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Biologically Inspired Computing: 

- The DARPA SyNAPSE Program & 
- The Hierarchical Temporal Memory 

Dan Hammerstrom 
Electrical And Computer Engineering 
Portland State University 
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Intelligent Computing 

  There is one class of problems that we still do not solve well 

  These problems involve the interaction of a computing system with the real 
world 

  Which, in part, involves a transformation and understanding of data at the 
boundary between the real world and the digital world 

  These problems occur wherever a computer is interacting with the real 
world – which includes almost every embedded application 

  An interesting opportunity for specialized hardware 
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Our Focus: Intelligent Signal Processing (ISP) 
  ISP augments and enhances traditional DSP (Digital Signal Processing) by 

incorporating contextual and higher level knowledge of the application 
domain into the data transformation process 
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The “Front End” 

  Front end processing is well understood, it is the realm of traditional digital 
signal and image processing 

  Front end algorithms generally apply the same computation over large 
arrays of elements, they are data parallel, and communication tends to be 
local 

  An excellent example of such an architecture is the CNN (Cellular Non-linear 
Network) developed by Chua, Roska et al. 

  Most “neuromorphic” VLSI operates at the front end 
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But Then There’s The “Back-End” … 

  In the early days of computing, “Artificial Intelligence” focused on the 
representation and use of contextual and semantic information 

  Knowledge was generally represented by a set of rules 

  However, these systems were “brittle,” exhibiting limited flexibility, 
generalization, and graceful degradation 

  They did not scale 

  And they were unable to adapt dynamically (i.e., learn) within the context of 
most real world applications 

Maseeh College of Engineering 
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The ISP Toolbox – 
Still mostly empty after 
all these years … 
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Some Desirable ISP Characteristics 

  Solving the problem 
  Massively parallel and low precision 
  Self-organizing – in fact, system design becomes more the provisioning of 

organizing principles (Prof. Christoph von der Malsburg), than the 
specification of all operational aspects of the models 
  www.organic-computing.org 

  Generalization, and graceful degradation 
  Low power - the processing power of the brain is roughly 1015 operations 

per second which it accomplishes at a power dissipation of about 25 watts 
  Scales - The scaling limitations of both symbolic and traditional neural 

network approaches constitute one of their biggest shortcomings 
  Adaptive - Consequently another important characteristic of real systems is 

incremental, integrative adaptation or learning during system operation 

Maseeh College of Engineering 
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The Scope of Our Project 

  Conceptually one can think of “computational intelligence” as a spectrum 
  And though not universally accepted, it has been hypothesized that this 

spectrum is more or less continuous from one end to the other 

2/26/10 8 
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  There is increasing interest in using models from Computational 
Neuroscience, in particular cortical models as inspiration for new models of 
computation in general and intelligent computing in particular 

  In Europe there is FACETS 
  The goal of the FACETS (Fast Analog Computing with Emergent Transient 

States) project is to create a theoretical and experimental foundation for the 
realisation of novel computing paradigms which exploit the concepts 
experimentally observed in biological nervous systems. 

  And in the US there is the DARPA SyNAPSE Program 

2/26/10 9 

Approved for Public Release, Distribution Unlimited 
10 

Systems of Neuromorphic Adaptive Plastic Scalable Electronics 

Dr. Todd Hylton, Program Manager 
DARPA DSO 
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Approved for Public Release, Distribution Unlimited 
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Program Approach 
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Program Outline 
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  There are three contractors: 
  IBM - Dharmendara Modha 
  HP – Greg Snider 
  HRL (formerly the Hughes Research Lab) – Narayan Srinivasa 

  The ultimate goal is to build a low-power, compact electronic chip combining a novel analog circuit 
design and a neuroscience-inspired architecture that can address a wide range of cognitive 
abilities—perception, planning, decision making and motor control 

  "Our research progress in this area is unprecedented," says DARPA program manager Todd 
Hylton, Ph.D. "No suitable electronic synaptic device that can perform critical functions of a 
biological brain like spike-timing-dependent plasticity [an indicator of the capability to learn] has 
ever before been demonstrated or even articulated.” 

2/26/10 14 
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HRL Team 

  Hardware: 
  Analog circuits, HRL 
  Nano-devices, Wei Lu, Univ. of Michigan 
  Floating gate devices, Paul Hasler, Georgia Tech 
  Systems integration and global communication, Dan Hammerstrom, Portland State 

  Neuroscience 
  Steve Grossberg, Boston University 
  Eugene Izhikevich, Jason Fleischer, et al., Neurosciences Institute 
  Jeff Krichmar, UC Irvine 
  Phil Goodman, University of Nevada, Reno 
  Giorgio Ascoli and Alexei Samsonovich, George Mason 

  All three teams have completed phase 0 and are now in the middle of phase 1, which is 
scheduled to end in December 2010 

2/26/10 15 
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NEUROMORPHIC NETWORKS  
(“CROSSNETS”) 

wjk = {-1, 0, +1} 

Generic structure of a feedforward CrossNet 
S. Fölling  et al. (2001) 
O. Turel et al. (2004) 

Basic idea:  
 CMOS “somas” + nanowire “axons” and “dendrites” + nanodevice “synapses” 
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Structural View of Mixed-Signal CMOL Design 
(Each CP) - Gao 

C. Gao 

2/26/10 
Work performed by HRL under DARPA 

contract HRL0011-09-C-001 18 
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The “Gap” 
  So do neural techniques lead to 

advanced ISP? 

  Most Computational Neuroscience 
is weak in making the jump from 
spiking neurons with learning rules 
such as STDP to Cognition 
  The SyNAPSE program has this 

problem 

  Even solutions to the more narrowly 
defined ISP back-end problem are 
not obvious 

2/26/10 20 

Neurons 

Cognition 

“Then a Miracle Occurs” 
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Modular Intermediate Form 

  One way to possibly bridge the gap 
is to define a computational model 
that “spans” the gap 

  A candidate has been proposed by 
Albus and many others: 

  The Cortical Computation Unit 
(CCU) 

2/26/10 21 

Neurons 

Intelligent Computation 

Intermediate Model 

Maseeh College of Engineering 
and Computer Science Hammerstrom 

Desirable Characteristics 

  Modular 
  Distributed representation 
  Hierarchical, bi-directional information flow 
  Massively parallel 
  Scales 
  Learning / Self-organizing 
  Does a kind of Bayesian inference 

  Solves the problem … 

2/26/10 22 
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•  overall system level (central nervous system) 

•  arrays of macro-computational units (e.g., cortical regions)  

•  macro-computational units (e.g., cortical hypercolumns & loops) 

•  micro-computational units (e.g., cortical microcolumns & loops) 

•  neural clusters (e.g., spinal and midbrain sensory-motor nuclei)  

•  neurons (elemental computational units) – input/output functions 

•  synapses (electronic gates, memory elements) – synaptic phenomena 

•  membrane mechanics (ion channel activity) – molecular phenomena 

Albus: What is the path to success for 
reverse engineering the brain? 

Pick the right level of resolution 

AI and Cognitive Neuroscience 

Mainstream Neuroscience & Neural Nets 

CCUs 

Slide courtesy James Albus, “Reverse Engineering the Visual System” From the 
PSU / Intel / ONR / NSF “Massively Parallel, Adaptive Computing” Workshop, March 2009 
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Modular Hierarchies 

  Computer engineers make extensive use of modular, hierarchical design, 
can we assume the same for these models? 

  In neocortex the fundamental unit of computation appears to be the cortical 
minicolumn (Mountcastle) 
  A minicolumn is a vertically organized group of about 80-100 neurons which 

traverses the thickness of the gray matter (~3 mm) and is about 50µ in diameter 
  Neurons in a column tend to communicate mostly vertically with other neurons in 

the different layers in the same column 

  These are subsequently organized into larger columns variously called just 
“columns”, “cortical columns”, “hypercolumns”, or sometimes “modules” 
  Note, columnar organization is not universally accepted in the neuroscience 

community 
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“Bayesian Memory” (BM) Building Block 

  An approximation to a CCU 
  A BM sees only a subset of its 

input BMs and each BM’s subset 
is slightly different 

  Inference is performed over small 
sub-blocks 

  The number of blocks increases 
linearly 

  Relies heavily on sparse, 
distributed representations 

2/26/10 25 

BM BM BM BM 

BM BM BM BM 

BM BM BM BM 

BM BM BM BM 
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From Big Brain by Gary Lynch and Rick Granger (Palgrave 
McMillan 2008): 

  “Although the ‘front end’ circuits of the brain, with their point-to-point circuit 
designs, specialize in their own particular visual and auditory inputs, the rest 
of the brain converts these to random-access encodings in association 
areas throughout cortex.  … these areas take initial sensory information and 
construct grammars 

  “These are not grammars of linguistic elements, they are grammatical 
organizations (nested, hierarchical, sequences of categories) of percepts – 
visual, auditory, and other 

  “Processing proceeds by incrementally assembling these constructs … 
these grammars generate successively larger ‘proto-grammatical 
fragments,’ eventually constituting full grammars 

2/26/10 26 
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  “They thus are not built in the manner of most hand-made grammars; they 
are statistically assembled, to come to exhibit rule-like behavior, of the kind 
expected for linguistic grammars 

  “Proto-grammatical fragments capture regularities that are empirically found 
to suffice both for recognizing and generating grammatical sequences 

  “Auditory pathways in our brains grew and lengthened building voice-
sounds into words, words into phrases, phrases into sentences” 

2/26/10 27 
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  Information needs to flow both ways 
  Assume that conditional probabilities / priors - model the world 
  Bi-Directional Belief propagation – e.g., visual cortex model 
  Inference as the basic computation 

Lee and Mumford Visual cortex model 
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A BM module then has two parts: 

  An input that approximately learns the probability distribution of its inputs 
  A table of vectors, which is called a codebook and implements Vector functionality 
  Approximates the input probability distribution 
  Learns in an unsupervised manner by allocating new vectors and/or moving 

existing vectors 

  A Vector Quantizer is an example of such a function – an “entropy” 
maximizing data reducer 

2/26/10 29 
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  An output that creates a new representation of the codebook vectors to 
send up the hierarchy 
  A table of vectors, one for each codebook vector 
  The output vectors are sparse and are of a higher dimension than the space they 

span 
  In some implementations they are random, in Numenta’s HTM they just pass up 

the index of the winning codebook vector 
  Ideally they would self-organize, as in a Self-Organizing Map (SOM) to capture 

the one or two dimensions of highest invariance of the input space 

2/26/10 30 
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  The winning 
codebook vector is 
the most likely 
given some input 

  W is some vector 
weight 

  In VQ terms it 
specifies the width 
of the region 
surrounding the 
codebook vector 

  It can be thought of 
as the “prior” 
probablities 
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Evidence for Input Vectors 

Winning Output Vector 
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Belief Propagation 

  The model looks good, but something missing 

  It is generally assumed that biological systems perform a kind of inference 
over the knowledge they have learned 

  If so, then perhaps Bayesian Inference 
  Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 

Inference, by Judea Pearl, Morgan Kaufmann, 1988, ISBN-10: 1558604790 

  Assume that our modular hierarchy is a directed Bayesian network 
  Vertices are objects which have local information and carry out local 

computations by updating of probability distribution via message passing 

2/26/10 32 
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Most Likely Computation – Influence From Above 

  OK, I lied, the 
computation of 
the most-likely 
codebook vector 
is actually more 
complicated 

  The reason is 
that it is a result 
of the influence 
of “belief” 
propagated both 
from above and 
from below 
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Input Vector 
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A Simple Bayesian Network 

P(d|b,c) d1 d2 

b1, c1 0.5 0.5 

b2, c1 0.3 0.7 

b1, c2 0.9 0.1 

b2, c2 0.8 0.2 

CPT for node D, 
there are similar tables 
for B and C 

CPT is “Conditional Probability Table” 
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Pearl’s Belief Propagation 

V 

U2 

V1 V2 

U1 

π(U2) 

π(V1) 
π(V2) 

π(U1) 

λ(U1) 

λ(V2) 

λ(V1) 

λ(U2) 

Singliar Slides 
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The Evidence 
  Evidence – values of observed nodes 

  V3 = T, V6 = 3 
  Our belief in what the value of Vi 

‘should’ be changes 
  This belief is propagated 
   As if the CPTs became 

V1 

V5 

V2 

V4 

V3 

V6 

V3=T 1.0 
V3=F 0.0 

P V2=T V2=F 
V6=1 0.0 0.0 

V6=2 0.0 0.0 

V6=3 1.0 1.0 

Slides by Tomas Singliar, CMU  
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The π Messages 
  What are the messages? 
  For simplicity, let the nodes be binary 

V1 

V2 

V1=T 0.8 
V1=F 0.2 

P V1=T V1=F 
V2=T 0.4 0.9 

V2=F 0.6 0.1 

The message passes on information 

What information? Observe:  

P(V2| V1) = P(V2| V1=T)P(V1=T) 

 + P(V2| V1=F)P(V1=F) 

The information needed is the 
CPT of V1 = πV(V1) 

π Messages capture information 
passed from parent to child 

Singliar Slides 
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The λ Messages 
  What about λ? 

  The messages are π(V)=P(V|E+) and λ(V)=P(E-|V) 

V1 

V2 

Assume E = { V2 } and compute by Bayes rule: 

The information not available at V1 is the P(V2|V1). To 
be passed upwards by a λ-message. Again, this is not 
in general exactly the CPT, but the belief based on 
evidence down the tree. 

Singliar Slides 
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Combination of evidence 

  α is the normalization constant 
  normalization is not necessary (can do it at the end) 
  but may prevent numerical underflow problems 

Singliar Slides 
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Messages to pass 

  We need to compute πXY(x) 

  Similarly,  λXY(x), X is parent, Y child 
  Symbolically, group other parents of Y into V = V1, … , Vq 

Singliar Slides 
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The Pearl Belief Propagation Algorithm 

  Iterate until no change occurs 
  (For each node X) if X has received all the π messages from its parents, calculate π(x) 
  (For each node X) if X has received all the λ messages from its children, calculate λ(x) 
  (For each node X) if π(x) has been calculated and X received all the λ-messages from all its 

children (except Y), calculate πXY(x) and send it to Y. 
  (For each node X) if λ(x) has been calculated and X received all the π-messages from all 

parents (except U), calculate λXU(x) and send it to U. 

  Compute BEL(X) = λ(x)π(x) and normalize 

Singliar Slides 
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Most Graphs are not Polytrees   

  Cutset conditioning 
  Instantiate a node in cycle, absorb the value in child’s CPT 
  Do it with all possible values and run belief propagation 
  Sum over obtained conditionals 
  Hard to do  

  Need to compute P(c) 
  Exponential explosion - minimal cutset desirable (also NP-complete) 

  Clustering algorithm 
  Approximate inference 

  Sampling methods 
  Loopy BP 

Singliar Slides 
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Now To Add BBP to The BM 

  A node in our hierarchy then represents a variable and is part of a 
larger, acyclic graph 

  Child regions Y1 and Y2, parent U 

Voilá - A “Bayesian Memory” 
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Neural Network Equivalent of BBP-PA  
  For 4K CB entries 
  No. Neurons ~ 32e3 
  Synapses ~ 34e6 
  NN derived from Hawkins’ paper 

Maseeh College of Engineering 
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HTM – Hierarchical Temporal 
Memory – Version 2 

2/26/10 46 
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Numenta 
  The HTM algorithm is the work of Jeff Hawkins and Dileep 

George 

  Jeff (Palm Pilot inventor) founded the Redwood Neuroscience 
Institute, http://redwood.berkeley.edu 

  From which has emerged a synthesis of a number of existing and 
new ideas of cortical operation 

  These are highlighted in his book, “On Intelligence” 

  The models have worked so well that he has now spun out a 
company, Numenta, Inc., www.numenta.com 

  Our work has borrowed heavily from Jeff and Dileep 

Maseeh College of Engineering 
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  Based on neuroscience principles, Jeff proposed that Cortex performs the 
following: 

1.  Learns sequences of patterns 
2.  Operates auto-associatively 
3.  Captures invariants 
4.  Is organized hierarchically, and 
5.  Based on fundamental Bayesian principles 

  The George / Hawkins model starts with a fairly general Bayesian module, 
very similar to the BM presented earlier 
  “A Hierarchical Bayesian Model of Invariant Pattern Recognition in the Visual 

Cortex,” D. George and J. Hawkins, Proceedings of the ICJNN 2005 

  These modules then are combined into a hierarchy to form the Numenta 
Hierarchical Temporal Memory (HTM) 
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  Hierarchical -- HTMs are organized as a tree-shaped hierarchy of nodes. Each node 
implements a learning and memory function, that is, it encapsulates an algorithm 
  Lower-level nodes receive large amounts of input and send processed input up to the next 

level 
  In that way, the HTM Network abstracts the information as it is passed up the hierarchy 

  Temporal -- During training, the HTM application must be presented with objects as 
they change over time 
  For example, during training of the Pictures application, the images are presented first top to 

bottom, then left to right as if the image were moving over time 
  Note that the temporal element is critical: The algorithm has been written to expect input that 

changes gradually over time 

2/26/10 49 
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  Memory -- An HTM application works in two stages, which can be thought of as 
training memory and using memory 
  During training, the HTM Network learns to recognize patterns in the input it receives. Each 

level in the hierarchy is trained separately 
  In the fully trained HTM Network, each level in the hierarchy knows -- has in memory -- all the 

objects in its world 
  During inference, when the HTM Network is presented with new objects, it can determine the 

likelihood that an object is one of the already known objects. 

2/26/10 50 
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2/26/10 51 Courtesy Dileep George 2009 

George D, Hawkins J, 2009, 
“Towards a Mathematical Theory 
of Cortical Micro-circuits,” 
PLoS Comput Biol 5(10):e1000532 
doi:10.1371/journal.pcbi.1000532  

2/26/10 52 Courtesy Dileep George 2009 
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2/26/10 56 Courtesy Dileep George 2009 
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  Hierarchy in space and time 
  Evidence for biology abstracting in space and time as signals proceed up the 

hierarchy 
  Feed-forward and feedback connections 
  Common cortical algorithm 
  Inference using Bayesian belief propagation 
  Sparse Distributed Representations 
  Prediction using temporal context 
  Biologically accurate 

  Several computational vision applications 
  www.numenta.com 

2/26/10 58 
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2/26/10 59 Courtesy Dileep George 2009 

Kanisza Square Illusion … 

Maseeh College of Engineering 
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Mapping To Biology … 

  In the PLOS paper, “Towards a Mathematical Theory of Cortical Micro-
circuits,” they also speculate on mapping the algorithms to cortical circuitry 
  Use known facts about cortical organization to map belief propagation to cortical 

layers 
  “The vertical dimension of the cortical rectangle is only a few layers deep, the 

horizontal dimension is variable” 
  The states of the region are represented by neurons along the horizontal 

dimension of the cortical region 
  They then divide the horizontal dimension of the cortical region into a number of 

Compartments, where each compartment corresponds to a particular state of the 
region 

  This subdivision corresponds to a columnar organization of the cortex 
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2/26/10 62 Courtesy Jeff Hawkins 2009 



32 

Maseeh College of Engineering 
and Computer Science Hammerstrom 

  It is an interesting time! 

  SyNAPSE probably won’t meet its original goals, but it will push the 
field forward – assuming there is no catastrophic failure – or too much 
hype … 
  IEEE Tech Blog, “Cat Fight Brews Over Cat Brain” 

  I personally believe that Jeff is on the right track 
  And he is in this for the long haul, like the Terminator he will just keep 

on attacking this problem … 
  And for the work I do, there are all kinds of interesting hardware 

possibilities – especially with nano and molecular electronics! 
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A Path From Nanowires to ISP 
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Intelligent Signal Processing 

Hierarchical Bayesian Network 

Modular Bidirectional Spiking 
Associative Memory 

Mixed Signal Nano-Scale 
Devices 

  Our approach is top-down, not 
bottom up 

  There is a large range of 
implementation options 
  1000 Atom processors 
  Neuromorphic VLSI 
  Nano-grids 
  Other nano … 
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Our Goal – A Commercial Product: 
The Field Adaptable Bayesian Array (FABA) 

Nanoscale 
Analog 

Associative 
Memory 

Nanoscale 
Analog 

Associative 
Memory 

Nanoscale 
Analog 

Associative 
Memory 

Nanoscale 
Analog 

Associative 
Memory 

Each Square is a single Bayesian Memory Node 

CMOS provides 
sparse 
inter-module 
connectivity, 
I/O, signal 
amplification 

Thousands of 
of nodes 
with full 
connectivity 

Bayesian 
Memory 
Inside! 
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FABA – Long Term Goal 

  A roughly 1 inch die containing several billion CMOS transistors and close 
to a trillion molecular devices 

  Operating at over 10 Tera-Ops 
  Extensive fault / defect tolerance 
  Performs real-time, adaptive bayesian inference over very complex spatial 

and temporal knowledge structures 
  Available in a portable, hand-held, low power devices 
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