Portland State University

PDXScholar

Systems Science Friday Noon Seminar Series

Systems Science

3-12-2010

Reconstructability Analysis of Elementary Cellular Automata

Martin Zwick

Portland State University, zwick@pdx.edu

Hui Shi Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/systems_science_seminar_series

Part of the Dynamical Systems Commons, and the Theory, Knowledge and Science Commons
Let us know how access to this document benefits you.

Recommended Citation

Zwick, Martin and Shi, Hui, "Reconstructability Analysis of Elementary Cellular Automata" (2010). *Systems Science Friday Noon Seminar Series*. 38.

https://pdxscholar.library.pdx.edu/systems_science_seminar_series/38

This Book is brought to you for free and open access. It has been accepted for inclusion in Systems Science Friday Noon Seminar Series by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

RECONSTRUCTABILITY OF ELEMENTARY CELLULAR AUTOMATA

Martin Zwick* and Hui Shu
Systems Science Ph.D. Program&
Portland State University
Portland OR 97027

Abstract

Reconstructability analysis is a method to determine whether a multivariate relation, defined set- or information-theoretically, is decomposable with or without loss (reduction in constraint) into lower ordinality relations. Set-theoretic reconstructability analysis (SRA) is used to characterize the mappings of elementary cellular automata. The degree of lossless decomposition possible for each mapping is more effective than the λ parameter (Walker & Ashby, Langton) as a predictor of chaotic dynamics.

Complete SRA yields not only the simplest lossless structure but also a vector of losses of all decomposed structures, indexed by parameter, τ . This vector subsumes λ , Wuensche's Z parameter, and Walker & Ashby's "fluency" and "memory" parameters within a single framework, and is a strong but still imperfect predictor of the dynamics: less decomposable mappings more commonly produce chaos. The set-theoretic constraint losses are analogous to information distances in information-theoretic reconstructability analysis (IRA). IRA captures the same information as SRA, but allows λ , fluency, and memory to be explicitly defined.

* 503-725-4987, zwick@pdx.edu

& http://www.sysc.pdx.edu

April 2005

1. ELEMENTARY CELLULAR AUTOMATA

THE PROBLEM: PREDICTING CHAOTIC DYNAMICS FROM RULE ATTRIBUTES

2. RECONSTRUCTABILITY ANALYSIS: SET & INFO.-THEORETIC

A METHOD FOR DECOMPOSABILITY (SIMPLICITY) ANALYSIS

3. RECONSTRUCTABILITY of ECAs

 λ , σ , τ , f, Z AS PREDICTORS OF CHAOS

ELEMENTARY CELLULAR AUTOMATA

THE PROBLEM: PREDICTING CHAOTIC DYNAMICS FROM RULE ATTRIBUTES

- 1. (original motivation) Langton's SELF-REPLICATING LOOP
- 2. ECA STRUCTURE AND DYNAMICS
- 3. PREDICTING DYNAMICS FROM STRUCTURE

TIME = 0

Fig. 6. Self-reproducing loop.

Table I
Transition function table for self-reproducing loops

				ing roops
CTRBL-> I	· CTRBL->1	CTRBL->1	CTRBL->I	CTRBL->I
0<-00000	02527->1	11322->1	20242	
00001->2	10001->1	12224->4	20242->2	30102->1
00002->0	10006->1	12227->7	20245->2	30122->0
00003->0	10007->7	12243->4	20252->0	30251->1
00005->0	10011->1	12254->7	20255->2	40112->0
00006->3	10012->1	12324->4	20262->2	40122->0
00007->1	10021->1	12327->7	20272->2	40125->0
00011->2	10024->4	12425->5	20312->2	40212->0
00012->2	17077->7		20321->6	40222->1
00013->2	10051->1	12426->7	20322->6	40232->6
00021->2	10101->1	12527->5	20342->2	40252->0
00022-0	10111->1	20001->2	20422->2	40322->1
00023->0	10124->4	20002->2	20512->2	50002->2
00026->2	10127->7	20004->2	20521->2	50021->5
00027->2	10127-57	20007->1 🐛	20522->2	50022->5
00032->0	10212->1	20012->2	20552->1	50023->2
00052->5	10212-51	20015->2	20572->5	50027->2
00062->2	10221->1	200 1->2	20622->2	50052->0
00072->2	10224->4	20022->2	20672->2	50202->2
00102->2	10226->3	20023->2	20712->2	50212->2
00112->0	10227->7	20024->2	20722->2	50215->2
00202->0	10232->7	20025->0	20742->2	50213->2
00202->0	10242->4	20026->}	20772->2	50222->0
00205->0	10262->5	20027->2	21122->2	50224->4
	10264->4	20032->6	21126->1	50272->2
00212->5	10267->7	20042->3	21222->2	51212->2
00222->0	10271->0	2075,->7	21224->2	51222->0
00232->2	10272->7	20052->2	21226->2	51242->2
00522->2	10542->7	20057->5	21227->2	51272->2
01232->1	11112->1	26072->2	21422->2	60001->1
01242->1	11/22-23	20102->2	21922->2	60002->1
01252->5	11124-54	30112->2	21522->2	60212->0
01262->1	11125->1	20122->2	21622->2	61217- :
01272->1	11126->1	20142->2-	21722->2	6:113->1
01275->1	11127->7	- · · · -	22777->2	51227-+5
01422->1 .	11152->2	2020::		70007->7
01:32->1	11212->1	20203->2	2246->2	70112->0
01442-51	11222->1	30205->2	22276->2	70122->0
01472->1	11224->4	20207->3	22277->2	70125->0
01625->1	11215->	(0217->3	30001->3	70212->0
01722->1	11217->7	20212->2 20215->2	30002->2	70222->1
01725->5	11272->1	20215->2	30004->1	70225->1
01752->1	11242->4	20221->2	30007->6	70232->1
01762->1	11262->1	20222->2	20012->3	70252->5
01772->1	11272->7	20227->2	37042->1	.70272->0
· · · · · · · · · · · · · · · · · · ·	. 1612-21	20232->1	30062->2	

Neighborhoods are read as follows (rotations are not listed):

T : L C R ==> 1

QUESTIONS

(stimulated by Langton's self-replicating CA):

- 1. IS THERE A
- MINIMUM COMPLEXITY PATTERN
- MINIMUM COMPLEXITY RULE
- MINIMUM COMPLEXITY <u>PATTERN + RULE</u>

i.e., a THRESHOLD of EMERGENCE

FOR REPLICATION?

2. PATTERN COMPLEXITY CAN BE QUANTIFIED

BY SHANNON ENTROPY, BUT

HOW SHOULD RULE COMPLEXITY BE DEFINED?

RULE COMPLEXITY =?= <u>ALGORITHMIC</u> INFORMATION

	22 2
	21412
	23 32
Table I	21312
Transition function table for	225

2222222
217 14 142
2 222222 2
272 212
212 212
2 2 212
272 212
21222222122222
2 71 71 7111112
222222222222

Fig. 1.

2. Langton's automaton

CTRBL	→ I	CTRBL	→ I	CTRBL	→ I	CTRBL	→ I	CTRBL	→ [CTRBL	→ I
00003	1	10000	0	20000	0	30001	0	40003	5	50001	0
00012	2	10001	0	20015	5	30003	0	40022	5	50022	5
00013	1	10004	0	20022	0	30011	0	40035	2	50032	5
00015	4	10033	0	20035	5	30235	3	40043	4	50122	5
00025	4	10043	ı	20202	0	30245	5	40212	4	50222	0
00031	5	10325	5	20215	5	31235	5	40232	• 4	50244	5
00032	3	10421	4	20235	5	3	1	40242	4	50322	5
00042	2	10423	4	20252	5			40252	0	50412	4
00121	1	10424	4	2	2			40325	5	50422	0
00204	2	11142	4					41452	5	. 5	2
00324	3	11423	4					4	1		
00422	2	12234	4								
00532	3	12334	4								
0	0	12443	4								
-	•	1	•								

Neighborhoods are read as follows (rotations are not listed):

$$\begin{array}{ccc}
T \\
L & C & R \to I \\
B & & \end{array}$$

	22
	2312
Table II	2342
Transition function table for	25

CTRBL	→ I	CTRBL	→ I	CTRBL	→ I	CTRBL	→ I	CTRBL	→ I
00003	1	10003	3	20215	5	31215	1	40242	. 4
00012	2	10004	0	20235	3	31223	1	40252	0
00013	1	10033	0	20252	5	31233	1	40325	5
00015	2	10043	1	2	2	31235	5	4	3
00025	5	10321	3	30001	0	31432	1	50022	5
00031	5	11253	1	30003	0	31452	. 5	50032	5
00032	3	12453	3	30011	0	3	3	50212	4
00042	2	1	4	30012	1			50222	0
0	0	20000	0	30121	1	40003	5	50322	0
		20015	5	30123	1	40043	4	5	2
10000	0	20022	0	31122	1	40212	4		
10001	0	20202	0	31123	1	40232	4		

22 2312 2342 5
(a)

With the addition of 2 more rules (for a total of 59) the structure depicted in fig. 5(a) will reproduce itself.

(c)

If four further transition rules are applied (for a total of 63) then the 10 cell structure of fig. 5(c) will produce 2 exact copies of itself before becoming sterile.

ELEMENTARY CELLULAR AUTOMATA (ECA)

1-d circular cell array; k=2 discrete states: S = [0,1]
neighborhood = adjacent single (r=1) cell on left & on right

mapping (rule): f: $S_t(i-1) \otimes S_t(i) \otimes S_t(i+1) \rightarrow S_{t+1}(i)$

an example: ECA RULE # 150 (10010110)

	t		t+1
i-1	i	i+1	i
(A)	(B)	(C)	(D)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

 $2^8 = 256$ mappings

DYNAMICS (8 cell circular array):

t	0 1	0	1	1	0	1	0
t+1	1 1	0	0	0	0	1	1
t+2	1 0	1	0	0	1	0	1

1.3 EQUIVALENCE CLASSES of ECA MAPPINGS

f(s(i-1),s(i),s(i+1)) EQUIVALENT UNDER

(1) REFLECTION to

$$f_1(s(i-1),s(i),s(i+1)) = f(s(i+1),s(i),s(i-1))$$

(2) COMPLEMENTING to

$$f_2(s(i-1),s(i),s(i+1)) = \neg f(\neg s(i-1),\neg s(i),\neg s(i+1))$$

(3) REFLECTION & COMPLEMENTING to

$$f_3(s(i-1),s(i),s(i+1)) = \neg f(\neg s(i+1),\neg s(i),\neg s(i-1))$$

88 EQUIVALENCE CLASSES (with 1*, 2, or 4 members)

ECA RULES

Equivalence class #	Representative member	Othememb 255		
2	1	127		
2 3 4	2 3 4	16	191	247
4	3	17	63	119
5 6		223		
6	5	95		
7	6	20	159	215
8	7	21	31	87
9	8	64	239	253
10	9	65	111	125
11	10	80	175	245
12	11	47	81	117
13	12	68	207	221
14	13	.66	79	93
15	14	84	143	213
16	15	85		
17	18	1.23		
18	19	55 1)	
1.9	22_	1.51		
20	23*			
21	2.1	66	189	251
• • •				
• • •				
• • •	• • •			
	200	236		
	204			
88	232			

0	255			26	82	167	181	56	98	185	227	136	192	238	252
1	127			27	39	53	83	57	99			137	110	124	193
2	16	191	247	28	70	157	199	58	114	163	177	138	174	208	244
3	17	63	119	29	71			60	102	153	195	140	196	206	220
4	223			30	86	135	149	72	237			142	212		
5	95			32	251			73	109			146	182		
6	20	159	215	33	123			74	88	173	229	150			
7	21	31	87	34	48	187	243	76	205			152	188	194	230
8	64	239	253	35	49	59	115	77				154	166	180	210
9	65	111	125	36	219			78	92	141	197	156	198		
10	80	175	245	37	91			90	165			160	250		
11	47	81	117	38	52	155	211	104	233			161	122		
12	68	207	221	40	96	235	249	105				162	176	186	242
13	69	79	93	41	97	107	121	106	120	169	225	164	218		
14	84	143	213	42	12	171	241	108	201			168	224	234	248
15	85			43	113			128	254			170	240	*	
18	183			44	100	203	217	129	126			172	202	216	228
19	55			45	75	89	101	130	144	190	246	178	,		
22	151			46	116	139	209	131	62	118	145	184	226		
23				50	179			132	222			200	236		
24	66	189	231					133 134	94			204			
25	61	67	103	54	147			134	148	158	214	232			

Table-3. The 88 equivalence classes of ECA rules. The first rule number is the "representative member" of the class; following it are the other members (if any) of the class.

1.4 DYNAMICS: CLASSIFICATION OF ATTRACTOR TYPES

WOLFRAM CLASSIFICATION:

- I. HOMOGENEOUS
- II. FIXED POINT OR PERIODIC
- III. CHAOTIC
- IV. COMPLEX

LI & PACKARD CLASSIFICATION:

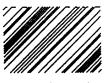
- A. NULL 0 8 32 40 128 136 160 168 (8) (I)
- B. FIXED POINT
 (32) (II)

 2 4 10 12 13 24 34 36 42 44
 46 56 57 58 72 76 77 78 104 137
 132 138 140 152 162 164 170 172 184 200
 204 232
- C. PERIODIC 1 3 5 6 7 9 11 14 19 41* (31) (II) 23 25 27 28 29 33 35 37 50 51 74 108 131 133 124 142 156 43 178
- D. LOCALLY CHAOTIC 26 73 154 (3) (II or III)
- E. CHAOTIC (III) 18 22 30 45 54 60 90 105 106 129 (14) 137 146 150 161 (54 137: IV)

MINIMAL CLASSIFICATION

- 1. NON-CHAOTIC 7: null, fixed point, periodic)
- 2. CHAOTIC (17: locally chaotic, chaotic)

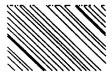
^{*} may be chaotic


rule 128 (10000000)

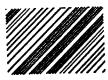
rule 136 (10001000)

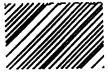
ruie 160 (10100000)

rule 168 (10101000)



rule 18 (88881818)





rule 34 (86186816)

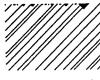
rute 46 (00101110)

rule 56 (00111000)

rule 57 (00111001)

rule 58 (00111010)

ruie 72 (81881868)


rule 76 (01001100)

rule 104 (61181888)

rule 132 (10000106)

. rule 138 (10001010)

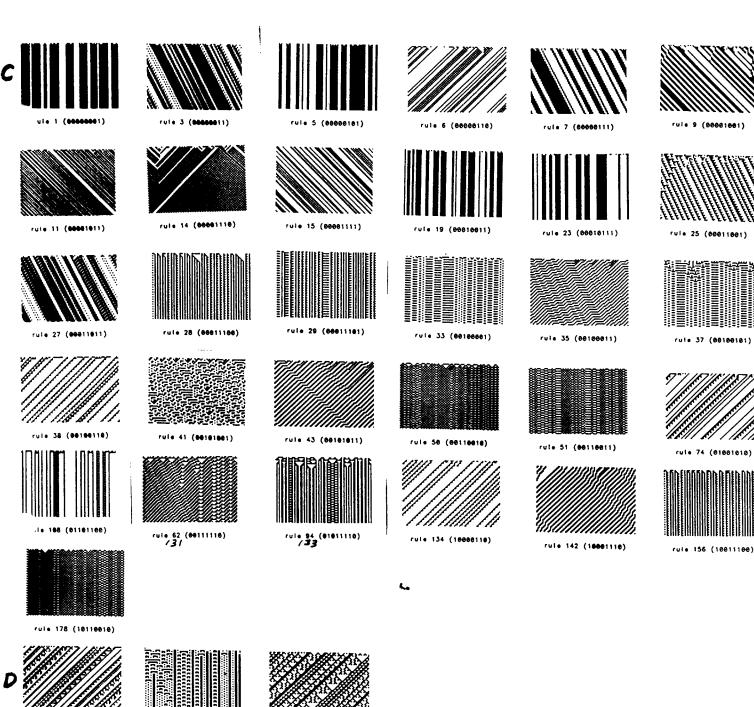
rule 148 (18881188)

rule 152 (10011000)

rule 164 (18180108)

rule 178 (18181818)

rule 184 (18111888)

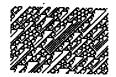


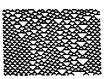
rule 200 (11001000)

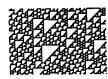
rule 232 (11101000)

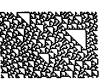
rule 18 (00010010)

ruie 150 (10010110)

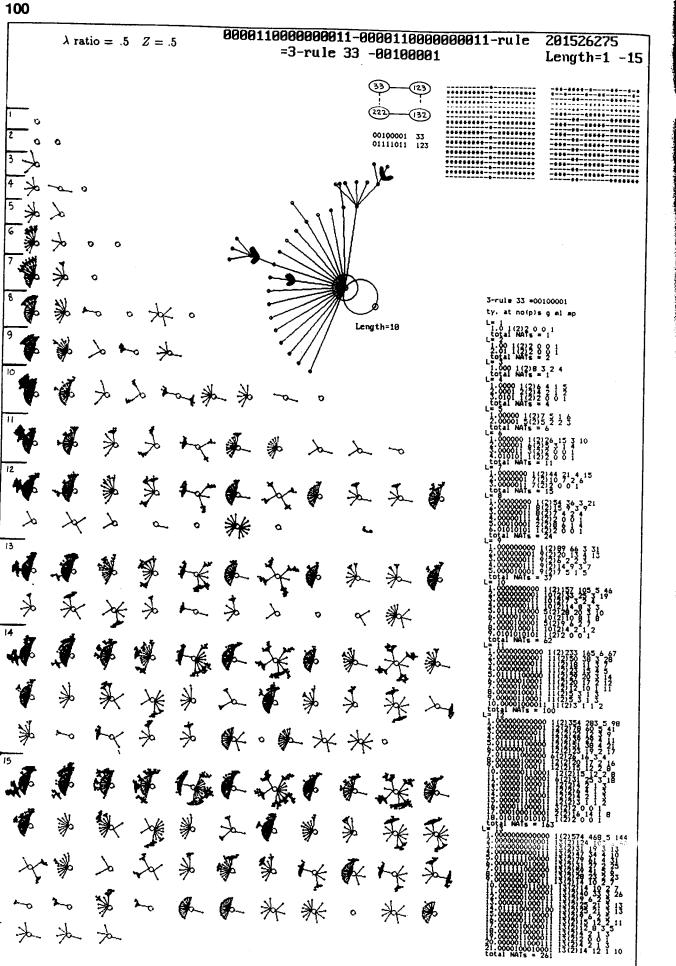


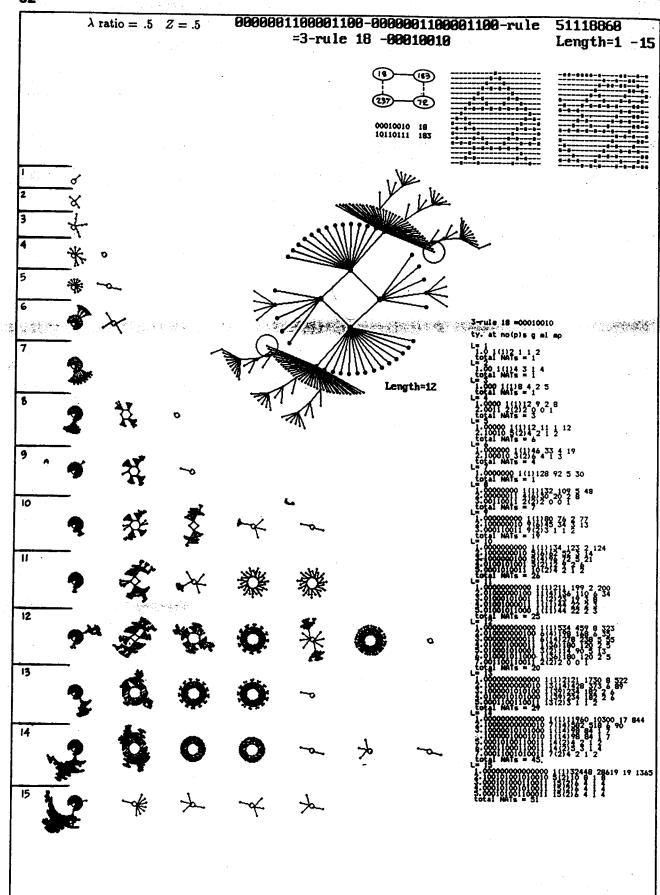

rule 106 (61101010)


rule 45 (88181161)



ruie 126 (01111110) /29


rule 54 (88118118)



rule 146 (10010010)

PREDICTION OF DYNAMICS

independent variable

dependent variable

RULE ATTRIBUTE

→ ATTRACTOR TYPE (chaotic or not)

without running the dynamics

RULE ATTRIBUTES:

1. λ (Walker & Ashby, Langton, Li & Packard)

min{ # 1's in mapping, # of 0's }

0 - 4 (normalize by 4)

2. σ, STRUCTURAL LEVEL

1 - 6 (but 9 different structures)

from reconstruction analysis

- 3. τ, VECTOR OF LOSSES: (extra tuples, Transmission) (22 patterns) from reconstruction analysis
- 4. f, FLUENCY, m; MEMORY, h; HESITANCY (Walker & Ashby) also information theoretic functions from reconstr. analysis

5. Wuensche's Z parameter

Not considered here: Boolean length, Boolean function classifications; mean field analysis, etc.

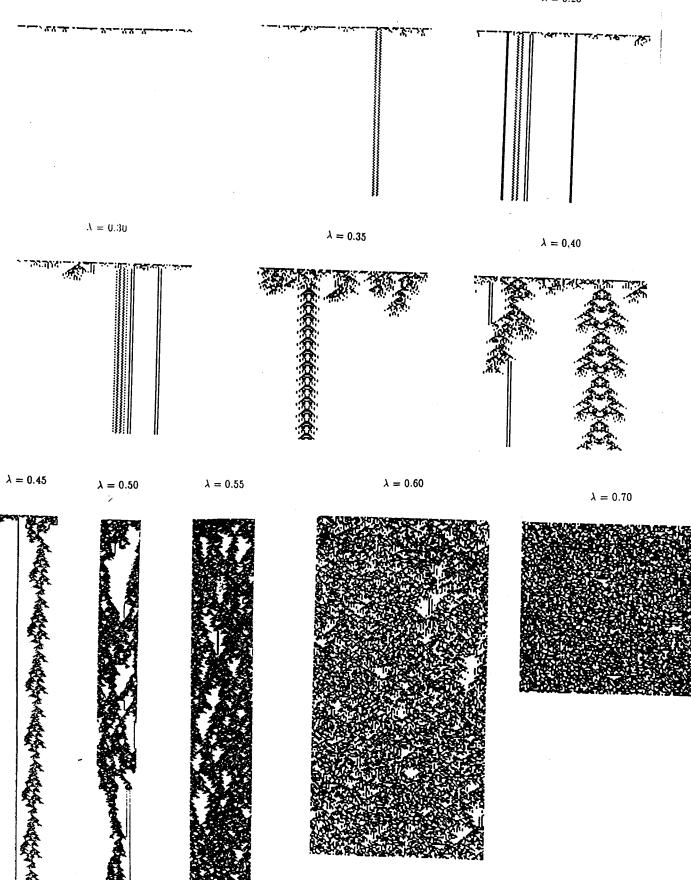
λ AS PREDICTOR

1	WEAK	PREDIC	COR OF	CHAOS	FOR	FCAs
1.	. WEAR	PREDIC	IUR Ur	CHAUS	TUK	ECAS

Higher λ values associated with chaos.

Hence: although simple laws generate complex₁ dynamics,

more complex₁ laws tend to generate more complex₁ dynamics.


- 2. SHOWS PHASE TRANSITION IN ATTRACTOR TYPE
- 3. REFLECTS (a) COMPLEXITY₁ OF RULE CODING
 - (b) DISTANCE TO CONSTANT MAP (f = 0 or 1)

WILL SHOW THAT λ IS:

- 4. DIFFERENT FROM, LESS PREDICTIVE THAN σ
 (PARTIAL SET-TH. RECONSTRUCTABILITY ANALYSIS)
- 5. **SUBSUMED IN**(FULL RECONSTRUCTABILITY ANALYSIS)

Complexity = randomnos clash

Complexity₂ = Wolfram Class IV sense, "edge of chaos"

Christopher G. Langton

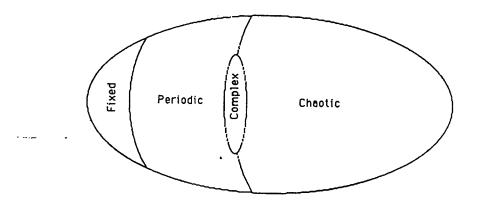


FIGURE 21 Schematic drawing of CA rule space indicating relative location of periodic, chaotic, and complex regimes.

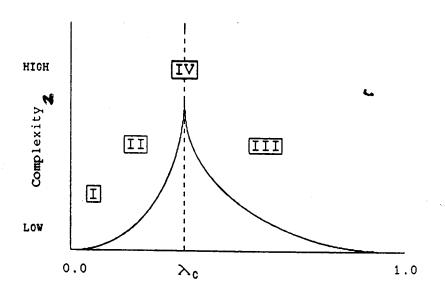


FIGURE 22 Schematic drawing of complexity versus λ over CA rule space, showing the relationship between the Wolfram classes and the underlying phase-transition structure.

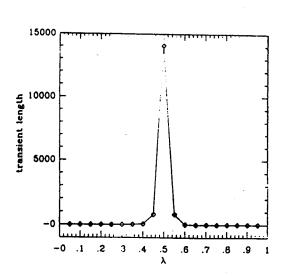


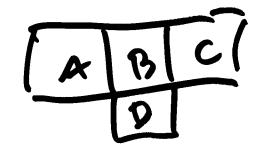
FIGURE 3 Average transient length T versus λ . Transient length apparently diverges rapidly in the vicinity of the transition.

Langton

1. ELEMENTARY CELLULAR AUTOMATA

PROBLEM: PREDICTING CHAOTIC DYNAMICS FROM RULE ATTRIBUTES

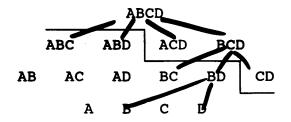
2. RECONSTRUCTABILITY OF ECAs


METHOD: SET- & INFO.-THEORETIC DECOMPOSABILITY ANALYSIS

- STRUCTURES FOR ECA MAPPINGS
- SET-THEORETIC STRUCTURE ANALYSIS
- STRUCTURAL ANALYSIS OF A RULE (EXAMPLE)
- TABLE OF RULE STRUCTURES
- LOSS VECTORS (τ) and STRUCTURE LEVELS (σ)
- INFORMATION-THEORETIC STRUCTURE ANALYSIS
- WALKER ASHBY & related INFO.-THEORETIC MEASURES

3. PREDICTING DYNAMICS

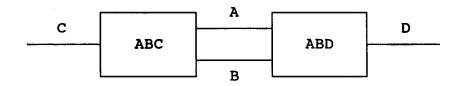
RESULTS: λ , σ , τ , f, Z AS PREDICTORS OF CHAOS


RELATIONS and STRUCTURES

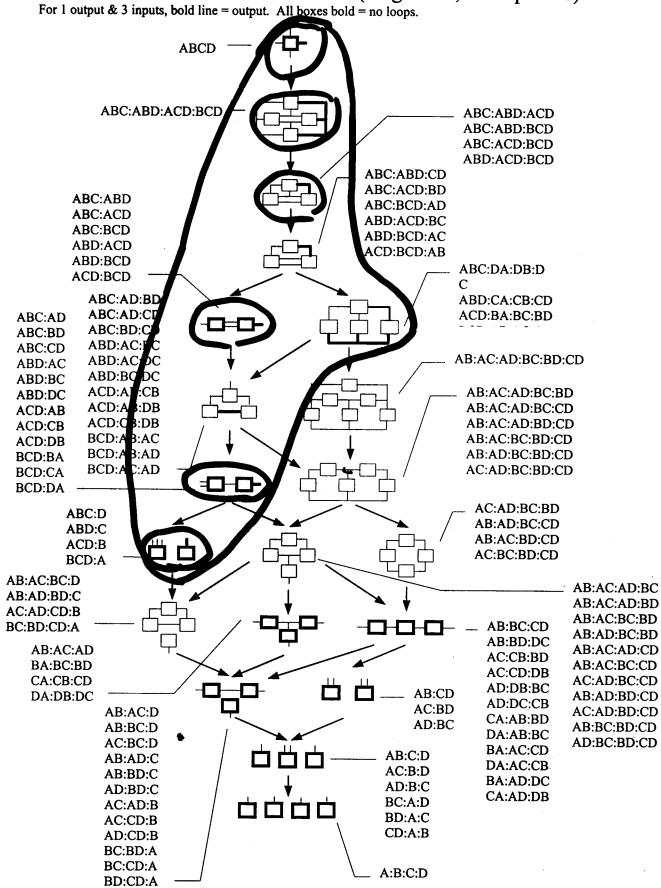
RELATION: ABCD \subseteq A \otimes B \otimes C \otimes D

MAPPING, f: A \otimes B \otimes C ---> D

CAS USE MAPPINGS, BUT CONSIDER FIRST LATTICE OF RELATIONS


STRUCTURE = SET OF RELATIONS,

NONE A PROJECTION OF ANOTHER,


INVOLVING ALL VARIABLES

= A CUT THRU LATTICE OF RELATIONS

E.G. (ABOVE) ABC: ABD

4-VARIABLE STRUCTURES (20 general, 114 Specific)

STRUCTURES FOR ECA MAPPINGS

STRUCTURE

= { RELATIONS }

RELATION (SET-THEOR.)

= SUBSET OF CARTESIAN PRODUCT

e.g., $R_{ABD} \subseteq A \otimes B \otimes D$

RELATION (INFO.-THEOR.) = PROBABILITY DISTRIBUTION

e.g., $R_{ABD} = p(A_i, B_k, D_l)$

 σ STRUCTURES

6 ABCD

mapping

5 ABD:ACD:BCD

3 relations (\rightarrow mapping)

4 **ABD:BCD**, ABD:ACD, ACD:BCD,

2 relations (\rightarrow mapping)

3 **ACD**,

BCD,

ABD

mapping

2 **AD**,

CD.

BD

mapping

1 **D**

L.

constant

6 LEVELS (σ)

12 STRUCTURES

9 STRUCTURE TYPES

FULL NOTATION ADDS ABC TO ALL STRUCTURES (EXCEPT ABCD)

E.G., ABD IS REALLY ABC:ABD.

SET-THEORETIC STRUCTURE ANALYSIS

GIVEN RELATION, R, e.g., ABCD,

and STRUCTURE, $P_1: P_2: ...: P_n$, e.g., ABD:ACD:BCD, where

 $P_i = a$ PROJECTION of R, and $M_i = CARTESIAN$ PRODUCT of VARIABLES <u>ABSENT</u> in P_i e.g., $M_1 = C$, $M_2 = B$, $M_3 = A$

RECONSTRUCTED RELATION (MAXIMUM LIKELIHOOD):

 $R' = (P_1 \otimes M_1) \cap (P_2 \otimes M_2) \dots \cap (P_n \otimes M_n)$

e.g., $R' = (ABD \otimes C) \cap (ACD \otimes B) \cap (BCD \otimes A)$

STRUCTURE FITS RELATION W/O LOSS iff R' = R

STRUCTURE OF R = SIMPLEST STRUCTURE THAT FITS

CONSTRAINT LOSS (degree of non-fit)

= |R'| - |R| (number of <u>additional</u> tuples),

or

 $= LOG_2(|R'|/|R|)$

(like Info.-Th. Transmission)

STRUCTURAL ANALYSIS OF A RULE (EXAMPLE)

Rule # 7: 0 0 0 0 0 0 1 1 1 1 1 1 1

Rule Mapping	<u>Projections</u>					
A B C D	A B	D	A C D	В	С	D
0 0 0 1	0 0	1	0 0 1	0	0	1
0 0 1 1			0 1 1	0	1	1
0 1 0 1	0 1	1		1	0	1
0 1 1 0	0 1	0	0 1 0	1	1	0
1 0 0 0	1 0	0	1 0 0	0	0	0
1 0 1 0			1 1 0	0	1	0
1 1 0 0	1 1	0		1	0	0
1 1 1 0						

Reconstruction based on ABD:ACD:BCD

<u>A</u>	B 0	<u>С</u>	<u>D</u>		ed Rela† <u>ACD⊗B</u>				nst itic	ructed on
0	0	0	1	*	*	*	0	0	0	1
0	0	1	0		x	x				
0	0	1	1	*	*	*	0	0	1	1
0	1	0	0	×		x				
0	1	0	1	*	*	*	0	1	0	1
0	1	1	0	*	*	*	0	1	1	0
0	1	1	1	x	×					
1	0	0	0	*	*	*	1	0	0	0
1	0	0	1			×				
1	0	1	0	*	*	*	1	0	1	0
1	0	1	1			x				
1	1	0	0	*	*	*	1	1	0	0
1	1	0	1			x				
1	1	1	0	*	*	*	1	1	1	0
1	1	1	1							

TABLE OF RULE STRUCTURES

ST	RUCTURAL TYPE	RUL	<u>ES</u>								
T	•										
6.	<u>ABCD</u> (47)	106	28 45 108	54 128	32 56	130	36 72 131	37 73 132	38 74		
5.	ABD:ACD:BCD (20)	7 76								43 200	
4.	ABD:ACD (4.1) ABD:BCD (4.2) ACD:BCD (4.3) (7)	27	29	46	58	78	172	184			
3.	ABD (3.1) BCD (3.2) ACD (3.3) (9)	3	5	10	12	34	60	90	136	160	
2.	AD (2.1) BD (2.2) CD (2.3) (4)	15	51	170	204						
1.	<u>D</u> (1)	0									

LOSS VECTORS (τ) & STRUCTURE LEVEL (σ) in COMPLETE SET-TH. RECONSTRUCTABILITY ANALYSIS

							Struc	tures					
σ	τ	6	5	4.1	4.2	4.3	3.1	3.2	3.3	2.1	2.2	2.3	1
1	1	0	1	0	0	0	0	0	0	0	0	0	0
2	2		0	0	1	0	- 0	0	8	8	8	0	8
	3				0	0	0	8	0	0	8	8	8
3	4				0	2	4	4	0	4	4	8	8
,	5				•	8	8	8	0	8	8	8	8
	6				2			4	4	4	8	4	8
	7		Ü	0	8	0	0	8	8	8	8	8	8
4	8			0	2	2	4	4	4	8	8	8	8
	9			2	2		4	4	4	8	8	8	8
5	10			1	1	1	2	2	6	8	8	4	8
	11			1	1	1	2	6	2	4	8	8	8
-	12			2	2	2	4	4	4	8	8	8	8
6	13		1	1	1	1	2	2	2	4	4	4	8
	14		1	1	1	5	6	6	2	8	8	8	8
	15		1	1	5	1	2	6	6	8	8	8	8
	16		2	2	2	2	4	4	4	8	8	8	8
	17		2	2	2	4	4	4	4	8	8	4	8
	18		2	2	4	2	4	4	4	4	8	8	8
ļ	19		2	2	4	4	4	8	4	8	8	8	8
]	20 21	0	2	4	4	2	4	4	8	8	8	8	8
		9	4	5	5	5	6	6	6	8	8	8	8
1	22		8	8	8	8	8	8	8	8	8	8	8

RULE MAPPING (RULE # 150)

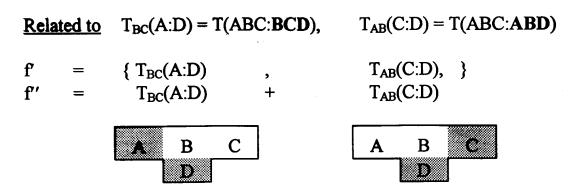
EXPRESSED AS PROBABILITY TABLE

INFORMATION-THEORETIC STRUCTURE ANALYSIS

CALCULATE TRANSMISSIONS (= LOSSES) FOR ALL STRUCTURES

σ(STRUCTURE) = LOWEST STRUCTURE FOR WHICH SOME T=0

```
σ
6
      T(ABCD)
      T (ABC: ABD: ACD: BCD)
5
      T (ABC: ABD: ACD)
                                     and permutations
4
3
      T (ABC: ABD)
                                     and permutations
      T ( ABC: AD )
2
                                     and permutations
      T ( ABC: D )
1
```


$$T(ABC: D) = H(A, B, C) + H(D) - H(A, B, C, D) = H(D)$$

H(D) MAPS 1:1 WITH λ .

WALKER - ASHBY & related INFO.-THEORETIC MEASURES

1. **HOMOGENEITY** $\equiv \lambda = variability of output$

2. FLUENCY, f = throughput from input, A or C, to output, D

3. MEMORY, m = sensitivity to element's past history

4. **HESITANCY**, h = stability of the element

Related to T(ABC: BD) = H(D|B)A

B

C

1. ELEMENTARY CELLULAR AUTOMATA

PROBLEM: PREDICTING CHAOTIC DYNAMICS FROM RULE ATTRIBUTES

2. RECONSTRUCTABILITY OF ECAs

METHOD: SET- & INFO.-THEORETIC DECOMPOSABILITY ANALYSIS

3. PREDICTING DYNAMICS

RESULTS: λ , σ , τ , f, Z AS PREDICTORS OF CHAOS

- CONTINGENCY TABLES: λ , σ versus ATTRACTOR (a)
- UNCERTAINTY CALCULATIONS (TO ASSESS PREDICTION)
- REDUCTION OF ATTRACTOR UNCERTAINTY (SUMMARY)
- UTTERLY UNEXPAINABLE UNCERTAINTY
- STATE SPACE PLOTS OF UNDIFFERENTIATABLE RULES
- CONCLUSIONS

CONTINGENCY TABLES: RULE ATTRIBUTE VS. ATTRACTOR

attractor: N = NONCHAOTIC; C = CHAOTIC

λ	attra N	actor C	
0 [2	-	2
1	16	•	16
3 4	52	4	56
3	96	16	112
4	44	26	70
•	210	46	256

σ	attra N	actor C	
1 [2	-	2
2 [6	-	6
3 [24	6	30
1 2 3 4 5 6	24	•	24
5	56	ı	56
6	98	40	138
	210	46	256

σ				λ		
	0	1	2	3	4	
1	2	-1	- [-	-	2
2	-	-	-	-	6	6
3	-	-	24	-	6	30
4	-	-1	-	-	24	24 56
5	-	-1	-	48	8	56
23456	-	16	32	64	26	138
,	2	16	56	112	70	256

UNCERTAINTY CALCULATIONS

MEASURE UNPREDICTABILITY BY UNCERTAINTY (SHANNON ENTROPY)

$$H(Y) = - \Sigma P(Y_i) LOG_2 P(Y_i)$$

$$H(Y/X) = \sum P(X_i) H(Y/X_i)$$


$$= -\sum P(X_i) \sum P(Y_j/X_i) LOG_2 P(Y_j/X_i)$$

$$= H(X,Y) - H(X)$$

* REDUCTION IN H(Y) BY X =
$$(H(Y) - H(Y/X)) / H(Y)$$

= $T(X:Y) / H(Y)$

PREDICTIVE POWER OF
$$X = (H(Y) - H(Y/X)) / H(X)$$

$$= T(X:Y) / H(X)$$

REDUCTION OF ATTRACTOR UNCERTAINTY

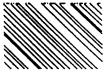
SUMMARY, ADDING WUENSCHE'S Z PARAMETER

q = rule attribute

q	H(a q)	% ΔH	Pred.Power
	.679		
λ	.600	11.6	.044
σ	.553	18.6	.069
τ	.263	61.3	.102
f	.355	47.7	^{**} .124
f'	.447	34.2	.151
Z	.458	32.6	.114

$$H(\lambda \mid \tau) = H(\sigma \mid \tau) = H(f' \mid \tau) = H(f' \mid \tau) = H(Z \mid \tau) = 0$$

CONCLUSIONS

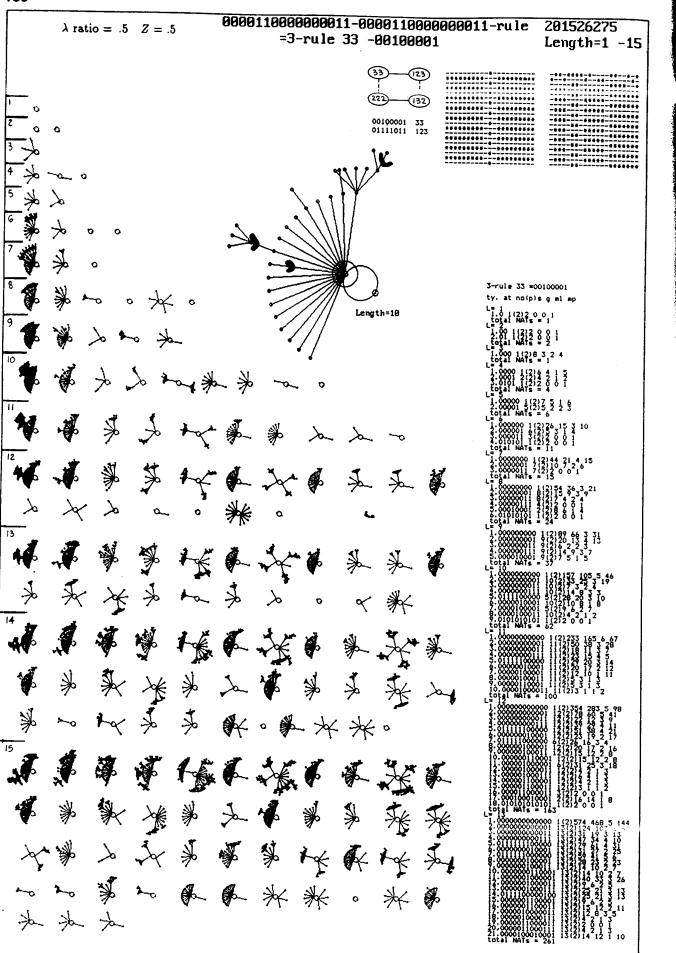

- 1. τ vector IS THE BEST OVERALL (% ΔH) PREDICTOR
- 2. τ SUBSUMES ALL OTHER MEASURES
- 3. f' HAS THE HIGHEST PREDICTIVE POWER

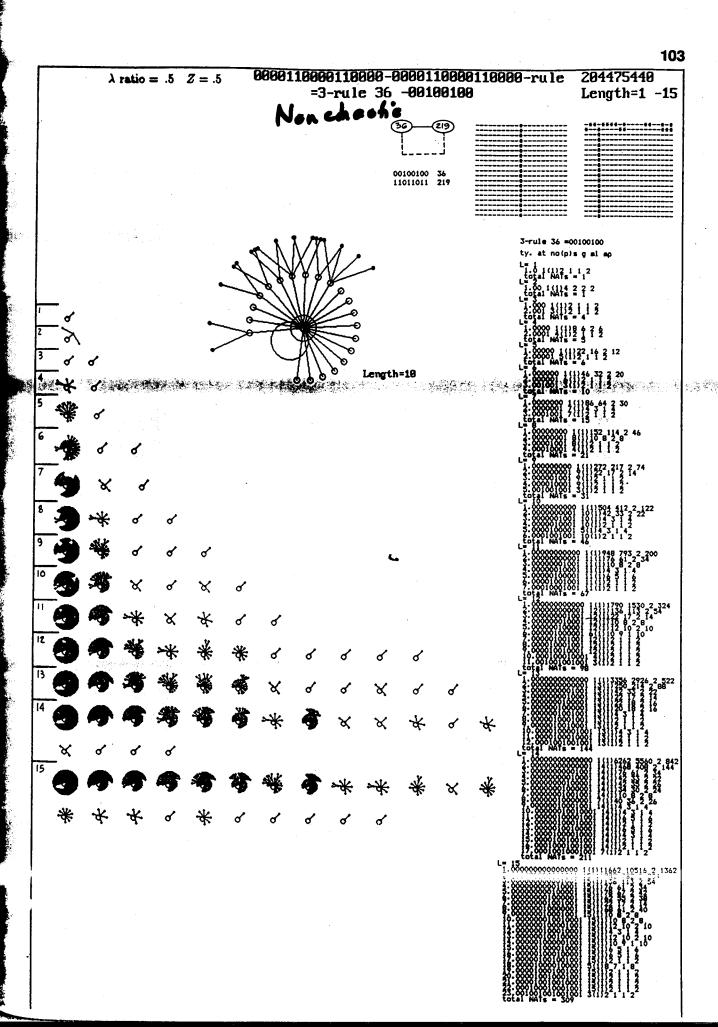
WHAT ABOUT THE REMAINING UNCERTAINTY?!

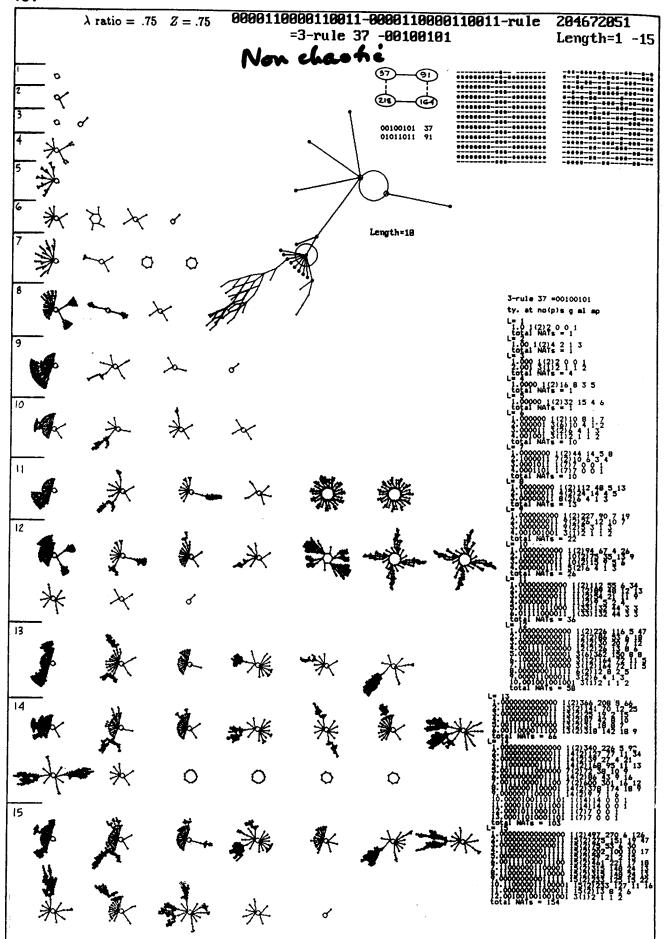

UTTERLY UNEXPLAINABLE UNCERTAINTY

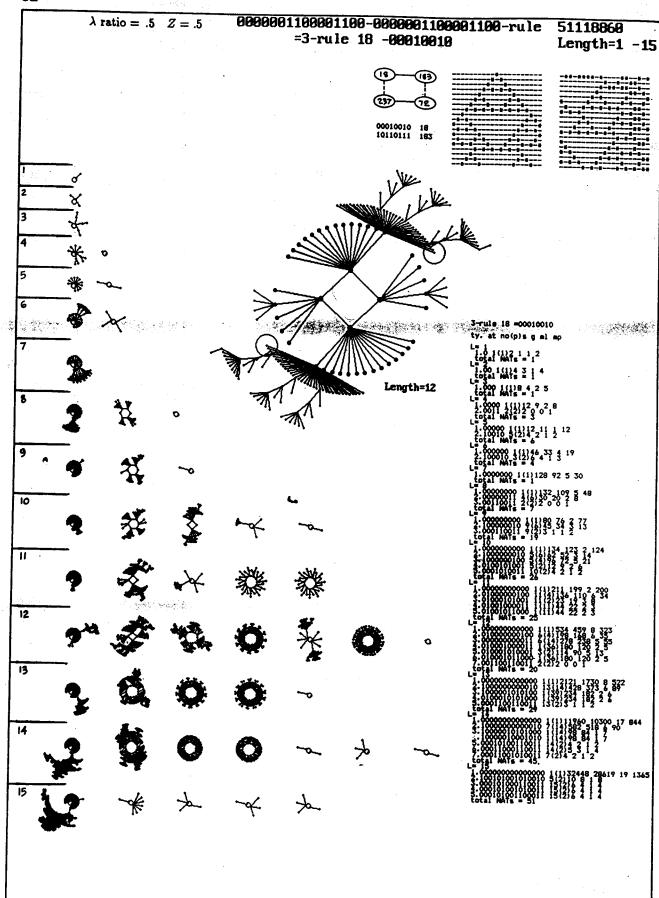
(ONLY IN STRUCTURE TYPE 6 RULES)

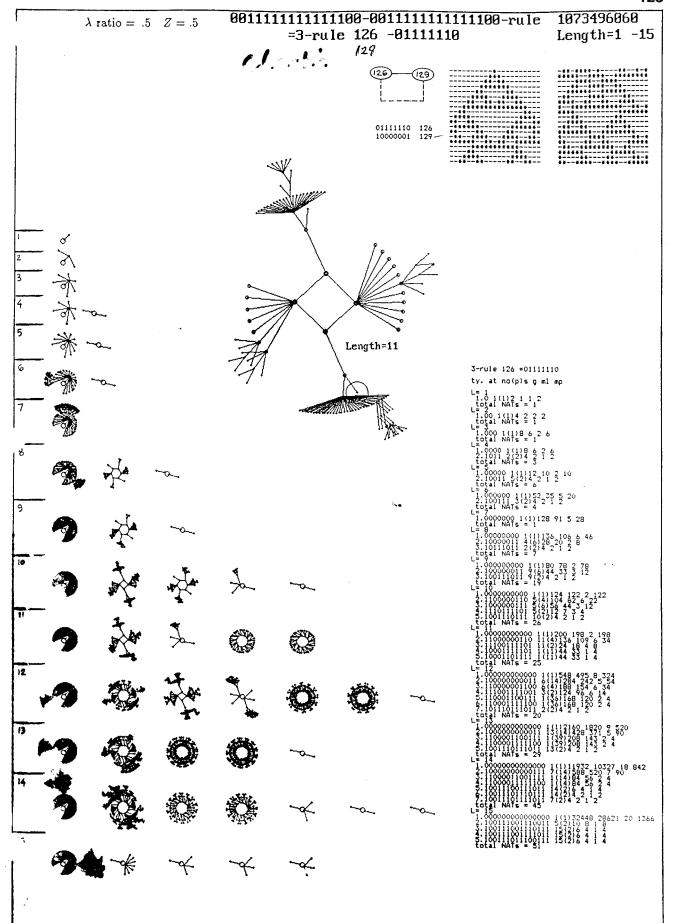
7	<u>b</u>	£	n	<u>h</u>	T	NONCHAOTIC	CHAOTIC	
2	5	3	3	3	c	33	18	< -
2	7	3	3	5	đ	24 36	129	<
3	5	4	2	4	f	37	161	<
						(A) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	7010 18 (000100)	

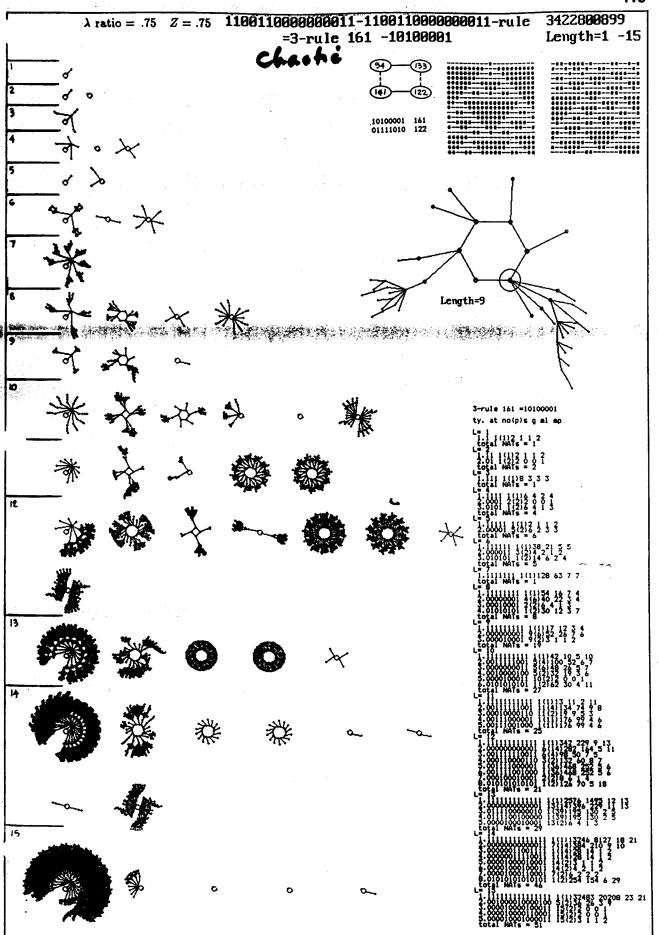



rula 37 (00100101)








000001111000000-0000001111000000-rule 62915520 $\lambda \text{ ratio} = 5$ Z = 5Length=1 -15 =3-rule 24 -00011000 00011000 24 11100111 231 10111101 189 01000010 66 3-rule 24 =00011000 ty. at no(p)s g ml mp × Length=9 10 11 13 0000000 000800

CONCLUSIONS

- 1. CHAOTIC DYNAMICS IS PARTIALLY PREDICTABLE
- 2. NON-DECOMPOSABLE RULES TEND TO GENERATE CHAOS
- 3. **RECONSTRUCTABILITY** IS A **COHERENT FRAMEWORK**FOR CHARACTERIZING ECA MAPPINGS AND PREDICTING CHAOS

QUESTION: WHAT ACCOUNTS FOR THE RESIDUAL UNCERTAINTY?