The Applications of Grid Cells in Computer Vision

Keaton Kraiger
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/mcecs_mentoring

Part of the Computer and Systems Architecture Commons, and the Digital Communications and Networking Commons

Citation Details
https://pdxscholar.library.pdx.edu/mcecs_mentoring/35

This Poster is brought to you for free and open access. It has been accepted for inclusion in Undergraduate Research & Mentoring Program by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
The Applications of Grid Cells in Computer Vision
Keaton Kraiger, Prof. Dan Hammerstrom, Portland State University

INTRODUCTION
- Grid cells are neurons that become active at multiple locations in an environment.
- A grid cell module is a collection of grid cells that activate with the same lattice spacing and orientation [2], Figure 1A.

METHODOLOGY
- Generate an image dataset of different potential grid maps, each representing an x-y location in a 9x9 Euclidian grid.
- Classify grid map x-y representations using a convolutional neural network.
- The network is a multi-output classifier with two fully-connected heads where one fork is responsible for classifying the x position and the other for y position.

FINDINGS
- Given an image of a grid map, the model was able to reach ~99.3% accuracy for predicting x values and ~99.1% for predicting y values on average.
- Accuracy is the ratio of number of correct predictions to the total number of input samples.
- The model learned to predict x values faster and more accurately than y values.
- Loss is a measurement of how accurately the algorithm models the given data.
- After four epochs, the x value output loss was very minimal.
- The model was able to minimize loss for x value output faster than y value output.
- When given a new image of a grid map the network hasn’t seen before, the model gives its prediction and degree of confidence for both the x and y values associated with the grid map.

APPLICATIONS
- Simple objects can be represented as a set of locations while still retaining the fundamental structure of the object.
- By sequentially feeding the model grid maps to classify and using a script to place straight lines between the predicted x-y positions, we can capture the structure of simple objects.
- Below is an example of sequentially feeding the model three grid maps representing the locations (0, 3), (0, 0), and (1, 0) then placing straight lines in between the predicted outputs.

FUTURE WORK
- Create dataset on a larger space than 9x9 so objects can be represented more accurately.
- Place lines between any two points, not just points that are vertical or horizontal to one another.
- Represent more complex objects with grid maps.
- Test the position and scale invariance of objects represented by grid cells.
- Determine if objects can be represented and classified with scale and position invariance.

ACKNOWLEDGMENT & REFERENCES
The author acknowledges the support of the Maseeh College of Engineering and Computer Science (MCECS) through the Undergraduate Research and Mentoring Program (URMP).
This work was supported by C-BRIC, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

References