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Electromagnetic modes of an inhomogeneous sphere
Lee W. Casperson

In many cases the electromagnetic modes of a sphere can be obtained exactly. Special simplifications occur
when the conductivity, complex permittivity, and complex permeability vary only in the radial direction,
and static and time dependent examples are discussed. With quadratic or Coulomblike permittivity varia-
tions, the wave functions resemble the quantum mechanical harmonic oscillator or hydrogen atom wave
functions, and similar angular momentum operators are obtained.

. Introduction

Several of the more important and more difficult
problems of electromagnetic theory involve the propa-
gation characteristics of inhomogeneous media.
Sometimes the media in question can be assumed to
have a basic spherical symmetry, and nonspherical
media are often approximated by spheres. Two recent
studies were concerned with the surface modes of in-
homogeneous spheres, and the results were related to
the waveguiding atmospheres of stars and planets.12
Another class of problems involves electromagnetic
modes which penetrate throughout an inhomogeneous
sphere, and it is this class that is emphasized in the
present study. It should be possible to fabricate such
spheres using, for example, techniques that have been
developed for graded-index fibers. If the media have
gain, resonant laser modes may result,? depending on
the level of radiation losses. The electromagnetic wave
functions of a sphere are similar to the corresponding
wave functions of quantum mechanics, and the angular
momentum operators for the two cases are essentially
identical.

In Sec. II, Maxwell’s equations are reduced to a set
of ordinary differential equations from which the field
components can be derived. In this treatment the az-
imuthal field variations are governed by the familiar
spherical harmonics. The radial equation for situations
involving radial variations of the complex permittivity
and slow time variations is solved in Sec. III, and the
angular momenta of the modes are derived in the Ap-
pendix.
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ll. Field Equations

Maxwell’s equations for the electromagnetic field
vectors can be written

oH oM
VXE=—pug—— ug— » 1
Ko m~ Ho % (1)
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The fields of interest in this study are nearly harmonic
in time, and it is useful to introduce the substitutions

E = ReE’ exp(iwt), 3)
H= ReH' exp(iwt), (4)
P = ReP’ expliwt), (5)
M = ReM’ exp(iwt), (6)

where the primed quantities are the complex ampli-
tudes of the unprimed quantities. With these substi-
tutions Eqgs. (1) and (2) become
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At a later point attention will be restricted to separable
time and space dependences, and it would be possible
at the outset to assume a simple complex frequency and
time independent field amplitudes. Retaining the time
derivatives does, however, lead to a useful analogy with
Schroedinger’s equation as discussed below.

The advantage of this complex notation is that in-
phase and out-of-phase components of the polarization
and magnetization can be represented by simple com-
plex susceptibilities. Thus, Eqs. (7) and (8) reduce
to
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where x,, and x. are, respectively, the complex mag-
netic and electric susceptibilities.

Equations (9) and (10) may be combined to obtain a
single equation for the electric field amplitude
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If the electric field amplitude varies slowly compared
with an optical cycle, the second time derivative of E’
can be neglected. It is also convenient to introduce the
complex permeability u = uo(1 + X,») and the complex
permittivities € = (1 + x, — to/wep) and ¢ = eo(1 + Xe
— i0/2wep). With these substitutions Eq. (11) reduces
to

VXVXE = —2iwue’§£ + w?uck’ + Yu XVXE. (12
u
For the problem of interest here the complex per-
meability and permittivity vary only in the radial di-
rection. Thus the vector wave equation can be reduced
to a scalar wave equation by means of the substitu-
tiont
E(r0,6,t) =V X [i,r¢(r,0,6,0)). (13)
With this substitution Eq. (12) is replaced by the single
scalar equation
W 1dudty)
at rudr or

This result can be separated by means of the usual
substitution Y(r,0,¢,t) = R(r,t)Y7(0,9,t), and the radial
equation is

V2 = wlpey + 2Uwue — (14)

2
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Some typical solutions of this equation are discussed in
the following section. Besides these modes, a similar
alternative set can be obtained by starting with the wave
equation for the magnetic field and using the substi-
tution H' = V X [i,r{(r,0,4,t)] in place of Egs. (12) and
(13).

lll.. Specific Radial Profiles

In principle Eq. (12) could be used to describe field
distributions which have shapes and amplitudes that
are functions of time. The results would be exact if the
second time derivative had been retained. The only
solutions considered here are those in which the time
and space dependences are separable. Thus it is as-
sumed that the radial function can be written in the
form

R(r,t) = A(r) exp(st). (16)
With this substitution Eq. (15) can be written
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Since the dielectric relaxation time will usually be long
compared with an optical cycle, ¢ can for simplicity be
replaced by € in the small s/w term. The result can be
written

2
la—(rA)+k2A—MA=O, (18)
ror? r2

where  is independent of r, and k2 is defined by

k2 = w2ue(l — 2s/w). (19)

It is now necessary to specify the radial dependence
of coefficient 2. One interesting special case occurs
when £ is a quadratic function of radius. Much prog-
ress has been made in the fabrication of optical fibers
having quadratic-index variations, and it is reasonable
to suppose that similar profiles could be achieved in
spherical systems. Also quadratic-index media are the
most familiar analytically of the various possible
waveguiding systems. Thus it is assumed here that
parameter k& has the usual weak quadratic profile®:

k =ko— kor?/2. (20)

The real and imaginary parts of kg and ks follow from
Eq. (19), and Eq. (18) becomes
d2A 2dA (+1)
ﬁ :'d—+ kEA — kokor24 — 2 —A=0. (21)
As with other quadratic guiding media, it is helpful
to first factor out a solution of the form?
A(r) = B(r) exp(~iQr2/2). (22)

With this substitution Eq. (21) can be separated into the
two equations

Q? = —koky, (23)

a2 B (—-—21Qr)—§—31QB+sz—l—(l—+—1—)B=0. (24)
dr r dr r2
The solutions of Eq. (23) are
Q = *i(koks) /2 (25)

Equation (24) can be simplified by means of the sub-
stitution

B(r) = C(r)r!, (26)
and the result is
dc [2(1 +1)
dr?

The solutions to Eq. (27) can be written in two
somewhat different forms depending on whether the
propagation constant & can be assumed to be real.6 In
the simplest cases k is essentially real, @ from Eq. (25)
is imaginary, and the requirement that C be real leads
to the equation

d2C | [2(1 +1)
dr?
where @; denotes the imaginary part of Q. A useful

- 2ier kg 9Ic=0. @D
r

+ 2Q,'r] %g + (k3 + Q21+ 3)]C =0, (28)
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Fig. 1. Radial field variations of a quadratically profiled sphere as
a function of the radial coordinate p = —@;r2 for various values of the
index . Index p is equal to zero for these examples.
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Fig. 2. Radial field variations of a quadratically profiled sphere with
the index p = 1.

change of variables is p = —Q;r?, and with this substi-
tution Eq. (28) reduces to
d2C 3 dC
— 4|l +==p|—= =
,odp2 [ > pl dp+pC 0, (29)
where parameter p is given by
__k3+ @2l +3)
4Q;
But Eq. (29) is a standard form of the Laguerre differ-
ential equation, and the solution can be written in terms
of the associated Laguerre functions”

Clp) = LiV%(p). (31)

In the somewhat more complicated case where @ is
complex, the solutions to Eq. (27) can be expressed in
terms of Laguerre functions of complex argument.

By combining Egs. (22), (26), and (31), the radial part
of the wave function can be written

A(p) = p"”2 exp(—p/2)L}"%(p), (32)

where there has been a slight renormalization of the
factor in front. This equation is plotted in Figs. 1 and
2 for various values of indices [ and p. The fields move
outward as ! increases and develop more complicated
radial variations with increasing values of p. The actual

(30)
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vector field components can be obtained from Eq. (13),
and the angular momentum of these modes is discussed
in the Appendix. Similar procedures can be used to
obtain the wave functions for other power law radial
gain or refraction profiles.® Thus, for a r~1/2 radial
variation of the index of refraction the propagation
constant can be written

k=ar-1/2 (33)
and the radial equation becomes
d2 2
dr2 rdr r r2

But this is similar to the radial equation for the wave
functions of a particle in a Coulomb potential, and the
solutions are well known.?

0. (34)

IV. Conclusion

In this study several aspects of the electromagnetic
modes of an inhomogeneous sphere have been consid-
ered in detail. The analysis has included radial varia-
tions of the conductivity and the in-phase and out-of-
phase components of polarization and magnetization.
Complete solutions have been obtained for the case in
which the radial profiles are quadratic, and the ap-
proach for other profiles is similar. Quadratic profiles
are of special interest because of their analytical and
fabricational similarities to the graded-index media
developed for fiber-optic applications. Other profile
types might be relevant to the modes of waveguiding
atmospheres or gravitational lenses.

The author is pleased to acknowledge the assistance
of S. Kalson in checking the calculations.

Appendix: Angular Momentum

It has already been remarked that there are close
similarities between the electromagnetic wave functions
of a radially inhomogeneous sphere and the quantum
mechanical wave functions corresponding to a spheri-
cally symmetric potential. In this section the me-
chanical property angular momentum is examined for
the electromagnetic modes of a sphere. As a starting
point it is noted that the Poynting vector for an elec-
tromagnetic field can be written

S=EXH. (A1)

If the field is nearly harmonic in time, the average
Poynting vector is

Suy = %Re(E’ X H), (A2)

where E’ and H’ are again the complex field amplitudes.
Finally, the average momentum density carried by the
fields is related to the Poynting vector by

Pav = Sav/czy (A3)

where c¢ is the speed of light. These formulas are di-
rectly applicable to the present problem.



The electric field components of a harmonic wave are
given by Eq. (13), and from Eq. (9) the harmonically
varying magnetic field can be written

H'(r,0,6) = — V X E(r0,4). (A4)
wp

Therefore, the angular momentum density for u real
is

1
L =1r X p,y = —Re[r X (E X H*)}]
2¢2

Rel[V X (i,r)][r - V X V X Gorg®)])
2wpc?

2D e x v, (45)
2wuc

where use has been made of the vector identity

FUXVX(ry) = ;—‘9: () — r29% = I(L + 1)y
r

By this point the analogy with the ordinary quantum
mechanical angular momentum density operator is
becoming conspicuous. This analogy can be heightened
by writing Eq. (A5) in the form

L = aRefy*[r X ((AV) ¥} (A6)

The factor in brackets is the complex conjugate of the
ordinary quantum mechanical angular momentum?!
operator, and the parameter « is given by
I(t+1)
o=—"".
2wuc2h
Since the normalization of the wave functions is still
arbitrary, there is no significance to the numerical value
of @. For wave functions of the type derived previously
it follows from Eq. (A6) that the angular momentum
density can be written more simply as
mh
sinf

(AT)

A2 (A8)

L= —Olio

The total z component of angular momentum is ob-
tained by integrating over all space according to

L= f f f —amh WYy - 1,r2 sinBdrdfd ¢

sinf

= amh f f f W*yr? sinfdrdfdsg. (A9)

For a suitable normalization this could be the usual
result L, = mh. Thus the z component of the angular
momentum of the electromagnetic wave functions is
essentially .identical to the expectation value of the
corresponding quantum mechanical angular momen-
tum, and related observations apply to the angular
momentum carried by multipole radiation fields.12

A similar result can be obtained for 1-D propagation
problems. Thus for an x-polarized plane wave propa-
gating in the z direction, the electric field vector can be
written

E =i(2), (A10)
and the corresponding magnetic field is
H =—VXE. (A11)
wp

Therefore, with Egs. (A1)-(A3) the momentum density
carried by the wave can be written

Poy = —(Qwpc?) 1, Im(*Vy) = ai, Re[{*(AV)Y], (A12)
where « is now given by

a = (2wuch)~L (A13)

Thus the plane wave momentum in a volume of space
also resembles the expectation value of the corre-
sponding quantum mechanical momentum operator.

Finally, it may be noted that there is a close similarity
between the quantum mechanical wave equation and
the electromagnetic scalar wave equation. In particu-
lar, for a nonconducting medium with constant per-
meability, Eq. (14) reduces to

VY + w?ued = 2wpue (;—f- . (A14)
With substitutions ¢2 = (ue)~! and Aw = mc2, this is the
complex conjugate of Schrodinger’s equation for an.
electron in a uniform potential equal to minus one half
of the rest energy

_h2 ch

—_— T2 — ) = —7

om vy 5 ¥ ih

;9—.; . (A15)
It should be noted, however, that the more exact elec-
tromagnetic equation for the wave function y [Eq. (11)]
includes a second time derivative, which would not al-
ways be negligible. In quantum mechanics physically
interesting quantities like momentum or angular mo-
mentum are obtained by calculating the expectation
value of certain postulated operators. In electromag-
netics, on the other hand, some of the same basic forms
are obtained without new postulates or probability in-
terpretations.
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