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Capillary-driven flows along rounded
interior corners

By YONGKANG CHEN, MARK M. WEISLOGEL
AND CORY L. NARDIN

Department of Mechanical and Materials Engineering, Portland State University,
P.O. Box 751, Portland, OR 97207, USA

(Received 30 October 2005 and in revised form 3 April 2006)

The problem of low-gravity isothermal capillary flow along interior corners that are
rounded is revisited analytically in this work. By careful selection of geometric length
scales and through the introduction of a new geometric scaling parameter T c, the
Navier–Stokes equation is reduced to a convenient ∼ O(1) form for both analytic and
numeric solutions for all values of corner half-angle α and corner roundedness ratio λ
for perfectly wetting fluids. The scaling and analysis of the problem captures much of
the intricate geometric dependence of the viscous resistance and significantly reduces
the reliance on numerical data compared with several previous solution methods
and the numerous subsequent studies that cite them. In general, three asymptotic
regimes may be identified from the large second-order nonlinear evolution equation:
(I) the ‘sharp-corner’ regime, (II) the narrow-corner ‘rectangular section’ regime,
and (III) the ‘thin film’ regime. Flows are observed to undergo transition between
regimes, or they may exist essentially in a single regime depending on the system.
Perhaps surprisingly, for the case of imbibition in tubes or pores with rounded
interior corners similarity solutions are possible to the full equation, which is readily
solved numerically. Approximate analytical solutions are also possible under the
constraints of the three regimes, which are clearly identified. The general analysis
enables analytic solutions to many rounded-corner flows, and example solutions for
steady flows, perturbed infinite columns, and imbibing flows over initially dry and
prewetted surfaces are provided.

1. Introduction and overview
Capillary flows are defined here as spontaneous interfacial flows driven by surface

tension, container geometry, and surface wettability, for which the impact of gravity
is negligible. Such flows are fundamental to a myriad transport processes in both
nature and industry and range from microscale flows � O(1 mm) in porous media on
Earth to macroscale flows � O(1 m) in large liquid fuel tanks aboard spacecraft. The
‘interior corner’ geometry is the focus of this research as it is commonly employed
in systems where the corner serves as a conduit to guide passively a particular fluid
phase in a desired manner. In many instances, the interior corners are not perfectly
sharp but rather possess a degree of roundedness due to formation or fabrication,
as shown in figure 1. While flows in perfectly sharp interior corners have been
studied extensively, the impact of corner imperfections such as corner roundedness
has not been fully characterized analytically. And, for example, because significant
roundedness can prevent certain imbibition within porous materials and even slight
roundedness can prevent the spread of liquid drops in otherwise wettable corners, it
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Figure 1. A fluid column in a rounded corner of angle 2α. The coordinate system is aligned
such that the z-axis is along the vertex of the interior corner. The three-dimensional surface
profile is S(y, z, t). The contact angle is θ .

may be critical to system design and analysis to assess quantitatively the impact of
the degree of roundedness on the process.

In general, and as depicted in figure 1, capillary flows along interior corners tend to
be slender. This is certainly the case for flows along high-aspect-ratio conduits such
as polygonal-section capillaries (Weislogel 2001a) and microchannels (Cubard & Ho
2004; Tchikanda, Nilson & Griffiths 2004), flows along surface grooves (Mann et al.
1995), and flows within highly angular porous or baffled structures at low saturation
(Al-Futaisi & Patzek 2002; Weislogel & Collicott 2004). The slenderness of the liquid
column allows the application of lubrication theory, where the problem simplifies to
one of first solving for the average z-component velocity 〈w〉 at any cross-section in
the (x, y)-plane and then using this result and a mass balance to derive an evolution
equation for flow along the z-axis. A solution for the interface shape as a function of
boundary conditions and time is generally obtained, from which the most important
features of the flow can be determined. Solutions of this type form the basis from
which problems of significantly greater complexity may be addressed.

The first problem is referred to here as the two-dimensional ‘crossflow problem’.
The domain is depicted in figure 2 for a capillary-dominated surface in a perfectly
sharp interior corner. This portion of the solution requires two steps: (i) the velocity
distribution w(x, y) must be determined and then (ii) it must be integrated over
the domain to compute the average velocity 〈w〉(z, t) for the section. The crossflow
problem can be solved analytically for select values of corner half-angle α and
wetting angle θ (i.e. α = θ = π/4), asymptotically for wide- and narrow-corner half-
angle (α → π/2 and α � 1, respectively), or numerically for all values of α and θ.†

† Conformal mappings using Schwarzian S-functions (Nehari 1975) permit the exact analytic
expression of solutions to the crossflow problem for w(x, y). However, numerical transformations
are presently necessary to determine velocity profiles prior to the integration of w(x, y) over the
domain to compute 〈w〉.
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Figure 2. Length scales adopted by different studies: rw is used for all lengths by Ayyaswamy,
Catton & Edwards (1974), R for all lengths by Ransohoff & Radke (1988), x ∼ H and
y ∼ H tan α by Weislogel & Lichter (1998).

For all solution methods, the integration of the velocity field w(x, y) determines a
dimensionless geometric function that primarily characterizes the viscous resistance
of the flow and is often referred to as a flow-resistance function, friction factor,
or hydraulic conductance. Other names are used as well, or none at all. For the
sharp-corner geometry, the flow-resistance function depends on α and θ only. The
introduction of corner roundedness introduces a dependence of the flow resistance on
fluid depth h in addition to corner roundedness, α, and θ .

As will be demonstrated herein, a well-considered scaling of the crossflow problem
can lead to a flow-resistance function that is narrowly confined for all the geometric
parameters of the problem. This feature significantly weakens the dependence on
numerical data and greatly expands the prospects of analysis. Previous numerical
solutions may be re-interpreted in this light and a brief review of the corner-flow
literature is therefore discussed here. For example, in an often overlooked investigation,
Ayyaswamy et al. (1974) solved the crossflow problem numerically for the sharp-corner
problem and obtained a dimensionless friction factor K using the Galerkin method in
radial coordinates. All lengths in their domain are scaled by the wetted wall length rw

identified in figure 2. Their friction factor 30 � K(α, θ) � 57 is bounded for all values
of α and θ but not as tightly as might be achieved using a more comprehensive
scaling (Weislogel & Lichter 1998). As part of a later numerical study, Ransohoff &
Radke (1988) solved the same numerical problem as Ayyaswamy et al. (1974). They
used a radial coordinate system for their solution domain with the origin at the
centre of the free-surface curvature. The radial coordinate is non-dimensionalized
by the radius of curvature of the free surface, R, which is also shown in figure 2.
The resulting flow-resistance function 6 � β(α, θ) � ∞ is unbounded (Weislogel &
Lichter 1998) for all values of α and θ . Subsequent analyses employing β (Dong &
Chatzis 1995; Tuller & Or 2001) were forced to curve-fit β in the domain of interest,
which often spans one or two orders of magnitude if not more. Significantly, β is
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most commonly employed in porous-media studies despite its unbounded nature.†
As a result, such investigations are in turn heavily dependent on tabulated numerical
data.

Romero & Yost (1996) obtained an accurate analytical approximation for their
unnamed resistance coefficient 0 � Γ � ∞ that enabled a well-constructed similarity
solution for certain capillary flows along interior corners. Weislogel & Lichter (1998)
chose length scales x ∼ H and y ∼ H tan α (see figure 2) to compute a velocity scale W

used to non-dimensionalize the crossflow problem. An asymptotic analysis was then
pursued providing the limiting values for functions such as K , β , and Γ by introducing
a preferred geometric-flow-resistance function 1/8 � Fi(α, θ) � 1/6, which is narrowly
bounded for all values of α and θ . The fact that Fi is a narrowly confined function
implies that the simple scaling accounts for much of the geometric dependence of
the crossflow problem and that for many practical problems Fi may be treated as an
O(1) constant, say, � 1/7. Closed-form analytical solutions employing Fi are concise,
where geometric dependencies may be distinguished clearly and often by inspection
and where efficient geometric optimization schemes are straightforward. The Fi

formulation of the crossflow problem also yields perhaps the most compact forms for
pore-level transport in large porous media models (Tuller & Or 2001). The published
resistance coefficients may be expressed in terms of Fi: thus K = 8(FA/f sin δ)2/Fi ,
β = f 2/Fi sin

2 α, and Γ = FAFi sin
2 α (tan α/f sin δ)4, where f , δ, and FA are compact

analytic geometric functions defined herein.
Ransohoff & Radke (1988) also investigated rounded corners where the rounded

portion of the corner is concentric with the free surface (Ransohoff & Radke 1988,
figure 4). Their flow-resistance function β was determined numerically for a selection
of corner half-angles, contact angles, and degrees of roundedness – the last of which
was measured using a ratio that employs the depth of the fluid h. The corner
roundedness by this definition is actually a local quantity, different from that defined
in this work, and varies along the flow direction if the depth of the fluid changes.
Thus β = β(α, θ, Rc, h) for a given flow, where Rc and h are indicated for the rounded-
corner crossflow problem in figure 3. Employing the rounded-corner local scaling, to
be introduced herein, it can be shown that 3.2 � β � ∞ for all values of α, θ , Rc, and h.
Analysis employing β for rounded-corner flows must convert the tabulated results to
forms that can be used for the global problem. This approach was adopted by Zhou,
Blunt & Orr (1997) to study hydrocarbon drainage over a layer of water forming a
virtual rounded corner with the solid walls, which form sharp interior corners. It is
observed that the flow along rounded corners is complicated by the fact that the flow
resistance varies dramatically in the flow direction, as identified by Dong & Chatzis
(1995).

In solving for the imbibition of liquid in square capillary tubes with rounded
interior corners, Dong & Chatzis (1995) used the approach of Ransohoff and Radke
to calculate the flow resistance with a more practical definition of corner roundedness.
Furthermore, they obtained analytic flow solutions on the basis of results given by
Lenormand & Zarcone (1984), who used the hydraulic-diameter approach to solve the
flow in sharp corners. The hydraulic-diameter approach does provide an all-analytic
solution to the crossflow problem but it also introduces errors up to more than 100 %,
as reported by Ransohoff & Radke (1988) and confirmed by subsequent comparative

† As of this writing, a Web of Science search of the Science Citation Index identified 67 papers
citing Ransohoff & Radke (1988) and using β and only two citing Ayyaswamy et al. (1974) and
using K .
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Figure 3. Dimensional crossflow problem. Rc is the radius of the rounding arc of the corner
meeting the planar walls at incident angle θc . R is the radius of curvature of the free surface
and θ is the contact angle. In Ransohoff & Radke (1988), the rounding arcs of the corner and
of the free surface are concentric, i.e. Rc =R + h, so that θc = π/2 − arcsin(R cos θ/(R + h)),
whereas in this study θ = θc .

flow-rate calculations. A flow-resistance function Fhyd based on the hydraulic diameter
(Weislogel 1996) varies widely, 1/288 � Fhyd � 1/8, for all values of α and θ and so
this is not a preferred analytic approach in the light of alternatives.

Further reviews of interior-corner capillary flows may be cited (Weislogel 2003;
Darhuber & Troian 2005). Specific problems addressed in the literature include
capillary imbibition and drainage for oil recovery (Zhou et al. 1997), flows in porous
media (Lenormand & Zarcone 1984), transport in groundwater systems (Tuller & Or
2001), drainage flows in angular capillaries (Bico & Quéré 2002), capillary flows in
microfluidic devices (Peterson & Ha 1998; Kim & Whitesides 1997), and large-length-
scale capillary flows in vaned containers in microgravity environments (Weislogel &
Collicott 2004). The governing equations and solutions are also closely related to
those of foam-drainage problems, and a large literature exists on this subject (Verbist
et al. 1996; Cox & Verbist 2003).

2. Scope
While previous studies provide useful solutions for capillary flows along sharp

corners, there remains an unnecessarily strong dependence on the crossflow numerical
data apparently because researchers are unaware of more analytical forms for the
flow resistance. This shortcoming is most critical for rounded-corner flows, where
an analytic form for the flow resistance as a function of corner roundedness and
fluid depth is missing. The goal of the present work is to provide this quantity by
extending the scaling and solution approach of Weislogel & Lichter (1998) (referred
to herein as W&L) to the rounded-corner problem and so to obtain closed-form
analytical expressions from which such systems might be more efficiently designed
and analyzed.
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In this paper, early and ample attention is paid to scaling and non-dimensiona-
lization in a manner that leads to a more complete analytic description of the problem
than that of previous investigations. Asymptotic analytic solutions are then provided
for a new, ‘narrowly confined’, ∼ O(1), local geometric flow-resistance function 〈w̄〉∗

for rounded corners in several geometric limits. (This function 〈w̄〉∗ is not defined until
(3.20) and is probably better described as a local normalized corner-axis-dependent
average flow velocity.) The asymptotic results provide a benchmark for numerical
solutions which are used to compute 〈w̄〉∗ for a wide range of geometric parameters.
The numerical results confirm the scaling arguments. A global evolution equation is
then derived for the rounded-corner flow, which may be reduced to three asymptotic
capillary corner-flow regimes. Steady solutions and infinite-fluid-column solutions for
such flows are then presented. A similarity equation for capillary rise (imbibition) in
containers with rounded interior corners is derived and solved, and key closed-form
solutions are given. Further solutions considering finite advancing-front curvature are
discussed and solved.

Only fluids that satisfy the Concus–Finn corner-wetting condition are addressed
in this work. For sharp corners (Concus & Finn 1969) the Concus–Finn condition
requires that θ < π/2 − α; this condition produces an under-pressure in the fluid that
draws it spontaneously into and along the corner. A rounded corner may prevent
such a flow, depending on the system, i.e. the degree of roundedness, system geometry,
contact angle, liquid volume, etc. Concus & Finn (1990) provided examples of critical
corner wetting in infinite cylinders with rounded rectangular sections. In situations
where the contact angle θ is fixed, a corresponding critical (maximum) roundedness
for every corner can be identified above which no spontaneous corner flow can
take place. For containers or channels with several corners, the critical roundedness
of a given corner is affected by the roundedness of the others. Thus, for complex
geometries, a concerted effort may be required just to determine whether the rounded
corner is actually wetted. The impact of contact-angle hysteresis can complicate this
picture dramatically (Kistler 1993; Concus, Finn & Weislogel 1996).

For the special case of a spreading drop in a sharp corner (Weislogel & Lichter
1996) the fluid spreads to z = ±∞ provided that θ < π/2 − α. For θ > 0, any degree
of corner roundedness will prevent such a spread and will confine the axial domain
of the drop to |z| � V (cos θ − sin α)2/[(2θ − sin 2θ)H 2

c sin2 α], where V is the drop
volume and Hc is the height of the rounded corner as shown in figure 1. Only in
the case θ = 0 will a liquid drop spread indefinitely along a rounded interior corner.
The behaviour of such perfectly wetting fluids is the primary focus of this work.
Partial-wetting systems will be reported in a separate work.

3. Analysis
For the system shown in figure 1, the characteristic geometric quantities of the

problem are the lengths H , Hc, and L and the angles α and θ . The relevant parameters
are collected in table 1. Note that H is the characteristic height of the meniscus in the
(x, y)-plane measured from the virtual vertex of the corner as if it were sharp. The
analysis that follows requires primarily the constraint of a slender column, ε2

c � 1,
but also the restriction of low inertia, R � 1, and a dominant cross-stream curvature,
ε2
c f � 1. Here

εc ≡ (1 − λ)(H/L) (3.1)

with

λ ≡ Hc/H (3.2)
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σ , surface tension (N m−1) L, fluid-column length scale (m)
ρ, density (kgm−3) H , meniscus height scale (m)
µ, dynamic viscosity (kgm−1 s−1) Hc , rounded corner height (m)
θ , contact angle (rad) h, meniscus height (m)
α, corner half-angle (rad) εc , fluid-column slenderness ratio (3.1)
δ, π/2 − α − θ , see figure 4 (rad) λ, corner roundedness (3.2)
f , cross-flow interface curvature function (3.5) 〈w̄〉∗, dimensionless local average velocity
fc , corner curvature function (3.10) 〈w〉∗, dimensionless global average velocity
FA, cross-flow area function (3.22)

Table 1. Selection of relevant physical and geometrical parameters.

and

R ≡ ε2
c (1 − λ)3

σρH

f µ2

(
T 2

c

1 + T 2
c

)2

, (3.3)

where σ , ρ, and µ are respectively the fluid surface tension, density, and viscosity and

R = (h + Hc)f, (3.4)

with

f =
sinα

cos θ − sinα
. (3.5)

The parameter R is a measure of inertia and serves as a strongly geometry-
dependent capillary-flow Reynolds number for the rounded-corner problem (akin to
the Suratman number Su = σρH/µ2). This parameter is comparable with that defined
for the sharp-corner problem by W&L. Tc is a ratio of the y- and x-coordinate length
scales to be defined. Under these restrictions it can be shown that the Navier–Stokes
equation reduces to the zeroth-order z-component equation

1

µ

∂P

∂z
=

∂2w

∂x2
+

∂2w

∂y2
, (3.6)

where P is the under-pressure in the fluid,

P = − σ

R
= − σ

(h + Hc)f
, (3.7)

due to the surface curvature (as addressed by W&L; see also Weislogel 1996) and
again w is the corner-axis z-component velocity. Equation (3.6) is the dimensional
‘crossflow problem’ discussed above and is subject to the boundary conditions of
no slip along the walls, no shear stress along the free surface, and the contact
angle condition at the contact line (see figure 3). To determine the flow along the
z-coordinate, w(x, y) must be determined and integrated over the local crossflow area
A to determine the average velocity 〈w〉, which is then substituted into a mass-balance
equation expressed dimensionally as

∂A

∂t
= − ∂

∂z
(A〈w〉), (3.8)

from which an evolution equation for h(z, t; α, θ, λ) may be derived (Lenormand &
Zarcone 1984; Ransohoff, Gauglitz & Radke 1987). The geometry of the crossflow
section for the rounded-corner problem can change dramatically depending on H ,
Hc, α, and θ .
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Figure 4. Characteristic crossflow sections for fixed α and θ : (a) sharp-corner-like section
and (b) crescent-like section.

3.1. Scaling and non-dimensionalization

3.1.1. Local scaling

Following the approach of W&L, (3.6) is non-dimensionalized by a careful selection
of scales for the rounded-corner problem. The coordinate system selected here places
the intersection of the rounded corner and corner symmetry plane along the z-axis
as pictured in figure 1. The length of the liquid column along the z-direction is
naturally scaled by L. Unfortunately, the introduction of corner roundedness adds
some geometric complexity to the scaling of the x- and y- coordinates. These ‘crossflow
coordinates’ require a local scaling. For example, possible characteristic cross-flow
sections are shown in figures 4(a) and 4(b) for fixed α and θ . Depending on the
relative values of the characteristic fluid height h � H − Hc and the virtual corner
height Hc, the crossflow section can either appear sharp-corner-like as in figure 4(a),
where Hc/(h + Hc) � 1, or crescent-like as in figure 4(b), where Hc/(h + Hc) → 1. The
geometry of the former is successfully scaled by local Cartesian lengths, i.e. x ∼ h

and y ∼ (h + Hc) tan α, as is the sharp-corner problem for Hc =0, where x ∼ H and
y ∼ H tan α are found to be acceptable scales. However, the situation of figure 4(b)
is more appropriately scaled using an (r, φ) cylindrical coordinate system with the
origin at the centre of the free-surface curvature, i.e. r ∼ R + h, �r ∼ h, and φ ∼ δ,
where δ ≡ π/2 − α − θ . Employing both coordinate systems it is possible to use
scale analysis to determine a single local Cartesian scaling that captures both limits,
namely

x ∼ h ≡ x̄s (3.9a)

and

y ∼ h tan α + Hcfcδ ≡ ȳs, (3.9b)

where Rc =Hcfc and again R = (h + Hc)f , fc characterizing the corner curvature and
f characterizing the fluid-interface curvature. These length scales are local scales
determined by the local value of h(z, t) and may be used to non-dimensionalize the
crossflow (3.6). The notation x̄s , for example, in (3.9a) is used to denote an h- and thus
z-dependent x-coordinate length scale. Similarly, ȳs is an h- and thus z-dependent
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Figure 5. Length scales for the rounded-corner problem. The bold lines 1 and 2 are equal to
h tan α and Rc δ, respectively.

Lengths Velocities Other

x̄∗ = x/h ū∗ = u/εcW Ā∗ = A/h2T c

ȳ∗ = y/hT c v̄∗ = v/εcW T c t̄∗ = Wt/L

z̄∗ = z∗ = z/L w̄∗ = w/W (∂P/∂z)
∗
= 1

S̄∗ = S/h 〈w̄〉∗ = 〈w〉/W T c = tan α + f δλ̄

h̄∗ = 1 W = − h2

µ

∂P

∂z

(
T

2

c

1 + T
2

c

)
λ̄= λ/ [(1 − λ)h∗]

Table 2. Local non-dimensionalized dependent and independent variables.

y-coordinate length scale. The length scale ȳs consists of the two lengths identified
in figure 5, where it can be observed how the sharp-corner scaling is recovered for
Hc/(h + Hc) → 0 while the crescent-section scaling is recovered for Hc/(h + Hc) → 1.
As will be shown, these scales are appropriate for rounded corners that meet the
planar walls of the corner at the same or nearly the same angle θc as the contact
angle θ . For identical angles θ = θc,

f ≡ sinα

cos θ − sinα
= fc ≡ sinα

cos θc − sin α
. (3.10)

The special case for rounded corners that are tangent to their planar walls, for which
θc = 0, is the focus of this paper. Therefore the analyses presented are for perfectly
wetted corners where θ = θc = 0. For systems where θ �= θc, or for other rounded-corner
types, a more involved scaling approach may be taken.

3.1.2. Local cross-flow equation

The z-dependent length scales of (3.9a) and (3.9b) (see table 2) may be used to
compute a z-dependent velocity scale from (3.6),

w ∼ W = − x̄2
s

µ

∂P

∂z

(
T

2

c

1 + T
2

c

)
, (3.11)
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Figure 6. Dimensionless variables used in the cross-flow formulation (3.14–3.18). For any
given axial position z, h̄∗ =1. The contact line is located at ȳ∗ = ȳ∗

m = f (1 + λ̄) cos α/T c .

where the local length-scale ratio function is

T c ≡ ȳs

x̄s

= tan α + f δλ̄, (3.12)

where

λ̄ ≡ λ

(1 − λ)h∗ (3.13)

with h∗ =h/(H − Hc). Note that under the present local-scaling definitions h̄∗ ≡ h∗/
[h/(H − Hc)] = h/h= 1 as depicted in figure 6. The dimensional equation (3.6) non-
dimensionalized by x̄s , ȳs , and W becomes the equation

1 =

(
T

2

c

1 + T
2

c

)
∂2w̄∗

∂x̄∗2
+

(
1

1 + T
2

c

)
∂2w̄∗

∂ȳ∗2
+ O

(
ε2
c

)
, (3.14)

which when solved in the half-domain shown in figure 6 is subject to the contact-angle
condition at the contact line, and boundary conditions as follows.
(i) The condition of no slip on the walls,

w̄∗ = 0 on x̄∗ = S̄∗
w1

(ȳ∗), 0 � ȳ∗ � ȳ∗
p,

w̄∗ = 0 on x̄∗ = S̄∗
w2

(ȳ∗), ȳ∗
p < ȳ∗ � ȳ∗

m,

}
(3.15)

where S̄w∗
1

and S̄w∗
2

are the respective curved and straight portions of the wall as
indicated in figure 6 and described by

S̄∗
w1

= f λ̄

(
1 −

√
1 −

(
T c ȳ∗

f λ̄

)2)
and S̄∗

w2
=

T c

tan α
ȳ∗ − λ̄. (3.16)
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Note that at the point (x̄∗
p, ȳ∗

p), S̄∗
w1

= S̄∗
w2

, and that ȳ∗
p = f λ̄ cosα/T c and ȳ∗

m =

f (1 + λ̄) cosα/T c.
(ii) The symmetry condition

∂w̄∗

∂ȳ∗ = 0 on ȳ∗ = 0. (3.17)

(iii) The zero-shear-stress condition on the free surface:

∂w̄∗

∂x̄∗ − 1

T
2

c

∂S̄∗

∂ȳ∗
∂w̄∗

∂ȳ∗ = 0 on x̄∗ = S̄∗(ȳ∗). (3.18)

The fluid surface S̄∗ is stretched by the scaling and is a portion of an ellipse in the
(x̄∗, ȳ∗)-plane. The effective contact angle in this plane is given by

θ̄ = arctan

(
T c(tan(α + θ) − tan α)

T
2

c + tan(α + θ) tan α

)
, (3.19)

where it is observed that when θ = 0, θ̄ = 0. All dimensionless quantities for the local
problem are listed in table 2.

The local system of (3.14)–(3.18) is controlled by the parameters α and λ̄ when
θ =0 and may be solved for w̄∗(x̄∗, ȳ∗) and then integrated over the cross-section to
determine the local dimensionless z-dependent average velocity:

〈w̄〉∗ =
1

Ā∗

∫ ∫
w̄∗ dx̄∗ dȳ∗, (3.20)

where

Ā∗ ≡ A

x̄sȳs

=
FA

T c

(1 + 2λ̄), (3.21)

and

FA = f 2

(
cos θ sin δ

sinα
− δ

)
∼ tan α. (3.22)

For all values of α and θ , tan α � FA � (4/3) tan α. Asymptotic solutions for 〈w̄〉∗ from
(3.14)–(3.20) can be obtained under several limiting geometric conditions (i.e small and
large α, small and large λ̄). Numerical values for 〈w̄〉∗ are also readily computed. Such
solutions will be outlined briefly herein; the discussion is facilitated by a preliminary
description of the conversion method from the local dimensionless average velocity
〈w̄〉∗ to the global one 〈w〉∗. This should provide a clearer understanding of the
motivation for dwelling so much on the local cross-flow problem.

3.1.3. Global scaling

It will be shown that 〈w̄〉∗ from (3.20) is a confined function 0.117 � 〈w̄〉∗ � 0.229
for all values of h, Hc, and α for θ = 0. Furthermore, it will be shown that, with
a priori knowledge of α and λ, 〈w̄〉∗ may be treated as an O(1) constant, incurring
errors typically � 5 %. Thus, the local scaling (see table 2) effectively captures most of
the functional dependence of the cross-flow geometry for the rounded-corner problem.
This being the case, a conversion from the local solution using the local z-dependent
scaling to the global problem using a readily identified global scaling is possible. This
step is necessary because the global length scales are known and constant whereas
the local length scales are unknown and z-dependent.
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Lengths Velocities Other

x∗ = x/(H − Hc) u∗ = u/εcW (∂P/∂z)∗ = Hf L(∂P/∂z)/(σ (1 − λ))

y∗ = y/((H − Hc)Tc) v∗ = v/εcWTc t∗ = Wt/L

z∗ = z̄∗ = z/L w∗ = w/W A∗ = A/((H − Hc)
2 Tc)

S∗ = S/(H − Hc) 〈w〉∗ = 〈w〉/W Q̇
∗
= Q̇/(W (H − Hc)

2Tc)

h∗ = h/(H − Hc) W = (1 − λ)2εc σ T 2
c /(µf (1 + T 2

c )) λ≡ Hc/H , T = tan α/(1 − λ)

L∗ = L/L Tc = tan α + f δλ/(1 − λ)

Table 3. Global non-dimensionalized dependent and independent variables.

Using similar arguments to those for the local scaling, the global cross-flow length
scales

x ∼ H − Hc ≡ xs (3.23a)

and

y ∼ (H − Hc) tan α + Hcf δ ≡ ys (3.23b)

are chosen, they are listed with others in table 3 for the global problem. Applying
these scales, (3.6) may be used to compute the global velocity scale

w ∼ W =
x2

s

µ

(
∂P

∂z

)
s

T 2
c

1 + T 2
c

, (3.24)

where

∂P

∂z
∼

(
∂P

∂z

)
s

≡ σ (1 − λ)

f HL
(3.25)

and Tc ≡ ys/xs .
The average velocity 〈w〉 non-dimensionalized by W is the correct dimensionless

velocity for the global mass balance (3.8), which may be expressed in terms of the
local average velocity

〈w〉∗ ≡ 〈w〉
W

=
〈w〉
W

W

W
= 〈w̄〉∗ W

W
. (3.26a)

As will be shown, 〈w̄〉∗ from (3.20) is a weak O(1) function that may be approximated
as a constant. Thus, with W and W known from (3.11) and (3.24), (3.26a) may be
written as

〈w〉∗ = −〈w̄〉∗ ∂P

∂z

(
∂P

∂z

)−1

s

ȳ2
s

y2
s

1 + T 2
c

1 + T 2
c

. (3.26b)

A ratio of pressure-gradient scales appears in this equation. Since the dimensional
pressure in the fluid is given by P = −σ/f (h + Hc), the pressure gradient is found
to be ∂P/∂z = (σ/f (h + Hc)

2)∂h/∂z. It is this local gradient that is scaled globally in
(3.25). Subsequently, (3.26b) reduces to

〈w〉∗ = −〈w̄〉∗

k2
λ

(
1 + kδλ̄

1 + λ̄

)2
1 + k2

λT
2

1 + (1 + kδλ̄)2 tan2 α

∂h∗

∂z∗ , (3.26c)

where

kδ ≡ f δ/ tan α (3.27a)
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and

kλ ≡ 1 − λ + kδλ. (3.27b)

For θ = 0, both kδ(α) and kλ(α, λ) are weak O(1) functions that may be treated in
asymptotic analyses as O(1) constants. For reference here,

kδ(0) = π/2 � kδ � 2 = kδ(π/2)

and

kλ(α, 0) = 1 � kλ � 2 = kλ(π/2, 1).

Note also that kλ(α, 1) = kδ .
The three most significant quantities observed in (3.26c) for the global problem are

tan α, T ≡ tan α

1 − λ
, and λ̄. (3.28)

The latter two replace the more primitive parameters λ and h∗ and are preferred for
interrogation of the function multiplying the ∂h∗/∂z∗ term in (3.26c) in subsequent
asymptotic analysis. The quantities α and λ are the sole parameters for the global
problem. Note that for the sharp-corner case λ= 0 and (3.26c) recovers the form of
W&L, where

〈w〉∗(λ = 0) ≡ −Fi

∂h∗

∂z∗ = −〈w̄〉∗ ∂h∗

∂z∗ . (3.29)

For a sharp corner, the local and global coordinates scale linearly with h and H

respectively. Thus, 1/8 � Fi = 〈w̄〉∗ � 1/6 for all α and θ when Hc = 0. For a rounded
corner, however, from (3.26c) it is seen that

Fi = 〈w̄〉∗
(

1 + kδλ̄

kλ(1 + λ̄)

)2
1 + k2

λT
2

1 + (1 + kδλ̄)2 tan2 α
≡ 〈w̄〉∗IiJi, (3.30)

which reveals an intricate h∗-dependence through λ̄. With knowledge of the limits of kδ

and kλ, inspection of (3.30) reveals that Ii is also a fairly weak O(1) function 1 � Ii � 4
for all values of h∗, α, and λ. This leaves Ji as the primary function characterizing
the h∗-dependence of the flow resistance for all 0 � Ji � 1. The form Fi = 〈w̄〉∗IiJi

substituted into (3.29) will be used to solve the non-dimensional version of the global
mass balance (3.8). Before proceeding to this step, asymptotic and numerical solutions
for 〈w̄〉∗ will be briefly provided. The asymptotic solutions in particular are used to
identify the various rounded-corner flow regimes as well as to provide the upper and
lower bounds for 〈w̄〉∗.

3.2. Local average velocity 〈w̄〉∗

The local length-scale ratio parameter T c for the dimensionless cross-flow problem
(3.14) may be written as

T c ≡ ȳs/x̄s = (1 + kδλ̄) tan α. (3.31)

Asymptotic solution of the dimensionless system (3.14)–(3.20) is possible under limit-

ing values of this parameter T c ≡ T c(α, λ̄). In general, the case T
2

c � 1 is the narrow-

corner limit and T
2

c � 1 is the thin-film limit.

3.2.1. Summary of asymptotic solutions for 〈w̄〉∗

For brevity, listed in table 4 are just the zeroth-order asymptotic solutions for 〈w̄〉∗

for the various limiting geometric cases. Further details of the solutions are included
in the Appendix. The five asymptotic limits are shown in figure 7.
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Limiting geometric conditions 〈w̄0〉∗ 〈w̄0〉∗
hyd

Case I Narrow-corner limit, Tc

2 � 1
(a) narrow-sharp corner: α2 � 1, λ̄� 1 1/6 1/8
(b) narrow-corner rectangular section: α2λ̄2 � 1, λ̄2 � 1 4/3π2 2/π2

Case II Thin-film limit, Tc

2 � 1
(a) wide-sharp corner: Ω2 � 1, λ̄2 � 1 1/7 1/18
(b) wide-corner thin film: Ω2 � 1, λ̄2 � 1 8/35 2/9
(c) narrow-corner thin film: α2 � 1, α2λ̄2 � 1 2/9 2/π2

Table 4. Summary of zeroth-order asymptotic solutions for 〈w̄〉∗.

(a) (b) (e)

(c)

(d)

y
y

y

y

y

xxx

α

x

x

Figure 7. The geometric configurations for different limits: (a) narrow-sharp corner (case Ia),
(b) narrow-corner rectangular section (case Ib), (c) wide-sharp corner (case IIa), (d) wide-corner
thin film (case IIb), and (e) narrow-corner thin film (case IIc).

The slight-corner-roundedness results (Ia, IIa) listed in table 4 agree with the sharp-
corner results of W&L. As observed in the table, the fact that 0.117 � 〈w̄〉∗ � 0.229
for all cases argues that the general scaling approach should be used to provide
an O(1) banded function for the otherwise numerically determined coefficient 〈w̄〉∗.
For curiosity’s sake, 〈w̄〉∗ computed using the hydraulic diameter approach is also
provided in table 4 for comparison. The range 1/18 � 〈w̄〉∗

hyd � 2/9 is significantly
larger than that for 0.117 � 〈w̄〉∗ � 0.229, which is itself larger than 1/8 � 〈w̄〉∗ � 1/6
for the sharp corner (W&L).

3.2.2. Numerical solutions for 〈w̄〉∗

Numerical calculations were performed using Matlab with the PDE Toolbox, which
implements a finite-element analysis on a triangular mesh. The meshing tool adaptively
refines the mesh using the gradient of the solution. The refinement path consists of
solving the PDE and refining the mesh until a specified number of elements (a
minimum of 50 000 in this study) has been reached. 〈w̄〉∗ is computed for the range
0.000349 � α � 1.567, 0 � λ� 0.98, and 0.02 � h∗ � 1 with θ =0. The results of over
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�w�*

Figure 8. Local flow resistance 〈w̄〉∗ as a function of α for various h∗ and λ. The dots are
the numerical solutions; ©, narrow-sharp corner, α2 � 1 and λ̄� 1 (A 5); �, narrow-corner
rectangular section, α2λ̄2 � 1 with λ̄2 � 1 (A 6); ∇, wide-sharp corner, Ω2 � 1 and λ̄2 � 1
(A 10); ×, wide-corner thin film, Ω2 � 1 and λ̄2 � 1 (A 11); �, narrow-corner thin film, α2 � 1
and λ̄2 tan2 α � 1 (A 16).
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Figure 9. Local flow resistance 〈w̄〉∗ as a function of h∗ for various α and λ.

3500 calculations are presented in figures 8 and 9, where 〈w̄〉∗ is plotted first as
a function of α for various h∗ and λ and then as a function of h∗ for various α

and λ. The asymptotic values derived herein provide favourable benchmarks and are
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Figure 10. Local flow resistance 〈w̄〉∗ as a function of h∗; α = 0.000349.
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Figure 11. Local flow resistance 〈w̄〉∗ as a function of h∗; α = 0.79.

represented by large open symbols, while the numerical values are represented by
small dots. It is clear that 0.117 � 〈w̄〉∗ � 0.229 for all values of the parameters.

3.2.3. Discussion of 〈w̄〉∗ and Fi

The numerical results of figure 9 are separated and replotted in figures 10–12.
The corner half-angle α is fixed for each figure and calculations for fixed λ are
presented as functions of h∗. Several important observations may be made from
these figures (i) The functional dependence of 〈w̄〉∗ is intricate but weak. (ii) In
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Figure 12. Local flow resistance 〈w̄〉∗ as a function of h∗; α = 1.48.

general, ∂〈w̄〉∗/∂h∗ � 1 except for h∗ → 0. (iii) However, the function h∗∂〈w̄〉∗/∂h∗ → 0
as h∗ → 0. (iv) ∂〈w̄〉∗/∂h∗ can be either negative or positive. (v) For small values of
α, 〈w̄〉∗ < 〈w̄〉∗(λ= 0); see figure 10. (vi) For large values of α, 〈w̄〉∗ > 〈w̄〉∗(λ= 0); see
figures 11 and 12.

The ideal situation would be to employ a scaling that renders 〈w̄〉∗ a constant for
all α, λ, and h∗. This would imply that an exact solution to the cross-flow problem is
obtained. Such a result is unlikely. Nonetheless, other local scalings were tried to this
end such as ȳs = h tan α + Hc, which does not capture the crescent domain accurately
as λ→ 1, and ȳs =FA(h + 2Hc)/2, which ensures that the dimensionless local section
area A∗ = 1. Neither these nor other choices produced such narrowly confined results
for 〈w̄〉∗ as the present scaling, ȳs = h tan α + Hcf δ.

The flow-resistance function Fi given in (3.30) may be calculated using numerical
values of 〈w̄〉∗ for all values of the parameters. In practice, however, it is found that,
for given α and λ, Fi calculated using 〈w̄〉∗ at h∗ = 0.5 is a very good and significantly
simplifying approximation, as will be discussed later.

4. Rounded-corner evolution equation
Using the global scalings of table 3 and (3.26c), with Fi given by (3.30), the mass

balance (3.8) may be non-dimensionalized:

∂A

∂t
= − ∂

∂z
(A〈w〉) =

∂

∂z

(
AFi

∂h

∂z

)
=

∂

∂z

(
A〈w̄〉∗IiJi

∂h

∂z

)
. (4.1)

Unless otherwise specified, the ‘∗’ notation denoting dimensionless quantities is
dropped for the remainder of the analysis with the exception of 〈w̄〉∗.

Equation (4.1) can be rearranged into

∂A

∂t
= A〈w̄〉∗IiJi

[(
1

A

∂A

∂h
+

1

〈w̄〉∗
∂〈w̄〉∗

∂h
+

1

Ii

∂Ii

∂h
+

1

Ji

∂Ji

∂h

) (
∂h

∂z

)2

+
∂2h

∂z2

]
, (4.2)
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where

A =

(
FA

Tc

)
(1 + 2λ̄)h2, (4.3a)

Ii =
1

k2
λ

(
1 + kδλ̄

1 + λ̄

)2

, (4.3b)

Ji =
1 + k2

λT
2

1 + (1 + kδλ̄)2 tan2 α
. (4.3c)

Applying the chain rule, we obtain ∂A/∂t = (∂A/∂h)(∂h/∂t), ∂Ii/∂h= (∂Ii/∂A)
(∂A/∂h), etc. and, by factoring out the term (1/A)(∂A/∂h), (4.2) may be rewritten in
terms primarily of h, through λ̄, as

∂h

∂t
= 〈w̄〉∗IiJi

[(
1 + N〈w̄〉∗ + NIi

+ NJi

) (
∂h

∂z

)2

+

(
1 + 2λ̄

1 + λ̄

)
h

2

∂2h

∂z2

]
, (4.4)

where

N〈w̄〉∗ ≡ h

2〈w̄〉∗

(
1 + 2λ̄

1 + λ̄

)
∂〈w̄〉∗

∂h
, (4.5a)

NIi
≡ A

Ii

∂Ii

∂A
= − λ̄(kδ − 1)(1 + 2λ̄)

(1 + kδλ̄)(1 + λ̄)2
, (4.5b)

NJi
≡ A

Ji

∂Ji

∂A
= kδλ̄

(
1 + 2λ̄

1 + λ̄

)
(1 + kδλ̄) tan2 α

1 + (1 + kδλ̄)2 tan2 α
. (4.5c)

Equation (4.4) is the complete evolution equation for the dimensionless interface
height h for the rounded-corner problem. As emphasized above in the discussion
(§ 3.2.3) of the numerical results for 〈w̄〉∗, it can be demonstrated that the term
N〈w̄〉∗ � 1 for all values of h, λ̄, and α for θ =0. The largest value of this term

occurs for h ∼ O(1) with small but non-zero λ̄ (note: N〈w̄〉∗ = 0 for λ̄= 0). Under
such conditions |N〈w̄〉∗ | � 0.1 is a maximum value. Also, observations made of the
fairly weak function 1 � Ii � 4 suggest that NIi

should also be a fairly weak function,
which it is, taking a maximum value of NIi

= 1/4 when λ̄= 1 and α = π/2. In many
cases NIi

� 1 and, for λ̄→ 0 and λ̄→ ∞, NIi
= 0. (Though it is not ignored here, our

approximate analysis may be further simplified by neglecting this term. For example,
ignoring NIi

leads to errors for large λ � ±4 % and for small λ at most ±14 %.)
Lastly, we have the range 0 � NJi

� 2 for all values of h, λ̄, and α. NJi
→ 0 for λ̄→ 0

(the sharp corner) and NJi
→ 2 for λ̄→ ∞ (the thin film).

4.1. Simplified equation and regimes

Neglecting N〈w̄〉∗ and introducing a time scale τ = 〈w̄〉∗t/2 that exploits the nearly
constant nature of 〈w̄〉∗, (4.4) reduces to

∂h

∂τ
= IiJi

[
2(1 + NIi

+ NJi
)

(
∂h

∂z

)2

+

(
1 + 2λ̄

1 + λ̄

)
h

∂2h

∂z2

]
. (4.6)

This zeroth-order form of the evolution equation is represented below in three
asymptotic regimes that can be identified by inspection of (4.6).
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(a) λ̄� 1 This is the sharp-corner limit (figures 7a and 7c), in which (4.6) simplifies
to

∂h

∂τ
=

1

k2
λ

1 + k2
λT

2

1 + tan2 α

[
2

(
∂h

∂z

)2

+ h
∂2h

∂z2

]
≡ CI

[
2

(
∂h

∂z

)2

+ h
∂2h

∂z2

]
. (4.7)

Regime I. For λ̄� 1, CI = 1 and this equation further reduces to

∂h

∂τ
= 2

(
∂h

∂z

)2

+ h
∂2h

∂z2
, (4.8)

as addressed in numerous previous investigations.
(b) λ̄� 1 Under this constraint (4.6) reduces to

∂h

∂τ
= 2

(
kδ

kλ

)2
1 + k2

λT
2

1 + k2
δ λ̄

2
tan2 α

[(
1 +

2k2
δ λ̄

2
tan2 α

1 + k2
δ λ̄

2
tan2 α

)(
∂h

∂z

)2

+ h
∂2h

∂z2

]
. (4.9)

There are two limiting equations for such flows, as follows.

Regime II, narrow-corner rectangular section (figure 7b). For λ̄� 1, when λ̄
2
α2 � 1 is

satisfied, the governing equation (4.9) simplifies to

∂h

∂τ
= 2

(
kδ

kλ

)2[(
∂h

∂z

)2

+ h
∂2h

∂z2

]
≡ CII

∂

∂z

(
h

∂h

∂z

)
. (4.10)

For λ→ 1, this equation reduces further to

∂h

∂τ
= 2

∂

∂z

(
h

∂h

∂z

)
. (4.11)

Regime III, thin-film flow. When λ̄
2
tan2 α � 1, (4.9) simplifies to

∂h

∂τ
=

2
(
1 + k2

λT
2
)

k2
λλ

2T 2

[
3h2

(
∂h

∂z

)2

+ h3 ∂2h

∂z2

]
≡ CIII

∂

∂z

(
h3 ∂h

∂z

)
. (4.12)

This is the thin-film limit of Darhuber, Troian & Reisner (2001) (figures 7d and 7e).
When T 2 � 1 and λ→ 1, CIII = 2 and

∂h

∂τ
= 2

∂

∂z

(
h3 ∂h

∂z

)
. (4.13)

Other specific limiting equations might be deduced from (4.6) but will vary only by
coefficient and not by structure.

4.2. Discussion

It is important to note that λ̄ is h-dependent and thus certain flows can possess widely
varying values of λ̄ as the fluid height h changes along the corner. This is especially
true for flows with an advancing front (or tip) where h → 0. For example, for a narrow
corner where α2 � 1, it is possible for a flow to possess all three domains I, II, and III.
This can be seen as one moves from the deepest portion of the fluid where λ̄� 1(I)
to the advancing front where α2λ̄2 � 1(III). The narrow-corner rectangular domain
requires λ̄� 1 and α2λ̄2 � 1 and is quite restrictive, making regime II rare in practice.
Such flows do arise however for creeping capillary flows along thin rectangular slots
that are slightly out of parallel. For advancing flows in rounded corners, flows can
also transition from II to III or from I to III, or they can remain entirely in III. The
non-overlapping regimes are separated by intermediate regions of the flow that are
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controlled by a known but more intricate nonlinear dependence on h through λ̄. For
certain advancing flows, the streamwise curvature, ignored in this investigation, might
eliminate the possibility of significant region III flow. Each flow regime has different
response times and flow characteristics, several of which are considered here for a
selection of flow scenarios.

For the various regimes, solutions are provided first for steady flows and sinusoidally
perturbed flows. A similarity equation for imbibition (capillary rise) in capillaries
with rounded interior corners is then derived and solved both asymptotically and
numerically. The impact of the various terms in the governing evolution equation (4.6)
that arise from corner roundedness are discussed in the light of this problem. The
impact of the streamwise curvature is discussed for flows with advancing fronts
where h → 0 and analytic and numerical solutions for flows with finite ‘tip’ curvature
modelling flows advancing over pre-existing columns of fluid are provided.

4.3. Steady solutions

The steady solutions to (4.6) are trivial in the various regimes and are listed here
for both the dimensionless fluid height h and the steady volumetric flow rate Q̇ (see
table 3 for the non-dimensionalization of Q̇).

I. Sharp-corner flow, λ̄� 1 (4.8)

h = [1 − (1 − b3)z]1/3, (4.14a)

Q̇I =
λFA

3(1 − λ)Tc

〈w̄〉∗(1 − b3). (4.14b)

II. Narrow-corner rectangular section, λ̄� 1, λ̄2 tan2 α � 1 (4.11)

h = [1 − (1 − b2)z]1/2, (4.15a)

Q̇II =
λFA

2(1 − λ)Tc

〈w̄〉∗(1 − b2). (4.15b)

III. Thin-film flow, λ̄� 1, λ̄2 tan2 α � 1 (4.13)

h = [1 − (1 − b4)z]1/4, (4.16a)

Q̇III =
λFA

4(1 − λ)Tc

〈w̄〉∗(1 − b4). (4.16b)

The forms of the height h and Q̇ in (4.14a–4.16b) assume known values of meniscus
height at two locations, h(z = 0) = 1 and h(z = 1) = b, within the same flow regime.
These boundary conditions are equivalent to specifying a capillary-driven flow rate
from z = 0 to z = 1. A maximum flow rate is achieved for b = 0, which serves as
an idealized model for complete fluid removal (sink) at the tip (i.e. suction). Other
boundary conditions could have been specified. Steady flows that span two or more
regimes, including any intermediate regimes, require more intricate steady-solution
forms of the full equation

∂

∂z

⎛
⎜⎜⎜⎜⎝

3∑
m=0

Nmhm+3

4∑
n=0

Dnh
n

∂h

∂z

⎞
⎟⎟⎟⎟⎠ = 0 , (4.17)

where the coefficients Nm and Dn are listed in table 5. This equation is readily solved
numerically and a selection of results is presented in figure 13. In figure 13(a–c), pairs
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N0 2k2
δλ

3

N1 kδ(4 + kδ)(1 − λ)λ2

N2 2(1 + kδ)(1 − λ)2λ

N3 (1 − λ)3

D0 k2
δλ

4 tan2 α

D1 2kδ(1 + kδ)(1 − λ)λ3 tan2 α

D2
1
2
(1 − λ)2λ2(2 + 4kδ + k2

δ − kδ(4 + kδ) cos 2α) sec2 α

D3 (1 − λ)3λ(2 + kδ − kδ cos 2α) sec2 α

D4 (1 − λ)4 sec2 α

Table 5. Coefficients of the steady-state flow equation.
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Figure 13. Steady-state solutions with b =0 for a selection of α and λ conditions. (a) predomi-
nantly sharp corner, α = π/4, λ= 0.05; (b) predominantly rectangular section, α = 0.01, λ= 0.9;
(c) predominantly thin film, α = 1, λ= 0.9; (d) regime intermediate between I and III, α = π/4,
λ= 0.5. Solid line, numerical solutions (4.17); dash dot line, sharp-corner regime (I) (4.14a);
dotted line, rectangular-section regime (II) (4.15a); dashed line thin-film regime (III) (4.16a).

of α and λ values are chosen in the neighbourhood of each of the three flow regimes:
sharp-corner (figure 13a), rectangular-section (figure 13b), and thin-film (figure 13c).
The respective exact solutions listed in (4.14a), (4.15a), and (4.16a) provide the best
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approximations to the full numerical solution in these cases. In figure 13(d ) typical
intermediate values of α and λ are chosen for which the numerical result falls between
the sharp-corner and thin-film flow regimes. The analytical solutions are given by
h =(1 − z)a , where a =1/3, 1/2, and 1/4 for the sharp-corner (I), rectangular-section
(II), and thin-film (III) regimes, respectively.

4.4. Infinite-column solutions

For a sinusoidally perturbed liquid column in a rounded corner of infinite extent
(Weislogel 2001b), h = 1 defines the mean unperturbed height of the liquid. Introduc-
ing the expansion

h = 1 + εch1 + ε2
c h2 + . . . , (4.18)

solutions for the transient relaxation of the perturbed surface are readily obtained
for the various regimes by substituting (4.18) into the corresponding equations (4.8),
(4.11), or (4.13). It can be shown that to leading order

I. h = 1 + εcD1 exp (−ξ 2τ ) cos(ξz + D2) + O
(
ε2
c

)
, (4.19a)

II and III. h = 1 + εcD3 exp(−2ξ 2τ ) cos(ξz + D4) + O
(
ε2
c

)
, (4.19b)

where ξ = ξ ′/L is the dimensionless wave number and D1 through D4 are constants
to be determined by the boundary conditions. For all regimes the decaying exponents,
after redimensionalization, reduce to

ξ 2τ ∼ 〈w̄〉∗ε2
c (1 − λ)

f

T 2
c

1 + T 2
c

σ t

µH
= ε2

c (FCat )
−1 (4.20)

where H is the unperturbed height of the interface, F = f (1 + T 2
c )/(〈w̄〉∗(1 − λ)T 2

c ),
and Cat =µH/σ t is a time-dependent capillary number.

Recalling that 〈w̄〉∗ can be approximated as a constant, for given H and fluid
properties σ/µ, the response time of the disturbance is dependent on a geometric
time constant

GT C =
f

(1 − λ)3
1 + T 2

c

T 2
c

, (4.21)

which is plotted in figure 14 as a function of both α and λ. As can be seen from the
figure, GT C increases with λ for a fixed value of α. The fastest response of the fluid
occurs for the lowest value of GT C, which occurs at α = π/6 (30◦ in the figure) when
λ=0, as was shown by Weislogel (2001b) for the sharp-corner problem. However,
as λ increases, the fastest response time occurs for increasingly lower values of α. It
appears that for λ→ 1, GTC is minimal for α → 0.

4.5. Similarity solution for imbibition problem

In this section a solution for spontaneously advancing flows in capillaries with
rounded interior corners is investigated. This is the imbibition problem studied by
Dong & Chatzis (1995), or the capillary-rise problem of W&L, where the advancing
fluid rapidly achieves a constant height H at the coordinate origin for the flow, as
addressed in detail in Weislogel (2001a). Thus, h(z = 0, t = 0) = 1 and h(ztip, t) = 0 are
suitable boundary conditions for this problem. Under these conditions the general
evolution equation (4.6) admits a power-law similarity transformation, giving rise to
a large similarity equation appropriate for all parametric regimes. Asymptotic and
numeric solutions to this equation are instructive concerning rounded-corner flow in
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Figure 14. Geometric time constant GT C(λ; α).

general. They also permit the development of useful closed-form solutions for this
fundamental problem.

Treating 〈w̄〉∗ as constant, (4.6) is rearranged and rewritten here in terms of h

rather than λ̄:

[(1 − λ)h + λ]
∂h

∂τ

= Λ
∂

∂z

(
[(1 − λ)h + kδλ]

2 [(1 − λ)h2 + 2λh] h2

[(1 − λ)h + λ]2 {(1 − λ)2h2 + [(1 − λ)h + kδλ]
2 tan2 α}

∂h

∂z

)
, (4.22)

where

Λ =
(1 − λ)2 + [(1 − λ) + kδλ]

2 tan2 α

[(1 − λ) + kδλ]
2

. (4.23)

This is the form of a nonlinear diffusion equation, with polynomial functions of h

multiplying all derivatives after further rearrangement. Such an equation is more or
less similar to a class of nonlinear diffusion equations of simpler form discussed by
Fujita (1952), who showed the existence of similarity solutions for such equations.
Despite the size and complexity of (4.22), the equation is self-similar under the same
power-law transformation as the sharp-corner problem. Introducing

h = F (η), η = z/(2τ )1/2, Ltip = ηtip(2τ )1/2, (4.24)

(4.22) transforms to a 23-term similarity equation

6∑
m=0

ZZmF m+3Fηη +

6∑
n=0

ZnF
n+2F 2

η +

8∑
k=0

TkF
kηFη = 0, (4.25)

with coefficients ZZm, Zn, and Tk as listed in table 6. In (4.25) the subscript notation
for the ordinary differentiation of F (η) with respect to η is employed – all other



258 Y. Chen, M. M. Weislogel and C. L. Nardin

ZZ0 2k4
δλ

6 tan2 α Λnum

ZZ1 k3
δ (8 + 3kδ)(1 − λ)λ5 tan2 α Λnum

ZZ2 k2
δ (1 − λ)2λ4

[
2 + (12 + 12kδ + k2

δ ) tan2 α
]
Λnum

ZZ3 kδ(1 − λ)3λ3
[
4 + 3kδ + 2(4 + 9kδ + 2k2

δ ) tan2 α
]
Λnum

ZZ4 (1 − λ)4λ2
[
2 + 6kδ + k2

δ + 2(1 + 6kδ + 3k2
δ ) tan2 α

]
Λnum

ZZ5 (1 − λ)5λ [3(1 + kδ) − kδ cos 2α] sec2 α Λnum

ZZ6 (1 − λ)6 sec2 α Λnum

Z0 6k4
δλ

6 tan2 α Λnum

Z1 6k3
δ (4 + kδ)(1 − λ)λ5 tan2 α Λnum

Z2 2k2
δ (1 − λ)2λ4

[
1 + (18 + 12kδ + k2

δ ) tan2 α
]
Λnum

Z3 4kδ(1 − λ)3λ3
[
2 + (6 + 9kδ + 2k2

δ ) tan2 α
]
Λnum

Z4 6(1 − λ)4λ2
[
1 + kδ + (1 + 4kδ + 2k2

δ ) tan2 α
]
Λnum

Z5 (1 − λ)5λ(6 + 5kδ − 3kδ cos 2α) sec2 α Λnum

Z6 2(1 − λ)6 sec2 α Λnumy

T0 k4
δλ

8 tan4 α Λden

T1 4k3
δ (1 + kδ)(1 − λ)λ7 tan4 α Λden

T2 k2
δ (1 − λ)2λ6[4 + 8kδ + 3k2

δ − (2 + 8kδ + 3k2
δ ) cos 2α] sec2 α tan2 α Λden

T3 2kδ(1 − λ)3λ5[2 + 8kδ + 6k2
δ + k3

δ − kδ(4 + 6kδ + k2
δ ) cos 2α] sec2 α tan2 α Λden

T4 (1 − λ)4λ4[1 + 2(1 + 8kδ + 6k2
δ ) tan2 α + (1 + 16kδ + 36k2

δ + 16k3
δ + k4

δ ) tan4 α] Λden

T5 4(1 − λ)5λ3[1 + 2(1 + 3kδ + k2
δ ) tan2 α + (1 + 6kδ + 6k2

δ + k3
δ ) tan4 α] Λden

T6 (1 − λ)6λ2[12 + 16kδ + 5k2
δ − 2kδ(8 + 3kδ) cos 2α + k2

δ cos 4α] sec4 α Λden/2

T7 2(1 − λ)7λ(2 + kδ − kδ cos 2α) sec4 α Λden

T8 (1 − λ)8 sec4 α Λden

Table 6. Coefficients of the full similarity equation (4.25); note that Λ= Λnum/Λden from
(4.23), where ‘num’ and ‘den’ denote the numerator and denominator, respectively.

sub- or superscripts are indices. The boundary conditions for (4.25) are

F (0) = 1, F (ηtip) = 0, (4.26)

and the integral volume constraint

Fη|η=0 = − 1

2(1 + λ)

∫ ηtip

0

[(1 − λ)F 2 + 2λF ] dη (4.27)

required to close the system – owing to the introduction of the unknown advancing
front ηtip. In addition, the value of Fη(ηtip) can be determined from the similarity
equation, obtaining

Fη(ηtip) =

⎧⎨
⎩

−ηtip/2 if λ = 0,

−(2 − 2λ + πλ)2 ηtip/2π2 if α = 0 and λ > 0,

−∞ otherwise.

(4.28)

Dramatic simplification of the governing similarity equation results in the three
asymptotic regimes, which correspondingly reduce (4.25) as follows.
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Figure 15. Numerical and approximate analytic solutions for three asymptotic flow regimes;
for each case, the difference between the numerical and approximate analytic data is
indistinguishable.

I. Sharp-corner flow

0 = ηFη + 2F 2
η + FFηη. (4.29a)

II. Narrow-corner rectangular section

0 = ηFη + 2(FFη)η. (4.29b)

III. Thin-film flow

0 = ηFη + 2(F 3Fη)η. (4.29c)

The sharp-corner-flow asymptotic equation has been derived and solved by numerous
authors (e.g. Lenormand & Zarcone 1984; Dong & Chatzis 1995; Romero & Yost
1996; Weislogel & Lichter 1998). The thin-film flow equation was also derived by
Darhuber et al. (2001), who studied the capillary flow along flat hydrophilic micro-
stripes. It will be shown that approximate analytic or exact numerical solutions to the
limiting similarity equations (4.29a–c) provide envelopes for numerical solutions of
the full equation (4.25). Approximate analytic solutions to (4.29a–c) can be obtained
by the method of Mayer, McGrath & Steele (1983) using polynomial trial functions.
The results of this method are presented here:

FI = 1 − 0.571 η∗ − 0.429 η∗2
, (4.30a)

FII = 1 − 0.698 η∗ − 0.302 η∗2
, (4.30b)

FIII = (1 − 0.865 η∗ − 0.135 η∗2
)1/3, (4.30c)

where η∗ = η/ηtip. These solutions compare well (<1.5 % for F and <3.9 % for Fη(0))
with the numerical solutions in the respective regimes, as shown in figure 15 and
table 7.

Equation (4.25) and the associated boundary conditions were also solved numeri-
cally for F (η) and representative results are presented in figure 16 for a variety of λ
values for α = π/4 with θ =0. The enveloping solutions of regime I (4.29a) and regime
III (4.29c) are given in the figure. Note that the narrow-corner rectangular section
regime (II) does not exist for this flow since the condition α2 � 1 is not satisfied
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Regime Analytical Similarity

ηtip Fη(0) Fη(ηtip) Fη(0) Fη(ηtip)
I. Sharp corner 1.702 −0.335 −0.84 −0.349 −0.851
II. Rectangular section 1.616 −0.432 −0.806 −0.444 −0.808
III. Thin film 0.871 −0.331 −∞ −0.333 −∞

Table 7. Approximate analytic and numerical similarity solution results for the three regimes.
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Figure 16. Similarity solutions for λ= 0, 0.05, 0.1, 0.2, . . . , 1.0 with α = π/4.

for α = π/4. If the flow is deep enough (λ̄� 1), there is a transition for this flow
from regime I to an intermediate regime and then to regime III. Figure 16 clearly
shows quantitatively how the flow is ‘retarded’ (decreasing ηtip) for increasing corner
roundedness λ. It is also interesting to note that Fη(0) is not nearly as dependent on λ as
is ηtip .

Figure 16 also reveals that the slope of the free surface becomes increasingly steep
as the advancing tip is approached. In fact, for regime III, Fη → −∞ as η → ηtip,
whereas for regimes I and II Fη(ηtip) = − ηtip/2. For gradients too steep at the tip, the
assumptions of a locally slender column ε2

c � 1 and dominant cross-stream curvature
ε2
c f � 1 may no longer be satisfied and the solutions are expected to break down;

this was addressed by Darhuber et al. (2001). The slender-column and dominant
cross-stream curvature constraints may be written in local differential form as

ε2
c ∼

ε2
c F

2
η

2τ
� 1 (4.31a)

and

ε2
c f ∼ ε2

c f

(
F +

λ

1 − λ

)
Fηη

2τ
� 1, (4.31b)

respectively. Further manipulation reduces (4.31a) to

F 2
η � σ

µ

1 − λ

f

〈w̄〉∗

H

T 2
c

1 + T 2
c

t (4.32a)
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Figure 17. Meniscus-tip location ηtip(λ; α): I, II, and III denote the results for the three
asymptotic regimes.

and (4.31b) to

[F (1 − λ) + λ] Fηη � σ

µ

(1 − λ)2

f 2

〈w̄〉∗

H

T 2
c

1 + T 2
c

t. (4.32b)

These relations provide a means of identifying in part the time domains for which
the similarity solutions are valid. In general, both constraints will be satisfied over
increasingly larger lengths of the liquid column as time increases. The low-inertia
(3.3), low-gravity, and negligible-dynamic-contact-angle conditions may be quantified
using the methods outlined in W&L (see also Weislogel 1996).

Important quantities such as the dimensional tip length and the flow rate are gleaned
from the numerical results. For example, ηtip and Fη(0) are collected in figures 17
and 18 as functions of λ for various α. Typical data are also listed in tables 8
and 9. The results for the three asymptotic regimes are noted on the plots and are
listed in table 7. The dimensional meniscus-tip location and volumetric flow rate may
be written in closed form using these results:

L = ηtipG
1/2H 1/2t1/2, (4.33)

Q̇ = −Fη(0)(1 − λ2)FAG1/2H 5/2t−1/2, (4.34)

where

G =
〈w̄〉∗σ (1 − λ)3T 2

c

µf
(
1 + T 2

c

) (4.35)

and the descriptions of the relevant parameters can be found in table 1. The forms of
(4.33) and (4.34) allow rapid closed-form predictions of the tip location and flow rate
for the purposes of system design and analysis (we also conjecture that such relations
may be used for systems where θc = θ �=0).

Note that for certain values of α, ηtip is higher for non-zero λ. This does not
mean that in dimensional form the meniscus tip moves faster in a rounded corner
than in a sharp corner. In fact, it can be shown that L decreases monotonically with
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Figure 18. Fη|η = 0(λ; α): I, II, and III denote the results for the three asymptotic regimes.

λ \ α 0.00000 0.00785 0.07854 0.26180 0.52360 0.78540 1.57080

1.000 1.616125 0.870570 0.870570 0.870570 0.870570 0.870570 0.870570
0.900 1.649297 1.478332 0.991580 0.906251 0.898595 0.897300 0.896724
0.800 1.686416 1.596063 1.173220 0.965388 0.934378 0.928665 0.926051
0.700 1.721637 1.664120 1.325698 1.046339 0.979965 0.966002 0.959334
0.600 1.757264 1.717774 1.449343 1.143899 1.037531 1.011100 0.997672
0.500 1.792822 1.764395 1.553318 1.252469 1.109254 1.066371 1.042685
0.450 1.810237 1.785589 1.599801 1.309461 1.151082 1.098808 1.068434
0.400 1.825860 1.805276 1.643109 1.367653 1.197224 1.135120 1.096915
0.350 1.840322 1.823139 1.683309 1.426625 1.247918 1.175935 1.128728
0.300 1.851980 1.838655 1.720193 1.485913 1.303392 1.222014 1.164703
0.250 1.862371 1.850949 1.753175 1.544890 1.363834 1.274315 1.206029
0.200 1.866357 1.858642 1.781100 1.602595 1.429360 1.334051 1.254517
0.150 1.864622 1.859323 1.801767 1.657310 1.499869 1.402863 1.313153
0.100 1.851401 1.848453 1.810772 1.705535 1.574650 1.483141 1.387538
0.080 1.840725 1.838874 1.809146 1.721403 1.605269 1.519266 1.424116
0.050 1.816387 1.815141 1.797339 1.738310 1.650722 1.578935 1.490975
0.020 1.770559 1.770687 1.764311 1.738245 1.691633 1.647428 1.584800
0.010 1.745089 1.745696 1.742862 1.729051 1.701580 1.673202 1.629717
0.000 1.702110 1.702000 1.702000 1.702000 1.702000 1.702000 1.702000

Table 8. Tabulated values of ηtip .

increasing λ. However, L is sensitive to the choice of the constant 〈w̄〉∗ for α → 0. The
most intricate and accurate solution for L treats 〈w̄〉∗ as a weakly varying function
and solves (4.4) using curve-fit numerical data for 〈w̄〉∗. Fortunately, it is found
that evaluating 〈w̄〉∗ at h = 0.5 yields results that compare well (within 2 %) with
second-order-polynomial curve-fit data. Select results for 〈w̄〉∗ at h = 0.5 are shown
in figure 19 for this purpose. The evaluation of Q̇ with Fη(0) shown in figure 18 is
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λ \ α 0.00000 0.00785 0.07854 0.26180 0.52360 0.78540 1.57080

1.000 −0.443748 −0.332584 −0.332584 −0.332584 −0.332584 −0.332584 −0.332584
0.900 −0.442654 −0.436063 −0.359772 −0.338644 −0.336645 −0.336305 −0.336154
0.800 −0.440526 −0.438781 −0.392665 −0.349311 −0.341757 −0.340335 −0.339681
0.700 −0.437138 −0.436485 −0.410446 −0.362616 −0.347933 −0.344683 −0.343110
0.600 −0.432220 −0.431970 −0.417494 −0.375665 −0.354945 −0.349305 −0.346360
0.500 −0.425447 −0.425379 −0.417655 −0.385869 −0.362212 −0.354049 −0.349316
0.450 −0.421247 −0.421231 −0.415766 −0.389311 −0.365638 −0.356367 −0.350633
0.400 −0.416433 −0.416454 −0.412722 −0.391420 −0.368701 −0.358561 −0.351807
0.350 −0.410948 −0.410993 −0.408580 −0.392067 −0.371191 −0.360530 −0.352804
0.300 −0.404733 −0.404792 −0.403362 −0.391146 −0.372867 −0.362137 −0.353579
0.250 −0.397725 −0.397791 −0.397068 −0.388566 −0.373453 −0.363201 −0.354080
0.200 −0.389866 −0.389930 −0.389683 −0.384254 −0.372647 −0.363482 −0.354237
0.150 −0.381100 −0.381157 −0.381192 −0.378151 −0.370126 −0.362667 −0.353963
0.100 −0.371390 −0.371433 −0.371583 −0.370232 −0.365559 −0.360358 −0.353142
0.080 −0.367237 −0.367273 −0.367429 −0.366558 −0.363089 −0.358908 −0.352627
0.050 −0.360723 −0.360746 −0.360874 −0.360520 −0.358639 −0.356056 −0.351617
0.020 −0.353880 −0.353890 −0.353951 −0.353880 −0.353259 −0.352269 −0.350271
0.010 −0.351532 −0.351536 −0.351568 −0.351544 −0.351257 −0.350774 −0.349736
0.000 −0.349152 −0.349152 −0.349152 −0.349152 −0.349152 −0.349152 −0.349152

Table 9. Tabulated values of Fη|η = 0.
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Figure 19. 〈w̄〉∗at h =0.5. The symbols represent asymptotic values also shown in figure 8.

accurate to within ±4 % as compared with results obtained using a polynomial fit of
〈w̄〉∗. In this way, 〈w̄〉∗ may be effectively treated as a constant for a given geometry
when it is evaluated at h = 0.5. This method of estimating 〈w̄〉∗ results in a significant
simplification of the problem while incurring errors of less than ±4 %.

Note that H appears in both equations (4.33) and (4.34). This is the constant height
H for the flow according to W&L. The method of de Lazzer et al. (1996) may be
used to determine H for right polygonal cylinders. A general approach was given by
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Finn & Neel (1999). It is important to note that for a given polygonal cross-section,
H does not depend on the degree of corner roundedness λ.

4.6. Imbibition in prewetted corners

The imbibition problem addressed above may also be analyzed for flow advancing
over a quiescent infinite column of the same fluid with uniform depth H0, as studied
numerically by Romero & Yost (1996) for the case of flow in a sharp corner. Numerical
and asymptotic analytic solutions are offered here for the rounded-corner problem.
Such solutions are readily obtained numerically for the full similarity equation (4.25)
with boundary conditions

F (0) = 1 and F (∞) = 1 − ζ, (4.36)

where ζ = 1−H0/H . Typical solutions are those for the three asymptotic flow regimes
given by (4.29a–c); some results are shown in figure 20. The overall impact of corner
roundedness is clear from inspection of the figure.

It is observed from (4.29a–c) that F = constant is a non-trivial solution to the
limiting governing equations, suggesting that asymptotic solutions for the three
regimes are also possible. Introducing the asymptotic series

F = F0 + ζ F1 + ζ 2 F2 + O(ζ 3), (4.37)

where ζ 3 � 1, and substituting (4.37) into (4.29a–c), yields respectively, O(1), O(ζ ),
and O(ζ 2) equations that are subject to boundary conditions as follows:

O(1), F0 = F0(0) = F0(∞) = 1;

O(ζ ), F1(0) = 0, F1(∞) = −1;

O(ζ 2), F2(0) = 0, F2(∞) = 0.

⎫⎬
⎭ (4.38)

When solved, the equations produce asymptotic series for the three regimes accurate
to O(ζ 3):

I. F = 1 − ζ erf

(
η√
2

)

+ ζ 2

{
1 − e−η2

π
+

−ηe−η2/2 + (1 − 1/π)
√

2π√
2π

erf

(
η√
2

)
− erf2

(
η√
2

)}
,

II. F = 1 − ζerf

(
η

2

)

+ ζ 2

{
1 − e−η2/2

π
+

ηe−η2/4 + (π − 2)/
√

π

2
√

π
erf

(
η

2

)
−1

2
erf2

(
η

2

)}
,

III. F = 1 − ζ erf

(
η

2

)

+ ζ 2

{
3
(
1 − e−η2/2

)
π

+
−3ηe−η2/4 + (3π − 6)/

√
π

2
√

π
erf

(
η

2

)
− 3

2
erf2

(
η

2

)}
.

(4.39)

Provided ζ 3 � 1, perhaps the most useful result of these solutions is the slope of the
solution at η = 0, from which the flow rate may be determined via (4.34). To O(ζ 2),
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Figure 20. Finite-tip-curvature solutions in the three regimes: (a) sharp-corner (I),
(b) rectangular-section (II), and (c) thin-film (III).

(4.39) yields

I. Sharp corner Fη(0) = −0.798 ζ + 0.544 ζ 2,

II. Rectangular section Fη(0) = −0.564 ζ + 0.103 ζ 2,

III. Thin film, Fη(0) = −0.564 ζ + 0.308 ζ 2,

⎫⎬
⎭ (4.40)

which are presented in figure 21. The full numerical solutions fitted using second order
polynomials are given for the three regimes. The percentage error of the asymptotic
results (4.40) as compared with the numerical solutions of figure 21 are shown in
figure 22. The asymptotic solutions for the sharp-corner and thin-film regimes are



266 Y. Chen, M. M. Weislogel and C. L. Nardin

0 0.2 0.4 0.6 0.8 1.0
–0.5

–0.4

–0.3

–0.2

–0.1

0

ζ

Fη(0)
I II

III

I.   Fη(0) = 0.403ζ2 –0.749ζ

II.  Fη(0) = 0.131ζ2 –0.576ζ

III. Fη(0) = 0.194ζ2 –0.523ζ

Numerical polynomial fits 

Figure 21. Numerical solutions of Fη(0) for the three asymptotic flow regimes. The solid
lines, (4.40), are second-order polynomial fits to the numerical results given in the figure.
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Figure 22. Percentage error between the asymptotic, (4.40), and numerical solutions of Fη(0)
for the three asymptotic flow regimes.

accurate to � 10 % for ζ up to 0.7. It may be serendipitous that the discrepancies
are < 5 % for all ζ for the rectangular-section regime (III).

5. Concluding remarks
As an example of how analytical methods might be extended further to capillary-

driven flow in rounded interior corners, several numerical and asymptotic analytic
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solutions have been presented in this paper:
(a) steady flows (§ 4.3);
(b) perturbed infinite columns (§ 4.4);
(c) imbibition (initially dry corners) (§ 4.5);
(d) imbibition (initially wet corners) (§ 4.6).
Closed-form expressions may be gleaned from such results, which are immediately

useful to rapidly compute characteristics of the flow such as the flow rate, interface
shape, and response time all as functions of the container geometry and fluid
properties.

The solutions presented are formally restricted to perfectly wetting fluids in rounded
corners that are tangent to planar walls. We conjecture that they may also be applied
to rounded corners that intersect planar walls at the contact angle (θc = θ > 0) provided
that the Concus–Finn critical corner-wetting condition is satisfied. General solutions
in terms of specific corner rounding and arbitrary contact angle require an alternate
scaling method not addressed in this work.

The analytical results are enabled by a specific geometric scaling of the cross-flow
problem that renders the subsequent governing equation only weakly dependent on
the numerical data. A significant portion of this paper has been devoted to both
local and global scale analysis (§ § 3.1.1–3.1.3). For all values of corner roundedness
0 � λ � 1, fluid depth 0 � h∗ � 1, and corner half-angle 0 � α � π/2, with θ = 0, the
numerical coefficient is banded such that 0.117 � 〈w̄〉∗ � 0.229. As suggested herein,
by applying the value of 〈w̄〉∗ at h∗ = 0.5 (from figure 19), 〈w̄〉∗ may be treated
effectively as a constant with errors expected to be � ±4 % and in most cases � ±2 %.
The wide majority of the geometric dependence of the viscous resistance of the
flow is thus captured by the scaling. Such solutions are ideally suited for geometric
optimizations of the flow. They are also compact and may often be interrogated by
inspection.

Several salient features of the solutions are collected in summary.
(i) An intricate nonlinear evolution equation for the interface height h was derived

(4.22) for rounded-corner flows. From this equation, three nonoverlapping regimes
are readily identified: (I) the sharp-corner regime with λ̄� 1, (II) the narrow-corner
rectangular-section regime with λ̄� 1 and λ̄2α2 � 1, and (III) the thin-film regime
with λ̄� 1 and λ̄2 tan2 α � 1.

(ii) Numerical steady solutions were obtained in general with analytic solutions
for the three regimes.

(iii) As corner roundedness increases, the response time of a perturbed column of
fluid in a rounded corner decreases with decreasing corner half-angle α.

(iv) The presence of finite corner roundedness for flows with advancing fronts leads
to an infinite slope at the leading edge. In this (thin-film) region the lubrication and
negligible-streamwise-curvature assumptions are violated. However, these constraints
were shown to be increasingly valid as time progresses.

(v) A numerical similarity solution was solved for the 23-term nonlinear evolution
equation for the imbibition problem. Results for both initially dry and prewetted
sharp and rounded corners were presented with important coefficients determined for
closed-form equations predicting important features of the flow. Asymptotic solutions
for the prewet problem were solved to second order; these are helpful in estimating
the flow rate and speed of the advancing front.

This work was supported by the NASA Office of Biological and Physical Research
through contract NNC05AA29A monitored by E. Ramé and A. Wilkinson. As
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conditions.

Appendix. Asymptotic-solution details for 〈w̄〉∗

Case I. The narrow-corner limit, Tc

2 � 1

Because T c consists of two terms, the narrow-corner limit Tc

2 � 1 requires that both
conditions α2 � 1 and λ̄� 1 are met. The latter condition is satisfied for intermediate
to low values of λ �= 1 and O(1) values of h∗ but cannot be satisfied for small but
finite α with either h∗ → 0 or λ→ 1, since from (3.13) λ̄≡ λ/h∗(1 − λ).

For the case Tc

2 � 1, the dimensionless local velocity w̄∗ can be represented by the
expansion

w̄∗ = w̄∗
0 + T

2

cw̄
∗
1 + O

(
T

4

c

)
. (A 1)

The quantities P̄ ∗ and S̄∗ may be expanded similarly. Equation (A 1) when substituted
into (3.14) yields the zeroth-order equation

1 =
∂2w̄∗

0

∂ȳ∗2
(A 2)

subject to the boundary conditions (3.15)–(3.18), the last of which does not apply at
leading order.

Note. In the special case of a predominantly flat fluid interface where ∂S̄∗/∂ȳ∗ ∼ T
4

c ,

(3.18) reduces to the O(T
2

c) equation ∂w̄∗
o/∂x̄∗ = 0. In this situation all the boundary

conditions (3.15)–(3.18) are satisfied to O(T 2
c ). Note also that S̄∗ = S̄∗

0 + O(T
4

c), as
shown in figure 6.

Solving (A 2) produces

w̄∗
01

= 1
2

[
ȳ∗2 −

(
S̄∗−1

w1
(x̄∗)

)2 ]
on 0 � x̄∗ � x̄∗

p,

w̄∗
02

= 1
2

[
ȳ∗2 −

(
S̄∗−1

w2
(x̄∗)

)2 ]
on x̄∗

p < x̄∗ � x̄∗
m.

⎫⎬
⎭ (A 3)

The local average velocity 〈w̄0〉∗
I may in turn be evaluated via

〈w̄0〉∗
I =

1

Ā∗

(∫ x̄∗
p

0

∫ S̄∗−1
w1

0

w̄∗
01

dȳ∗ dx̄∗ +

∫ 1

x̄∗
p

∫ S̄∗−1
w2

0

w̄∗
02

dȳ∗ dx̄∗ +

∫ x̄∗
m

1

∫ S∗−1
w2

S̄∗−1
0

w̄∗
02

dȳ∗ dx̄∗

)
.

(A 4)

For narrow corners with α2 � 1 and with relatively small roundedness λ̄� 1, 〈w̄0〉∗
I

reduces to

〈w̄0〉∗
Ia =

1

6
+

(
16 − 5π

48

)
α +

(
14 − π

6

)
λ̄ + O(α2, λ̄2), (A 5)

which recovers the zeroth-order solution 〈w̄〉∗ = FIa = 1/6 of W&L for the sharp
corner defined by α =0 and λ=0. This narrow-sharp-corner domain is shown in
figure 7(a).

A second narrow-corner limit is possible for the case α2λ̄2 � 1, with λ̄2 � 1. Defining
χ ≡ 1/λ̄, 〈w̄0〉∗

I reduces to

〈w̄0〉∗
Ib =

4

3π2
+

(
256 + 216π − 37π2

48π3

)
α +

(
−16 + 16π

3π3

)
χ − α

8πχ

+
104 − 3π2

48π2

α2

χ
+ O(α2, αχ, χ2, α3/χ), (A 6)
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which is valid for χ2 � 1. This narrow-corner-rectangular-section domain is shown in
figure 7(b). At zeroth order, 〈w̄0〉∗

Ib =4/3π2.

Case II. The thin-film limit, Tc

2 � 1
In a similar manner to that above, 〈w̄〉∗ may be determined for thin-film flows where

Tc

2 � 1. From two terms defining T c, this situation arises when either tan2 α � 1 (i.e.
α → π/2) or λ̄2 tan2 α � 1 (i.e. λ̄→ ∞) or when both these conditions hold. Here there
are three limiting values for 〈w̄〉∗ that may be determined. By expanding w̄∗,

w̄∗ = w̄∗
0 +

1

Tc

2
w̄∗

1 + O

(
1

Tc

4

)
, (A 7)

as well as P̄ ∗ and S̄∗, the zeroth-order equation (3.14) reduces to

1 =
∂2w̄∗

0

∂x̄∗2
. (A 8)

The no-slip boundary condition is given by (3.15), and the free-surface shear-stress
condition given by (3.18) reduces to

∂w̄∗
0

∂x̄∗ = 0 on x̄∗ = S̄∗
0. (A 9)

Again, the solution domain is divided into two regions 0 � ȳ∗ � ȳ∗
p and ȳ∗

p < ȳ∗ � ȳ∗
m

over which (A 8) is solved. Introducing Ω ≡ π/2 − α, under the conditions Ω2 � 1
and λ̄2 � 1, it is found that

〈w̄0〉∗
IIa =

1

7
+

2

7
λ̄ + O(Ω2, λ̄2). (A 10)

When λ=0 the wide-angle sharp-corner result of W&L is recovered, where at zeroth
order 〈w̄0〉∗

IIa = FII = 1/7. As for case I, 〈w̄0〉∗
IIa is independent of h∗ to leading order

provided λ̄� 1. This thin film-condition with wide corner angle and slight corner
roundedness is shown in figure 7(c).

Under the conditions Ω2 � 1 and λ̄2 � 1,

〈w̄0〉∗
IIb =

8

35
+ O(Ω2, χ2). (A 11)

This case corresponds to the wide-corner-angle and large-roundedness condition,
which is shown in figure 7(d ). This expression for 〈w̄0〉∗

IIb is valid for all 0 � h∗ � 1
and at zeroth order 〈w̄〉∗

IIb =8/35.

It is also possible to satisfy the condition Tc

2 � 1 for any value of α when
λ̄2 tan2 α � 1. In such cases, (A 8) applies but to the radial problem shown in figure 7(e),
which is ‘unwrapped’ and solved in a Cartesian domain. To leading order the profile
of the free surface is

x =
(cos(y/R) − sin α)h

1 − sinα
, y ∈ [R(α − π/2), R(π/2 − α)]. (A 12)

Solving (A 8) over the domain gives rise to

〈w̄0〉∗ = Fw(α) + Fw1
(α)χ + . . . , (A 13)

with

Fw(α) =
−11 cos 3α + 27 cosα + 3(π − 2α)(sin 3α − 9 sinα)

72(1 − sinα)2(cos α + (α − π/2) sin α)
, (A 14)
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which is a very weak function of α, validating the unwrapped Cartesian solution.
From (A 11) and (A 14) it is seen that

Fw(0) =
2

9
� Fw(α) �

8

35
= Fw

(
π

2

)
. (A 15)

For the narrow-corner thin-film case, with α2 � 1 and λ̄2 tan2 α � 1, (A 13) reduces
to

〈w̄0〉∗
IIc =

2

9
+

128 − 4π − 11π2

576
χ +

16 − 5π

36
α − π

288

χ

α

+
20480 − 3200π2 + 576π3 + 44π4 − 5π5 − 15π6

5760π3

χ2

α
+ O(α2, χ2/α2, χα) (A 16)

with zeroth-order solution 〈w̄〉∗
IIc = 2/9. All the asymptotic solutions for 〈w̄〉∗ are

plotted in figure 8.
Case III. Hydraulic diameter

For completeness, applying the hydraulic-diameter method to this problem gives
rise to

〈w̄0〉∗
hyd =

1

8

1 + Tc

2

Tc

2

[
FA

f

(
1 + 2λ̄

cotα + δλ̄

)]2

(A 17)

with zeroth-order solutions 〈w̄0〉∗
hyd = 1/8, 2/π2, 1/18, 2/9, 2/π2 for conditions Ia, Ib,

IIa, IIb, and IIc respectively, as listed in table 4. At a minimum, 1/18 � 〈w̄0〉∗
hyd � 2/9.

REFERENCES

Al-Futaisi, A. & Patzek, T. W. 2002 Three-phase hydraulic conductances in angular capillaries.
In SPE 75193, presented at the SPE/DOE 13th Symp. on Improved Oil Recovery, Tulsa OK,
April 2002.

Ayyaswamy, P. S., Catton, I. & Edwards, D. K. 1974 Capillary flow in triangular grooves. Trans
ASME: J. Appl. Mech. 41, 332–336.
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