later summands:

ℓ

Xℓ = ∑ ∗σjujvj .
j=1

Before showing how this is done in scikit-learn, let us compute Xℓ, say for ℓ = 5, using the
SVD. We implement the above formula, and add the means to compensate for the fact that
the SVD was taken on centered data.

[26]: l = 5
Xl_svd = u[:, :l] @ np.diag(s[:l]) @ vt[:l, :] + XX.mean(axis=0)

There is a corresponding facility in scikit-learn. First, note that we may give the
n_components argument to PCA, which tells PCA how many principal components to
compute.

[27]: # The rank l approximation needs only l principal components
pcal = PCA(n_components=l, svd_solver='full').fit(XX)

Now, to get the best rank ℓ approximation from PCA, we use the transform method, which
gives the components of the data projected onto the principal axes (and there are 5 prin-
cipal axes now). Then, we can use the inverse_transform method to lift the projected
components into the original data space of 64 pixels.

[28]: projX = pcal.transform(XX)
projX.shape # the shape reflects projected data sizes

176

[28]: (1797, 5)

[29]: Xl_pca = pcal.inverse_transform(projX)
Xl_pca.shape # the shape is now the shape of original data

[29]: (1797, 64)

The relative difference in norm between Xl_pca and Xl_svd can now be easily verifed to
be close to machine precision.

[30]: norm(Xl_pca - Xl_svd) / norm(Xl_pca)

[30]: 1.0648619605229708e-15

Let’s summarize this correspondence as follows: The best rank ℓ approximation Xℓ of the
centered data X satisfes

Xℓ = inverse_transform(transform(XX) − mean_(XX)

Just in case this inverse_transform lifting into data space still sounds mysterious, then
perhaps this reverse engineered formula for it might make it clearer:

inverse_transform(proj) = proj@pca.components_ + mean_(XX),

This also can again immediately be verifed in our example:

[31]: Xl_pca2 = projX @ pcal.components_ + pcal.mean_
norm(Xl_pca2 - Xl_pca)

[31]: 0.0

Fifth, consider the attribute called the explained_variance array of the pca object. This
represents variances explained by the principal components (see the covariance matrix
discussion below for more on this terminology). The elements of this array are related to
the singular values σi as follows.

pca.explained_variance_[i] =
1

σ2
im − 1

[32]: norm(pca.explained_variance_ - (s**2/(m-1)))

[32]: 0.0

Sixth, consider another attribute of the pca object called explained_variance_ratio_. It
is related to singular values as follows:

σ2
pca.explained_variance_ratio_[i] = i

∑j σj
2

As is obvious from this defnition, the sum of all the explained variance ratios should be
one. Here is the verifcation of the formula stated above for the current example:

177

[33]: norm(pca.explained_variance_ratio_ - (s**2)/(s**2).sum())

[33]: 6.661408213830422e-17

Covariance matrix To understand the origin of some of the terms used in pca attributes,
recall how the covariance matrix is defned: For centered data, the covariance matrix is

1
C = XtX.

m − 1

The “explained variances” are the eigenvalues of C. Of course, since X = UΣVt is an SVD
of X, the covariance matrix C may be alternately expressed as

Σ2
C = V Vt ,

m − 1

from which we conclude that the ith eigenvalue of C is σi
2/(m − 1), which matches our

observation above.

This observation also tells us that the right singular vectors (the columns of V) are actu-
ally eigenvectors of C, since the above factorization of C is actually a diagonalization of
C. Therefore, one can alternately compute the right singular vectors, aka, principal com-
ponents, as the eigenvectors of the covariance matrix simply using numpy’s or scipy’s eig.
Indeed, for the current example, we can immediately cross check that we get the same
results:

[34]: ew, ev = np.linalg.eig(X.T @ X / (m-1)) # eigenvalues & eigenvectors of C
ii = ew.argsort()[::-1]
ew = ew[ii]; ev = ev[:, ii] # sort by descending order of␣

↪→eigenvalues

[35]: norm(ew - s**2 / (m-1)) # eigenvalues equal singular values squared /␣
↪→(m-1)

[35]: 6.25037049393972e-13

[36]: for i in range(7): # eigenvectors equal +/- principal components
vectors_plus_minus_diff(pca.components_[i, :], ev[:, i])

2.0 0.0
2.0 0.0
2.0 0.0
0.0 2.0
2.0 0.0
0.0 2.0
0.0 2.0

What is better, eig or svd? The relationship between PCA/SVD and eigenvectors of the
covariance matrix discussed above raises a natural question. If both give the same vectors
(principal components), which one should be recommended for computations?

178

Even though both give the same vectors mathematically, it’s better to use SVD (or scikit-
learn’s PCA, which uses SVD) to avoid round-off errors in the formation of XtX that arise
in some circumstances. A classical example is the case of a Läuchli matrix, an N × (N − 1)
rectangular matrix of the form ⎤⎡

X =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
ϵ 0

0 ϵ
. . .

. . .
. . .

. . . ϵ
0 0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with a small number ϵ. The matrix XtX then has 1 + ϵ2 on the diagonal, and ones every-
where else. This matrix is very close to being singular numerically. For example, in the
N = 4 case, the matrix ⎡ ⎤

1 + ϵ2 1 1
XtX = ⎣ 1 1 + ϵ2 1 ⎦

1 1 1 + ϵ2

has eigenvalues 3 + ϵ2, ϵ2, ϵ2 by hand calculation. However, eig is unable to distinguish
the latter from zero.

N = 4
eps = 1e-8
X = np.diag(eps * np.ones(N), k=-1)
X[0, :] = 1; X = X[:, :(N-1)]; X

[37]: array([[1.e+00, 1.e+00, 1.e+00],
[1.e-08, 0.e+00, 0.e+00],
[0.e+00, 1.e-08, 0.e+00],
[0.e+00, 0.e+00, 1.e-08],
[0.e+00, 0.e+00, 0.e+00]])

ew, ev = np.linalg.eig(X.T @ X)
ii = ew.argsort()[::-1]; ev = ev[:, ii]; ew = ew[ii]
ew

[38]: array([3.00000000e+00, 0.00000000e+00, -2.22044605e-16])

[37]:

[38]:

The last two numbers are so close to machine precision that they are indistinguishable
from 0. Covariance matrices should never have negative eigenvalues, but due to numerical
diffculties, eig may return a small negative value as an eigenvalue. So in particular, if we
attempt to compute the singular values by taking square roots of these eigenvalues, we
might end up taking the square root of a negative number.

[39]: np.sqrt(ew)

<ipython-input-39-6f1372a76c3a>:1: RuntimeWarning: invalid value encountered in sqrt
np.sqrt(ew)

179

[39]: array([1.73205081, 0. , nan])

In contrast, the SVD is able to output the singular values fairly close to the exact ones√
3 + ϵ2, ϵ, ϵ without diffculty.

[40]: u, s, vt = svd(X)
s

[40]: array([1.73205081e+00, 1.00000000e-08, 1.00000000e-08])

XVI.7 Hand-written digits dataset

Scikit-learn comes with an example dataset representing many images of hand-written
digits for use as a test problem in optical character recognition. Actually, this is the same
digits data we have been working with above. Let’s take a closer look at this dataset.

[41]: from sklearn.datasets import load_digits
digits = load_digits()
digits.keys()

[41]: dict_keys(['data', 'target', 'target_names', 'images', 'DESCR'])

We used digits.data previously. The images key gives the images of the handwritten
digits.

[42]: digits.images.shape, digits.data.shape

[42]: ((1797, 8, 8), (1797, 64))

There are 1797 images, each of 8 x 8 pixels. The fattened array versions of these images
are in digits.data while the 8 × 8 image versions are in digits.images. Here are the frst
few of the 1797 images:

[43]: fig, axes = plt.subplots(10, 10, figsize=(8, 8), subplot_kw={'xticks':[],␣
↪→'yticks':[]})

for i, ax in enumerate(axes.flat):
ax.imshow(digits.images[i], cmap='binary')

180

To apply PCA, we need to put these images into the tidy data format of m sam-
ples/observations/rows × n variables/features/columns. We set

• each pixel to be a feature/variable,
• each image to be a sample/observation.

Actually, this is the form the data is contained in digits.data, where each 8 × 8 image is
one of 1797 samples of a 64-variable dataset.

[44]: m, n = digits.data.shape
m, n

[44]: (1797, 64)

We construct a PCA object using this data asking specifcally to retain only 10 principal
components.

[45]: = PCA(n_components=10).fit(digits.data)pca

Would you hazard a guess that the 10 principal components are the usual 10 digits?

Well . . . here is how the 10 principal components look like:

[46]: fig, axes = plt.subplots(1, 10, figsize=(8, 4),
subplot_kw={'xticks':[], 'yticks':[]})

for i, ax in enumerate(axes.flat):
ax.imshow(pca.components_[i, :].reshape(8, 8), cmap='binary')

181

Obviously, these outputs don’t look anything like recognizable digits. It is important to
understand in what sense these garbled images represent something “principal” about the
original data set. Proceed on to gain this understanding.

XVI.8 PCA is a feature fnder

To make sense of the above garbled images as a basis, let’s use the transform method
(which, as you recall from the correspondences above, computes UΣ).

[47]: projdgt = pca.transform(digits.data)
projdgt.shape

[47]: (1797, 10)

Each row of projdgt contains 10 coeffcients, which when multiplied by the 10 principal
components, reveal what’s going on. Of course, we must also correct for the previously
subtracted mean. The frst row of dgt then yields the following image (left). Compare
it with the original frst image in the data (right). Of course, this is reminiscent of the
low-rank approximation of a single image that we discussed in the prior SVD lecture; the
difference now is that we are applying the same process to 1797 centered images all at once
(although we are only showing the frst one below).

[48]: fig = plt.figure(figsize=(6, 2))
axl, axr = fig.subplots(1, 2)
reconstructed_dgts = pca.inverse_transform(projdgt)
im0 = reconstructed_dgts[0, :]
alternately and equivalently, we may set im0 by
im0 = dgt[0, :] @ pca.components_ + pca.mean_
axl.imshow(im0.reshape(8, 8), cmap='binary')
axr.imshow(digits.images[0], cmap='binary');

Let’s dig a bit more into this. Writing the SVD of the centered image data array X as

tX = ∑ σkukvk,
k

we may read off the the ith row Ri, which represents the ith image in this dataset, as
follows:

[Ri]j = Xij = ∑ σk[uk]i[vk]j.
k

182

The pca object above computed the rank-10 best approximation by restricting the above
sum to the frst 10 summands. This is what is was implemented above by the line of code

reconstructed_dgts = pca.inverse_transform(projdgt)

From the previously discussed fourth correspondence’s equivalent form of the
inverse_transform, we note that the above statement may equivalently be written as

reconstructed_dgts = projdgt @ pca.components_ + pca.mean_

where the correction for the zero mean is explicit. This also makes it abundantly clear that
the statement setting reconstructed_dgts is just an implementation of the above formula
for Ri.

Viewing the ith image/row Ri as a function f of pixels, it is instructive to view the above
formula for Ri as the sum

f (x) = a0ϕ0(x) + a1ϕ1(x) + · · · a9ϕ9(x)

where
ak = [σkuk]i, ϕk = vk,

i.e., the numbers ak = [σkuk]i represent coeffcients in a basis expansion with the basis
images ϕk set by ϕk = vk, and where x represents one of the 64 pixels. In this viewpoint,
what PCA has done is to ft the 10-term formula for f to a data set of 1797 images. While
this is reminiscent of regression, note two important differences:

• PCA found the basis ϕk (while regression needs ϕk as input).
• The coeffcients ak change for each data row (unlike in regression where it’s fxed for

the whole dataset).

To summarize, PCA automatically fnds an effcient basis (or feature set) to represent the
data. (In contrast, regression needs you to provide a basis ϕk as input in order to output
the best-ft coeffcients ak; see e.g., the curve ftting examples we have seen previously.)
This exemplifes one of the differences between supervised and unsupervised learning.

XVI.9 PCA is useful for dimensionality reduction

The left (PCA) and the right (original data) images in the previous fgure strongly suggests
the following interpretation: the original 64-dimensional dataset might actually be well
represented in a 10-dimensional space!

The number 10 was, of course, arbitrary, and somewhat of a red herring in a dataset of
images of 10 digits. It would be better if the data itself can lead us to some number of
relevant dimensions it possesses. This is where the explained_variance_ratio becomes
useful. Let’s return to the full PCA and examine this array. Recall that it is an array that
sums to one, so its cumulative sums indicate how close we are to fully representing the data.

[49]: pca = PCA().fit(digits.data)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.grid(True)
plt.xlabel('number of components')

183

plt.ylabel('cumulative explained variance');

Clearly, with 10 components, we are far away from the cumulative sum of 1. We are much
closer to the point of diminishing returns, retaining about 95% of the variance, if we instead
choose, say 30 components.

[50]: pca = PCA(n_components=30).fit(digits.data)
dgt = pca.fit_transform(digits.data)
fig = plt.figure(figsize=(6, 2))
axl, axr = fig.subplots(1, 2)
im0 = dgt[0, :] @ pca.components_ + pca.mean_
axl.imshow(im0.reshape(8, 8), cmap='binary')
axr.imshow(digits.images[0], cmap='binary');

In other words, the 64-dimensional data set may effectively be reduced to a 30-dimensional
dataset retaining 95% of the variance. (Per our discussion in the prior SVD lecture, you can,
of course, also convert this statement on variances into a precise measure of the relative er-
ror in the Frobenius norm.) Summarizing, PCA is also useful as a dimensionality reduction
tool.

184

XVII

Latent Semantic Analysis

June 1, 2020

In the study of information retrieval systems, a fundamental question is how to extract
documents from a large collection in response to a user query. A simplistic way is to pick
out all documents which contain the query words. Is there a more “intelligent” way? Doc-
uments usually have interrelated concepts and if a query could be matched to a concept,
perhaps the results extracted would look more intelligent. Documents are written in natu-
ral language, using copious amounts of words, yet the number of topics that people write
about are usually much smaller than the number of words they use. Latent Semantic Anal-
ysis (LSA) is a technique to associate concepts in a space of much lower dimension than a
space of words in order to help with the complex task of information retrieval.

Of course, a number of details have to be worked out. How can one associate words
to a vector space? How can one identify topics in this space? How can one represent
queries? It should therefore not be surprising that this is a whole feld of study in itself:
see e.g., [MRS]. Yet, we are able to take a peek into this machinery because the essential
mathematical tool used in LSA is something you already know, namely the SVD.

I’m sure yesterday’s news is very much on your mind, with the best and the worst of hu-
manity on display. Shocking police violence and a successful astronaut launch dominated
the news headlines. Having failed to get the news out of my mind, I am going to use
sentences from current news for introducing LSA.

The next graph, obtained from LSA’s interpretation of four news headlines on a two-
dimensional space made in this lecture, may well be a representation of the country’s
current state. Today’s lecture will show you how to analyze text and graphically display
words and their apparent connections like those displayed below.

185

https://www.amazon.com/Introduction-Information-Retrieval-Christopher-Manning/dp/0521865719

If this is a proxy for the country’s current state, where we go from here seems critical in
this moment.

XVII.1 Natural language processing

Using a few headlines, we make a corpus of text documents to illustrate the basics of LSA
as a python dictionary, called c below.

[1]: c = {'May31':
'Two crises convulse a nation: a pandemic and police violence',

'May30a':
'Nation’s first astronaut launch to orbit from home soil in nearly a␣

↪→decade',

'May30b':
'Death of George Floyd at the hands of police set off protests',

'May27':
'SpaceX launch of NASA astronauts is postponed over weather'}

In this corpus, c['May31'] is a document, and the c has three more documents. Each doc-
ument is composed of many words, or terms. We need to simplify the complexities of
natural language to be able to compute anything. With my apologies to the writers among

186

you, we proceed by taking the view that the order of words, declensions and conjugations,
and often-used words like articles and prepositions, are all immaterial. Then we view
concepts as merely associations of the remaining root words, associations marked by their
joint appearances in documents. LSA is only useful under the assumption that words that
are close in semantics will occur in similar documents as the corpus of documents become
large.

Applying the above-mentioned language simplifcations to even a small corpus is a lot of
work, if you try to do it from scratch. But thankfully, there are several python modules
that excel in natural language processing (NLP). Below, I will use spaCy, one of the recent
additions to the python NLP tool set. (Please install it and also make sure to install their En-
glish dataset en_core_web_sm, say by python3 -m spacy download en_core_web_sm, be-
fore proceeding.)

[2]: import spacy
from spacy import displacy

Install dataset: python3 -m spacy download en_core_web_sm
nlp = spacy.load('en_core_web_sm')

Consider the frst sentence in our corpus.

[3]: doc0 = nlp('Two crises convulse a nation')

The spacy module is able to process sentences, and identify nouns, verbs, direct objects,
and their interrelationships. In the cell below, after processing a sentence, the result is
saved in an SVG fgure. The saved image is then displayed as an image in the next cell.

[4]: svg = displacy.render(doc0, style="dep", jupyter=False)
with open('../figs/sentence0.svg', 'w') as f: f.write(svg)

Two

NUM

crises

NOUN

convulse

NOUN

a

DET

nation

NOUN

nummod nsubj det

dobj

Within a Jupyter notebook, one may also directly render the resulting image (without
needing to save the image into a fle) by specifying jupyter=True instead. Here is an
example.

[5]: doc1 = nlp('SpaceX launch of NASA astronauts is postponed over weather')
displacy.render(doc1, style='ent', jupyter=True, options={'distance':90})

<IPython.core.display.HTML object>

187

https://spacy.io

Just in case you are not reading this in a Jupyter notebook and the image does not render
on your reading device, I am reproducing the image that displacy generated:

As you can see from the annotated sentence, the module can even identify some named
entities in the real world: it knows about NASA, but it still does not know about SpaceX!
(We will fx this later in this lecture by adding our own named entity terms.)

We shall use the package’s capabilities for tokenization and lemmatization. Tokenization
is the process of dividing a sentence or a document into words via demarcation charac-
ters like white spaces. Lemmatization is the process of identifying the so-called “lemma”
of a word, allowing us to group together infected forms of the word into a single item.
Here is the result of tokenization and lemmatization on the above sentence. Note how the
originally found words “astronauts” and “postponed” have changed in the output.

[6]: [w.lemma_ for w in doc1 if not w.is_stop]

[6]: ['spacex', 'launch', 'NASA', 'astronaut', 'postpone', 'weather']

Here we have also removed stop words, a collection of the most common words in a lan-
guage as previously identifed and categorized by the NLP program. In the above exam-
ple, the words “of”, “is”, and “over” have been removed. You can view spacy’s collection
of all stop words if you use the following import statement.

from spacy.lang.en.stop_words import STOP_WORDS

XVII.2 Term-document matrix

The important mathematical object for LSA is the term-document matrix, a matrix whose
rows correspond to terms, whose columns correspond to documents, and whose element
at position (t, d) is 1 if the document in column d contains the term in row t, and is 0
otherwise. (You will fnd variations on this matrix in the literature, e.g., the tranpose,
ir refnements beyond 0/1 entries, are often used.) Let’s make this matrix with a quick
hack (where we have now also asked spacy to ignore punctuations). The matrix will be
displayed as a pandas data frame to easily visualize term and document labels of rows and
columns.

[7]: import pandas as pd
from scipy.sparse import lil_matrix

d = {}
for j, dok in enumerate(c.keys()):

tokens = [w.lemma_ for w in nlp(c[dok])
if not w.is_stop and w.pos_ != 'PUNCT']

for t in tokens:

188

[7]:

d[t] = d.setdefault(t, [])
d[t] += [j]

A = lil_matrix((len(d.keys()), len(c.keys())), dtype=int)
for i, t in enumerate(d.keys()):

for j in d[t]:
A[i, j] = 1

Adf = pd.DataFrame(A.toarray(), index=d.keys(), columns=c.keys()); Adf

May31 May30a May30b May27
crisis 1 0 0 0
convulse 1 0 0 0
nation 1 1 0 0
pandemic 1 0 0 0
police 1 0 1 0
violence 1 0 0 0
astronaut 0 1 0 1
launch 0 1 0 1
orbit 0 1 0 0
home 0 1 0 0
soil 0 1 0 0
nearly 0 1 0 0
decade 0 1 0 0
death 0 0 1 0
George 0 0 1 0
Floyd 0 0 1 0
hand 0 0 1 0
set 0 0 1 0
protest 0 0 1 0
spacex 0 0 0 1
NASA 0 0 0 1
postpone 0 0 0 1
weather 0 0 0 1

We might want to have a combination of frst and last names treated as a single entity,
but the code is not yet smart enough to do that. We’ll fx that later, after introducing the
idea of LSA. For the moment, note how words have been represented as row vectors and
documents as column vectors. This is enough to understand the basics of LSA, as we see
next.

XVII.3 The idea of LSA

The idea is to perform an SVD of the term-document matrix and use its low-rank approxi-
mation, with a rank k much less than the number of words. The dominant singular vectors
may then be expected to capture patterns in the association of words. Of course, this is not
an exact technique, but it does give us something numerical to work with for analysis of
large amounts of textual data. For our example of the 4-document corpus, we shall use the
best rank-2 approximation (as discussed in the SVD lecture), the difference now being that
we don’t actually need the low-rank matrix, but rather the SVD components that go into

189

it.

[8]: import numpy as np
import matplotlib.pyplot as plt
import seaborn; seaborn.set();
from numpy.linalg import norm
from scipy.linalg import svd

[9]: u, s, vt = svd(A.toarray())

Here is the frst important step in creating mathematical objects to represent documents.
Using the best rank k approximation, the frst k right singular vectors are used to represent
each document as a k vector.

[10]: k = 2 # Limit to rank k
Vt = vt[:k, :]
pd.DataFrame(Vt, columns=c.keys()) # Documents as k-vectors

[10]: May31 May30a May30b May27
0 -0.269907 -0.829243 -0.109002 -0.477101
1 0.458490 -0.149538 0.854138 -0.194611

The second important step is to represent words (or terms) as mathematical objects in
the same space. Unlike documents, the words/terms are represented by the frst k left
singular vectors, weighted by the associated singular values. The frst fve word tokens
are displayed below as vectors.

[11]: US = u[:, :k] @ np.diag(s[:k])
usp = pd.DataFrame(US, index=d.keys()) # Words as k-vectors
usp.head()

[11]: 0 1
crisis -0.269907 0.458490
convulse -0.269907 0.458490
nation -1.099150 0.308952
pandemic -0.269907 0.458490
police -0.378909 1.312628

Many words are mapped to the same point in such a small example. In other words, there
is not enough data in our small corpus to distinguish between such words.

Nonetheless, even in our very small dataset, it is very interesting to see the associations
between words in terms of how different the word vectors are. Ignoring the magnitude
of word vectors, one may measure the difference between two word vectors (both drawn
from the origin) using a device different from the norm. When magnitude is ignored, the
difference between vectors is captured by the angle the word vectors make with each other,
or by the cosine of the angle. Two vectors of the same magnitude are farther apart if the
cosine of their angle is smaller. Remember that it’s very easy to compute the cosine of the
angle between two unit vectors, since it is equal to their dot product.

190

[12]: astronaut = usp.loc['astronaut', :].to_numpy()
crisis = usp.loc['crisis', :].to_numpy()
police = usp.loc['police', :].to_numpy()

Here is an example of an uncanny association the program has made:

The word crisis is closer to police than to astronaut! This conclusion follows from the
two cosine computations below.

[13]: crisis.dot(police) / norm(police) / norm(crisis)

[13]: 0.9686558216875333

[14]: crisis.dot(astronaut) / norm(astronaut) / norm(crisis)

[14]: 0.27103529721595343

Let’s dig into this a bit more. In our small example, since words are two-dimensional
vectors, we can plot them to see how they are dispersed in terms of angles measured from
the origin. Below, the origin is marked as a red star, and points representing the terminal
point of word vectors are annotated with the word.

[15]: w = {}; us = np.round(US, 8) # w[(x,y)] = list of words at that point
usr = list(set([tuple(us[i, :]) for i in range(us.shape[0])]))
for i in range(len(usr)):

w[usr[i]] = []
for j in range(usp.shape[0]):

if norm(usp.iloc[j, :] - usr[i]) < 1e-6:
w[usr[i]] += [usp.index[j]]

fig = plt.figure(figsize=(10, 8)); ax = fig.gca()
ax.arrow(0, 0, crisis[0], crisis[1], width=0.015, alpha=0.3)
ax.arrow(0, 0, police[0], police[1], width=0.015, alpha=0.3)
ax.arrow(0, 0, astronaut[0], astronaut[1], width=0.015, alpha=0.3)
ax.scatter(US[: , 0], US[: ,1], alpha=0.5)
ax.scatter(0, 0, color='r', marker='*', s=150, alpha=0.6);
for i, key in enumerate(w.keys()):

ax.annotate(', '.join(w[key]), (key[0], key[1]))
ax.set_xlim((-1.5, 0.7)); ax.set_ylim((-0.5, 1.5));
ax.set_title('Alignment of Word Vectors');

191

The frst takeaway from this fgure is that the angles the word vectors make is clearly in
accordance with the previous cosine computation.

The second is more enigmatic. In our small corpus of four sentences, there were two cate-
gories of news, one of violence, and one of exploration. While we as humans can instinc-
tively make that categorization, it is uncanny that some mathematics and a few simple
lines of code can separate the words associated to the two categories into different areas
of a “word space”. The word that appears somewhat in the middle of the two categories
is nation, as it ought to. (The same fgure, after a rotation, modifcation of arrows, and
cleaned up positioning, is what I presented at the beginning of the lecture.) You should
now have an idea of why LSA can be useful when applied to a large corpus with many
more words, documents, and hidden associations (or latent semantics).

XVII.4 Language is complex

Let me return to the news headlines. During this entire spring term, bad news have been
accumulating, of how the pandemic and its repercussions are battering our country, high-
lighting and amplifying many of our systemic problems, and fnally even more bad news
of yet another police violence. All this made the few glorious moments last weekend espe-
cially precious. When SpaceX lifted NASA astronauts Bob Behnken and Doug Hurley into
orbit on a reusable rocket that returned to an autonomous droneship, it was a moment of
reassurance that our science, industry, and innovation remain peerless. Let me now focus
on this bit of positive news and add more sentences on these exciting developments to our
text corpus.

[16]: c.update(
{
'May30Launch':
'Go NASA! Go SpaceX! Godspeed, Bob and Doug!',

'NYTimes':
'NASA and SpaceX officials more often than not ' +
'just call the pilots of this historic mission Bob and Doug.',

192

'May30NASAblog':
'The first stage of the SpaceX rocket has landed ' +
'successfully on the droneship, Of Course I Still Love You.',

'May31NYTimes':
'After a 19 hour trip, NASA astronauts Bob and Doug ' +
'successfully docked their capsule and entered the space station.',
})

Do you see the complexities of dealing with real examples of natural language?

The ocean droneship, controlled by an autonomous robot to help the rocket land, has a
curious name: “Of Course I Still Love You”. Standard tokenization would simply split it
into component words. It would be better to keep it as a single entity. We will do so below
with spacy’s facilities. But, before that, just in case you don’t know, that curious name for
the ship is taken from the novel The Player of Games by Iain M. Banks. Elon Musk gave his
droneship that name in tribute to Banks. Let me add a sentence from Musk and another
from Bank’s novel to our text corpus.

[17]: c.update(
{
'2015Musk':
'West Coast droneship under construction will ' +
'be named Of Course I Still Love You',

'IainBanks':
'These friends of yours are ships. ' +
'Yes, both of them. ' +
'What are they called? ' +
'Of Course I Still Love You and Just Read The Instructions. ' +
'They are not warships? ' +
'With names like that?'
})

To deal with text items like the droneship name, we need to use the phrase matching
capabilities of spacy. Three examples of terms to match are added to a TerminologyList
below. Spacy also does some default phrase matching, e.g., it identifes the phrase “nearly
a decade” as a temporal unit. It is up to us whether we want to use the entire phrase as
a token or not. Below, we will modify the tokenization step to keep all phrases as tokens
with _ in place of white space so we can recognize them easily.

[18]: from spacy.matcher import PhraseMatcher

terms = ['SpaceX',
'Of Course I Still Love You',
'Just Read The Instructions']

193

patterns = [nlp.make_doc(text) for text in terms]

matcher = PhraseMatcher(nlp.vocab)
matcher.add('TerminologyList', None, *patterns)

Next, we use a slicing feature (called Span) of spacy to capture the matched phrases as
tokens. We also use the ents attribute provided by spacy to add named entities (a real-
world object with a name) to the document object.

[19]: from spacy.tokens import Span

def tokensfromdoc(doc):
d = nlp(doc)
matches = matcher(d)
for match_id, start, end in matches:

term = Span(d, start, end, label='myterms')
d.ents = list(d.ents) + [term]

tokens = [w.lemma_ for w in d
no pronouns
if w.pos_ != 'PRON' \
no punctuations
and w.pos_ != 'PUNCT' \
not Beginning of a named entity
and w.ent_iob_ != 'B' \
not Inside a named entity
and w.ent_iob_ != 'I' \
not a stop word
and not w.is_stop]

tokens += [de.string.rstrip().replace(' ', '_') for de in d.ents]
return tokens

def dictokens(corpora):
d = {}
for j, dok in enumerate(corpora.keys()):

for t in tokensfromdoc(corpora[dok]):
d[t] = d.setdefault(t, [])
d[t] += [j]

return d

The above function dictokens makes a dictionary with lemmatized words as keys and
document numbers as values. This can be used to make the term-document matrix as we
did for the initial example.

[20]: def tdmatrix(d, corpora):
A = lil_matrix((len(d.keys()), len(corpora.keys())), dtype=int)
for i, t in enumerate(d.keys()):

for j in d[t]:

194

A[i, j] = 1
return A

[21]: d = dictokens(c)

[22]: d = dictokens(c)
A = tdmatrix(d, c)
Adf = pd.DataFrame(A.toarray(), index=d.keys(), columns=c.keys())

This array is now a bit too big to meaningfully display here, but here are a few elements of
one row, which now displays the droneship name as a single token.

[23]: Adf.loc[['Of_Course_I_Still_Love_You'], 'NYTimes':].T

[23]: Of_Course_I_Still_Love_You
NYTimes 0
May30NASAblog 1
May31NYTimes 0
2015Musk 1
IainBanks 1

XVII.5 Queries and retrieval

Returning to the question of information retrieval posed at the beginning of the lecture,
let’s consider how to handle queries. Free text query, is a form of query popular on internet
searches, where query terms are typed in without any connecting operators. Query terms
can be any collection of words extracted from the corpus. A query vector can be made by
taking the mean of these query word vectors and normalizing it to a unit vector. (Again
this is not a foolproof strategy, but it is a simple prescription that often works well.) The
cosine separation between the query vector and each document vector is then computed.
The most relevant documents are considered to be the ones that make the smallest angle
with the query vector, so they are returned frst in the output list. Here is a quick imple-
mentation suitable for small datatsets.

[24]: def retrieve(querytokns, W, Vt, c):

"""Given a list of query word token numbers "querytokns",
all words vectors "W" and all document vectors "Vt.T"
extracted from a corpus c, retrieve the documents
relevant to the query. """

q = W[querytokns, :].mean(axis=0)
nrm = norm(q)
q /= nrm
idx = np.argsort(Vt.T @ q)[::-1]
kl = list(c.keys())
keys = [kl[i] for i in idx]
docs = [c[k] for k in keys]

195

return docs, keys, idx

To use this on our current corpus example, let’s make the word and document vectors frst.

[25]: uu, ss, vvt = svd(A.toarray()) # SVD & rank k approximation
k = 4
U = uu[:, :k]; S = ss[:k];
Vt = vvt[:k, :] # Document vectors
W = uu[:, :k] @ np.diag(ss[:k]) # Word vectors

Here is an example of a query with two words, astronaut and first, and the frst three
matching documents generated by the above strategy.

[26]: myquery = np.where((Adf.index=='astronaut') | (Adf.index=='first'))[0]
docs, keys, idx = retrieve(myquery, W, Vt, c)
docs[:3]

[26]: ['Nation’s first astronaut launch to orbit from home soil in nearly a␣
↪→decade',
'SpaceX launch of NASA astronauts is postponed over weather',
'The first stage of the SpaceX rocket has landed successfully on the␣
↪→droneship,

Of Course I Still Love You.']

The frst result has both search words, while the other two has one of the two search words.
Below is another example, where somewhat surprisingly, a document without the query
word (but certainly what we would consider a relevant document) is listed within the top
three matches.

[27]: myquery = np.where(Adf.index=='droneship')[0]
docs, keys, idx = retrieve(myquery, W, Vt, c)
docs[:3]

[27]: ['The first stage of the SpaceX rocket has landed successfully on the␣
↪→droneship,

Of Course I Still Love You.',
'These friends of yours are ships. Yes, both of them. What are they␣
↪→called? Of

Course I Still Love You and Just Read The Instructions. They are not␣
↪→warships?

With names like that?',
'West Coast droneship under construction will be named Of Course I Still␣
↪→Love

You']

Let me conclude this introduction to the subject of text analysis and information retrieval
by noting that the concept of mapping words to vectors is fnding increasingly signifcant
uses, such as in automatic translation. I have tried to present ideas in minimal examples,

196

but you should be aware that there are many extensions in the literature. Some extensions
are easy to see as emerging from computational experience. An example is a generalization
that we will see in an exercise that modifes the term-document matrix to account for the
number of times a term occurs in a document. The resulting matrix will have frequency-
weighted entries, not just 0 and 1 as above. This is built into scikit-learn’s text analysis
facilities, which we shall use in the exercise.

197

A

Exercises

A.1 Exercise: Sum up integer powers

Task: Write a code to compute the value of
N

∑ in
n=1

for any integers i and N. (Solution codes will be ranked in terms of correctness, readability,
and brevity.)

How do you know your answer is correct? When writing code it is important to check for
correctness. Llementary mathematics tells us that

N N
n2 = (N + 1)(2N + 1).

6∑
1n=

(If you don’t know this prove it!) So you can easily check that your code gives the correct
answer, at least for i = 2. In fact, even for a general power i, power sums have been studied
very well and expressions connecting them to the Riemann zeta function are well known,
so for this task, there are indeed many sources to double check our code results.

Python has many styling guidelines for writing good code. You may want to peruse PEP 8
at your leisure. And take time to behold an easter egg (one of several) within the language:

[1]: import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

198

https://mathworld.wolfram.com/PowerSum.html
https://www.python.org/dev/peps/pep-0008/

A.2 Exercise: Graphing functions

This exercise checks that you have learnt the basic usage of numpy and matplotlib.

[1]: import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

Task 1: Graph a function of one variable Plot the graph of sin(x) for x in the interval
[0, 10]. √
Task 2: Graph a function of two variables Plot the graph of cos(x2 + y2) for (x, y) ∈
[−5, 5] × [−5, 5].

A.3 Exercise: Passing function arguments

When programming mathematical algorithms, it is important to know if unnecessary
copying is being done by your program. Copying large matrices is expensive. Consider
this simple function, where w could be a matrix or a vector or a list or a string etc.

[1]: def twice(w):
"""Replace w by 2*w"""
w *= 2

Consider a scenario where you make an object v and then send it to this function, like in
this example:

[2]: v = [2, 5, 1]
twice(v)

Task: Your task is to determine if v is being copied when you call twice(v) for some v. In
other words, is a deep copy of v being implicitly made by python when you send v as an
argument to twice? Answer this for at least two cases:

• v is a numpy array
• v is a string

Explain your observations.

A.4 Exercise: Piecewise functions

Task: Write an effcient numpy-based code for computing the values of

{
x sin(x2) if x < 0,

f (x) =
cos(x) if x ≥ 0

199

at 1000001 uniformly spaced points in the interval [−5, 5]. Time it and then plot the func-
tion.

[1]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

A.5 Exercise: Row swap

Task: Consider the following simple python code to interchange rows i and j of a numpy
array A.

[1]: def swaprow(i, j, A):
tmp = A[i, :]
A[i, :] = A[j, :]
A[j, :] = tmp

If there are problems with this (correctness? effciency? elegance? brevity?), explain them,
and produce a better function. (Please do check for correctness before you check anything
else.)

A.6 Exercise: Averaging matrix

Task: Make an n × n matrix whose entries on the diagonal, k superdiagonals, and k sub-
diagonals, are one, and whose remaining entries are zero. E.g., for k = 2 and n = 6, the
matrix looks like

[[1., 1., 1., 0., 0., 0.],
[1., 1., 1., 1., 0., 0.],
[1., 1., 1., 1., 1., 0.],
[0., 1., 1., 1., 1., 1.],
[0., 0., 1., 1., 1., 1.],
[0., 0., 0., 1., 1., 1.]]

Now modify the unit entries in each row to another constant such that all the row sums
of the matrix equal one. We shall call the resulting matrix an averaging operator A. After
making the A matrix, do the following tasks: - Apply A to a vector x whose entries are
xj = (−1)j, say for n = 20, and k = 2. and comment on the resulting vector.

• Apply A to a vector whose entries are values of f (x) = x2 + 2 sin(10x), say at n =
1000 equally spaced points in the interval [0, 10] and k = 100.

In both cases investigate the effect of varying k, report any edge effects, and discuss your
observations.

200

A.7 Exercise: Differentiation matrix

Task: Make an (n − 1) × n matrix D with the property that when it is applied to a vector
f ∈ Rn we get D f ∈ Rn−1 whose entries are

[D f]i = fi+1 − fi, i = 0, 1, . . . , n − 1.

Use the diag facility of numpy to make D fast. Put xj = jh for some positive grid spacing h.
If fj equals f (xj) for some differentiable function f , then h−1D f produces approximations
to the derivative of f , so we shall call h−1D the differentiation matrix.

[1]: import numpy as np
from numpy import diag

• Apply D to obtain an approximation of the derivative of f (x) = sin(x), plot the
result, and verify that you get what you expect.

• Apply D to obtain an approximation of the derivative of f (x) = x2 + 2 sin(10x) for a
thousand or more equally spaced values of x. Plot the result. Experiment with what
happens if you add the averaging operator from the previous exercise into the mix.

Optional Extra Task: Install scipy if you don’t have it already. Then make D as a sparse
matrix (that doesn’t store zeros) using the following facility in scipy.sparse module:

[2]: from scipy.sparse import diags

Apply the sparse differentiation matrix to the functions described above and note if there
are any performance gains.

A.8 Exercise: Pairwise differences

Task: Given a 1D numpy array x, produce the 2D numpy array D whose entries are

Dij = xi − xj

in one line of code.

[1]: import numpy as np
x = np.random.rand(5)

A.9 Exercise: Hausdorff distance

Task: Given two collections P and Q of points in the plane, compute the Hausdorff dis-
tance between sets P and Q. The Hausdorff distance between P and Q, denoted here by
H(P, Q), is defned as follows. Let

h(P, Q) = max min ∥p − q∥
p∈P q∈Q

201

where, for any p ∈ R2, the notation ∥p∥ denotes the Euclidean distance
√

p · p. Using this,
the Hausdorff distance is defned by []

H(P, Q) = max h(P, Q), h(Q, P) .

[1]: import numpy as np
P = np.random.rand(5, 2)
Q = np.random.rand(7, 2)

A.10 Exercise: k Nearest Neighbors

Task 1: Write a function that fnds, given a fnite set of points in the plane and an integer
k, the k nearest neighbors of each point in the set using numpy’s vectorized facilities.

Task 2: Apply your function to this set of points with k = 3. Plot an arrow from each point
to its k-nearest neighbors.

[1]: import numpy as np

P = np.array([[0,0], [0.2, 0.22], [0.1, -0.1],
[1,1], [1.1, 0.9], [0.8, 0.9], [1.1, 0.63],
[0.58, -0.1], [0.63, 0.1], [0.67, -0.3], [0.8,-0.23],
[0.8, 0.6]])

k = 3

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

3 nearest neighbors of every point

202

A.11 Exercise: Predator-prey model

Suppose the populations of rabbits (denoted by r(t)) and foxes (denoted by x(t)) at time t
in a jungle are modeled by the ODE system

dr
= αr − βrx

dt
dx

= δrx − γx
dt

where α = 1.1, β = 0.4, δ = 0.1, and γ = 0.1.

Task 1: Given initial conditions $ r(0) = 5$ and $ x(0) = 2, $ solve for r(t) and x(t) and plot
the solution for 0 ≤ t ≤ 70.

Task 2: The phase plot of the solution consists of points (x(t), r(t)) for various t values.
Prepare a fgure (phase portrait) with phase plots of, say, 10 solutions, one each for randomly
chosen initial values r(0) and x(0) between 1 and 9.

Task 3: This system has two equilibria. Solve for them and mark them in your phase
portrait.

A.12 Exercise: Column space

Task 1: You have seen that the SVD of an m × n matrix A gives, among other things, a
basis for the range (column space). Compute this for the given matrix.

Another way to obtain a basis for the range is using the QR factorization, also implemented
in scipy. Carefully go through the linked QR documentation page. Then compute a basis
for the column space of a given A using QR, and then using the SVD.

Task 2: Check that the column spaces (not the bases) you obtained in the two ways are the
same. (How would you check that two given bases span the same space?)

Task 3: For a 500 × 500 random matrix, which method is faster?

[1]: import numpy as np
from scipy.linalg import svd, qr

A = np.array([[1, -2, 3, -3], [2, -4, 9, -2], [-3, 6, -9, 9]])

A.13 Exercise: Null space

Task 1: Find the null space of the given matrix A using SVD.

Task 2: Find the null space of the same matrix A using the QR factorization. Use the linear
algebra theorem that tells us that the null space of A is equal to the orthogonal complement
of the range of the transpose At . (How would you extract the orthogonal complement from
a full QR factorization?)

Task 3: Check that both answers above span the same space.

203

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr.html#scipy.linalg

[1]: import numpy as np
from scipy.linalg import svd, qr

A = np.array([[1, -2, 9, 5, 4,], [1, -1, 6, 5, -3], [-2, 0, -6, 1, -2],␣
↪→[4, 1, 9, 1, -9]])

A

[1]: array([[1, -2, 9, 5, 4],
[1, -1, 6, 5, -3],
[-2, 0, -6, 1, -2],
[4, 1, 9, 1, -9]])

A.14 Exercise: Pandas from dictionaries

[1]: import pandas as pd

While numpy arrays have an implicitly defned integer index used to access the values, the
pandas objects have an explicitly defned index associated with the values, a feature shared
with the python dictionary construct. To begin our pandas exercises, start by converting
dictionaries to pandas objects.

Tasks:

1. Convert d0 to a corresponding pandas object pd0.

[2]: d0 = {2:'a', 1:'b', 3:'c'}

2. Sort indices of pd0.

(Note: Newer versions of pandas do not sort dictionary keys.)

3. Convert d1, d2 (together) to a pandas object dd.

[3]: d1 = {'a': 1, 'b': 2}
d2 = {'b': 3, 'c': 4}

4. Give examples of indexing and slicing on dd.

In pandas, indexing refers to accessing columns by their names, in a syntax reminiscent of
dictionary access by keys, while slicing refers to row access like in numpy.

5. Give examples of implicit and explicit indexing on dd.

6. Forward fll and backfll missing values using various axis.

204

A.15 Exercise: Iris fower dataset

The statistical visualization package seaborn comes with the famous Iris Flower Dataset.
Your exercise is to give one-line codes to address the two tasks mentioned after the fgure
below.

[1]: import pandas as pd
%matplotlib inline
import seaborn; seaborn.set()

iris = seaborn.load_dataset('iris')

The following fgure is generated by

seaborn.pairplot(iris, hue='species');

5

6

7

8

se
pa

l_
le

ng
th

2.0

2.5

3.0

3.5

4.0

4.5

se
pa

l_
w

id
th

1

2

3

4

5

6

7

pe
ta

l_
le

ng
th

4 6 8
sepal_length

0.0

0.5

1.0

1.5

2.0

2.5

pe
ta

l_
w

id
th

2 3 4 5
sepal_width

2 4 6
petal_length

0 1 2 3
petal_width

species
setosa
versicolor
virginica

Task 1: Make a bar plot of the mean sepal sizes for each species

Task 2: Find the min, max and mean of petal sizes for each species

205

https://seaborn.pydata.org
https://en.wikipedia.org/wiki/Iris_flower_data_set

A.16 Exercise: Stock prices

[1]: import pandas as pd
%matplotlib inline

If you have installed pandas_datareader, please download current stock prices using this:

import pandas_datareader.data as web
s = web.DataReader(['AAPL', 'GOOG', 'TSLA'], data_source='yahoo', start='2020')

Alternately, load from a fle where data from until yesterday was saved. Download the fle
from D2L and move it to the right place in order for the following cell to work.

[2]: s = pd.read_pickle('../../data_external/stock_prices.pkl')

In either case, you will end up with a data frame s which contains three categories of prices
for three tech stocks.

Tasks:

• Find out if a heirarchical indexing (MultiIndex) is being used in this data.

• Access and plot the closing price of AAPL on all days in the data.

• Print the closing price of all three stocks yesterday.

• Extract a smaller data frame with no MultiIndex containing only TSLA data.

A.17 Exercise: Passengers of the Titanic

The Titanic, with over 2000 passengers on board, including hundreds of emigrants to the
US, as well as some of the world’s richest, sank in 1912. The seaborn library provides a
smaller-sized, anonymized data set of Titanic’s passengers. Without identifying informa-
tion, we can’t tell the poor immigrant from the wealthy, yet the data manages to tell a story
in other ways. Your task in this exercise is to answer a series of questions from the data,
beginning with the mundane and ending with who survived.

[1]: import numpy as np
import pandas as pd
import seaborn

t = seaborn.load_dataset('titanic')
t.head()

survived pclass sex age sibsp parch fare embarked class \
0 0 3 male 22.0 1 0 7.2500 S Third
1 1 1 female 38.0 1 0 71.2833 C First
2 1 3 female 26.0 0 0 7.9250 S Third
3 1 1 female 35.0 1 0 53.1000 S First
4 0 3 male 35.0 0 0 8.0500 S Third

[2]:

[2]:

206

who adult_male deck embark_town alive alone
0 man True NaN Southampton no False
1 woman False C Cherbourg yes False
2 woman False NaN Southampton yes True
3 woman False C Southampton yes False
4 man True NaN Southampton no True

Tasks: The exercise is to answer the following questions.

• How many passengers are described in the data set?

• How many distinct values are in who column?

• How many missing values do you fnd in each data column?

• Does the data contain passengers over 60 old? How many?

• What is the passenger age distribution? (Plot it.)

• What are the 3-quantiles of the passenger age distribution?

(Finite samples are divided into q subsets of nearly equal sizes by q-quantiles. The 2-
quantile is the median.)

• How will you drop all passengers with no embarked data?

• What is the average, minimum, and maximum fares paid by the passengers?

• What are the proportions of passengers in different classes?

• What is the female to male ratio in each travel class?

• What fraction survived?

(This fraction is sometimes called the survival rate - although it is an improper name in the
sense that there is no “rate” to speak of here; the question is to compute a dimensionless
fraction.)

• Are the survival rates of male and female passengers different?

• Are the survival rates of frst, second, and third class passengers different?

• How can one print a table of survival rate dependencies on class and gender?

• How can one print a table with number of survivors and average fare for each gender
and cabin?

A.18 Exercise: Animation

Let x represent a point in the spatial interval [0, 10], let t > 0 represent time, and let

f (x, t) =
1
(x + t)2 + 2 sin(10(x − t)).

2

The following tasks are to be completed in a .py python fle (not in a jupyter notebook).

207

Task 1: Use matplotlib.animation module to display changes in the plot of f over x with
respect to time t.

Task 2: Use the celluloid module to perform the same task. Which is faster? Which is
more convenient?

Task 3: Add a text labeling the time at each snapshot that the animation is composed of.

A.19 Exercise: Insurance company

An insurance company starts with $1,000 dollars in its reserve. The company earns $100
per day which is added to the reserve every day. However, the insurance company is
engaged in very risky business: each day, with probability q = 0.46, the company may
receive a claim, which will require it to pay $200 from its reserve the day it receives the
claim.

Question 1: What is the probability that the insurance company will run out of its reserve
eventually and be ruined?

(Hint: The situations of the gambler G of [Gambler’s Ruin] and the insurance company are
not that different: at the end of each game, gambler G is up or down a chip; and at the end
of each day, the insurance company reserve is up or down by $100. When G has no chips
to play, G is ruined; when the insurance company’s reserve drops to $0, it is ruined.)

Question 2: What should be the company’s reserve in order to make the probability of the
company’s ruin less than 0.1%?

A.20 Exercise: Probabilities on small graphs

Consider random walks on the following small graphs with the indicated probabilities and
answer the questions posed.

Task 1:

What is the probability that you can hit one state from another state (in any number of
steps) in this Markov chain? Answer by looking at the graph and double check that an
eigenvector gives what is expected.

Task 2:

For each question below, guess the answer from the fgure, and then verify that your com-
putational method gives the expected answer.

• Starting from B = {3}, what is the probability of hitting A = {0, 1, 2} in any number
of steps?

• Starting from from any state in B = {0, 1, 2} what is the probability of hitting A =
{3} in any number of steps?

• Is this an absorbing Markov chain? Verify that the answers come out the same using
the two methods you learnt.

208

https://matplotlib.org/3.2.1/api/animation_api.html
https://github.com/jwkvam/celluloid

Task 3:

• What are the hitting probabilities of A = {0, 1, 2} from the remaining states?

• What are the hitting probabilities of A = {4, 5, 6} from the remaining states?

• What are the hitting probabilities of A = {3} from the remaining states?

Task 4:

• Starting from 1 what is the probability of hitting 0 in any number of steps?

• Starting from 3 what is the probability of hitting 6 in any number of steps?

A.21 Exercise: Ehrenfest thought experiment

The following thought experiment is well-known in physics. Begin with a box that is
divided into two equal halves. Each half contains many air molecules. Perform the follow-
ing experiment repeatedly: in each step, a molecule is chosen at random from one half and
moved to the other half. If we start with unequal number of molecules in each half, what
happens in the long run?

In probability texts, this experiment is conducted with “Ehrenfest Urns”. There are two
urns that together contain 2k balls. At each step, one of the balls is chosen at random and
moved from its urn to the other urn.

Task 1: Model the process as a Markov chain. Choose as states the number of balls in the
frst urn. Write a function to make the transition matrix P for general k. Print out your
transition matrix for k = 2 (which should be 5 x 5). Draw the directed graph of the chain
for k = 2 case.

Task 2: Is P irreducible?

Task 3: Does Pn converge as n → ∞?

Task 4: Plot the stationary distribution of this Markov chain for k = 100.

A.22 Exercise: Power method for large graphs

In the lecture, we used the eig function to compute pagerank. Since this is unsuitable for
large graphs, we pursue an alternate idea, also from the lecture: the pagerank vector, being
the eigenvector of the dominant eigenvalue of a positive stochastic matrix, is the limit of
the sequence

x, (Pt)x, (Pt)2x, (Pt)3x, . . . ,

which we can computationally approach. This is an instance of the power method, a topic
well studied in numerical analysis. This method only needs to apply the matrix Pt repeat-
edly (and has no need for other operations found in general eigensolvers that carry more
memory overhead). This exercise shows you the practical problems with using a general
eigensolver as the graph size increases and asks you to implement the power method to
be able to solve on large graphs.

209

Task 1: Compute the stationary distribution of the Markov chain from Gambler’s ruin with
p = 0.4, N = 10. (Do this task with eig.) Do you get more than one stationary distribution?

Task 2: Consider the adjacency matrix (independent of p) of the random walk and intro-
duce a restart probability. Using it, compute the pagerank for all states of the Markov chain
with N = 10 and restart probabilities r = 0.1, 0.01, 10−3, and 10−4.

Task 3: Compute the pagerank of the ruin state for r = 0.1, N = 1000. How much farther
can you go increasing N in your computing environment, while continuing to use eig?

Task 4: Implement the power method for a positive stochastic matrix P as a python func-
tion, with the inputs indicated below.

def powerP(x, aPt, r=0.1, maxn=1000, tol=1e-10):
""" Apply power iterations to a positive stochastic matrix P.
INPUTS:
- x: initial probability distribution for the power method,
- aPt: function that returns P.T @ x given x
- r: restart probability,
- maxn: apply at most 'maxn' power iterations
- tol: quit if successive iterations differ by less than 'tol'.

OUTPUT: Vector of pageranks if converged. """

This function should start with a random initial probability distribution x and compute
(Pt)nx for increasing n until ∥(Pt)nx − (Pt)n−1x∥ becomes smaller than a given input tol-
erance. To save memory and fops, you should not create the transition matrix P in memory,
rather, you should make a function that applies Pt to a vector, and pass that function as one
of the arguments aPt to the powerP function.

Apply your function to compute the pagerank of the ruin state for r = 0.1, N = 100000.

A.23 Exercise: Google’s toy graph

At SNAP (Stanford Network Analysis Project), you will fnd a large graph data set (with
over 5 million edges) called the Google Web Graph. (This graph was released by google for a
programming competition.) Download this graph, examine the fle, and guess the format.
You will need to load this data into your computer’s memory to solve this exercise. Think
carefully about what tools you would use so as not to run out of memory.

Task: Setting restart probability r = 1 − 0.85, compute the pageranks of all vertices on this
graph. Reuse the power method function you wrote in Exercise: Power method for large
graphs.

[1]: import os
import urllib
import shutil
import numpy as np

[2]: # The file is located here:
url = "https://snap.stanford.edu/data/web-Google.txt.gz"

210

https://snap.stanford.edu/index.html

Download and copy it here using the code below:
f = '../../data_external/web-Google.txt.gz'

if not os.path.exists(f):
r = urllib.request.urlopen(url)
fo = open(f, 'wb')
shutil.copyfileobj(r, fo)
fo.close()

A.24 Exercise: Atmospheric carbon dioxide rise

Task: Reconsider the problem of the assignment on rising atmospheric CO2 levels. Using
the data you already downloaded for the assignment, now ft a quadratic curve to the
data by regression. Since the derivative of a quadratic function can be hand-computed,
you would then be able to estimate the rate of change of the regression ft and address the
earlier assignment task: provide a policy-maker with a “yes or no” answer on whether the
rate of increase of CO2 is increasing.

A.25 Exercise: Ovarian cancer data

Download and copy the datafle ovariancancer.npy into data_external folder. This fle
contains data of 216 patients, the frst 121 of which have ovarian cancer, and the remaining
95 do not. For each patient, expressions of some biomarkers through 4000 spectroscopic
measurements are provided. The original data source is ccr.cancer.gov. The data is also
packaged together with Matlab® and they maintain an online documentation page on
it. High-dimensional biological and genetic datasets are often highly correlated, i.e., pa-
tients can be expected to have signifcant overlap in genes and biomarkers. Therefore such
datasets will generally beneft from PCA and dimensional reduction. In this exercise, you
will work with a realistic dataset which exemplifes such a dimensional reduction.

[1]: import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
import numpy as np
X = np.load('../../data_external/ovariancancer.npy')
X.shape

[1]: (216, 4000)

Task 1: Project the 4000-variable data into its frst 3 principal components and view the
projections in a three-dimensional plot.

Task 2: Plot the cumulative explained variance for this dataset. What is the percentage of
variance lost in restricting the data from 4000 to 3 dimensions? How many dimensions are

211

https://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
https://www.mathworks.com/help/deeplearning/ug/cancer-detection.html
https://www.mathworks.com/help/deeplearning/ug/cancer-detection.html

needed to keep 95% of the variance?

A.26 Exercise: Eigenfaces

In this exercise you will apply PCA to a large library of facial images to extract dominant
patterns across images. The dataset is called Labeled Faces in the Wild, or LFW, (source) and
is popular in computer vision and facial recognition. It is made up of over a thousand 62 x
47 pixel face images from the internet, the frst few of which are displayed below.

[1]: import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from sklearn.datasets import fetch_lfw_people # this will download␣

↪→images if
faces = fetch_lfw_people(min_faces_per_person=60) # you don't already have␣

↪→them
fig, ax = plt.subplots(4, 7, figsize=(12, 10))
for i, axi in enumerate(ax.flat):

axi.imshow(faces.images[i], cmap='pink')
axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.

↪→target[i]])

Task 1: We refer to the principal components of face image datasets as eigenfaces. Display
the frst 28 eigenfaces of this dataset. (They will have little resemblance to the frst 28
images displayed above.)

Task 2: Let N be the least number of dimensions to which can you reduce the dataset
without exceeding 5% relative error in the Frobenius norm. Find N. (This requires you
to combine what you learnt in the SVD lecture on the Frobenius norm of the error in best
low-rank approximation with what you just learnt in the PCA lecture.)

212

http://vis-www.cs.umass.edu/lfw/

Task 3: Repeat PCA, restricting to N eigenfaces (with N as in Task 2), holding back the last
seven images in the dataset. Compute the representations of these last seven images in
terms of the N eigenfaces. How do they compare visually with the original seven images?

Task 4: Restricting to only images of Ariel Sharon and Hugo Chavez, represent (and plot)
them as points on a three-dimensional space whose axes represent the principal axes 4, 5,
and 6. Do you see the points somewhat clustered in two groups? (The principal directions
0, 1, 2, 3 are excluded in this task since they seem to refect lighting, shadows, and generic
facial features, so will likely not be useful in delineating individuals.)

A.27 Exercise: Word vectors

The following corpus contains statements by two Republican presidents, a quote from the
bible, and three quotes from the internet.

[1]: c = { \
'Lincoln1865':
'With malice toward none, with charity for all ...' +
'let us strive on to finish the work we are in ... ' +
'to do all which may achieve and cherish a just and lasting peace, ' +
'among ourselves, and with all nations.',

'TrumpMay26':
'There is NO WAY (ZERO!) that Mail-In Ballots ' +
'will be anything less than substantially fraudulent.',

'Wikipedia':
'In 1998, Oregon became the first state in the US ' +
'to conduct all voting exclusively by mail.',

'FortuneMay26':
'Over the last two decades, about 0.00006% of total ' +
'vote-by-mail votes cast were fraudulent.',

'TheHillApr07':
'Trump voted by mail in the Florida primary.',

'KingJamesBible':
'Wherefore laying aside all malice, and all guile, and ' +
'hypocrisies, and envies, and all evil speakings',
}

Task 1: Use scikit-learn’s CountVectorizer to make the term-document matrix, particu-
larly noting what the rows and columns correspond to (and compare with the LSA lecture).
Display it as a data frame labeled with words and document keys. Does CountVectorizer
lemmatize the words?

Task 2: Combine CountVectorizer (see its doc string for help) with a tokenizer func-

213

tion you write using spacy’s lemmatization (per what you learnt in the LSA lecture). Re-
make the term-document matrix. Display your answer. (Your matrix size will depend on
whether you used stop_words='english' argument of CountVectorizer, and may even
depend on which version of spacy you are using, since lemmatization has changed across
versions.)

Task 3: Use LSA to compute three dimensional representations of all documents and
words using your term-document matrix from Task 2. Print out your vector representation
of vote (which will obviously depend on the matrix).

Task 4: Write a function to compute the cosine of the angle between the spans of two word
vectors. Compute the cosine of the angle between malice and vote. Compute the cosine
of the angle between mail and vote.

Task 5: In order to moderate the infuence of words that appear very frequently, the TF-
IDF matrix in often used instead of the term-document matrix. The term frequency-inverse
document frequency (TF–IDF) matrix weights the word counts by a measure of how often
they appear in the documents according to a formula found in scikit-learn user guide.
Compute the TF-IDF matrix for the above corpus using TfidfVectorizer.

Task 6: Recompute the two cosines of Task 4, now using the TF-IDF matrix of Task 5 and
compare.

[2]: from sklearn.feature_extraction.text import CountVectorizer,␣
↪→TfidfVectorizer

import pandas as pd

214

https://scikit-learn.org/stable/modules/feature_extraction.html?highlight=term%20frequency

B

Projects

B.1 Assignment: Bisection Method

Your task is to implement the bisection method for fnding a solution x of the equation

f (x) = 0.

Here f is a real-valued function of a single real variable x and the solution of the above
equation is called a root of f .

Many nonlinear algebraic equations, such as x = 1 + cos x do not admit a closed form
solution. But a numerical method can fnd an approximate solution by fnding the root of
f (x) = x − 1 − cos x.

Bisection is a numerical method to solve for a root of a function f (x) of a single real variable
x. Here is its description:

The Bisection method

1. Start with an interval [a, b] in which f (x) changes sign.

2. Then there must be (at least) one root in [a, b].

3. Halve the interval and set the midpoint m = (a + b)/2.

• Does f change sign in left half [a, m]?
• If Yes: Repeat with the left interval [a, m] (set b = m)
• If No: Repeat with the right interval [m, b] (set a = m)

4. At the nth step, the initial interval [a, b] has been halved n times and we know that
f (x) must have a root inside a small subinterval of length 2−n(b − a). Since the root
is contained in this subinterval, error ≤ 2−n(b − a).

5. Hence we may stop the subdivisions when n is such that

2−n(b − a) ≤ ϵ.

for some user specifed error tolerance ϵ, and take the midpoint m as the root.

Hints and suggestions

1. Write down your steps as a precise algorithm (before you code) in terms of
for/while, if, else, etc. Use this to map out how you will write your code.

2. Write a frst version of the code and make sure it is working on a test problem. Your
code should be in the form of a function

def bisection(f, a, b, eps, niters):
Code goes here.

215

where f, a, b, and eps represent f , a, b and ϵ in the above description, and niters is the
maximal number of iterations, which in this case is the maximal number of subdivisions
of the initial interval you will make (whether or not the eps tolerance is met).

3. Test your bisection code on the function f (x) whose roots you know, say f (x) =
cos(x). Once you know your current code is working correctly, proceed to the next
step. If you jump this step, beware that “premature optimization is the root of all
evil,” according to Donald Knuth.

4. Refactor/improve/optimize: When halving the interval, can you reuse a previously
used value of f to make the code more effcient? (This would be important when
the evaluation of f is expensive.) Also have you made sure you have included com-
ments? Does you function have a docstring?

B.2 Assignment: Rising CO2 levels in the atmosphere

Mauna Loa Observatory is located over 3000 meters above the sea level, on the Big Island
of Hawaii. NOAA, the National Oceanic and Atmospheric Administration, runs this facil-
ity, and has been collecting data on the composition of our atmosphere for years. The rise
of CO2 in our atmosphere is one of the drivers of climate change as CO2 is a heat-trapping
gas. NOAA measures CO2 levels at the observatory and has made its data available for all.

Task

In this assignment, your task is

1. to download this data from within python using urllib,
2. do the necessary data munging to get the data into arrays,
3. extract the monthly averages of measured CO2 from a data column named average,
4. plot the monthly averages as a function of time,
5. estimate the rate of change of CO2 from this data, and
6. plot your estimate of the rate of change as a function of time.

The last two items require you to experiment with imperfect techniques to estimate rate
of change (imperfections that we saw in previous class activities). Please conclude your
assignment with what your answer would be if a policy-maker wants a “yes or no” answer
on whether the rate of increase of CO2 is increasing.

Your product for grading should be a jupyter notebook, written clearly (like a term paper),
including code and graphs, and with explanations of all your steps to arrive at your graphs
and conclusions.

Hints

• This is where the data is available for download:

ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt

• The data has gaps (read the fle header) which you can easily remove using numpy’s
masking facilities.

216

https://www.python.org/dev/peps/pep-0257/
https://www.esrl.noaa.gov/gmd/obop/mlo/
https://www.noaa.gov
ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt

• The data may not be perfectly equispaced. Use the function interp1d from
scipy.interpolate to generate values at equispaced time intervals (after installing
scipy).

• You will see that although CO2 data has a rising trend, the curve is flled with small
oscillations. Use your experience from exercises or any other tools you know to cal-
culate rate estimates of the overall trend.

B.3 Assignment: Growth of confrmed COVID-19 cases

Task

Your assignment is to plot a time series of confrmed COVID-19 cases in Oregon, Washing-
ton, and California, using data from [JHU-CSSE].

Start by copying the required code to download/update the data from the Overview lec-
ture. Then see what fles you would need to examine to get the data to accomplish your
goal.

Product for grading

Turn in one .ipynb fle containing a jupyter notebook explaining how you produced the
plot. Also turn in one .png fle of your fnal plot.

If you were to fnish the assignment today, your plot would look like this:

2020-02-01

2020-02-15

2020-03-01

2020-03-15

2020-04-01

Dates

0

2000

4000

6000

8000

10000

12000

14000

16000

Confirmed COVID-19 cases until 2020-04-06

Oregon
Washington
California

But, of course, the plot you turn in should be the plot obtained that day. And none of us
know yet how that would look like.

217

https://github.com/CSSEGISandData/COVID-19

B.4 Assignment: World map of COVID-19

Task

Your task is to make a chloropleth map visualizing COVID-19 cases worldwide. The coun-
tries of the world should be displayed in the Albers equal area projection. The number of
cases in each country should be indicated by a reasonable color scale (of your choice).

Please submit three fles:

1. A .png image fle of the chloropleth map using the latest available data on the sub-
mission day.

2. A .py python fle (not jupyter notebook) which generated your .png image fle.
3. A .mp4 movie fle containing an animation of the choloropleth maps from

01/22/2020 through the latest date of the data and a .py python fle that you used
for creating the animation.

Hints

• The last task of making the mp4 movie fle is harder than the other two. Begin with
the easier tasks.

• An example of a chloropleth map is in the Overview lecture.
• We have already seen the Albers equal area projection in the lecture Visualizing

geospatial data.
• For animation, use your experience from the exercise on animations.
• Use the Johns Hopkins dataset.

An example solution with data until May 7, 2020, can be seen in the output of the next
code cell if you are reading this in a jupyter notebook.

[1]: from IPython.display import Video
Video("../figs/covidworldmapanim.mp4")

[1]: <IPython.core.display.Video object>

Alternately, the same solution video can be downloaded or visualized at this weblink.

B.5 Assignment: Neighbor’s color

Task 1: Consider a simple closed curve divided into n pieces (arcs), each of which is colored
in either red or blue. In each iteration, one of the arcs is chosen at random. The selected
arc then chooses one of its neighbors at random and adopts that neighbor’s color.

218

https://github.com/CSSEGISandData/COVID-19
http://web.pdx.edu/~gjay/teaching/mth271_2020/figs/covidworldmapanim.mp4

Consider n = 3 frst (as in the fgure above). Model the process as a Markov chain. The
states consist of all the possible color confgurations on the arcs. Answer these questions:

• How many states are there?

• Draw the directed graph of the Markov chain.

• What are the absorbing states?

• Is this an absorbing Markov chain?

Task 2: Now, consider a general n instead of n = 3.

• How many states are there?

• Write a python function to compute the probabilities of eventually hitting the ab-
sorbing states for a general n. (Use vectorized operations as much as possible.)

Task 3: Finally, consider the generalization of the above setting from a closed curve to the
surface of a torus. The toroidal surface is divided into n × n rectangles, each of which has
one of k colors (see the fgure below for an example). The process generalizes to selecting
one of these rectangles at random, the chosen rectangle then adopting a color from one of
its 8 neighbors, and then repeating.

[1]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
fig = plt.figure(); ax = fig.gca(projection='3d')
angs = np.linspace(0, 2.*np.pi, 20)
theta, phi = np.meshgrid(angs, angs)
x = (2 + np.cos(theta)) * np.cos(phi)
y = (2 + np.cos(theta)) * np.sin(phi)
z = np.sin(theta)
rng = np.random.default_rng()
randind = rng.integers(5, size=x.shape)
colors = np.array(['crimson', 'coral', 'gold', 'blue', 'olive'])[randind]
ax.plot_surface(x, y, z, facecolors=colors, linewidth=1, edgecolors='k')
ax.view_init(46, 26); ax.set_zlim(-3,3);

219

Again, model the process as a Markov chain. This Markov chain arises in population
genetics. It shows you a manifestation of the combinatorial explosion (or the curse of dimen-
sionality) that makes computation by the standard technique quickly infeasible.

• How many states are there for a given n and k?

• Is it feasible to extend the python function you wrote in Task 2 to compute the ab-
sorption probabilities for this Markov chain, say for k = 2, n = 10?

• Imagine cutting, unfolding, and stretching the toroidal surface to a square with an
n × n grid of color cells, respecting the boundary identifcations inherited from the
torus. Any state of the Markov chain can thus be implemented as a 2D integer
numpy array (each entry taking one of k values, representing the colors). Write a
python function to simulate the process for a general n and k using numpy’s ran-
dom module. You should see colors dispersing, coalescing, migrating etc, with the
process eventually terminating in an absorbing state.

• Create an animation displaying the sequence of states obtained in one call of your
function, say with k = 4, n = 10, starting from some initial state of your choice. (Be
warned that there are random sequence of states that are too long to ft in memory
even for small n and k, so build in a fail-safe to avoid a computer crash.) Render the
animation either on the toroidal grid or on the equivalent fat n × n grid.

An example of a solution animation can be viewed below:

[2]: from IPython.display import Video
Video("../figs/diversityloss.mp4", width=500)

[2]: <IPython.core.display.Video object>

If the video does not render on your reading device, you may download it from this we-
blink.

220

http://web.pdx.edu/~gjay/teaching/mth271_2020/figs/diversityloss.mp4
http://web.pdx.edu/~gjay/teaching/mth271_2020/figs/diversityloss.mp4

	Overview of some tools
	The modules you need
	Get the data
	Examine the data for a specific date
	Put the data on a map
	Restricting to Oregon
	Ask the data

	 Interacting with Python
	Python shell
	iPython shell
	Jupyter Notebook
	Python file

	Working with git
	Our materials in GitHub
	Git Repo class in python
	Your local copy of the repository
	Two cases
	Clone or pull
	Updated and future materials

	Conversion table
	Using the while loop
	Adjusting the printed output
	Do the same using for loop
	Is there a temperature whose F and C values are equal?
	Store in a list
	List comprehension

	Approximating the derivative
	Numerical differentiation
	Second derivative
	Error
	Limitations

	Genome of SARS-CoV-2
	Get the genome
	Finding a protein
	Nucleotide frequencies
	A Washington sample

	Fibonacci primes
	Generator expressions
	Generator functions
	Disposable generators or reusable lists?
	Infinite sequences
	Fibonacci generator
	Prime number generator
	First few Fibonacci primes
	Verification
	There must be a module for it!
	The Fibonaccis among primes (or vice versa)?

	Numpy blitz
	Are lists and numpy arrays different?
	What is the difference between 2*a and 2*A?
	How best to compute \sin(x) e^{-x} for many x?

	What is vectorization?
	Is range as efficient as np.arange?
	Have you really understood indexing and slicing?
	Do you really know what = does?
	What is a python variable anyway?
	What if I really want to copy data?
	Does numpy have matrices?
	Multiply a list or a matrix?
	How do I matrix multiply?
	How to slice 2D arrays?
	How are 2D arrays stored?
	Can I put booleans as indices?
	How do I represent higher order tensors?
	Would you like to add matrices of different shapes?

	The SEIR model of infectious diseases
	Construction of the SEIR model
	Initial value problem
	Solving the IVP using scipy module
	Parameter study
	Equilibria
	The emergence of R_0
	The effect of R_0: outbreak or no outbreak
	Application to COVID-19

	The Singular Value Decomposition
	Definition of SVD
	The algebra of SVD
	The geometry of SVD
	Low rank approximation

	Bikes on Tilikum Crossing
	Initial examination of the data
	Visualize cleaned up data
	The pattern of use
	Changes due to isolation
	Comparison with Seattle's Fremont bridge
	Volume comparison
	Daily patterns
	Changes after social distancing

	Visualizing geospatial data
	Geometry representation
	Coordinate Reference Systems
	Two other CRS
	Mapping COVID-19 cases on the globe

	Gambler's Ruin
	Markov chains
	Graphs
	Random walks
	Conceptual equivalences
	The example of the gambler
	Getting to a state
	Application to the gambler G
	Cross checking
	Gambler's Ruin
	Absorbing Markov chains
	Greedy gambler

	Google's PageRank
	Probability distributions on graphs
	Stationary distributions
	Perron's theorem
	PageRank
	Perron-Frobenius theorem

	Supervised learning by regression
	Linear Regression
	Higher dimensions
	Curve fitting
	The module scikit-learn
	More terminology

	Unsupervised learning by PCA
	Definitions
	Two-dimensional example
	PCA and SVD
	PCA is different from regression
	PCA in scikit-learn
	Mapping PCA and SVD jargon
	Hand-written digits dataset
	PCA is a feature finder
	PCA is useful for dimensionality reduction

	Latent Semantic Analysis
	Natural language processing
	Term-document matrix
	The idea of LSA
	Language is complex
	Queries and retrieval

	Exercises
	Exercise: Sum up integer powers
	Exercise: Graphing functions
	Exercise: Passing function arguments
	Exercise: Piecewise functions
	Exercise: Row swap
	Exercise: Averaging matrix
	Exercise: Differentiation matrix
	Exercise: Pairwise differences
	Exercise: Hausdorff distance
	Exercise: k Nearest Neighbors
	Exercise: Predator-prey model
	Exercise: Column space
	Exercise: Null space
	Exercise: Pandas from dictionaries
	Exercise: Iris flower dataset
	Exercise: Stock prices
	Exercise: Passengers of the Titanic
	Exercise: Animation
	Exercise: Insurance company
	Exercise: Probabilities on small graphs
	Exercise: Ehrenfest thought experiment
	Exercise: Power method for large graphs
	Exercise: Google's toy graph
	Exercise: Atmospheric carbon dioxide rise
	Exercise: Ovarian cancer data
	Exercise: Eigenfaces
	Exercise: Word vectors

	Projects
	Assignment: Bisection Method
	Assignment: Rising CO_2 levels in the atmosphere
	Assignment: Growth of confirmed COVID-19 cases
	Assignment: World map of COVID-19
	Assignment: Neighbor's color

	Accessibility Statement_07-2020.pdf
	Accessibility Statement
	Accessibility of Lectures on Mathematical Computing with Python
	Organization of content
	Images
	Tables
	Font Size and formatting
	Known Issues/Potential barriers to accessibility

	Accessibility Statement_07-2020.pdf
	Accessibility Statement
	Accessibility of Lectures on Mathematical Computing with Python
	Organization of content
	Images
	Tables
	Font Size and formatting
	Known Issues/Potential barriers to accessibility

