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On Matching ANN Structure to Problem Domain Structure

George G. Lendaris,* Martin Zwick** and Karl Mathia***
*Professor of Systems Science and Electrical Engineering

**Professor of Systems Science
***Graduate Student, Electrical Engineering 

Portland State University, P.O. Box 751, Portland, OR 97207

ABSTRACT
    To achieve reduced training time and improved generalization with artificial neural 
networks (ANN, or NN), it is important to use a reduced complexity NN structure.  A 
"problem" is defined by constraints among the variables describing it.  If knowledge about 
these constraints could be obtained a priori, this could be used to reduce the complexity of 
the ANN before training it.  Systems theory literature contains methods for determining 
and representing structural aspects of constrained data (these methods are herein called 
GSM, general systems method).  The suggestion here is to use the GSM model of the given 
data as a pattern for modularizing a NN prior to training it.  The present work assumes the 
GSM model for the given problem context has been determined (represented here in the 
form of Boolean functions of known decompositions).  This means that certain information 
is available about constraint among the system variables, and is used to develop a 
modularized NN.  The modularized NN and an equivalent general NN (full interconnect, 
feed-forward NN) are both trained on the same data.  Various predictions are offered:  1) 
The general NN and the modularized NN will both learn the task, but the modularized NN 
will learn it faster.  2)  If trained on an (appropriate) subset of possible inputs, the 
modularized NN will perform better generalization than the general NN.  3) If trained on a 
non-decomposable function of the same variables, the general NN will learn the task, but 
the modularized NN will not.  All of these predictions are verified experimentally.  Future 
work will explore more decomposition types and more general data types.

INTRODUCTION
    There is substantial motivation to move away from using neural networks (NNs) with 
homogeneous architectures to NN structures that comprise modules of smaller neural networks.  
Motivations include issues of physical realizabililty of NNs, scalability of training time for NNs 
with large numbers of connections, and successful generalization.  The modules would be 
smaller, and thus ease these concerns.  The ability to modularize a NN is predicated upon the 
designer knowing (or discovering) enough about the problem domain to be able to decompose 
the given task into meaningful subtasks.  A collateral assumption is that these subtasks will 
require fewer input and/or output signals, and therefore smaller NNs to implement them.  The 
designer must also achieve a good enough understanding of the internal structure of the problem 
domain and the specific task being implemented (e.g., in a control context, the internal structure 
of the overall control system) to determine how to connect the NN modules so together they can 
successfully solve the larger task.
    Research questions associated with such an endeavor include: what guidance can be developed 
for "parsing" a task/problem domain; how can the results of such parsing be used to design 
appropriate NN modules; how can training data for the (possibly artificial) sub-tasks be 
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developed to train the NN modules; and if the modules are trained individually, how can such 
trained NN modules be put together, with perhaps additional training, for the larger NN to solve 
the original (whole) task?
    In a previous paper [Lendaris & Todd, 1992], these issues were approached via a problem 
context for which the researcher has full knowledge of the task structure [fact retrieval in a 
knowledge base, where the structure of the concept-type hierarchy is known to be a lattice].  In 
the present paper, the approach explored is to employ structural modeling methods from the 
literature of systems theory to provide information to the designer about the structure of the 
problem domain, and this information is to be used to modularize a NN prior to training it. 

GENERAL APPROACH 
    The method under exploration is that of using techniques developed within the general 
systems community over the last 10-20 years for representing structural aspects of system 
properties [Lendaris, 1980; Klir, 1985; Warfield, 1976].  One of these representation schemas 
promises to be particularly useful in suggesting reduced-complexity connectivity patterns for 
NNs.  For convenience herein, this schema and associated notation is called the General System 
Method (GSM).  It is an outgrowth of Ashby's earlier work in constraint analysis [Ashby, 1964] 
and a number of systems researchers have contributed to its development and use [e.g., Klir, 
1976, 1985; Krippendorff, 1979, 1986; Conant, 1980, 1988; Cavallo, 1981; Broekstra, 1981].
    As success in this endeavor is accumulated, the method would inject a new step in the 
normally ad hoc process of choosing the architecture/training algorithm for a NN application.  
The method is to be a constructive one, to consist of three activities: 1) analyze data from the 
problem domain using exploratory (as opposed to confirmatory) multivariate techniques [this 
step potentially could be accomplished using NNs in a different mode], 2) use the results to 
select a structural model representation of the data from the GSM lattice (described later), and 3) 
design a (reduced-complexity) connectivity pattern for the NN using the derived structural model 
of the data.  The intent is to have the resulting structure of the NN mirror the structure of the 
data, and thus a kind of structrue matching (or, constraint matching) will have been 
accomplished.
    Various multivariate methods exist to perform exploratory structural analysis.  These include 
Factor Analysis/ Principal Components Analysis, Multidimensional Scaling, Cluster Analysis, 
and Log-Linear Methods (which overlap substantially with information theoretic approaches).  
NNs have been shown to perform the equivalent of some of these methods.  For some 
applications, the structure information obtained via such methods can be further refined, using, 
for example: Discriminant Analysis, Path Analysis, Covariance Structure Analysis, and 
Canonical Correlation Analysis.

BASIS OF APPROACH TO MODULARIZATION 
    The GSM notation (described below) that is used to represent structural attributes of 
constrained data, itself suggests a natural mechanism for transfering the constraint (structural) 
information into a modular design for a NN architecture.  Notationally, for a constraint that is 
equivalent to a non-
decomposable relation among a set of n variables, the GSM representation uses a square box 
with n lines attached (the lines may represent inputs or outputs, but pre-specification is not 
necessary), as shown in Figure 1a.  If the constraint among the n variables were further 
decomposable, say into two non-
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decomposable relations of (n-1) variables, then the representation consists of two boxes, as 
shown in Figure 1b.  The lines connecting the two boxes correspond to the (n-2) variables shared 
by the two sets of (n-1) variables.  The individual lines at the outside of each box represents the 
two non-common variables.
    In GSM, a lattice is used to organize the large number of combinations of non-decomposable 
sub-relations among n variables [e.g., see Krippendorff, 1986, p.40].  The single node at the top 
of the lattice contains a box with n attached lines (all n variables independent), and the remainder 
of the lattice organizes all possible simpler structures, each representing a different possible 
constraint among the variables.  Each level in the lattice contains all "descendants" of higher 
levels, where descent involves removal of one component (box) of a structure and restoration of 
any embededed relations in the component not already present in the remaining structure.  The 
bottom of the lattice contains n boxes, each with 1 attached line (all n variables independent).  
For the present context, the suggested approach is to determine the lowest entry (simplest 
structure) in the lattice that describes (to an acceptable tolerance) the constraint in the given data.  
The collateral suggestion is to then use the GSM pattern selected from the lattice (interconnected 
boxes, with labeled connection lines), with minor modifications, as a template for designing a 
NN with substructures.  The design principle is to 1) let each of the boxes in the selected GSM 
model represent a (general) sub-structure in the NN, 2) implement communication between the 
sub-
structures via a synthetic variable that is introduced for each box, and 3) input these variables to 
an additional sub-structure introduced to accept these variables and to yield the system output 
variable(s).  By virtue of this constraint matching process, the complexity of the NN architecture 
can be reduced, and hence, the training process should be easier, and the potential for good 
generalization higher.
    Nominal Data.   For the case of qualitative (nominal, categorical) data, a constructive 
algorithm is used with GSM (using set- or information-theoretic measures of the variable 
combinations) to determine which entry in the GSM lattice is the desired one (typically, this 
means the simplest structure with acceptable reproduction of the data).  The method, however, 
suffers the combinatoric problems associated with nominal data: a label must be stored for each 
state rather than exploiting a metric to summarize the states.  As is well known, tree searches can 
be computationally expensive.  Even for n as small as 10, it is doubtful that a direct, top down 
search is computationally feasible.  Conant [1988] has developed a bottom up approach that 
incorporates heuristics, and has demonstrated success for n on the order of 100 on a 
microcomputer, and n of order 1000 may be possible for mainframes.  This is encouraging.
    The more usual case in NN applications is to have data that are ordinal, interval, or ratio 
scaled, rather than nominal.  More information is inherently available in such data, and the 
previously mentioned multivariate tools offer significant computational power with which to 
extract structural information by exploiting the metric of the data.  Such methods might allow, 
after calculating constraint information for the given data set, the use of this information to ðéãë 
ïõô (rather than search for) the corresponding set of structural models from the GSM lattice 
which are consistent with the data.  Consideration of these ideas will be the subject of a future 
paper.

SUB-TASK EXPLORED IN THIS PAPER 
    To initiate this exploration, it was decided to examine a nominal-data causal system, 
represented in the form of a Boolean function.  We start with a 3-input, 1-output system, as 
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depicted in Figure 2.  In GSM parlance, this is a 4-variable (ABCD) structure.  The 4-variable 
structures used in this paper derive from [Zwick & Hsu, 1993], developed there in the context of 
structure and dynamics in elementary cellular automata (ECA).  (In the ECA context, the 256 
possible mappings are grouped into 88 equivalence classes and the number of different functions 
at various structure levels mentioned below refer to these classes).  The lattice of 4-variable 
decompositions for such mappings comprises 6 levels, the ABCD structure being at the top level 
(not decomposable).  The next level of complexity (level 5) is the decomposition type ABD/
ACD/BCD, shown in Figure 3a using GSM notation.  The next level of complexity (level 4) is 
the decomposition type ABD/ACD, shown in Figure 3b.  (These are structural "types;" 
permutations of the variables generates a number of different but topologically equivalent 
specific structures.)  For a causal system, we redraw Figure 3b as shown in Figure 3c.  This latter 
schema motivates a way of modularizing a NN to learn/implement a level-4 mapping from ABC-
->D (Figure 3d).
    There are 7 different 3-variable Boolean functions at level 4.  There are 47 such functions at 
the top (non-decomposable) level of the lattice.  The 7 decomposable functions at level 4, and 7 
non-decomposable functions from level 6 were selected for the first set of experiments.  The 
second set of experiments deals with Boolean functions of 5 variables.
    All experiments were carried out using a feed-forward architecture with backpropagation-of-
error training.  Two NN structure types were used: a) a full-interconnect (general, or non 
modularized) NN, comprising one hidden layer and a single output; and b) a modularized 
structure, patterned after Figure 3d.  We used the simplest modularization possible, namely, 
keeping the same number of elements in the NN, and just partitioning the inputs to the hidden 
layer, rather than the full interconnect.  A stylized representation of the NN structure used for the 
5-input case is shown in Figure 4 (for this 5-input case, the general NN had 6 elements in the 
hidden layer, with full interconnect).  Even this very simple modularization demonstrates the 
kinds of gains possible by the suggested process of patterning the NN structure after the GSM 
model of problem-domain structure.
    The decomposable functions were used to train the general NN and the modularized NN.  
Both architectures successfully learned these decomposable functions.  The prediction was that 
the NN whose structure already "matched" the problem-domain structure should be able to learn 
the task with greater ease than the general NN.  This prediction was confirmed, as the 
modularized NN learned the task(s) with significantly fewer training cycles.
    A representative set of non-decomposable functions were used to train the general and 
modularized NNs.  The general NN successfully learned the non-
decomposable functions, and (as predicted) the modularized NN did not.

EXPERIMENTAL RESULTS 
    Since we are working with Boolean functions, the "desired" output for the NN is 1 or 0.  The 
output of an element was judged successful for a 1 when it became ¾ .8, and successful for a 0 
when it became ¼ .2.  "Snapshots" of the NN performance were taken at various stages for each 
of the functions used for training.  Their respective performance numbers were averaged, and 
these numbers used for subsequent comparisons.

A. THREE INPUT VARIABLES.
    The 7 decomposable functions from level 4 were used to train both the general NN (4 hidden 
elements) and the modularized NNs, in the latter cases, taking care to hook up the correct 
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variable as the shared one for each of the 7 functions (2 share A, 2 share C, and 3 share B).  The 
learning performances are compared in Figure 5.  As predicted, the modularized NN learned the 
tasks in substantially fewer cycles than did the general NN.
    Seven non-decomposable (level-6) functions were selected, and these were also used to train 
both the general NN and the modularized NN.  The averaged learning performances are 
compared in Figure 6.  As predicted, the general NN learned the tasks, but the modularized NN 
was not able to do so (trained out to 100,000 cycles). A further prediction was that the general 
NN should find it easier to learn a decomposable function than to learn a non-decomposable 
function.  Figures 5 & 6 show that it took the general NN approximately 1400 and 3000 cycles, 
respectively, to accomplish these tasks -- again confirming the prediction.  [Three different 
random starting conditions were run for each function.  Figures 5 & 6 are based on the best 
performance for each function.]

B. FIVE INPUT VARIABLES
    To demonstrate whether the earlier results obtain in a more complex situation, experiments 
were caried out using a 5-input Boolean function.  In GSM parlance, this corresponds to an 
ABCDEF structure.  The decomposition lattice for ABCDEF structures is significantly larger 
than for the ABCD structures described earlier; the (ABCF/CDEF) structure was selected.  A 
constructive method was developed to create Boolean functions with this kind of structure, and a 
few such functions were designed and used to train both a 5-
input general NN and a 5-input modularized NN.  A dramatically larger fraction of the 
Order(billion) 5-input Boolean functions are non-decomposable compared to the decomposable 
ones.  Thus, the experimental procedure to define a non-
decomposable function was to just pick a function randomly.  Four such functions were used to 
train a 5-input general NN and a 5-input modularized NN (cf. Figure 4).  The same random 
weight initialization was used for each experiment in the set; a second random initialization was 
used for a second set of experiments.  This yielded 8 experiments for averaging, to compare with 
the 7 used in the 3-input case.  As expected, the 5-input non-decomposable functions were not 
learned by the modularized NN.  However, while all of the decomposable functions selected 
were learned by the modularized NN, in all the various experiments run, at least one of them 
were NOT learned by the general NN, even with the same starting weight values.  This provides 
an even stronger result than for the 3-input case.  Figure 7 shows the performance for these 
experiments; note that the general NN's average performance for the decomposable functions it 
did learn would be 11,000 cycles; also,the bottom curve reaches 100% at 40,000 cycles.  A 
summary of the results is given in Figure 8.

GENERALIZATION 
    In discussions related to selection of data for training a NN, the advise usually offered is that 
one must choose a "representative" set of data.  In some cases this is to be based on intuitive/
heuristic procedures, and in some others, based on statistical considerations.  An example in the 
former category might be character recognition: in this case, we are to include examples of each 
of the characters to be recognized.  In the second category, we are told to make sure that the pdf 
of the input data is appropriately sampled.  In general, the idea is that to the extent the data 
actually captures the structure of the application domain, and to the extent the NN then captures 
the structure contained in the data, then the NN can be expected to generalize well, that is, to 
provide correct responses for inputs not seen during training.
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    The experiments described above provide a context for making explict these ideas.  So far, we 
have used all the possible input patterns during training, thus generalization was not at issue.  
However, since there is definite (known) structure in the functions being learned, we ought to be 
able to choose a "representative" subset of the possible input patterns for training the NN, and 
after it trains on this subset, expect the NN to generalize well -- in fact, we should be able to 
design an experiment to demonstrate 100% generalization, based on a substantially reduced 
training set.
    Using the same method that was used to construct the decomposable in the first place, a 
training set comprising only 50% of the possible input patterns (i.e., just half of the mapping) 
was crafted that in principle contained all the information needed for a modularized NN to learn 
the entire function.  This training set was used to train the general NN and the modularized NN.  
As predicted, after learning the training set, the modularized NN gave 100% generalization 
performance.  Also as predicted, the general NN performed significantly poorer in its attempts to 
generalize -- average of 55% correct responses on the inputs not seen during training.

FUTURE WORK 
    The objective of the work reported above was to demonstrate that once we determine in the 
GSM lattice of decomposition types the lowest entry that describes (to an acceptable tolerance) 
the constraint in the given data, a beneficial modularizing of an NN can be accomplished using 
the corresponding GSM model as a template.  For the above experiments, the "lowest entry" did 
not have to be discovered, rather, functions were constructed whose decompositions were known 
a priori.  It was demonstrated that a modularized NN fashioned after the GSM model does indeed 
exhibit the properties expected when the NN's structure matches the problem domain structure.  
Further research will explore GSM structures with more than one shared variable, and with more 
than two modules.  Assuming the exhibited properties continue to hold, there is great motivation 
to pursue the next (more difficult) step of developing a method for determining the appropriate 
GSM model that is to be used for modularizing the NN when the function underlying the data is 
not, as in the present case, already known.  A particularly challenging context for application of 
these ideas will be problems based on interval or ratio scaled data -- a progression from the 
nominal type explored so far.
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