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ARTICLES

Capillary flow in interior corners: The infinite column
M. M. Weislogela)

TDA Research, Inc., 12345 W. 52nd Avenue, Wheat Ridge, Colorado 80033

~Received 28 August 2000; accepted 10 July 2001!

Capillary flow of a sinusoidally perturbed liquid column in an interior corner of infinite extent is
solved using lubrication theory. Due primarily to the length scales selected to nondimensionalize the
momentum equation, an analytic time scale governing the settling of the perturbation is determined.
The time scale, which is shown to be independent of a steady base state flow, proves useful in
rapidly predicting transients for surface settling in certain liquid-bearing tanks of spacecraft
employing interior corners for fluids management purposes. The asymptotic analysis is extended to
address flows along interior corners whose faces are slightly nonplanar. The generalized formulation
is presented for the case of a perfectly wetting fluid in a second-order polynomial corner. A
leading-order analytic solution for small corner angles is provided. It is shown that a ‘‘convex
corner’’ decreases the response time of the liquid and increases the capillary flow rate along the
corner by increasing both the driving force and cross-sectional area of the flow. Gravity acting
normal to the corner axis along the bisector of the corner angle is also considered and is found to
accelerate, decelerate, or destabilize such flows depending on its sign and magnitude. ©2001
American Institute of Physics.@DOI: 10.1063/1.1408918#

I. BACKGROUND

A wetting phenomenon of fundamental importance first
described with mathematical rigor by Concus and Finn1 oc-
curs in containers with interior corners for corner half-angles
a and contact anglesu that satisfyu,p/22a. The Concus–
Finn condition is a geometric wetting condition that corre-
sponds to an underpressure in the liquid resulting in
capillary-driven flow into and along the interior corner. A
column of liquid stably occupies an infinite interior corner
when the Concus–Finn condition is satisfied but is unstable
when the condition is not satisfied. As shown by Langbein,2

the latter situation produces an overpressure in the liquid
similar to that of a cylindrical jet, which breaks up into finite
‘‘drops’’ whose shapes and orientations depend ona, u, and
liquid volume. When the Concus–Finn condition is satisfied,
the interior corners of containers may be used to move, pref-
erentially locate, or otherwise control capillary liquids.

In the absence of gravity, spontaneous capillary flows
occur over large length scales on the order of greater than 1
m. As a result, spacecraft fluids systems can exploit capillary
flows in interior corners for passive positioning and/or flow
control of large liquid masses such as cryogens, storable fu-
els, and water. Because numerical methods are difficult to
apply in capillary systems, analytic tools to predict such fluid
behavior are desired to improve design efficiency with re-
gard to both time and cost.

A general formulation for these capillary flows based on
lubrication theory was outlined by Weislogel and Lichter3

~W&L ! providing the framework for analytical solutions to a
variety of application-specific problems. Because slender liq-
uid columns in interior corners often arise in low-g fluids
management systems, an effort is made here to apply the
general formulation to this important problem. A brief review
is provided below by way of a description of the infinite
corner flow.

II. THE INFINITE COLUMN

In Fig. 1 is sketched a portion of an interior corner
formed by planar walls of infinite extent. The corner is par-
tially filled with a wetting liquid of viscositym and surface
tensions and satisfies the Concus–Finn condition for this
geometry: namely,u,p/22a, whereu is the wetting angle
of the liquid on the solid faces of the corner anda is the
corner half-angle. HereH is the characteristic height of the
liquid in the corner, and the liquid surfaceS08(x8,z8,t8) is
given an axial perturbation characterized by wavelength 2L.
The slenderness ratioe5H/L appears ase2 in the nondi-
mensional equations and serves as the small parameter, al-
lowing asymptotic analysis of the problem.

As reviewed by W&L,3 the assumptione2!1 simplifies
the normal stress boundary condition on the fluid interface to
the Young–Laplace equation, which may be solved to ex-
press the entire fluid interface shape as a construct of circular
arcs in thedimensional x8-y8 plane. The local radius of cur-
vature of the interfaceR85R8(z8,t8), which is inversely
proportional to the pressureP085s/R8 in the liquid, may be

a!Telephone: 303-940-2320; fax: 303-422-7763; electronic mail:
mmw@tda.com
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expressed in terms of local surface heighth8(z8,t8). The
‘‘cross-flow problem’’ for Fig. 1 is sketched in Fig. 2, where
R8 is constant in thex8-y8 plane and the liquid surface sat-
isfies the static contact angle condition at the wall; Fig. 2~a!.
HereR8 is nondimensionalized byHf, where

f 5sina/~cosu2sina!.

The radius of curvature in thedimensionless x-yplane is not
constant; Fig. 2~b!.

For e2!1, the flow is predominantly parallel and the
nondimensionalization of the governing momentum and
mass equations using the quantities listed in Table I leads to

]P0

]z
5

]2w0

]y2 sin2 a1
]2w0

]x2 cos2 a, ~1!

for the leading-orderz-component velocity distributionw0 in
the dimensionless x-ycross-flow plane. Equation~1! is sub-
ject to no slip along the walls, no shear stress on the free
surface, and the symmetry condition alongx50. The
streamwise mass balance is

]A

]t
52

]Q̇

]z
, ~2!

where A is the dimensionless cross-flow area andQ̇
5A^w0& is the volumetricz-component volumetric flow rate,

where ^w0& is the dimensionless average velocity through
the sectionA. The streamwise mass balance may be conve-
niently written in terms of meniscus centerline heighth(z,t),
given generally by

]Fah2

]t
5

]

]z S Fah2Fn

]h

]zD , ~3!

where A[Fah2 and ^w0&[2Fn]h/]z, the mean
z-component velocity through the cross-flow section. Here
Fa is a geometric weighting factor for the cross-flow area
and Fn is the geometric flow resistance. BothFa and Fn

depend ona and u. For nonplanar wallsFa and Fn also
depend onh. Solutions of Eq.~3! for h(z,t) may be used to
construct the transient three-dimensional~3-D! interface
shape,S(x,z,t).

Numerous researchers have followed the arguments
leading to Eq.~3! for capillary flows in corners, and a selec-
tion of recent examples includes the work of Gauglitzet al.,4

Dong and Chatzis,5 and Langbein and Weislogel.6 The subtle
novelty of the present development is the nondimensional-
ization of the problem, which explicitly accounts for much of
the variation ofFn on a and u, significantly reducing the
dependence of analytical results on numerical solutions to
Eq. ~1!, or the use of friction factors or hydraulic diameters.
For example, thez8-component velocity scaleW is deter-

FIG. 1. Perturbed liquid column in an
infinite interior corner. The notation
identifies dimensional quantities
~primes dropped!.

FIG. 2. Cross-flow notation:~a! dimensional~primes
dropped!; ~b! nondimensional.
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mined by a balance of surface tension and viscous forces in
the following manner: The dimensional equation for the
cross-flow problem isP0z5m(w0xx1w0yy). Substituting the
Table I length and pressure scales produces the balance

s

H f L
;mWS 1

H2 tan2 a
1

1

H2D5
mW

H2 sin2 a
.

Solving for W yields the velocity scaleW5es sin2 a/mf
listed in Table I. As a consequence of this scaling, surface
tension forces depend on botha and u through 1/f, while
viscous forces depend primarily ona through 1/sin2 a. The
degree to which this scaling models the flow is discussed
further below.

III. INFINITE COLUMN: PLANAR WALLS

For planar walls as sketched in Figs. 1 and 2,Fa

5FA(a,u) andFn5Fi(a,u). Thus, for this case,Fa divides
out of Eq. ~3!. The exact value ofFn must be determined
numerically, as accomplished by Ransohoff and Radke7 and
Ayyaswamyet al.8 However, as shown by W&L,3 analytical
solutions to Eq.~1! for small and large corner angles reveal
that 1/8<Fi<1/16 for all values ofa andu and may there-
fore be approximated as a constant. By rescalingt5Fnt/2,
Eq. ~3! becomes

]h

]t
52S ]h

]zD 2

1h
]2h

]z2 . ~4!

For planar corner walls, any solution to Eq.~4! for h leads
immediately to resolution of the entire surface through

S05h~11 f !2~ f 2h22x2 tan2 a!1/2. ~5!

The above results are accurate toO(e) provided the column
is slender,e2!1. The static contact angle condition is main-
tained in the cross-flow problem~see Fig. 2! and is correct to
leading order, as discussed by Weislogel.9

Introducing the expansionh5h01eh11O(e2) and sub-
stituting into Eq.~4! yields theO(1) equation,

]h0

]t
52S ]h0

]z D 2

1h0

]2h0

]z2 , ~6!

and theO(e) equation,

]h1

]t
54

]h0

]z

]h1

]z
1h0

]2h1

]z2 1h1

]2h0

]z2 . ~7!

One solution to Eq.~6! is h051. This ‘‘base state’’ solution
describes a quiescent planar interface of dimensional height
H. TheO(e) perturbation Eq.~7! reduces to

]h1

]t
5h0

]2h1

]z2 . ~8!

Equation~8! yields the solution forh,

h511eC1 exp@2p2t#cos~pz1C2!1O~e2!, ~9!

which describes the infinite interior corner flow problem
sketched in Fig. 1, whereH defines the mean~unperturbed!
height of the liquid in the corner andeC1 defines the ampli-
tude of an axial sinusoidal perturbation of dimensional wave-
length 2L. Several useful characteristics of the flow may be
distinguished from this result.

An important result from Eq.~9! is the time constant.
When redimensionalized, the decaying exponent is

p2t5e
p2

2

Fn sin2 a

f

st8

mL
, ~10!

from which the time constant is 2m f L/p2eFns sin2 a. For
fixed fluid properties and planar corner walls, 1/8<Fn5Fi

< 1
6, and the response time of the disturbance is dependent

TABLE I. Nondimensionalized terms, parameters, and definitions used in analyses. Primes denote dimensional
quantities.

Lengths Other Geometric parameters, definitions

x5x8/H tana w05w08/W Fa , geometric cross flow are function
y5y8/H W5es sin2 a/mf Fa5FA /tana, planar corner
z5z8/L t5Wt8/L Fa5172bh/3, nonplanar corner,a2!1, Eq. ~30!
h5h8/H P05 f HP08/s FA5 f 2(cosu sind/sina-d)
R5R8/ f H A5A8/H2 tana Fn , generalized geometric flow resistance parameter
S05S08/H Q̇5Q̇8/WH2 tana Fi , geometric flow resistance for planar corner
f w5 f w8 /H Fn5Fi , planar corner,

1
8,Fi,

1
6, W&L ~Ref. 3!

Fi5FI5
1

6
1

a

3 S12
5p

16D planar corner,a2!1, W&L ~Ref. 3!

Fn5FI713b/45, nonplanar corner,a2!1, Eq. ~29!

FIG. 3. Geometric time constantT for capillary-driven settling in an infinite
corner with planar walls:d[p/22a2u. The curve foru50 is identified by
a thin solid line.
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geometrically primarily on the quantityT5 f /sin2 a. This re-
lationship is plotted in Fig. 3 for a variety of corner half-
anglesa and surface curvature anglesd @[p/22a2u; see
Fig. 2~a!# satisfying the Concus–Finn condition. As can be
seen from the figure, the time constant rapidly increases asd
approaches 0. The analytical minimum value forT is
achieved fora530°, d5p/22a ~i.e., u50!. Even consider-
ing the slight variation ofFi on a andu for the planar corner
case, 1/8<Fi<

1
6, the time constant is minimized fora530°,

d5p/22a. Thus,T serves as the ratio of geometric quanti-
ties that characterize capillary (;1/f ) and viscous
(;1/Fi sin2 a) forces. Changes in fluid behavior due to the
contact angle are effected largely through the former. The
capillary number Ca([V8m/s) measures the strength of
normal viscous to surface tension forces. When based on the
dimensional contact line velocityV85Vcl8 , the velocity at the
contact line normal to contact line and tangent to the wall,
Ca is often treated as a measure of dynamic contact angle
effects as reviewed by Kistler,10 which have been assumed
negligible. The dimensional leading-order contact line veloc-
ity computed from Eq.~9! is Vcl8']h8/]t8. EvaluatingVcl8
and computing Ca reveals a maximum value att850 of Ca
;e3f /(Fn sin2 a), which decreases exponentially with time.
This value of Ca is indeed small and supports the use of the
static contact angle condition applied at the contact line for
this problem.

A. Steady flow base state

It is also insightful to note for this formulation that the
time constant does not necessarily change for other base
states. For example, a steady-state solution to Eq.~6! is h0

5(12Dz)1/3, whereD5L/L . This solution introduces the
finite length of the liquid column~L ! as a second length scale
in addition to the disturbance wavelength~2L! used ex-

pressly for the infinite column. For this solutionH is the
characteristic height of the liquid column. This flow scenario
is depicted in Fig. 4 with the base state interface profile
identified with a dashed line along the contact line. Using
this unperturbed state forh0, it is possible forD2!1 to show
that

h5~12Dz!1/31eC1 exp@2p2t#@cos~pz1C2!

1D f cn~z!#1O~e2,D2!,

providede!D. Thus the local time dependence of the prob-
lem is unchanged by the steady base flow and may be com-
puted using Eq.~10!. The impact of base state flow on tran-
sients are not expected untilO(e2), the order of the viscous
normal stress condition forw0 on S.

B. Effect of gravity, g y

The inclusion of gravity acting along they direction~gy

taken negative in the negativey direction! for the infinite
column problem modifies the meanz-component velocity to
^w0&52Fn(11h2BoH)hz , which when substituted into Eq.
~2! leads to

h511eC1 exp@2p2~12BoH!t#cos~pz1C2!

1O~e2!, ~11!

where BoH5 f rgyH
2/s, with liquid densityr. The form of

Eq. ~9! is recovered for BoH50 and it is observed that the
column is unstable for BoH.1. The order of magnitude pre-
dictions of settling times for slightly disturbed systems are
possible by the suitable selection ofH andL. For example,H
could easily be taken as the vane height~in a propellant
management device! andL taken as the vane length.C1 may
be viewed as a weighting factor for the amplitude of the
initial perturbation.

FIG. 4. A sinusoidally perturbed col-
umn with a steady flow base state,h
5(12Dz)1/3, whereD5L/L . The un-
perturbed base state is shown using
dashed lines on corner walls.
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IV. INFINITE COLUMN SOLUTION: NONPLANAR
WALLS

The solution approach outlined above may be followed
similarly for interior corners with slightly nonplanar walls. In
the example provided here, the planar walls are symmetri-
cally perturbed such that the corner half-angle condition at
the corner vertex is preserved. Thedimensionalform of the
wall perturbation is

f w8 5x8 cota6B fw18 . ~12!

Nondimensionalizing using Table I quantities and choosing
suitable scales forB and f w18 , Eq. ~12! becomes

f w5x6b f w11O~b2!, ~13!

whereb!1. To maintain the corner half-angle condition at
the vertex the form off w1 must satisfy] f w1 /]xux5050.
Examples of thenondimensionalcross-flow sections for such
non-planar walls are depicted in Fig. 5. A ‘‘concave wall’’
described by positive wall curvature is illustrated in Fig.
5~a!, where f w5x1b f w1 . A ‘‘convex wall’’ described by
negative wall curvature is depicted in Fig. 5~b!, where f w

5x2b f w1. In general, the Concus–Finn condition for these
corners may depend on meniscus centerline heighth in ad-
dition to a and u. Depending on the choice off w1 , this
condition may be computed usingn"k5cosu, wheren is the
outward unit normal toS0 andk is the inward unit normal to
the corner walls. However, for both brevity and clarity, a
perfectly wetting liquid~u50! will be assumed. This condi-
tion arises in many applications and assures corner wetting
for all corner angles and wall curvatures independent ofh. It
also greatly simplifies all analytic expressions.

The solution procedure begins by expandingR andxm in
a like manner asf w ,

R5R01bR11O~b2!, ~14!

xm5xm01bxm11O~b2!. ~15!

Equation~5! for S0 is correct toO(e) and may be used in
conjunction with Eq.~13! to solve for the zeroth- and first-
order terms in Eqs.~14! and~15!. Assuming a perfectly wet-
ting fluid, the conditions of matched slope and surface height
at xm must be satisfied, namely,

]S0

]x
5

] f w

]x
, ~16!

S05 f w , ~17!

at x5xm . Substituting Eqs.~5!, ~14!, and~15! into ~16! and
~17!, it is possible to show that to leading order,

R5h7b f w1uxm0
,

xm5xm0F16bS sin2 a
] f w1

]x
2h21f w1D GU

xm0

, ~18!

xm05h~11sina!.

At this point it is helpful to select a form forf w1 before
proceeding. Choosingf w15xn, wheren.1, and substituting
into Eq. ~18! yields

xm5h~11sina!@17bhn21~11sina!n21~11sina

2n sin2 a!#. ~19!

This form for f w1 requires thatB5b/Hn21 tann a in Eq.
~12!. A second-order polynomial wall is achieved withn
52 resulting in a further simplification of Eq.~19!. This
simplified problem will be analyzed here, which yields the
system toO(b),

f w5x6bx2,

R5h7bh2~11sina!2, ~20!

xm5h~11sina!7bh2~11sina!2~11sina

22 sin2 a!.

To rederive the governing Eq.~4! for this problem it is nec-
essary to computêw0& and A for the cross-flow problem
using

^w0&5
2

AE0

xmE
f w

S0
w0dydx, ~21!

A52E
0

xm
~S02 f w!dx, ~22!

where w0 is determined from thez-component momentum
equation fore2!1,

]P0

]z
5

]2w0

]y2 sin2 a1
]2w0

]x2 cos2 a, ~23!

subject to no slip along the walls, no shear stress on the free
surface, and the symmetry condition alongx50, respec-
tively:

w050, on y5 f w , ~24!

]w0

]y
2

]S0

]x

]w0

]x
cot2 a50, on y5S0 , ~25!

FIG. 5. A nondimensional cross-flow section in nonpla-
nar interior corners,a preserved at the vertex:~a! con-
cave cornerf w5x1b f w1; ~b! convex cornerf w5x
2b f w1.
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]w0

]x
50, on x50. ~26!

The velocityw0[2Fn]h/]z may be solved numerically for
all values ofa, u, andh. However, as was the case for planar
corners, it is anticipated that with the current scaling of the
problem, asymptotic solutions orFn for all a andu will be
narrowly restricted. For example, fora2!1, Eqs.~23!–~26!
may be solved to show

w05
1

2

]P0

]z
@x22y2~172by!#, ~27!

and forP0521/R, the substitution of Eq.~20! leads to

]P0

]z
5

1

h2

]h

]z
1O~b2!. ~28!

Substituting Eqs.~27! and~28! into ~21! and performing the
necessary integrations, the solution for^w0& is

^w0&52F1

6
1

a

3 S 12
5p

16D7
13

45
bhG ]h

]z

1O~a2,ab,b2,e2!,

from which it is observed that to leading order,

^w0&52S FI7
13

45
bhD ]h

]z
, ~29!

where FI5Fi5Fn for the planar corner witha2!1; see
Table I. The dimensionless cross-flow areaA under these
constraints, evaluated using Eq.~22!, is

A5h2S 17
2

3
bhD1O~a2,ab,b2,e2!. ~30!

Substituting Eqs.~29! and ~30! into the leading-order gov-
erning equation~3! yields

]

]t F S 17
2

3
bhDh2G

52
]

]z F2S 17
2

3
bhD S FI7

13

45
bhDh2

]h

]zG . ~31!

Inspection of Eq.~31! shows thatFa andFn are functions of
h for corners that are nonplanar. What is fortunate about Eq.
~31!, however, is that for the perturbed infinite column prob-
lem whereh5h01eh11O(e2), with h051, Eq. ~31! sim-
plifies to

]h2

]t
5S FI7

13

45
b D ]

]z S h2
]h

]zD1O~eb,ab,a2,b2,e2!.

~32!

The prefactor on the right-hand side of Eq.~32! is Fn for the
nonplanar corners described. Rescaling time viat5Fnt/2,
Eq. ~32! recovers the form of Eq.~4!. Thus, the governing
equation for the sinusoidally perturbed infinite fluid column
is identical for both planar and slightly nonplanar solutions,
with the difference coming only by way of modifications to
the mean flow velocity parameterFn , which appears as a

scaling parameter. TheFn values are listed in Table I for both
problems and also apply in the case of gravity acting in they
direction, Eq.~11!. The net effect of nonplanar corners is to
alter the geometric dependence of the rate of decay and to
change the volumetric flow rate during settling. These quan-
tities are provided below further discussion:

p2t5e
p2

2

Fn sin2a

f

st8

mL
5e

p2

2 S FI7
13b

45 D sin2 a

f

st8

mL
,

~33!

Q̇8'pe2
sH2

m

sin3 a

f S 17
2

3
b7

26

15
b Dexp@2p2t#.

~34!

The inspection of Eq.~33! reveals that the time rate of decay
decreases with increasing positive wall curvature, i.e., ‘‘con-
cave wall’’ f w5x1bx2, Fig. 5~a!. Conversely, the rate of
decay increases with increasing negative wall curvature, i.e.,
‘‘convex wall’’ f w5x2bx2, Fig. 5~b!. This is attributable to
a stronger dependence of the free surface curvature~driving
force! on h.

An observation of Eq.~34! reveals that the amount of
liquid participating during settling also increases forh fixed
with increasing negative wall curvature,f w5x2bx2, Fig.
5~b!. Not only is the driving force for flow increased, but the
cross-flow area is also increased. The contribution of cross-
flow area and driving force of the mass flow rate are identi-
fied by the terms 2b/3 and 26b/15 in Eq.~34!, respectively.
Thus, the effect of changing driving force due to changing
wall curvature may be shown to be 2.6 times larger than the
effect of the changing cross-flow area for small corner
angles, a2!1. These general characteristics may be ex-
ploited to optimize corner geometries for specific applica-
tions.

V. CONCLUDING REMARKS

The asymptotic solutions presented above for a per-
turbed slender liquid column in an interior corner of infinite
extent reveal the transient nature of the surface as it returns
to its unperturbed state, driven by local gradients in surface
curvature. The effect of gravity acting perpendicular to the
corner axis is seen to accelerate, decelerate, or destabilize
this process. A steady base state corner flow is shown to not
affect the transient settling of small perturbations. Corner
nonplanarity is shown to increase@Fig. 5~b!# or decrease
@Fig. 5~a!# the rate of damped surface settling, depending on
the sign of the wall curvature. For fixed mean liquid height
H, the negative wall curvature@Fig. 5~b!# increases the volu-
metric flow rate, primarily through increases in the capillary
driving force, but also through increases in cross-flow area.
Transients computed analytically are minimized for a corner
half-anglea530 and wetting angleu50.

The predicted time constants presented are especially
useful for a specific low-g fluid systems design. For example,
for the sinusoidal disturbance depicted in Fig. 1, withC1

51 andC250, Eq. ~9! in dimensional terms reduces to
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h85HF11e exp@2p2t#cosS pz8

L D G .
Thus, 98% of the disturbance is dissipated byt54/p2, or in
dimensional terms,

t98%8 5
8

p2

L2

H

m

s

f

Fn sin2 a
. ~35!

This is a convenient form for rapid calculation, notingFn

5@Fi7 f (b)#. f (b)50 for the planar corner; Fig. 2. For
nonplanar corners,f (b)Þ0; Fig. 5. For second-order poly-
nomial corners witha2!1 and perfectly wetting liquids,
f (b)513b/45. The impact of gravity modifies Eq.~35! such
that

t98%8 5
8

p2

L2

H

m

s

f

Fn sin2 a

1

~12BoH!
.
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