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Gravity effects on capillary flows in sharp corners
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We analyze the effect of gravity on capillary flows in sharp corners. We consider gravity
perpendicular and parallel to the channel axis. We analyze both steady and unsteady flows. In the
steady analysis the main result is a closed form expression for the flow rate as a function of the two
gravity components. Good agreement with steady experiments is offered as support of the model.
The unsteady analysis is restricted to “small” values of the two gravity parameters and is
accomplished using a similarity formulation. The similarity coefficients of the gravity corrections
are fully determined by the coefficients of the gravityless problem. The main result of the unsteady
analysis is the gravity corrections to the flow rate �or rate of advance� of the liquid in the channel.
In addition, we obtain corrections for the liquid height as a function of position and time. We address
in detail unsteady problems with select boundary conditions that are representative of typical flow
types. In Appendix A we present a new exact solution to one of the gravityless similarity cases,
which is analogous to a nonlinear heat conduction equation. In Appendix B we offer dimensional
formulas for all the unsteady flow results, which are valuable for systems design and analysis.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3109685�

I. INTRODUCTION

When liquid in a reservoir is placed in contact with a
sharp corner of angle 2�, a liquid filament is driven from the
reservoir into the channel provided that the Concus–Finn
condition1 is met between the static contact angle � and the
corner angle, i.e., ��� /2−�. In Fig. 1 we show a schematic
of such a flow. In zero gravity, the flow is in the direction of
decreasing filament height h. This is due to the capillary
pressure, which in systems that meet the Concus–Finn con-
dition, is smaller than the ambient gas pressure and decreases
as the liquid height decreases. The presence of gravity may
reinforce or oppose the capillary pressure driving force.

The capillary flow of liquids in sharp corners in the ab-
sence of gravity has been studied extensively by Ayyaswamy
et al.,2 Ransohoff and Radke,3 Dong and Chatzis,4 Romero
and Yost,5 Kovscek and Radke,6 Weislogel,7 and Weislogel
and Lichter8 �W&L in what follows� among many others,
both analytically and experimentally. These studies lay the
mathematical foundations and offer extensive experimental
verification. The analysis is made possible by approximating
the total curvature by the cross sectional curvature and, as by
W&L, by a choice of scales that absorbs most of the geo-
metrical effects of varying contact angle and corner angle.

The effect of gravity pointing normal to the channel has
been examined by Weislogel7 but only for one type of
boundary condition upstream. Bico and Quéré9 analyzed
capillary rise dynamics of liquids in vertical corner channels
with gravity aligned with the channel. The foam drainage
equation �FDE� contains the effect of gravity pointing along
the channel, and has been studied extensively �see, e.g.,
Verbist et al.10 and Cox and Verbist11�. In the conventional
treatment of the FDE, the gravity length scale is absorbed in

the scaling of the partial differential equation, leaving the
gravity parameter �a kind of Bond number� in the boundary
condition for the area of liquid at the inlet. The “traveling
wave” solutions represent the wetting of an initially dry foam
by liquid injected into the inlet at the top at constant flow
rate. These solutions approach a constant liquid area asymp-
totically at the inlet, implying that the flow there is all grav-
ity driven since no capillary pressure gradient can occur
when the liquid flow area is independent of position. One of
W&L’s solutions, obtained with a=0 in their notation, has a
constant liquid area at the flow channel origin and ap-
proaches a constant area at upstream infinity. However, even
this case is not analogous to the FDE. In the FDE, liquid
injected at fixed rate at upstream infinity feeds the volume
increase rate downstream. In the case analyzed by W&L, the
flow is not gravity driven as in the FDE but purely capillary.
Since at upstream infinity the capillary flow is zero, and there
is no fresh liquid injection as in the FDE, the filament moves
forward not by injecting liquid but by decreasing the volume
stored upstream of the origin. Therefore, traveling wave so-
lutions cannot be compared to flows examined by W&L—
and by extension, here—where a capillary driving force ex-
ists everywhere.

In this work we examine the effects of gravity on such
flows. We analyze steady and unsteady flows. In the latter,
we restrict the analysis to conditions that make two appro-
priate dimensionless groups small—representing, respec-
tively, the importance of gravity versus surface tension in
directions parallel and perpendicular to the channel. The
small-gravity assumption allows one to seek approximate so-
lutions using a regular perturbation in each of the small pa-
rameters. When the zero-gravity boundary value problem un-
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steady flow admits similarity solutions, the boundary value
problems that describe the gravity corrections �both for grav-
ity perpendicular and parallel to the flow direction� also ad-
mit similarity solutions with similarity variables that are
fully determined by the boundary condition upstream.

II. FORMULATION

We begin by writing the conservation of mass equation
�à la “foam equation,”10� in dimensionless form for an in-
compressible liquid of density �, viscosity � and surface
tension � flowing in the corner with liquid cross sectional
area A�z , t� and volumetric flow rate Q�z , t� �where z is the
downstream direction parallel to the corner and t is time�.
The formulation follows that of W&L,8 and we refer the
reader to that paper for additional details. Using scales as by
W&L �see Table I� the dimensionless mass balance may be
expressed as volume conservation as

�A

�t
= −

�Q

�z
. �1�

The flow rate is Q��w�A, where the area-averaged axial
velocity is

�w� �
1

A
�

A�z,t�
w�z,t�dA . �2�

Using the same scalings, we write the z-component of
the linear momentum equation,

0 = �IIw −
�P

�z
+

f Bo sin �

	
, �3�

where �II�.����.�2 /�x2+��.�2 /�y2, P is pressure,
f �sin � / �sin��+
�−sin �� �with 
�� /2−�−��,
Bo��gH2 /�, the angle � is measured clockwise from the
horizontal to the solid �refer to Fig. 1�, and 	�H /L �ratio of
vertical to axial scales�. This analysis is valid in the limit
	2�1 with f being held fixed, which allows us to neglect
inertia and gradients in the z-direction. In this limit, the con-
dition 	2f �1 is also obeyed, which makes the axial interface
curvature negligible relative to the curvature in the x-y plane.

From Eq. �3�, we may write using dimensional analysis

�w� = h2Fi	−
�P

�z
+ Gz
 , �4�

where Fi is only a function of the cross section geometry and
is identical to the one calculated by W&L,8 and Gz

� f Bo sin � /	.
We now proceed to generate an equation for h�z , t�. We

do this in two steps. First, we write the pressure �see Ref. 8�
as P=−1 /h+ f Bo cos� �h−x�, hence

Pz = 	 1

h2 + Gx
 �h

�z
, �5�

where Gx� f Bo cos �. Second, we replace Eq. �5� into Eq.
�4�, which, when combined with Q= �w�A and using A�h2,
may be replaced into Eq. �1� to get

�h2

�t
+

�

�z
�Fih

4
− 	 1

h2 + Gx
 �h

�z
+ Gz�� . �6�

Clearly, flow with gravity can develop even when the
Concus–Finn condition is not obeyed.

For nonzero gravity, the cross sectional shape—and,
thus, Fi—depends not only on � and 
, but also on Gx, the
dimensionless component of gravity normal to the channel
axis. Anticipating the fact that we will pursue an asymptotic
analysis valid as Gx→0, we note that it is possible, in prin-
ciple, to generate by computation the coefficients of the
asymptotic expansion

Fi��,
,Gx� � Fi��,
,0� + Gx� �Fi

�Gx
�

��,
,0�
+ ¯ , �7�

where ��Fi /�Gx��� ,
 ,0� is calculable numerically by per-
forming the operation

� �Fi

�Gx
�

��,
,0�
�

Fi��,
,Gx� − Fi��,
,0�
Gx

�8�

and taking the limit of the result as Gx→0. Nevertheless, as
will be discussed subsequently, we expect the dependence of
Fi on Gx to be weak. Thus, in the present analysis we will
neglect this dependence and take Fi�� ,
 ,Gx� as a given da-
tum. In this context, the analysis will focus on the gravity
effect on the hydrostatic pressure and on the capillary pres-
sure driving force—not on the weak effect of gravity on the

h(z,t)
g

x

z
L

γ

b. x

y

θδ

2α h(z,t)

p

c.

L

h(z,t)z
y

x

H

p

a.

FIG. 1. �a� Schematic of the fluid configuration as it moves down the corner
of angle 2�, from high to low liquid heights. �b� Schematic of h�z , t� in the
x-z plane. The channel vertex forms an angle � with the horizontal. �c� In
the x-y plane, the free surface meets the solid with �static� contact angle �.

TABLE I. Scaling scheme used by W&L and in this work.

Lengths Velocities Other

x� ,h�→H u�→WH /L P�→� /Hf

z�→L v�→W tan �H /L t�→L /W

y�→H tan � w�→W A�→H2 tan �

L�→L W=H� sin2 � /L�f Q�→WH2 tan �
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flow resistance Fi. Effecting the time derivative in Eq. �6�,
and treating Fi as independent of Gx, we may define �
� tFi /2 to get

�h

��
= 2	 �h

�z

2

+ h
�2h

�z2 + Gx
4	h
�h

�z

2

+ h3�2h

�z2�
− 4Gzh

2�h

�z
. �9�

The boundary condition at the tip is zero height,

h�z,�;Gx,Gz� = 0 at z = L��;Gx,Gz� , �10�

where z=L�� ;Gx ,Gz� is the location of the moving liquid tip
and is part of the solution. Determining how L�� ;Gx ,Gz�
depends on Gx and Gz is a main goal of this work.

At z=0 we may impose several different height or volu-
metric flow rate boundary conditions. Since the problem con-
serves volume, the volumetric inflow at z=0 must be equal
to the volume change in the fluid in the channel

�
0

t

Q�z=0dt� =
2

Fi
�

0

�

Q�z=0d�� = �
0

L

Adz . �11�

When Q �z=0 is given as a datum, Eq. �11� provides an addi-
tional condition to be satisfied. Alternatively, the height at
z=0 may be prescribed as a function of time, demanding that

h�0,�� = H��� , �12�

where H��� is given.

A. Properties of Eq. „9…

Two properties are important in this analysis. First is the
relation at the tip z=L��� �where the dependence on Gx and
Gz is not written out but should be understood� between the
slope �h /�z and �h /��. Evaluating Eq. �9� at the tip by set-
ting h=0, we get

� �h

��
�

z=L���
= �2	 �h

�z

2�

z=L���
. �13�

Any solution to Eq. �9� must satisfy Eq. �13�. This condition
may also be derived geometrically from a kinematic condi-
tion that holds at the tip of any interface moving along a
solid. In Fig. 2 we can see that from kinematic consider-

ations,

�h

�t
dt = −

�h

�z
wdt, at z = L�t� . �14�

Since at z=L�t�, w= �w�=−hzFi, and recalling that �= tFi /2,
condition �13� follows.

The second property derives from the volume conserva-
tion Eq. �11�. If we integrate Eq. �6� from 0 to L, we get

1

2

�

��
�

0

L

h2dz = − h2� �h

�z
�

0
− Gxh

4� �h

�z
�

0
− Gzh

4�0. �15�

If we integrate between 0 and �, we get

�
0

L

h2dz = − 2��
0

� 	h2�h

�z
+ Gxh

4�h

�z
+ Gzh

4
�
z=0

d��.

�16�

This condition, derived from the mass conservation equation,
states that the instantaneous liquid volume at time � �the
left-hand side� equals the volume influx through the plane
z=0. It may be also derived from Eq. �11� by expressing Q in
terms of the field variables �see Eq. �4��.

III. STEADY FLOWS

A. Steady theory

Since the channel is defined for 0
z
1, and demand
that h�0�=H0 and h�1�=H1, the steady solution to Eq. �6�
can be obtained implicitly in closed form

zGz = Gx�h − H0� +
1

2C1/4
�1 − �CGx�	arctan
h

C1/4

− arctan
H0

C1/4
 − �1 + �CGx�	artanh
h

C1/4

− artanh
H0

C1/4
� , �17�

where the value of the constant C can be found implicitly
from

Gz = Gx�H1 − H0� +
1

2C1/4
�1 − �CGx�	arctan
H1

C1/4

− arctan
H0

C1/4
 − �1 + �CGx�	artanh
H1

C1/4

− artanh
H0

C1/4
� . �18�

This solution is valid for C�h4, implying that Gz
−1�dh /dz�

�0 for 0�z�1. On the other hand, when 0�C�h4 in 0
�z�1, the first derivative meets the constraint Gz

−1�dh /dz�
�0 and the solution is

h(z,t) h(z,t+dt)

h
t

dt

w dt
z

x

FIG. 2. Schematic of the tip region of the liquid advancing in the channel.
The lines at an angle to the axes represent the limiting slope of the interface
positions at t and at t+dt. The liquid occupies the space to the left of the line
at each time. The intersections with the z-axis correspond to L�t� and L�t
+dt�.
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zGz = Gx�h − H0� +
1

2C1/4
�1 − �CGx�	arctan
h

C1/4 − arctan
H0

C1/4
 − �1 + �CGx�	arcoth
h

C1/4 − arcoth
H0

C1/4
� , �19�

and C is obtained from

Gz = Gx�H1 − H0� +
1

2C1/4
�1 − �CGx�	arctan
H1

C1/4 − arctan
H0

C1/4
 − �1 + �CGx�	arcoth
H1

C1/4 − arcoth
H0

C1/4
� . �20�

When C�0, C is determined by

Gz = Gx�H1 − H0� +
�2

4�− C�1/4��1 − �− CGx�
arctan
�2�− C�1/4H1

�− C − H1
2

− arctan
�2�− C�1/4H0

�− C − H0
2

+ K��
− �1 + �− CGx�
artanh

�2�− C�1/4H1

�− C + H1
2

− artanh
�2�− C�1/4H0

�− C + H0
2 �� , �21�

and z=Z�h� is obtained by replacing z for L and h for H1. Here,

K = �0, − C � H0
4 and − C � H1

4, or − C � H0
4 and − C � H1

4,

1, H0
4 � − C � H1

4,

− 1, H1
4 � − C � H0

4.
� �22�

Equation �6� might suggest that dh /dz=0 at some 0�z�

�1 such that h4=C at z=z�. However, this possibility must
be ruled out because each solution branch assumes that C is
either larger or smaller than h4 everywhere in 0�z�1; and
once the sign of dh /dz has been set, it cannot change. These
solutions contain the steady solution presented in Ref. 10 for
given flow rate upstream at z→−�, which can be recovered
by setting H0=0 and letting 0
h
C1/4 in Eq. �17� or C1/4


h�� in Eq. �19�. In our problem, the domain has finite
length and this demands h4�C. Knowing C from Eq. �18�,
�20�, and �21�, the steady flow rate is given by

Q =
FiFAGzC

tan �
, �23�

where FA� f2�cos � sin 
 /sin �−
� is a geometrical coeffi-
cient between dimensional area and height, A�=FAh�2.

It is easy to see that when Gz→0, C→� if Q is to

remain finite. If we define Ĉ�CGz so that Q=FiFAĈ / tan �,
we have

1 �
5�H0

3 − H1
3� + 3Gx�H0

5 − H1
5�

15Ĉ
as Gz → 0. �24�

This equation determines Ĉ for known H0 and H1. If we
replace the left-hand side with z and H1 with h, the equation
determines z�h�,

z �
5�H0

3 − h3� + 3Gx�H0
5 − h5�

5�H0
3 − H1

3� + 3Gx�H0
5 − H1

5�
as Gz → 0. �25�

Eliminating C between Eqs. �23� and �24�, we get the
flow rate in terms of the inlet and outlet liquid heights, as
that by Weislogel12 �where one may find several other useful
closed form solutions for steady and unsteady corner flows�,

Q �
FiFA

tan �

5�H0
3 − H1

3� + 3Gx�H0
5 − H1

5�
15

as Gz → 0.

�26�

Examination of Eq. �18� shows that in the limit H1

→H0, C must take on a certain form. To reveal this form, let

C��� � C0 + �C1 + ¯ ,

h�z,�� � h0�z� + �h1�z� + ¯ , �27�

� � H0 − H1, � → 0.

Substituting into Eq. �18�, we find

C0 = H0
4, �28�

C1 =
H0

2�1 + GxH0
2�

Gz
. �29�

In the limit H1→H0, C0 represents pure gravity flow in the
absence of capillary driving �i.e., when �=0 or h=H0

=const�. There is a particular value of Gz
� that halts the flow,

for a given �. By equating to zero the first two terms—not
strictly correct for an asymptotic expansion—we find

Gz
� � −

�H0 − H1��1 + GxH0
2�

H0
2 . �30�

Perhaps fortuitously, this result is correct to O��� as can be
seen by comparing it to the exact expression, obtained by
integrating Eq. �6� with C=0 �i.e., zero flow rate�,
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Gz
� = −

�H0 − H1��1 + GxH0H1�
H0H1

. �31�

Thus, for example, if H0�H1 �H0�H1�, the capillary driv-
ing force is in the +z �−z� direction and any Gz�Gz

��0
�Gz�Gz

��0� reverses the flow.

B. Comparison with steady flow experiments

Before extending the analysis to unsteady flows we dem-
onstrate the accuracy of the model by comparing the steady
solutions with simple experiments. Direct comparisons are
provided here for Eq. �24� �z�h�� and Eq. �26� �Q
�Q� /WH2 tan �� with experiments performed in both ter-
restrial and reduced gravity environments. Only limited ex-
perimental verification of such flows has been provided in
literature.13

The experiment arrangement is a low-angle interior cor-
ner container oriented “horizontally” �i.e., Gx�0, Gz=0�, as
pictured in Fig. 3. Liquid is pumped at a controlled flow rate
into and out of a test cell 73 mm long and with half angle
�=5°. The fluid is driven from left to right across the test
cell by pressure gradients induced by surface tension and
gravity. Fluids are polydimethyl siloxane �PDMS� �silicone
oil� and their properties are listed in Table II.

For 5 cSt PDMS at a flow rate Q�=0.0370 ml /s, images
are shown in Fig. 3 at steady state. The upper image is taken
in a normal Earth gravity �go�, while the lower image is
taken in the reduced gravity environment of an aircraft in
free fall,14 where effectively g�10−2go. Variations in the in-
terface height h�z� are hardly distinguishable in the terrestrial
environment under these conditions. However, significant
curvature is observed when gravity is reduced to the point
Gx�1. This limit is used to predict the now explicit interface
profile h�z� from Eq. �24� which is plotted in Fig. 4 alongside

the pixelized line of the empirically determined interface.
Despite the excellent agreement ��1%� for h��z�� over a
large extent of the flow, the empirical inputs H0 and H1 in
Eq. �26� for the prediction of Q� result in uncertainties of up
to 10% due to their cubic dependence. The measured flow
rates Qexp� suffer in part from experimental uncertainty �for
the low-g apparatus 
15% typical�. Nonetheless, overpre-
dictions from 1% to 25% are observed for flows satisfying
the model assumptions. As an example, in the case of Fig. 4,
an outlier value of Qexp� =0.037�0.005 ml /s is measured,
while Q� determined from Eq. �26� is 0.046�0.004 ml /s.
Further terrestrial data for Gx�10 is presented in Fig. 5 for
various conditions and fluid properties. Using the same ex-
periment apparatus, tests are performed for fixed fluid vol-
ume and varying flow rate Q� �left, 5 cSt Si oil�, and for
fixed flow rate and varying fluid volume �right, 10 cSt Si oil�.
The volume condition is noted on the figures by a horizontal
line indicating the mean liquid height �level� of the no-flow
state. Equation �24� agrees well with the data. Flow rates
predicted by Eq. �26� in general overpredict the experimental
values by not more than 8%. Calculated versus measured
flow rates over a range of tests conducted are presented in
Fig. 6. The systematic overprediction may be attributed to
neglect of curvature in the z-direction and inertia, both of
which retard the flow and increase with flow rate. The tests
of the steady theory support the appropriateness of the
model. In the rest of the paper we use the model to develop
approximate unsteady flow solutions.

IV. UNSTEADY SOLUTIONS

In this section we develop a perturbation theory for grav-
ity effects on unsteady corner flows. Unlike the steady case,
unsteady solutions cannot be obtained in closed form for
arbitrary values of Gz and Gx. Therefore we will pursue a
perturbation analysis valid for small values of the gravity
parameters Gz �parallel to the flow� and Gx �perpendicular to
the flow�. It is precisely this limit that is relevant in reduced
gravity environments �i.e., spacecraft�, where g is finite but
small. Assuming that both parameters are independent of one
another, h and L may be expanded asymptotically as

free surface

(a)

1-g

In Out

(b)

0-g

FIG. 3. �Color online� Images of steady flow experiments. �a� 1-go. �b�
Low-g. On the right, a schematic of the cross section.

TABLE II. Physical properties of PDMS fluids used in the experiments. � is
nominal kinematic viscosity.

�
�cSt�

�
�g /cm3�

�
�g/cm s� �

�
�dyn/cm�

5 0.913 4.56 0 19.7

10 0.935 9.35 0 20.1

14

12

10

8

6

4

h
(m
m
)

706050403020100
z (mm)

L

H0

H1

FIG. 4. h��z�� with Gx=0 from Eq. �24� plotted with pixelized experimental
interface elevations. Qexp� =0.037�0.005 ml /s; 5 cSt PDMS; channel half
angle, �=5°. The portion of the measured interface used for fitting the
theory is shown between H0 and H1.
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h�z,�;Gx,Gz� � h00�z,�� + Gxh10�z,�� + Gzh01�z,�� + ¯ ,

�32�

L��;Gx,Gz� � L00��� + GxL10��� + GzL01��� + ¯ , �33�

as both Gx, Gz→0. In this notation, the first subscript refers
to Gx and the second one to Gz. Thus, 00 implies Gx=Gz

=0, 10 denotes Gx�0 and Gz=0, and 01 denotes Gx=0 and
Gz�0.

A. O„1… solution

The equation for h00 is the same one solved by W&L and
obtains by substituting Eq. �32� into Eq. �9� and equating the
terms of O�1�,

h00�
= 2�h00z

�2 + h00h00zz
. �34�

The tip height condition �Eq. �10�� at this order is

h00�z,�� = 0 at z = L00��� . �35�

If the injected volume at z=0 is prescribed, then the lowest-
order version of Eq. �11� must be satisfied, viz.,

V��� = �
0

L00

h00
2 dz , �36�

where we have assumed that the injected volume at z=0 may
be a known function of � but is independent of Gx and Gz. If,
on the other hand, the height at �=0 is prescribed as a func-
tion of time, then

h00�0,�� = H��� �37�

must be satisfied.
Equation �34� admits similarity solutions for a wide va-

riety of volume time dependences �Eq. �36�� or boundary
conditions at z=0 �Eq. �37��, many of which have been ana-
lyzed by W&L and more completely in Ref. 15; here, we
present only the essential results.

1. Similarity

If we define F00��� by h00=�a00�2F00���, and
�=�−1�−b00z�b00, similarity is obtained if and only if
b00=−�a00+1� /2 and Eq. �34� becomes

F00F00� + 2�F00� �2 + �F00� −
2a00

1 + a00
F00 = 0, �38�

where � is a factor that leaves this equation invariant and
allows one to set 0
�
1, and the prime denotes differen-
tiation with respect to �. The value of � will be determined
from the boundary conditions on F00. The tip height condi-
tion �Eq. �35�� becomes

F00�1� = 0, �39�

and either using the tip condition Eq. �13� with Eqs. �32� and
�33� or directly from local analysis of Eq. �38�, we find the
slope boundary condition

F00�1� = − 1
2 . �40�

Since �=1 at the tip, the definition of � indicates that
the tip location in physical space at this order is

L00 = ���a00+1�/2� 2

a00 + 1
. �41�

Thus, using conditions �39� and �40�, Eq. �38� is integrated
as an initial value problem from �=1 back to �=0 where the
value of F00�0� is determined.
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FIG. 5. Meniscus profile h��z��. Pixelized line: data; continuous line: Eq.
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Knowing F00���, the value of � is found from the simi-
larity versions of either Eq. �36� and �37�. If it is known that

either V00���=k�m �with m= �5a00+1� /2� or H���=Ĥ�a00,
then � is found, respectively, from

�5� 2

1 + a00
�

0

1

F00
2 d� =−

4�5

5a00 + 1
�a00 + 1

2

�F00�0�2F00� �0� = k �42�

or

Ĥ = �2F00�0� . �43�

By assigning values to a00 we can create different physically
relevant boundary or volume conditions for h00. Table III
summarizes the cases analyzed by W&L; some of these
cases were also analyzed by Cox and Verbist11 in the context
of flow in foams in zero gravity. For the case a00=−1 /3, ours
is a new analytical solution that had been until now calcu-
lated numerically.8 Details of the solution may be found in
Appendix A.

B. O„Gx… solution, 10: Gravity perpendicular
to channel

At this order, Eq. �9� is

�h10

��
= h10

�2h00

�z2 + h00
�2h10

�z2 + 4
�h00

�z

�h10

�z

+ h00
2 
4	 �h00

�z

2

+ h00
�2h00

�z2 � . �44�

The volume condition, the height condition at z=0, and the
height condition at the tip may be written compactly as

�
0

L00

h00hijdz = 0, �45�

hij�0� = 0, �46�

hij�L00,�� + �Lij
�h00

�z
�

�L00,��
= 0 �47�

for both orders Gx �ij=10� and Gz �ij=01�. The height con-
dition at the tip, Eq. �10�, requires some care because L is

part of the solution and a function of the small parameters of
the problem. Thus, here we must expand both h and L. The
latter demands that we expand h�L ,� ;Gx ,Gz� in a Taylor
series about L00 in addition to applying the asymptotic ex-
pansion �32�, to yield Eq. �47�. This equation defines Lij, the
correction to L00 at O�Gx� �ij=10� and at O�Gz� �ij=01�.

1. Similarity

Equation �44� admits similarity solutions using the same
independent variable, �, as in O�1�. By defining

h10�z,�� = �3a00�6F10��� , �48�

F10��� satisfies

F10� F00 + F10� �4F00� + �� + F10	F00� −
6a00

a00 + 1



= − F00
2 �4F00�

2 + F00F00� � . �49�

It can be shown from Eq. �49� that at �=1,

F10� + F10
17a00 + 1

3�a00 + 1�
= 0. �50�

The other condition for F10 is either16

�
0

1

F00F10d� = 0 �51�

or

F10�0� = 0. �52�

Once F10��� is known, we may use Eq. �47� and defini-
tion �48� to get L10,

L10 =
23/2�5��5a00+1�/2F10�1�

�a00 + 1
. �53�

Below we summarize the solutions of Eq. �49� for the
cases examined by W&L in the problem at O�1�. All the
cases that have exact solutions at O�1� have exact solutions
at O�Gx� �and also at O�Gz��. Equation �49� satisfies bound-
ary condition �50� and either the volume condition �51� or
boundary condition �52�, as stated below as “condition 2.”

TABLE III. Some physically relevant cases and special solutions of Eq. �34�.

a00 Boundary or volume condition F00��� F00�0� F00� �0� �

0 h00�0�=Ĥ �constant height� Numerical 0.345 �0.2051 �Ĥ /F00�0�

1 h00�0�=Ĥ� �constant rise�
1 − �

2
1

2
−

1

2
�2Ĥ

−
1

5
V=k �constant volume drop�

1 − �2

4
1

4
0 �30k�1/5�2

5 �1/10

1

5
V=k� �constant source� Numerical 0.400 �0.311 65 	 − k�5

2�3F00
2 �0�F00� �0�


1/5

−
1

3
V=k�−1/3 �sink at z=0�

3��1/3 − �2�
10

0 � �500k /9�3�1/5
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�a� a00=1: Linearly increasing height at �=0.

• condition 2: Eq. �52�,
• F10= 1

152
�1−3��−1�+2��−1�2− 1

3 ��−1�3�,
• F10�1�= 1

152,

• L10= ��2Ĥ�5/2 /76��3.

�b� a00=− 1
5 : drop of constant volume.

• condition 2: Eq. �51�,
• F10= 1

320
�−1+7�2− 17

3 �4+ 9
5�6�,

• F10�1�= 1
150,

• L10= 2
5k.

�c� a00=− 1
3 : volume sink at z=0.

• condition 2: Eq. �51�,
• F10= �9 / �25�103���−2/3��1/3−1�3�27�5/3−2��1

+�1/3+�2/3+�+�4/3�3,
• F10�1�=0,
• L10=0.

�d� a00= 1
5 : Constant flow rate at z=0.

• condition 2: Eq. �51�,
• F10: numerical,
• F10�1��0.004 39,
• L10�0.0876� 5

3k��.

�e� a00=0: constant height at z=0.

• condition 2: Eq. �52�
• F10: numerical
• F10�1��0.008 86,

• L10�0.13�23Ĥ5�.

C. O„Gz… solution, 01: Gravity parallel to the channel

At this order, Eq. �9� is

�h01

��
= h01

�2h00

�z2 + h00
�2h01

�z2 + 4
�h00

�z

�h01

�z
− 4h00

2 �h00

�z
.

�54�

The volume condition, the height condition at z=0, and the
height condition at the tip are shown in Eqs. �45�–�47�, with
ij=01.

1. Similarity

Equation �54� admits similarity solutions using the same
independent variable, �, as in O�1�. By defining

h01�z,�� = ��5a00+1�/2�5F01��� , �55�

F01��� satisfies

F01� F00 + F01� �4F00� + �� + F01	F00� −
5a00 + 1

a00 + 1



= 4� 2

a00 + 1
F00

2 F00� . �56�

It can be shown from Eq. �56� that at �=1,

F01� + F01
14a00 + 4

3�a00 + 1�
= 0. �57�

In a completely analogous way to the O�Gx� problem, the
second condition for F01 is either17

�
0

1

F00F01d� = 0 �58�

or

F01�0� = 0. �59�

Once F01��� is known, we may use Eq. �47� and defini-
tion �55� to get L01,

L01 =� 8

a00 + 1
�4�2a00+1F01�1� . �60�

Below we summarize the solutions of Eq. �56� for the
cases examined by W&L in the problem at O�1�. All the
cases that have exact solutions at O�1� have exact solutions
at O�Gz�. Equation �56� satisfies boundary condition �57� and
either the volume condition �58� or boundary condition �59�,
as stated below as condition 2.

�a� a00=1: Linearly increasing height at �=0.

• Condition 2: Eq. �59�,
• F01= �� /76��11−16�+6�2�,
• F01�1�= 1

76,

• L01=2Ĥ2�3 /19.

�b� a00=− 1
5 : drop of constant volume.

• Condition 2: �−1
1 F00F01d�=0. Note that the effect of

gravity on the constant volume drop is antisymmetric
about z=0. This is opposite to the case when gravity
points perpendicular to the channel, where the effect
is symmetric about z=0. Thus, here the volume con-
dition must be taken between �1 and 1 because grav-
ity hastens one end of the drop and slows down the
other. Thus, F01��� �from which the correction h01 is
obtained� and the tip position correction at O�Gz�
must both be antisymmetric about �=0,

• F01=�10 /840��19−16�2+5�4�,
• F01�1�=−F01�−1�=�10 /105,
• L01

� = �
2

21
� 2

5
�2/5304/5�3/5k4/5, where the + and � refer

to the drop tips at z�0 and z�0, respectively. The
tip at z�0 moves with gravity; the tip at z�0 moves
against gravity.

�c� a00=−1 /3: Volume sink at z=0, V=k�m, m= �5a00

+1� /2=−1 /3.

• Condition 2: Eq. �58�,
• F01=�1/3g��� where
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g�x� � C +
1

523 600�2244x14/3 −
19 754x3

3

+ 6174x4/3 + 300�2��5 − �5

+ �5 + �5 �tan−1	4x1/3 − �5 + 1

�2�5 + �5�



+ 300�2��5 − �5

− �5 + �5 �tan−1	4x1/3 + �5 + 1

�2�5 − �5�



− 300�5 ln
x2/3 + 1

2 �1 − �5�x1/3 + 1

x2/3 + 1
2 �1 + �5�x1/3 + 1

+
375x2/3�x2/3 − 1�

x5/3 − 1
−

625

x � , �61�

and C�1.89�10−3.
• F01�1��0.004 423 52,
• L01�1.7k4/5�1/3.

�d� a00= 1
5 : Constant flow rate at z=0.

• Condition 2: Eq. �58�,
• F01: numerical.
• F01�1��3.59�10−2,
• L01�0.394� 5

3
�9/1021/5k4/5�7/5.

�e� a00=0: Constant height at z=0.

• Condition 2: Eq. �59�,
• F01: numerical,
• F01�1��2.17�10−2,

• L01�0.182�23/2Ĥ2�.

D. Special case: Exponential height at z=0

When h�0,� ;Gx ,Gz�=H exp�a00��, W&L �Ref. 8� gen-
erate a similarity equation at O�00� by writing h00�z ,��
=exp�a00���2F00���, where ���−1�−b00z exp�b00��. Simi-
larity demands that b00=−a00 /2. The resulting equation and
relation between b00 and a00 are the same that were obtained,
respectively, from Eq. �38� and b00=−�a00+1� /2 as the lead-
ing order in the asymptotic limit a00→�.

At O�Gx� and O�Gz� similarity is obtained with
h10=exp�3a00��6F10��� and h01=exp� 5

2a00��5F01���, respec-
tively.

Fij��� obeys either Eq. �49� or Eq. �56�; and Lij follows
expressions analogous to Eqs. �53� and �60�, all derived as
leading orders in the asymptotic limit of a00→�,

L10 = 23/2�a00�−1/2�5 exp	5a00

2
�
F10�1� , �62�

L01 = 16�a00�−1�4 exp�2a00��F01�1� . �63�

The value of � is found from the boundary condition,
h�0,��=H exp�a00��,

� =� H
F00�0�

. �64�

From integration of Eq. �38� with F00�1�=0, F00� =−1 /2, we
find F00�0��0.637. Since the boundary condition at z=0
specifies the height, we find after perturbation that Fij�0�
=0 for both ij=10 and ij=01 �see Eqs. �52� and �59��. Thus,

L10 = 5.25 � 10−2�a00�−1/2H5/2 exp	5a00

2
�
 , �65�

L01 = 0.12�a00�−1H2 exp�2a00�� . �66�

V. DISCUSSION

A. Steady solution

The steady solution with gravity can only be found im-
plicitly as z=Z�h ,H0 ,H1 ,L ;Gx ,Gz�. We have generated so-
lutions that contain the foam drainage equation �FDE� solu-
tions as special cases that correspond to a channel of infinite
length and Gx=0. Our analysis covers all possible flow di-
rection and liquid slope combinations.

The flow rate depends in a complex way on the inlet and
outlet heights H0 and H1, respectively. This dependence may
be expressed by the difference H0−H1 only when H0�H1.
When Gz=0, the flow rate depends on H0

3−H1
3 and H0

5−H1
5,

see Eq. �24�.
Experiments with steady flow support the dependence of

z on Gx found in the model for a wide range 0
Gx�10. The
dependence on Gz has been tested extensively in the context
of the FDE.10 Although the solutions relevant for foam drain-
age are different from those we address here, tests of the
model are interchangeable.

B. Unsteady solutions

We have developed solutions for cases where the bound-
ary condition at z=0 gives rise to a simple expression in the
similarity domain. In addition to these cases, a wide selection
of height or volume conditions may be computed using the
appropriate a00. Then, using the procedure outlined here,
Fij��� is obtained and L10 and L01 follow from Eqs. �53� and
�60�, respectively. This problem allows for the higher orders
O�Gx� and O�Gz� to be analyzed using similarity by preserv-
ing the independent variable � that appears at O�1�, and with
an exponent of � that is uniquely determined by a00.

At O�Gx�, the gravity pointing down onto the meniscus
makes the meniscus less curved in the channel cross section,
an effect analogous to what happens to a sessile drop sitting
on top of a horizontal surface in a gravitational field. One
might think that this reduction in the meniscus curvature
would slow down the corner capillary flow since in the ex-
treme case of “infinite” gravity the meniscus is flat and the
capillary driving force disappears. However, another conse-
quence of vertical gravity is the development of a hydrostatic
pressure gradient down the channel proportional to Gxdh /dx;
and the net effect of the two is to hasten the flow. Examina-
tion of the solution to O�Gx�, Eq. �53�, shows that for
F10�1��0, L10 is independent of � when a00=−1 /5; and L10
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decreases �or increases� with � as a00 is less than �or larger
than� �1/5. In the special case a00=−1 /3, F10�1�=0 �see �c�
in Sec. IV B 1� and the correction to the tip position due to
perpendicular gravity is identically zero, even though
a00=−1 /3 is in the “increasing with �” domain based on the
previous discussion.

At O�Gz� when gravity is parallel to the channel axis,
similarity solutions can also be found for all values of a00.
The gravity effect on the constant volume drop is now anti-
symmetric about z=0, with the forward �relative to gravity�
tip being accelerated and the rear tip �which moves against
gravity� being slowed down by gravity.

As discussed in Sec. II, the value of the geometrical
factor Fi depends on Gx through the effect that Gx has on the
cross sectional area shape. Thus, strictly speaking, we should
have expanded Fi in an asymptotic series in Gx. However,
when Gx=0, Fi is most sensitive to the corner angle �; a
good approximation is

Fi �
1

6
	1 −

sin 2�

5

 � 2% standard deviation, �67�

which does not even contain the contact angle and shows a
weak ��20%� variation with �. Since the effect of Gx is to
flatten the cross sectional meniscus, analogous to the contact
angle �→� /2−�, we assume that the effect of Gx is of
similar order to that of �. Therefore Eq. �67� is considered
valid even when Gx�0 and, thus, Fi is taken to be indepen-
dent of Gx in the analysis. Using Eq. �67�, we find the bound
1 /8�Fi
1 /6 introduced by W&L �Ref. 8� for all values of
� and �.

The relevance of solutions to the FDE to the problem of
capillary flow in corners needs further discussion in addition
to the arguments offered in the Introduction. The case pre-
sented in Ref. 10 of a traveling wave front of liquid imbibing
an initially dry foam may look like an analog of a liquid fillet
advancing into a dry corner channel. However there are fun-
damental differences between the two. First, the traveling
wave—by its very nature—has an upstream condition of
constant liquid area at upstream “infinity.” This implies that,
upstream, the flow cannot be driven by capillarity and must
be entirely gravity driven. Second, similarity in the case of
gravity along the channel without perturbation in Gz only
obtains for a00=b00=−1 /3. This case corresponds to a liquid
volume sink at z=0 not to a constant liquid area upstream.
The similarity equation that is obtained in this case does not
admit solutions that asymptote to a constant at upstream in-
finity. Thus, we conclude that the class of similarity solutions
presented in Ref. 15, from which our equations can be de-
duced, is fundamentally different from the class of nonsimi-
larity solutions presented in Ref. 10.

In summary, we have analyzed the capillary corner flow
in a sharp corner under weak gravity. We have examined the
important practical limits of gravity perpendicular and paral-
lel to the channel corner. In the asymptotic limit Gx�1, Gz

�1, the two effects are linearly independent and their com-
bined effect is obtained by linear superposition. The per-
turbed problems for the gravity-driven corrections to the
zero-gravity case may be reduced to similarity using the

same independent similarity variable as in the zero-gravity
problem. Not surprisingly, the effect of gravity is to hasten
the capillary flow when it points down into the channel and
when it points along the flow direction. The main results of
this work are expressions useful for system design and analy-
sis of the gravity corrections to the liquid tip position in the
channel as a function of time presented in Secs. IV B 1 and
IV C 1. Even though the analysis necessitated the introduc-
tion of ad hoc scales H and L, the dimensional results pre-
sented in Appendix B are naturally free of these parameters
and involve only fluid properties and information from the
volume or flux/height condition at z=0. Finally, a new ana-
lytic solution to an equation describing nonlinear unsteady
heat conduction has been derived in the context of the case
a00=−1 /3. The details may be found in Appendix A.

APPENDIX A: SOLUTION TO F00 FOR a00=−1/3

The equation to be solved is

F00F00� + 2�F00� �2 + �F00� + F00 = 0, �A1�

subject to

F00�1� = 0 and lim
�→0

F00� F00
2 = bounded. �A2�

The second of the above conditions arises from the fact that
the flux, Q=hzh

2, at z=0 must be bounded.
This equation is the similarity version of a special case

of a nonlinear heat equation,

�T

�t
= A

�

�z
	T n�T

�z

 , �A3�

which is obtained for n=1.18 Local analysis of Eq. �A1� near
�=0 gives F00��1/3 as �→0. We now define an auxiliary
function f�����−1/3F00���, with bounded f��0�, which
obeys

3�f f � + 6f���f�� + 3�5/3f� + 4�2/3f = 0. �A4�

Rearranging,

f�3�f � + 6f� + 4�2/3� + f��6�f� + 3�5/3� = 0. �A5�

This can be an exact differential only if

d

d�
�6�f� + 3�5/3� = 3�f � + 6f� + 4�2/3, �A6�

or, upon simplification,

f� + 1
2�2/3 = 0. �A7�

When this condition is met, we may rewrite Eq. �A5� as

d

d�
�f�6�f� + 3�5/3�� = 0. �A8�

Integrating once,

f�6�f� + 3�5/3� = C . �A9�

Since C is a constant, and C=0 when �=0, it follows that
C�0. Thus, either f �0 �trivial solution, physically not ad-
missible� or
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2f� + �2/3 = 0. �A10�

This is the same as the condition needed to make Eq. �A5� an
exact differential. Thus, the maneuver is self-consistent and
the solution to Eq. �A10� is also a solution of Eq. �A5�.
Integrating Eq. �A10� and demanding that F00�1�= f�1�=0
yields

F00 = 3
10��1/3 − �2� . �A11�

This solution meets the two conditions stated in Eq. �A2�.
When a00�−1 /3, the solution F00 to Eq. �38� does not

remain strictly positive in 0
�
1. Thus, Eq. �A11� pro-
vides an exact solution to the lower bound of strictly positive
similarity solutions in 0
�
1.

APPENDIX B: DIMENSIONAL FORMS FOR MENISCUS
HEIGHT AND LENGTH

In this section we give expressions for the meniscus
height as a function of axial position and time, and the liquid
length as a function of time. Expressing each dimensionless
variable, h ,z , t��2� /Fi� ,L, as the corresponding dimen-
sional counterpart divided by the appropriate scale indicated
in Sec. II, and after tedious but straightforward algebra, it is
possible to show that the horizontal and vertical length
scales, L ,H, drop out of the problem. This should happen
since these flows do not have a physical length scale.

Below we summarize the dimensional results for each of
the cases analyzed in the paper, identified by the value of a00.
In the expressions that follow, F00��� ,F10��� ,F01��� must be
used with the corresponding expressions given in Secs.
IV B 1 and IV C 1. For convenience, we drop the primes
with the understanding that all variables in this section are
dimensional. Coefficients shown as real numbers with deci-
mal points are the result of numerical calculations.

It is convenient to define the parameters,

lc � 	 �

f�g

1/2

, G �
�

�

Fi sin2 �

f
. �B1�

�a� a00=1: height at z=0 linear with time, h�0, t�=kt,

h = 2ktF00��� + 8lc
−2 cos� k3t3F10���

+ 4G1/2lc
−2 sin� k5/2t3F01��� , �B2�

L = �kG�1/2t + 1
19G1/2lc

−2 cos� k5/2t3

+ 1
19G1/2lc

−2 sin� k2t3. �B3�

Here,

� =
z

t�kG�1/2 . �B4�

�b� a00=−1 /5: constant volume drop, V=k�2H2LFA�,

h = 	15V

FA

2/5	 4

5Gt

1/5

F00���

+ 	15V

FA

6/5	 4

5Gt

3/5

lc
−2 cos� F10���

+ 4	15V

FA

lc

−2 sin� F01��� , �B5�

L = 	15V

FA

1/5	5

4
Gt
2/5

+
1

5
lc
−2 V

FA
cos� �

2

5
lc
−2	5

4
Gt
3/5	15V

FA

4/5

sin� .

�B6�

Here,

� = z	 4

5Gt

2/5	 FA

15V

1/5

. �B7�

In the expression for L, the gravity along the channel point-
ing in the +z direction has an antisymmetric effect, length-
ening the drop in z�0 and shortening it in z�0, compared
to the no-gravity case. The plus and minus refer to the posi-
tive and negative ends of the drop, respectively.
�c� a00=−1 /3: sink at z=0, V=kt−1/3,

h = 	 500k

9�3FA

2/5	 2

G

1/5

t−1/3F00���

+ lc
−2	 2

G

3/5	 500k

9�3FA

6/5

t−1 cos� F10���

+ lc
−2	 500k

9�3FA
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L = 	500k

FA
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2
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−2	 500k

9�3FA

4/5	G

2

3/5

sin� t1/3. �B9�

Here,

� =
z

t1/3	 FA

500k

1/5	 2

G

2/5

. �B10�

In this curious case, there is no contribution to L from
gravity perpendicular to the channel, identified by the
term proportional to cos�, and associated with the or-
der O�Gx� �see �c� in Sec. IV B 1�.

�d� a00=1 /5, constant flow rate Q at z=0, V=Qt,

h = 3.31	10t

3G

1/5	 Q

2FA

2/5

F00���
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3
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L = 1.82	 Q
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� 10−2 lc
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3

 + 7.42
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2
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Here,

� =
1

1.82
	2FA

Q
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. �B13�

�e� a00=0, constant height H at z=0,

h = 2.9HF00��� + 24.31H3lc
−2 cos� F10���

+ 14.3H5/2lc
−2	Gt

2

1/2

sin� F01��� , �B14�
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