
Portland State University Portland State University 

PDXScholar PDXScholar 

Civil and Environmental Engineering Faculty 
Publications and Presentations Civil and Environmental Engineering 

6-1-2006 

Investigating the Impact of Remotely Sensed Investigating the Impact of Remotely Sensed 

Precipitation and Hydrologic Model Uncertainties on Precipitation and Hydrologic Model Uncertainties on 

the Ensemble Streamflow Forecasting the Ensemble Streamflow Forecasting 

Hamid Moradkhani 
Portland State University 

K. Hsu 
University of California, Irvine 

Y. Hong 
NASA Goddard Space Flight Center 

S. Sorooshian 
University of California, Irvine 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/cengin_fac 

 Part of the Civil and Environmental Engineering Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Moradkhani, H., K. Hsu, Y. Hong, and S. Sorooshian (2006), Investigating the impact of remotely sensed 
precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting, Geophys. Res. 
Lett., 33, L12401. 

This Article is brought to you for free and open access. It has been accepted for inclusion in Civil and 
Environmental Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. 
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/cengin_fac
https://pdxscholar.library.pdx.edu/cengin_fac
https://pdxscholar.library.pdx.edu/cengin
https://pdxscholar.library.pdx.edu/cengin_fac?utm_source=pdxscholar.library.pdx.edu%2Fcengin_fac%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=pdxscholar.library.pdx.edu%2Fcengin_fac%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/cengin_fac/36
mailto:pdxscholar@pdx.edu


GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L12401, doi:1O.1029/2006GL026855, 2006 
Click 
Here 

for 

Full 
Article 

Investigating the impact of remotely sensed precipitation and 
hydrologic model uncertainties on the ensemble streamflow forecasting 

Hamid Moradkhani,l K. Hsu,t Y. Hong,2 and S. Sorooshian l 

Received 9 May 2006; accepted 23 May 2006; published 29 June 2006. 

[1] In the past few years sequential data assimilation 
(SDA) methods have emerged as the best possible method 
at hand to properly treat all sources of error in hydrological 
modeling. However, very few studies have actually 
implemented SDA methods using realistic input error 
models for precipitation. In this study we use particle 
filtering as a SDA method to propagate input errors through 
a conceptual hydrologic model and quantify the state, 
parameter and streamflow uncertainties. Recent progress in 
satellite-based precipitation observation techniques offers an 
attractive option for considering spatiotemporal variation of 
precipitation. Therefore, we use the PERSIANN-CCS 
precipitation product to propagate input errors through our 
hydrologic model. Some uncertainty scenarios are set up to 
incorporate and investigate the impact of the individual 
uncertainty sources from precipitation, parameters and also 
combined error sources on the hydrologic response. Also 
probabilistic measures are used to quantify the quality of 
ensemble prediction. Citation: Moradkhani, H., K. Hsu, 
Y. Hong, and S. Sorooshian (2006), Investigating the impact of 
remotely sensed precipitation and hydrologic model uncertainties 
on the ensemble streamflow forecasting, Geophys. Res. Lett., 33, 

L12401, doi:10.1029/2006GL026855. 

1. Introduction 

[2] The key to potential improvement of hydrologic 
prediction is associated with the input, parameter, and initial 
condition uncertainty interdependencies. Scenario analysis 
of hydrologic model by statistical characterization of 
streamflow uncertainty through ensemble forecasting­
updating goes one step further for better understanding of 
these interactions. Precipitation is the key forcing variables 
and to a large degree responsible for model dynamics 
through its spatio-temporal variability. As shown by Clark 
and Slater [2006], uncertainty in model simulation is 
strongly influenced by reliability on forcing variable and 
adequate characterization of their associated uncertainties. 
Traditionally, the uncertainties of the rainfall runoff process 
and model response are captured through the calibration 
process. The automatic calibration methods using the Max­
imum Likelihood framework try to filter the effect of 
uncertainties through an additive error term [Sorooshian 
and Dracup, 1980]. 
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[3] In this study, we seek to characterize various sources 
of uncertainties and their impacts on hydrologic model 
response. This is accomplished by incorporating the indi­
vidual and combined error sources into the hydrologic 
model consistent with the limited data that allows quantita­
tive assessment of prediction uncertainty. We employ the 
particle filter as a sequential ensemble forecasting/updating 
technique to characterize the uncertainties of model compo­
nents. Our analysis is built upon a parsimonious conceptual 
rainfall-runoff model applied to the Leaf River basin in 
Mississippi. The PERSIANN-CCS (Precipitation Estima­
tion from Remotely Sensed Information using Artificial 
Neural Network-Cloud Classification System) product 
[Hong et al., 2004] is used as the forcing data into the 
system while its uncertainty in terms of variance is propa­
gated into hydrologic model. Finally model predictive 
uncertainty is evaluated in conjunction with other uncer­
tainty sources. 

2. Precipitation Error Model 

[4] A recent development by Clark and Slater [2006] 
provides conditional ensemble grid of precipitation in a 
sparse rain gage network for mountainous areas with the 
intention of model forcing ensemble generation for a 
distributed hydrologic model. However, for ungauged 
regions and also those regions where rain gage data are 
missing, one has to rely on remotely sensed precipitation 
products. In this study, we use the PERSIANN-CCS satel­
lite precipitation product and estimate its error conditioned 
on the radar data which is assumed as true field. The error is 
quantified according to the variance of the point by point 
difference between the satellite estimate and radar truth. As 
demonstrated by Hong et al. [2006], this conditional error is 
related to precipitation magnitude at different spatio-tem­
poral resolutions. 

(1 ilt.) (1) b (ilt.) b d (Je=f L'T'P =a· L . T (P) (1) 

Where, (Je is the error in precipitation (standard deviation 
between the satellite and radar data) which is a function of 
spatial coverage A (here substituted by L as spatial scale, the 
side length of A), temporal scale (T), satellite sampling 
frequency (Llt), and the space-time average of precipitation 
rate (P). Also a, b, c, and d are the parameters of error 
model need to be calibrated (for more detail see Hong et al. 
[2006]). The temporal scale used for calibrating precipita­
tion error model ranges from hourly to daily and special 
scale considered ranges from 0.04° to 0.96°. As it appears 
from equation (1), the error for no precipitation is equal to 
zero which may not be a valid assumption. Considering the 
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spatio-temporal scale of our interest in this study, the 
assumption of zero precipitation is not crucial, noting that 
dealing with this problem is not the thrust of this study. 

[5] Finally to generate the precipitation ensemble the 
following equation is used: 

Pe = P + (Je. E (2) 

Where, P is the precipitation in the desired spatio-temporal 
resolution, E is a random number normally distributed with 
mean 0 and standard deviation of 1 and P e is the perturbed 
precipitation. Propagating each member of the precipitation 
ensemble into the deterministic rainfall-runoff model will 
result in an ensemble of model states and associated 
streamflow predictions. 

3. Hydrologic Model, Study Region and Data 

[6] To demonstrate the influence of various uncertainty 
sources in hydrologic response, we used the conceptual 
Hydrologic MODel (HyMOD) that has been used previ­
ously [Boyle et al., 2000; Moradkhani et al., 2005a, 2005b]. 
HyMOD is an extension of some of the lumped storage 
models developed in 1960s, and later to the case of multiple 
storages representing a spatial distribution of different 
storage capacities in a watershed. The Leaf River basin in 
Mississippi (rv 1945 km2

) was considered as the study 
region. The satellite precipitation product was taken from 
PERSIANN-CCS [Hong et al., 2004]. The data were 
extracted for two water years of 2002-2003. To estimate 
the error associated with satellite product, the National 
Weather Service WSR-88D Stage IV radar rainfall data 
was extracted from NCEP (National Center for Environ­
mental Prediction) and used as ground reference rainfall 
data. 

4. State-Parameter Uncertainty Estimation Using 
SIR-Particle Filter 

[7] Moradkhani et al. [2005b] presented a Bayesian 
updating procedure for uncertainty assessment of concep­
tual watershed model components. The procedure was 
developed based on the Sequential Importance Resampling 
Particle Filter (SIR-PF) which is a class of Bayesian 
filtering algorithms derived from a discrete description of 
Bayes rule [Arulampalam et al., 2002]. In filtering, two 
sequential estimations are discerned, (1) forecasting of state 
variables that is the evolution (propagation) of the states 
from one measurement time to the next and (2) updating 
(correction or analysis) of the forecasted state variables with 
the availability of new incoming observation. Because of its 
stochastic nature, state Xk is a random variable; hence from 
Bayesian inference the pertinent information about Xk given 
observations up to time k can be extracted from the filtering 
posterior distribution p(xklYI :k)' 

(3 ) 

Where p(Yklxk) is the likelihood, p(xkIYI:k-l) is the forecast 
density of states and p(YkIYI:k-l) is the normalizing factor, 
known as predictive distribution or evidence given by 

p(YkIY1:k-l) = !p(Yklxk)P(XkIYI:k-ddxk. For hydrologic 
Xk 

application a practical solution to exact Bayesian scheme 
is to rely on discrete approximations of the above densities 
as follows: 

N 

p(xkIYI:k-l) ~ L w~_18(Xk - xLI) (4) 
i=1 

N 

p(xkIYI:k) ~ L W~8(Xk - xD (5) 
i=1 

Where Xi and Wi denote the value of ith particle and its 
weight and 8 is the Dirac delta function. The weights w~ 
(filtering posterior) are determined through the recursive 

Bayesian scheme as w~ = NW~-l'P(YklxD . 
2.: w~_1.p(YkI4) 
i=l 

[8] In general, filtering is used to recursively estimate the 
posterior distribution of the model state variables; however, 
the successful use of sequential data assimilation relies on 
unbiased model state prediction, which is closely linked 
with identifiability of parameters [Vrugt et al., 2005; 
Moradkhani et al., 2005a, 2005b]. Moradkhani et al. 
[2005b] extended the application of the SIR-PF Bayesian 
recursive technique to the adaptive inference of the joint 
posterior distribution of parameters and state variables. The 
use of this methodology relaxes the need for restrictive 
assumptions regarding the variables' probability density 
function; i.e., it can readily handle the propagation of 
non-Gaussian distribution through a nonlinear model. 

5. Uncertainty Analysis Scenarios and Results 

[9] To investigate the impact of different uncertainty 
sources on hydrologic response, three scenarios are consid­
ered as depicted in Figure 1. The synthetic true states and 
streamflow (Figure la) are considered as observed quanti­
ties followed by the uncertainty scenario analysis displayed 
in Figures 1 b-ld. The targeted filtering for the scenario 1 in 
Figure I b is just the state updating, while for scenarios 2 
and 3 (Figures lc-Id) the combined state-parameter updat­
ing is implemented. For each of the uncertainty scenarios, 
we aim to evaluate the performance of ensemble streamflow 
prediction considering the relative impact of uncertainty. It 
is noted that for this study we considered the river basin as a 
lumped system with the daily time scale. For demonstration 
purpose we display the uncertainty limit associated with the 
ensemble streamflow forecast for the combined uncertainty 
scenario for a period of 240 days in Figure 2. However, the 
assimilation/calibration was made for the period of 2 years 
and the probabilistic performance indices are calculated 
according to this analysis period. A simplistic conclusion 
might be driven that calculated ensemble range (95 percen­
tile) envelopes the observation. However, closer probabilis­
tic interpretation of generated ensemble is required. 
Therefore, following verification measures are chosen and 
the comparative results are provided. 

5.1. Normalized Root Mean Square Error Ratio (NRR) 
[10] It is a normalized measure of ensemble dispersion 

indicating how confidently the ensemble mean can be 
extracted from the ensemble spread. In fact NRR evaluates 
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Figure 1. Scenario analysis for investigating the influence of various sources of uncertainties on ensemble streamflow 
forecasting: (a) Synthetic true, (b) forcing data error, (c) parameter uncertainty, and (d) combined uncertainties. 

the sensitivity of the filtering scheme to the ensemble 
forecasting. According to this method, the ratio of the 
time-averaged RMSE' of the ensemble mean to the mean 
RMSE of the ensemble members is calculated and the result 

is divided by V(ninI), where n is the ensemble size 
[Moradkhani et al., 2005a]. The desirable ensemble is 
expected to have NRR = 1; while NRR > 1 indicates that 
the ensemble has too little spread, and NRR < 1 is an 
indication of an ensemble with too much spread. The NRR 

200 

for three uncertainty scenarios is shown in Figure 3. The 
NRR of the forecast while including just forcing data 
uncertainty in modeling is NRR = 0.76 < 1 meaning that 
the ensemble has too much spread which is the result of 
fairly high value of uncertainty in satellite precipitation 
estimation for leaf river basin. The NRR while considering 
the parameter uncertainty is NRR = 1; 16 > 1 meaning that 
ensemble has little spread although more precise with a 
little overconfidence. Finally, by accounting for all the 

c=J 
1¥,I;;~;1::JI95% Conf. bound 

-- Observation 

o~---------------------------------------------------------------== 100 150 200 
Time [day} 

250 

Figure 2. Time series of streamflow observation and 95% confidence bound associated with prediction while accounting 
for all uncertainty sources including initial condition, satellite forcing data and model parameter uncertainties. 
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Figure 3. Nonnalized Root Mean Square Error Ratio 
(NRR) of ensemble streamflow forecasting by inclusion of 
different uncertainty sources in modeling. 

uncertainty sources, the NRR = 0.91 is between the two 
NRRs in individual uncertainty cases. This could be 
explained as the interaction of forcing data ensemble with 
parameter ensemble. In fact, assuming the time variation 
of model parameters through sequential Monte Carlo 
filtering will give the flexibility in interaction of model 
parameters and state variables which correspondingly 
alleviates the influence of forcing data error in model 
dynamics. This results to reconfiguration of model state 
and parameter ensemble through resampling of posterior 
distribution at each time step. 
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5.2. Exceedence Ratio (ER) and Uncertainty Ratio 
(UR) 

[11] These two measures examine the spread (wideness) 
of prediction quantiles [Borga, 2002; Hossain and 
Anagnostou, 2005]. If the uncertainty bounds derived from 
ensembles are too wide, then the model is said to have high 
predictive capability with low precision and differently if 
the uncertainty bounds are derived too narrow then the 
overconfidence is put on prediction accuracy albeit precise, 
that is, simulation might be highly biased. 

ERn = N:xceedence * 100% 
T 

T 

(6) 

L: (Q;o+n/2 _ Q;o-n/2) 

URn = t=! T * 100% (7) 

L:Qfbs 
t=! 

Where, ERn and URn are exceedence and uncertainty ratios 
respectively at nth percentile. N;xceedence is the number of 
times during the total number of analysis period, T, that the 
observation Q~bs falls outside the ensemble bound at nth 
percentile. UR signifies the aggregate variability of predic­
tion uncertainty ranges. Figure 4 represents the variation of 
exceedence and uncertainty ratios for a range of quantiles 
while accounting for each uncertainty source in simulation 
process. As seen in Figure 4, these two measures behave 
conversely where decreasing the ER for higher percentiles 
results in increasing UR. Closer examination of these 
figures reveal that for forcing data (precipitation) uncer-

100 

80~ 

l &Of a:: 
;:) 

" 40" a:: 
w 

20 

0 
0 20 40 60 80 101 

Ensemble Percentile 

Exceedence Ratio (ER) Uncertainty Ratio (UR) 

Figure 4. Exceedence and Uncertainty Ratios in ensemble streamflow forecasting: (a) Forcing data (precipitation) error, 
(b) parameter uncertainty, (c) combined uncertainty, and (d) comparison of average ratios for various uncertainty sources. 
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tainty, ER decreases rapidly as compared to parameter 
uncertainty case. This signifies lower precision in prediction 
due to the individual effect of precipitation uncertainty. On 
the other hand, UR for the precipitation case is generally 
greater than that of parameter uncertainty case meaning the 
wider uncertainty bound. One might argue that this is an 
indication of higher predictive capability than considering 
parameter uncertainty alone. However, this statistical 
measure needs to be interpreted cautiously in conjunction 
with NRR index discussed earlier. Figure 4d also shows the 
comparison of the average ER and UR over all quantiles for 
three scenarios. The result is consistent with the findings in 
NRR index as the combined uncertainty scenario ratios are 
between the ratios where individual uncertainty sources are 
considered. 

6. Summary and Conclusion 

[12] We aimed at building a framework for investigating 
the effect of various sources of uncertainties in hydrologic 
response. We used the PERSSIAN-CCS satellite precipita­
tion product as forcing data to the hydrologic model and 
characterized its error trough a power law function. Assim­
ilation of synthetic streamflow and state-parameter estima­
tion was done within a sequential Bayesian framework. 
Three statistical measures suitable for verification of prob­
abilistic (ensemble) forecasts were used and their competing 
characteristics illustrated while applying on a parsimonious 
hydrologic model. It was shown that satellite precipitation 
error reflects a wide uncertainty range in streamflow fore­
casting as opposed to the narrow range resulting from 
parameter uncertainty. It was also discussed that the ensem­
ble filtering through combined state-parameter updating is 
capable of reducing the total uncertainty. In fact the resam­
pling nested in such a filtering scheme allows the redistri­
bution of model state and parameter samples. In summary, 
such scheme, in addition to introducing the sequential 
Bayesian method to estimate the model prediction uncer­
tainty, offers three notable features that are lacking in 
conventional model calibration-assimilation schemes as 
(1) being sequential, therefore better able to take advantage 
of the temporal organization of information well suited for 
the ungauged basins such that by availability of new 
observation the model behavior is updated, (2) it is capable 

of incorporating all uncertainty sources into the modeling, 
(3) it employs the resampling scheme giving the chance to 
parameter and state particles to be relocated, thereby pro­
viding the flexibility in interaction of model components 
with forcing data through ensembles. This relaxes the 
impact of uncertainty of forcing data sequentially and result 
in reduced combined uncertainty. 
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