2017 M.S Project Presentation

ROAD DIET V2.0
YOUR SPEAKER

Michael Williams

EDUCATION
B.S. Computer Science M.S. Electrical Engineering *M.S. Civil Engineering

EXPERIENCE
R&D – Biomedical Engineering
Public Works General Contracting, California
Active Transportation

INTERESTS
Safe Streets Road Diets Roundabouts Advisory Bike Lanes
STANDARD ROAD DIET

The re-configuration of pavement markings to transform a 4-lane, undivided road (two through lanes in each direction) to a 3-lane road (one through lane in each direction separated by a two way left turn lane or TWLTL).

Photos Courtesy FHWA Road Diet Informational Guide (FHWA-14-028)
STANDARD ROAD DIET

ADVANTAGES/APPLICABILITY

• Applicable to corridors with up to 25,000 ADT
• Little capacity reduction on de-facto corridors
• Increased safety for all users
• Liberated ROW
• Livability

Maximum Volume for Road Diet (ADT)

Diagram Courtesy of FHWA-14-028
STANDARD ROAD DIET

DISADVANTAGES/INAPPLICABILITY

• Short blocks, Signal timing, intersection capacity
• Capacity reduction on through corridors
• TWLTL and intersection safety
• Liberated ROW can be minimal
• Higher ADT corridors
STANDARD ROAD DIET

CAN WE GO ONE STEP, OR ONE LANE, FARTHER?

ROAD DIET V2.0

• No new elements
• Successful projects exist all over U.S.
• Guidance and acceptance lacking
ROAD DIET V2.0

CORRIDOR CHARACTERISTICS

• Roundabouts at all (major) intersections
• Two-lane road, one lane in each direction
• No left turns – U-turn followed by right turn
• Raised median

We discuss only
• Single-lane roundabouts
• 2-lane roads

Photo Courtesy roundabouts.net
ROAD DIET V2.0

ADVANTAGES

• Potentially dramatic safety impacts for all
• Liberated ROW
• Go slower, get there faster
• Reduced speed – livability, place-making, commerce
• Short blocks, signal timing – no problem!

Diagram from 2010 NCHRP 672
Roundabouts: An Informational Guide
ROAD DIET V2.0

DISADVANTAGES/ISSUES

• Larger vehicles in constrained roundabouts
• Emergency vehicles, public buses
• Capacity dependent on left and U-turn rates
• Capacity dependent on familiarity with roundabouts
• Ability to pass – transit, freight
• Corridor friction

Photo Courtesy of Blue Zones
ROAD DIET V2.0

FEASIBILITY ASSESSMENT
How does an agency know if RD2.0 is worth pursuing?

TWO QUESTIONS
1. ROW for Roundabouts?
2. Supportable Traffic Volumes?
1. ROW FOR ROUNDABOUTS?

Roundabouts per 2000 FHWA Roundabouts Informational Guide

- **Urban Compact**
 - 80-100 foot ICD
 - 15,000 veh/day on all 4 legs

- **Urban Single-lane**
 - 100-130 foot ICD
 - 20,000 veh/day on all 4 legs

Procedure for Creating Roundabout Template Diameter

- Measure a number of examples of each, calculate mean diameter
- Include sidewalk and landscaping – true size, not ICD
- No roundabouts had separated bicycle facilities to include
2. SUPPORTABLE TRAFFIC VOLUMES?

CONSIDERED APPROACHES FOR VOLUME ESTIMATION

1. Simulation
 Resource intensive, well-targeted solution but difficult to generalize

2. Formulaic Estimation using HCM Models
 Rbt capacity formulas don’t consider corridors or familiar drivers

3. On-the-Ground Data
 Extrapolate from rbt corridor traffic data (LOS D or E)

Because good data was available, #3 was chosen.
ROAD DIET V2.0

DATA

NCHRP 772 Evaluating the Performance of Corridors with Roundabouts (2014)

From set of roundabout corridors in U.S., chose those with:
• ≥ 3 roundabouts in series,
• 2-lane segments (no left turn lanes),
• Single lane roundabouts only, and
• Didn’t include a pair of roundabouts servicing a highway interchange.

Six Corridors
• La Jolla Blvd, San Diego, CA
• Hagen Ranch Rd, Boynton Beach, FL
• Maple Island Rd, Springfield, OR
• O’Neill Dr, San Juan Capistrano, CA
• W. 8th Ave, Chico, CA
• Via Bella St, Williamsport, PA
ROAD DIET V2.0

ROUNDABOUT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Corridor Name</th>
<th>Roundabout</th>
<th>Diameter (Feet)</th>
<th>Width @ Crosswalk (Feet)</th>
<th>ICD Center to Crosswalk Center (Feet)</th>
<th>ICD* (Feet)</th>
<th>Distance from ICD edge to Crosswalk (Feet)</th>
<th>Roundabout Type per 2000 FHWA Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Jolla Blvd</td>
<td>Camino De La Costa</td>
<td>105</td>
<td>54</td>
<td>88</td>
<td>92</td>
<td>42</td>
<td>Urban Compact</td>
</tr>
<tr>
<td></td>
<td>Bird Rock Avenue</td>
<td>110</td>
<td>84</td>
<td>88</td>
<td>95</td>
<td>40.5</td>
<td>Urban Compact</td>
</tr>
<tr>
<td>O’Neill Dr</td>
<td>Eaton Place</td>
<td>170</td>
<td>97</td>
<td>93</td>
<td>136</td>
<td>25</td>
<td>Urban Single Lane+</td>
</tr>
<tr>
<td></td>
<td>Senna Parkway</td>
<td>144</td>
<td>87</td>
<td>89</td>
<td>125</td>
<td>26.5</td>
<td>Urban Single Lane</td>
</tr>
<tr>
<td>W. 8th Ave</td>
<td>Greenwich Drive</td>
<td>105</td>
<td>48</td>
<td>75</td>
<td>98</td>
<td>26</td>
<td>Urban Compact</td>
</tr>
<tr>
<td></td>
<td>Magnolia Avenue</td>
<td>115</td>
<td>71</td>
<td>70</td>
<td>97</td>
<td>21.5</td>
<td>Urban Compact</td>
</tr>
<tr>
<td>Hagen Ranch Rd</td>
<td>Majestic Palm Drive</td>
<td>175</td>
<td>81</td>
<td>117</td>
<td>145</td>
<td>44.5</td>
<td>Urban Single Lane+</td>
</tr>
<tr>
<td></td>
<td>Le Chalet Boulevard</td>
<td>148</td>
<td>83</td>
<td>78</td>
<td>103</td>
<td>26.5</td>
<td>Urban Single Lane</td>
</tr>
<tr>
<td>Maple Island Rd</td>
<td>International Way</td>
<td>140</td>
<td>79</td>
<td>80</td>
<td>110</td>
<td>25</td>
<td>Urban Single Lane</td>
</tr>
<tr>
<td></td>
<td>East Game Farm Road</td>
<td>138</td>
<td>68</td>
<td>79</td>
<td>111</td>
<td>23.5</td>
<td>Urban Single Lane</td>
</tr>
<tr>
<td>Via Bella</td>
<td>Court Street</td>
<td>156</td>
<td>68</td>
<td>97</td>
<td>133</td>
<td>30.5</td>
<td>Urban Single Lane+</td>
</tr>
<tr>
<td></td>
<td>Mulberry Street</td>
<td>159</td>
<td>77</td>
<td>98</td>
<td>134</td>
<td>31</td>
<td>Urban Single Lane+</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>138.8</td>
<td>74.8</td>
<td>87.7</td>
<td>114.9</td>
<td>30.2</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>142</td>
<td>78</td>
<td>88</td>
<td>110.5</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>175</td>
<td>97</td>
<td>117</td>
<td>145</td>
<td>44.5</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td>105</td>
<td>48</td>
<td>70</td>
<td>92</td>
<td>21.5</td>
<td></td>
</tr>
</tbody>
</table>
2. SUPPORTABLE TRAFFIC VOLUMES?

La Jolla Boulevard, San Diego, CA

5-lane road 22,000 ADT at 40 – 45 MPH segment of Hwy 101

Residents/Businesses demanded better and got it in 2008

Photo Courtesy of San Diego Union Tribune
ROAD DIET V2.0

2. SUPPORTABLE TRAFFIC VOLUMES?

La Jolla Boulevard, San Diego, CA

Bike lanes 23,000 ADT at 15 - 25 MPH 77% noise reduction

35% increase in trade dramatic decrease in fatalities

Photo Courtesy of San Diego Union Tribune
2. SUPPORTABLE TRAFFIC VOLUMES?

La Jolla Boulevard, San Diego, CA – Volume?

- Measured Volumes
 23,000 ADT with no congestion complaints
 Peak 15 min volume = 583 => 2,332 veh/hr
 1,166 veh/hr single lane

- Simulation Volumes
 NCHRP 772 reports City rep claims 27,000 ADT possible in corridor simulations => 1,374 veh/hr single lane

*2007/2010 HCM rbt models peak at 1,130 veh/hr single lane!
2. SUPPORTABLE TRAFFIC VOLUMES?

High Volumes Possible Because
1. Low Left Turn & Minor Approach Volumes (7 - 10%)
2. Familiarity!

BUT DON’T FORGET!
• Volumes include friction from 62–118 pedestrians/hr and 13–30 cyclists/hr!
• Volumes include penalties for U-turn/Right turn and Left turn movements!
• Volumes include friction from on-street parking!
Turning & Minor Street Traffic Percentage

<table>
<thead>
<tr>
<th>Desired Throughput</th>
<th>< 10% Left/U-Turn/Minor Traffic</th>
<th>> 10% Left & U-Turn/Minor Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 25,000 veh/day</td>
<td>110’ (Urban Compact)</td>
<td>140’ (Urban Single-Lane)</td>
</tr>
<tr>
<td>Up to 30,000 veh/day</td>
<td>140’ (Urban Single-Lane)</td>
<td>Data Not Available</td>
</tr>
</tbody>
</table>

Note: Separated bike facilities are not included in these diameter measurements.
Road Diet

Plus

Michael Williams
June 10, 2017
ROAD DIET V2.0 INFORMATIONAL GUIDE

Mirrors the FHWA Road Diet Informational Guide

- Definition
- Benefits
- Tradeoffs
- Determination of Feasibility
- Design Issues
- Assessment
THANK YOU!

QUESTIONS?
2000 ROUNDABOUTS INFORMATIONAL GUIDE

p. 86 “As performance data become available for roundabouts designed according to the procedures in this guide in the United States, they will provide a basis for development of operational performance procedures specifically calibrated for U.S. conditions.”

2007 NCHRP 572

\[C = 1130 \times \exp(-0.0010 \times V_c) \]

where

- \(C \) = entry capacity (veh/hr) and
- \(V_c \) = circulating traffic flow (pcu/hr).

HCM 2000 model
ROUNDABOUT THROUGHPUT MODELS

2010 NCHRP 672

\[C = 1130 \times \exp(-0.0010 \times V_c) \]

- \(C \) = entry capacity (pcu/hr) and
- \(V_c \) = circulating traffic flow (pcu/hr).

2010 HCM Model – major update but not to maximum capacity, doesn’t include geometric delay

2014 NCHRP 772

First work to model roundabout corridor capacity using Roundabout Influence Area Model

First geometric delay model for U.S. based on RIA