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ARTICLES

Capillary flow in interior corners: The infinite column

M. M. Weislogel®
TDA Research, Inc., 12345 W. 52nd Avenue, Wheat Ridge, Colorado 80033

(Received 28 August 2000; accepted 10 July 2001

Capillary flow of a sinusoidally perturbed liquid column in an interior corner of infinite extent is
solved using lubrication theory. Due primarily to the length scales selected to nondimensionalize the
momentum equation, an analytic time scale governing the settling of the perturbation is determined.
The time scale, which is shown to be independent of a steady base state flow, proves useful in
rapidly predicting transients for surface settling in certain liquid-bearing tanks of spacecraft
employing interior corners for fluids management purposes. The asymptotic analysis is extended to
address flows along interior corners whose faces are slightly nonplanar. The generalized formulation
is presented for the case of a perfectly wetting fluid in a second-order polynomial corner. A
leading-order analytic solution for small corner angles is provided. It is shown that a “convex
corner” decreases the response time of the liquid and increases the capillary flow rate along the
corner by increasing both the driving force and cross-sectional area of the flow. Gravity acting
normal to the corner axis along the bisector of the corner angle is also considered and is found to
accelerate, decelerate, or destabilize such flows depending on its sign and magnitu2i@dl ©
American Institute of Physics[DOI: 10.1063/1.140891]8

I. BACKGROUND A general formulation for these capillary flows based on
lubrication theory was outlined by Weislogel and LicKter

A wetting phenomenon of fundamental importance first(W&L ) providing the framework for analytical solutions to a

described with mathematical rigor by Concus and Fioc-  variety of application-specific problems. Because slender lig-

curs in containers with interior corners for corner half-anglesuid columns in interior corners often arise in low-g fluids

a and contact angleg that satisfyd<w/2—a. The Concus— management systems, an effort is made here to apply the

Finn condition is a geometric wetting condition that corre-general formulation to this important problem. A brief review

sponds to an underpressure in the liquid resulting ins provided below by way of a description of the infinite

capillary-driven flow into and along the interior corner. A corner flow.

column of liquid stably occupies an infinite interior corner

when the Concus—Finn condition is satisfied but is unstabld. THE INFINITE COLUMN

when the condition is not satisfied. As shown by LangBein, In Fig. 1 is sketched a portion of an interior corner

the latter situation produces an overpressure in the liquigy meq py planar walls of infinite extent. The comer is par-
similar to that of a cylindrical jet, which breaks up into finite tially filled with a wetting liquid of viscosityx and surface

“drops” whose shapes and orientations dependom, and  (ensiono and satisfies the Concus—Finn condition for this
liquid volume. When the Concus—Finn condition is satisfied,geometry: namelyg<m/2—a, whered is the wetting angle
the interior corners of containers may be used to move, prefss the liquid on the solid faces of the corner aads the
erentially locate, or otherwise control capillary liquids. corner half-angle. Herél is the characteristic height of the

In the absence of gravity, spontaneous capillary flowgjquid in the corner, and the liquid surfac(x’,z',t') is
m. As a result, spacecraft fluids systems can exploit capillaryrhe slenderness ratie=H/L appears ag? in the nondi-
flows in interior corners for paSSive pOSitioning and/or flow mensional equations and serves as the small parameter, al-
control of large liquid masses such as cryogens, storable fyowing asymptotic analysis of the problem.
els, and water. Because numerical methods are difficult to  As reviewed by W&L? the assumptior®<1 simplifies
apply in capillary systems, analytic tools to predict such fluidthe normal stress boundary condition on the fluid interface to
behavior are desired to improve design efficiency with rethe Young—Laplace equation, which may be solved to ex-
gard to both time and cost. press the entire fluid interface shape as a construct of circular
arcs in thedimensional -y’ plane. The local radius of cur-
dTelephone:  303-940-2320; fax: 303-422-7763: electronic mail: vature 'Of the imerfaCER':R'(Z'at')z WhiCh iS' inversely
mmw@tda.com proportional to the pressuf@,=o¢/R’ in the liquid, may be

1070-6631/2001/13(11)/3101/7/$18.00 3101 © 2001 American Institute of Physics
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FIG. 1. Perturbed liquid column in an
infinite interior corner. The notation
identifies  dimensional quantities

(primes dropped

expressed in terms of local surface heidti(z’,t’). The  where(wy) is the dimensionless average velocity through
“cross-flow problem” for Fig. 1 is sketched in Fig. 2, where the sectionA. The streamwise mass balance may be conve-
R’ is constant in thex’-y’ plane and the liquid surface sat- niently written in terms of meniscus centerline heigliz,t),
isfies the static contact angle condition at the wall; Fig).2 given generally by
HereR' is nondimensionalized biif, where 2
. . IFh? o ,_ oh

f=sina/(cosf—sina). it :E<Fah Fyg), (©)
The radius of curvature in théimensionless x-glane is not
constant; Fig. t).

where A=F,h? and (wg)=—F,dh/dz, the mean
z-component velocity through the cross-flow section. Here

For €2<1, the flow is predominantly parallel and the . . -
. . L . 2 1S @ geometric weighting factor for the cross-flow area
nondimensionalization of the governing momentum an . X .
and F, is the geometric flow resistance. Bok)y and F,

mass equations using the quantities listed in Table | leads t8epend ona and 6. For nonplanar walls, and F, also
Py W, 9*Wo depend orh. Solutions of Eq(3) for h(z,t) may be used to
oz Wsmz at Wcog @, (1) construct the transient three-dimension@D) interface
; L ) shape S(x,z,t).
for th_e Iead_lng—ordez—component velocity d|str|but|9wo in Numerous researchers have followed the arguments
the dimensionless x-gross-flow plane. Equatiof) is sub-  e4ding to Eq(3) for capillary flows in corners, and a selec-
ject to no slip along the walls, no §hear stress on the freg,n of recent examples includes the work of Gauggitzl.’
surface, and the symmetry condition along=0. The  pong and Chatzi®and Langbein and Weislog®The subtle
streamwise mass balance is novelty of the present development is the nondimensional-
IA ﬁ'Q ization of the problem, which explicitly accounts for much of
- (2)  the variation ofF, on « and 6, significantly reducing the
. dependence of analytical results on numerical solutions to
where A is the dimensionless cross-flow area af@  Eq. (1), or the use of friction factors or hydraulic diameters.
= A{Wy) is the volumetriz-component volumetric flow rate, For example, thez’-component velocity scal®V is deter-

o gz

FIG. 2. Cross-flow notation(a) dimensional(primes
dropped; (b) nondimensional
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TABLE I. Nondimensionalized terms, parameters, and definitions used in analyses. Primes denote dimensional

quantities.
Lengths Other Geometric parameters, definitions
x=x'/H tana Wo=Wy/W F., geometric cross flow are function
y=y'/H W= €0 sir? aluf F,=FA/tana, planar corner
z=27'/L t=Wt'/L F.=1%2h/3, nonplanar cornen?<1, Eq.(30)
h=h'/H Po=fHPy/ o F A= f2(cos#@ sin dlsin a-5)
R=R'/fH A=A’/H?tana F,, generalized geometric flow resistance parameter
Sp=Sy/H Q:Q’/WH2 tana F;, geometric flow resistance for planar corner
fu="fu/H F,=F;, planar comers<F;< %, W&L (Ref. 3
1 « S5
Fi=Fi=5+3 (1— g/ Planar cornerg®<1, W&L (Ref. 3

F,=F,=13B/45, nonplanar cornern?<1, Eq.(29

mined by a balance of surface tension and viscous forces in = gh;  ¢h, oh, 9%h; 3%hy

the following manner: The dimensional equation for the -~ =4 "~ +ho—7 +hi—>. ()

cross-flow problem i, = u(Woxx+ Woyy) . Substituting the _ _ _ _

Table | length and pressure scales produces the balance ©One solution to Eq(6) is ho=1. This “base state” solution
describes a quiescent planar interface of dimensional height

o 1 1) wuW H. The O(€) perturbation Eq(7) reduces to
rrc <V Hztar?a+m)_stir12a' P,
1 1
Solving for W yields the velocity scaléN= eo Sirf a/uf = hoz- 8

listed in Table I. As a consequence of this scaling, surface _ _ _
tension forces depend on bothand 6 through 1f, while ~ Equation(8) yields the solution foih,

viscous forces_ depe_nd primarily anthrough 1/siﬁa. _The h=1+ eC, ex{] — m27]cog mz+ C,)+ O(€?), 9)
degree to which this scaling models the flow is discussed _ o
further below. which describes the infinite interior corner flow problem

sketched in Fig. 1, wherkl defines the meatunperturbed
height of the liquid in the corner arelC; defines the ampli-
tude of an axial sinusoidal perturbation of dimensional wave-
length 2. Several useful characteristics of the flow may be
For planar walls as sketched in Figs. 1 and R,  distinguished from this result.

I1I. INFINITE COLUMN: PLANAR WALLS

=Fa(a,0) andF,=F;(«,6). Thus, for this case , divides An important result from Eq(9) is the time constant.
out of Eq.(3). The exact value of , must be determined Whenredimensionalizedthe decaying exponent is
numerically, as accomplished by Ransohoff and Radikel 2 FE sifa ot

Ayyaswamyet al® However, as shown by W&E analytical mir=€ o % L’ (10

solutions to Eq(1) for small and large corner angles reveal
that 1/8<F;<1/16 for all values ofx and § and may there- from which the time constant is2fL/m%eF ,o sir? . For
fore be approximated as a constant. By rescaitrg-,t/2, fixed fluid properties and planar corner walls, £8,=F;

Eq. (3) becomes <4¢, and the response time of the disturbance is dependent
dh oh\?  3°h
ar “\az 02 4) 10000
For planar corner walls, any solution to Ed) for h leads
immediately to resolution of the entire surface through 1000
So=h(1+f)—(f?h?—x?tarf a)2. (5) T
100

The above results are accurateQge) provided the column
is slendere?<1. The static contact angle condition is main-
tained in the cross-flow problefsee Fig. 2and is correct to 10
leading order, as discussed by Weislogel.
Introducing the expansion=hy+ eh; + O(€?) and sub-
stituting into Eq.(4) yields theO(1) equation,
dhy [dho\2 %, J
or - 2( E) + hO?’ ©) FIG. 3. Geometric time constafftfor capillary-driven settling in an infinite

) corner with planar wallsé= 7/2— a— 0. The curve ford=0 is identified by
and theO(e) equation, a thin solid line.
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FIG. 4. A sinusoidally perturbed col-
umn with a steady flow base state,
=(1-Az)*® whereA=L/L. The un-
perturbed base state is shown using
dashed lines on corner walls.

geometrically primarily on the quantiff= f/sir? a. This re-  pressly for the infinite column. For this solutidd is the
lationship is plotted in Fig. 3 for a variety of corner half- characteristic height of the liquid column. This flow scenario
anglesa and surface curvature angléd = 7/2—a— 6; see  is depicted in Fig. 4 with the base state interface profile
Fig. 2(a)] satisfying the Concus—Finn condition. As can beidentified with a dashed line along the contact line. Using
seen from the figure, the time constant rapidly increase® asthis unperturbed state fdu, it is possible forA?<1 to show
approaches 0. The analytical minimum value foris  that

gchieved_fora=3’_0°_, 6=mnl2—« (i.e., 6=0). Even consider- h=(1—A2)Y3+ eC, ex — m2r][cog mz+ C,)
ing the slight variation of; on « and é for the planar corner
case, 1/&F;<%, the time constant is minimized far=30°, +Afen(z)]+O(€%,A?),

6=ml2—a. Thus,T serves as the ratio of geometric quanti-
ties that characterize capillary ~(1/f) and viscous
(~1/F; sir? a) forces. Changes in fluid behavior due to the

contact angle are effected largely through the former. Th‘gients are not expected un@i(?), the order of the viscous
capillary number CaEV'ul/o) measures the strength of normal stress condition fow oné
0

normal viscous to surface tension forces. When based on the
dimensional contact line velocity’ =V, the velocity at the
contact line normal to contact line and tangent to the wall,
Ca is often treated as a measure of dynamic contact angle The inclusion of gravity acting along thedirection (g,
effects as reviewed by Kistléf,which have been assumed taken negative in the negatiyedirection for the infinite
negligible. The dimensional leading-order contact line veloc-column problem modifies the mearcomponent velocity to
ity computed from Eq(9) is V/~ah'/at’. EvaluatingV),  (Wo)=—F,(1+h?Boy)h,, which when substituted into Eq.
and computing Ca reveals a maximum valu¢’at0 of Ca  (2) leads to

providede<<A. Thus the local time dependence of the prob-
lem is unchanged by the steady base flow and may be com-
uted using Eq(10). The impact of base state flow on tran-

B. Effect of gravity, gy

~e f/(F,sirf a), yvhlch decreases exponentially with time. h=1+€C, exg — 72(1—Boy) 7]cog 72+ C,)

This value of Ca is indeed small and supports the use of the

static contact angle condition applied at the contact line for +0(€?), (12)
this problem.

where quzfpngZ/a, with liquid densityp. The form of
Eq. (9) is recovered for Bg=0 and it is observed that the
column is unstable for Bp>1. The order of magnitude pre-

It is also insightful to note for this formulation that the dictions of settling times for slightly disturbed systems are
time constant does not necessarily change for other bagmssible by the suitable selectiontéfandL. For exampleH
states. For example, a steady-state solution to(Bqis h,  could easily be taken as the vane heigint a propellant
=(1—-Az)® whereA=L/L. This solution introduces the management devig@andL taken as the vane lengtB,; may
finite length of the liquid columiiL ) as a second length scale be viewed as a weighting factor for the amplitude of the
in addition to the disturbance wavelengtBL) used ex- initial perturbation.

A. Steady flow base state
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FIG. 5. Anondimensional cross-flow section in nonpla-
nar interior cornersq preserved at the vertexa) con-
cave cornerf,=x+ gf,q; (b) convex cornerf,=Xx

_,Bfwl-

IV. INFINITE COLUMN SOLUTION: NONPLANAR R=hTBfuil,
WALLS mo

The solution approach outlined above may be followed
similarly for interior corners with slightly nonplanar walls. In
the example provided here, the planar walls are symmetri-
cally perturbed such that the corner half-angle condition at  x,,=h(1+sina).
the corner vertex is preserved. Tdenensionaform of the
wall perturbation is

, (18)

m0

Xm= Xmo

Jf
1t,8(sin2 a&—)vzl—hlfv\,l”

X,

At this point it is helpful to select a form fof,, before

proceeding. Choosinfy,; =x", wheren>1, and substituting
fi,=x' cota=Bf,. (120 into Eq.(18) yields

Nondimensionalizing using Table | quantities and choosing  x —h(1+sina)[1FBh" }(1+sina)" X(1+sina

!

suitable scales foB andf,,; , Eq.(12) becomes
fw:Xiﬁfwl+o(,32)a (13

where 8<1. To maintain the corner half-angle condition at
the vertex the form off,,; must satisfydf,,,/dx|x—o=0.
Examples of thewondimensionatross-flow sections for such
non-planar walls are depicted in Fig. 5. A “concave wall”
described by positive wall curvature is illustrated in Fig.

—nsirf a)]. (19

This form for f,,; requires thatB=pB/H" ‘tal'a in Eq.
(12). A second-order polynomial wall is achieved with
=2 resulting in a further simplification of Eq19). This
simplified problem will be analyzed here, which yields the
system toO(3),

5(a), where f,,=x+ Bf,1. A “convex wall” described by fu=X*Bx2,
negative wall curvature is depicted in Figbh wheref,, ) o,
=x—Bf,1. In general, the Concus—Finn condition for these =~ R=h+gh*(1+sina)%, (20

corners may depend on meniscus centerline hdightad-
dition to « and 6. Depending on the choice df,,, this
condition may be computed usimgk = cosé, wheren is the —2sirfa).

outward unit normal t&, andk is the inward unit normal to ) _ ) o
the cormer walls. However, for both brevity and clarity, a 10 rederive the governing E@4) for this problem it is nec-

perfectly wetting liquid(¢=0) will be assumed. This condi- ©€SSary to computéw,) and A for the cross-flow problem

tion arises in many applications and assures corner wettingS/"N9

for all corner angles and wall curvatures independertt. df 2 (xm (So

also greatly simplifies all analytic expressions. (Wo)= Kf f wodydx, (21
The solution procedure begins by expandihgndx,, in 0 Jiw

Xm=h(1+sina) ¥ Bh%(1+sina)?(1+sina

a like manner as,,,

Xm
R=Ry+ BR,+0(B?), (14) A=2f0 (So—fw)dx, (22)
Xm=Xmo T BXm1+ O(B%). (19  wherew, is determined from the-component momentum
Equation(5) for S, is correct toO(e) and may be used in €guation fore*<1,
conjunction with Eq.(13) to solve for the zeroth- and first- 9P 3w ey
. . 0 0 . 0
order terms in Eqg(14) and(15). Assuming a perfectly wet- o ?sm2 a+ P co? a, (23
ting fluid, the conditions of matched slope and surface height z y X
at X, must be satisfied, namely, subject to no slip along the walls, no shear stress on the free
iSy oty surface, and the symmetry condition alorg-0, respec-
= (16)  tively:
So=f.,, 17 we=0, on y=f,, (24
atx=Xx,,. Substituting Egs(5), (14), and(15) into (16) and W ISy %cotz «=0. on y—S, (25)

(17), it is possible to show that to leading order, ay  IxX IX -
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AWy scaling parameter. THe, values are listed in Table | for both
Zx 0 on x=0. (26)  problems and also apply in the case of gravity acting inythe
direction, Eq.(11). The net effect of nonplanar corners is to
The velocityw,= —F ,dh/dz may be solved numerically for ajter the geometric dependence of the rate of decay and to

all values ofa, 6, andh. However, as was the case for planar change the volumetric flow rate during settling. These quan-
corners, it is anticipated that with the current scaling of theities are provided below further discussion:

problem, asymptotic solutions &, for all « and 6 will be

narrowly restricted. For example, farr<1, Egs.(23)—(26) m? F,sirfa ot’ 2 138\ sirf a ot’
may be solved to show 7727'267 ; H=57( ,:4—5) : H
= Poneya 1w 2y)] @7 %9
Wo=5 — [ X"=Y (L+20Y) ],
2 . L oHZsifal _2 26 .
and forPy=—1/R, the substitution of Eq(20) leads to Q'~me w f 1¥3B+1gB|exd — 7],
(34
Py 1 dh ,
"9z hZ EJFO(B ). (28) The inspection of Eq(33) reveals that the time rate of decay

o ) ) decreases with increasing positive wall curvature, i.e., “con-
Substituting Eqs(2_7) and(28) into (21) and performing the - cave wall” f,,=x+ 8x2, Fig. 5a). Conversely, the rate of
necessary integrations, the solution {ar) is decay increases with increasing negative wall curvature, i.e.,
“convex wall” f,,=x— Bx?, Fig. 5b). This is attributable to

(Wo)=— } + _( 1— 5_77) ;E’Bh @ a stronger dependence of the free surface curvdtrieing
6 3 16/ 45" |oz force) on h.
+0(a?,aB, B2, €?), An observation of Eq(34) reveals that the amount of
liquid participating during settling also increases fofixed
from which it is observed that to leading order, with increasing negative wall curvaturé,=x— 8x?, Fig.
13 oh 5(b). Not only is the driving force for flow increased, but the
(W)= — ( Fir— h) _ (29  cross-flow area is also increased. The contribution of cross-
45" ) Jz flow area and driving force of the mass flow rate are identi-

where F\=F;=F, for the planar corner witm?<1; see fied by the terms 2/3 and 265/15 in Eq.(34), respectively.

Table I. The dimensionless cross-flow ardaunder these Thus, the effect of changing driving force due to changing
constraints, evaluated using E§2), is wall curvature may be shown to be 2.6 times larger than the

effect of the changing cross-flow area for small corner
angles, @®<1. These general characteristics may be ex-
ploited to optimize corner geometries for specific applica-
tions.

Azhz( 1I§Bh) +0(a?,aB,B? €. (30)

Substituting Eqs(29) and (30) into the leading-order gov-
erning equatior(3) yields

V. CONCLUDING REMARKS

J 2
= <1I§ﬁh)h2}
The asymptotic solutions presented above for a per-
2 13 ,oh turbed slender liquid column in an interior corner of infinite
- ( 1+§:3h) ( F,+4—5,8h) h a9z (3 extent reveal the transient nature of the surface as it returns
_ ) to its unperturbed state, driven by local gradients in surface
Inspection of Eq(31) shows thaF, andF, are functions of  cryature. The effect of gravity acting perpendicular to the
h for corners that are nonplanar. What is fortunate about EGeorner axis is seen to accelerate, decelerate, or destabilize
(31), however, is that for the perturbed infinite column prob-his process. A steady base state corner flow is shown to not

lem whereh=ho+ €h;+O(€?), with ho=1, EqQ.(3D) Sim-  4ffect the transient settling of small perturbations. Corner

d

oz

plifies to nonplanarity is shown to increag€ig. 5b)] or decrease
P 13 | 9 oh [Fig. 5(a)] the rate of damped surface settling, depending on
—Z(FF—B) _( h?—|+0(eB,aB,a? B? €). the sign of the wall curvature. For fixed mean liquid height
at 45" ) oz\ oz H, the negative wall curvatuféig. 5b)] increases the volu-

(32) metric flow rate, primarily through increases in the capillary

The prefactor on the right-hand side of E§2) is F, for the  driving force, but also through increases in cross-flow area.
nonplanar corners described. Rescaling time waF ,t/2,  Transients computed analytically are minimized for a corner
Eq. (32) recovers the form of Eqg4). Thus, the governing half-anglee=30 and wetting angl@=0.

equation for the sinusoidally perturbed infinite fluid column The predicted time constants presented are especially
is identical for both planar and slightly nonplanar solutions,useful for a specific low-g fluid systems design. For example,
with the difference coming only by way of modifications to for the sinusoidal disturbance depicted in Fig. 1, wih

the mean flow velocity parametér,, which appears as a =1 andC,=0, Eq.(9) in dimensional terms reduces to
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7wz’
h'=H 1+eexp[—7-rzr]coz<T) .

Thus, 98% of the disturbance is dissipatedssy4/=2, or in
dimensional terms,

y 8 L2 u f
=2 1 o F, st a

This is a convenient form for rapid calculation, notifg
=[F;=f(B)]. f(B)=0 for the planar corner; Fig. 2. For
nonplanar cornerd,(B)#0; Fig. 5. For second-order poly-
nomial corners witha?<1 and perfectly wetting liquids,
f(B)=13B/45. The impact of gravity modifies E(35) such
that

(35

, 8 L%u f 1
Y89~ 72 4 & F,sifa (1-Boy)”
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