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A bstract With the explosive growth of the Internet and World Wide Web 

comes a dramatic increase in the number of users that compete for the shared 

resources of distributed system environments. Most implementations of applica

tion servers and distributed search software do not distinguish among requests to 

different web pages. This has the implication that the behavior of application 

servers is quite unpredictable. Applications that require timely delivery of fresh 

information consequently suffer the most in such competitive environments. This 

paper presents a model of quality of service (QoS) and the design of a QoS-enabled 

information delivery system that implements such a QoS modeL The goal of this 

development is two-fold. On one hand, we want to enable users or applications 

to specify the desired quality of service requ.irements for their requests so that 

application-aware QoS adaptation is supported throughout the Web query and 

search processing. On the other hand, we want to enable an application server to 

customize how it shou.ld respond to external requests by setting priorities among 

query requests and allocating server resources using adaptive QoS control mech

anisms. We introduce the Infopipe approach as the systems support architecture 

and underlying technology for building a QoS-enabled distributed system for fresh 

information delivery. 

Keywords Distributed Information Flow Systems, Web Information Systems, 

Quality of Service, Adaptive Resource Management. 

§1 Introduction 
On the Internet, users issuing search queries to remote information servers often 

experience large variations in important performance metrics and information qual-

mailto:walpole@cse.ogi.edu
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ity metrics. Typical performance variations include data transfer bandwidth and 

access delay. Typical information-quality (IQ) variations include the amount of 

false positives (useless answers that fail to fulfill a user's needs) and false negatives 

(useful answers that the system fails to deliver to the user) in the search results, 

the freshness and coverage of the information delivered, and the information rep

resentational consistency. These variations are primarily caused by the wide range 

of server capabilities, such as time-of-the-day differences or server-dependent dif

ferences in network paths, network load, server-specific query capabilities, and 

server utilization. Furthermore, most implementations of application servers and 

distributed search software treat all requests uniformly. This has the implication 

that the behavior of application servers is quite unpredictable as analyzed in 6). 

First, requests for popular pages have the tendency to overwhelm the requests 

for other (and possibly more time-sensitive) pages. Second, pending requests may 

completely bog down the servers, resulting in unacceptable response time. Third, 

servers may start to drop requests indiscriminately. Fourth, servers may deliver 

out of date results. It is becoming increasingly important for distributed systems 

to be able to handle application demands for resources more intelligently. 

In this paper, we present the initial results of our research towards de

veloping an application-aware quality of service (QoS) framework for managing 

distributed systems resources in order to provide application- level QoS guaran

tees, and ultimately supporting smart delivery of fresh information. This research 

consists of three main components. The first component is a model of QoS for fresh 

information delivery. The second component is the Infopipe approach to designing 

and implementing a QoS guaranteed Web information delivery system InfoFilter. 

The Infopipe approach is the core technology of the Infosphere Project 7), one of 

the five pioneer projects under the DARPA ITO Information Expedition program. 

The third component is an adaptive, micro-feedback driven approach to distributed 

systems resource management that dynamically configure the available resources 

in terms of the QoS demands of applications. This paper presents the QoS model 

in the context of Web query and search processing and briefly describes the Tn

foFilter system that enforces the proposed quality of service model using Infopipes 

technology. 

The model of quality of service (QoS) presented in the paper aims at en

abling an application server to customize how it should respond to external re

quests. This includes setting priorities among page requests, allocating different 

kinds of (absolute and relative) service resources to different requests. More con

cretely, it allows the QoS parameters to be expressed in terms of different units 
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of work and different layers of the system. Built on top of the taxonomy of QoS 

specification developed in 3), we explicitly distinguish application-level QoS pa

rameters (such as frame delay and frame jitter for a video) from resource- level and 

system-level QoS parameters (such as the packet delay and packet jitter at network 

resource level). We model application-level QoS parameters as a function of the 

appliation's goals specified by application designers. We describe resource-level 

QoS parameters in terms of the design of the resources and their application-aware 

control parameters. 

To implement such a QoS model, first, the system needs to provide an 

application-level QoS specification language to allow users to specify the desirable 

quality control parameters with their queries. Second, mechanisms are needed to 

translate the application-level QoS parameters into resource-level and system-level 

QoS parameters. Third and most importantly, an implementation requires the 

creation of a resource model for determining various resources that exist at any 

given moment. This paper describes an adaptive resource management mecha

nism for scheduling various requests given a resource model such that the QoS 

constraints are satisfied. A key building block of the InfoFilter QoS system is the 

use of infopipes. The Infopipe approach provides a viable and effective technology 

to support distributed information flows with QoS requirements. It includes the 

flexible composition of Infopipes while preserving QoS properties, which is criti

cal for implementing a QoS-aware distributed system for timely delivery of fresh 

information. 

§2 The InfoFilter Quality of Service Model 
Much of the quality of service management research results have been produced 

and published in the context of networking and multimedia systems where resource 

consumption needs often exceed the available resource capacity of a system 10, '2, B), 

or where resources are allocated unfairly during periods of network congestion. In a 

consumer-producer framework, quality of service can be seen as a quantification of 

level of services that an information production server can guarantee its consumers. 

Often, the selection of quality of service parameters depends on the kind of services 

that a server provides. Examples of typical parameters that multimedia systems 

have used to guarantee services are transmission delay, network transfer rate, image 

resolution, video frame rate, and audio or video sequence skew, among others. In 

this section, we develop a model of quality of service for distributed information 

servers, such as 'Web application servers, continual query servers 4), and geographic 

information servers, 
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The design of the InfoFilter QoS model follows a number of design deci

sions. The first design consideration is to make an explicit distinction between two 

views of the quality of service: consumer view and producer view. In the consumer 

view, the application server guarantees specific services to its consumers according 

to the desirable level of services specified by consumers. Examples of such QoS 

guarantees are a server's resource guarantee for lower bounds on its throughput 

(e .g., number of bytes per second) or upper bounds on response times for specific 

queries. In the producer view, the quality of service implements the producer's 

view of how the producer's server should provide certain services, including policies 

for setting priorities among various resources and setting limits on server resource 

usage by various types of requests. 

The second design consideration is the need for establishing a common 

understanding of how QoS should be specified at application level, resource level 

and system level '). In order to design a system that allows multiple applications to 

co-exist within a QoS management framework, it is necessary to define a common 

and coherent QoS model. Such a QoS model should not only incorporate various 

individual specifications from consumers but also be able to map QoS properties 

from application level to resource level and from resource level to system level. 

2.1 QoS Definition 
In InfoFilter, an application is modeled as an information flow system using a di

rected graph, where graph nodes represent processes and graph edges represent 

information flow between those processes. A process can be either atomic or com

posite. \Ve use atomic processes to denote units of work and composite processes 

to refer to services or composition of services (i.e., a service may use other services 

to complete a task). A unit of work represents the smallest granularity of work for 

which only a single resource needs to be allocated 3). A service is defined as a col

lection of one or more units of work that may span multiple resources. Therefore, 

a unit of work can also be referred to as a service. 

We define end-to-end QoS requirements (parameters) for each service and 

describe the resource usage as a function of the QoS. Thus, a single QoS specifi

cation is provided for the entire service. The consumer of a service negotiates the 

QoS of the entire service without having to understand the units of work that made 

up the service. 

The InfoFilter application QoS model is developed as an extension to the 

Quasar QoS model 11), which was designed specifically for multimedia systems and 

video-on-demand in particular 11). Similar to the Quasar QoS model, we model 
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the quality of a query result as a measure of the amount of error present in it. 
For example, a query returning a perfect result would return an error-free replica 

of the real world object(s). We explicitly distinguish capture error, quantization 

error (sampling error), and delivery error. The capture error refers to the class 

of errors that result from the use of inaccurate capture equipment or less than 

perfect information extraction software. These errors are considered as incidental 

because they may not be present when different capture (software or hardware) 

or data extraction tools are used. The quantization C1Tor represents the class of 

inherent errors that result from the use of a finite number of samples (and a finite 

number of bits per sample) to represent time varying values from the real world. 

The delivery error describes the class of errors introduced by resource management 

decisions that influence the processing and the delivery of query results. Delivery 

errors in Web query systems are primarily caused by page and packet oriented data 

transfer delays, buffering delays, the choices of resource scheduling policies, and 

the unexpected server unavailability problems. Below we discuss a list of quality 

of service parameters that are common for Web application servers and describe 

consumer requests with QoS specifications. 

2.2 QoS Specification 
We define the overall quality of a Web query request as the degree of user satis

faction with the query results and the delivery efficiency according to the user's 

QoS requirements. While user satisfaction is qualitative and subjective, the de

livery efficiency can be measured against the QoS specifications. We introduce a 

set of parameters to be used for incorporating quality of service control into the 

construction, operation, and maintenance of consumer requests. 

Table 1 lists a subset of QoS parameters to be used in the InfoFiIter con

sumer request construction. If we consider the QoS specification as a performance 

metric, then the first four parameters in Tabell are the timeliness parameters. The 

deadline for the query to complete measures the time affordable by the consumer 

to wait for the query to return the results, The total time taken to complete a 

query measures the query round trip time from the time a query is submitted to 

the time the execution of the query is completed (i.e., all results are returned). The 

rest of parameters are either the precision parameters with respect to the volume 

of the data flows or the accuracy parameters that measure the errors introduced 

into the query results. 
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parameter Synopsis Example I 
The deadline for the query to complete 30 seconds : DL 

RT Query response time from the time a query is ~ 
submitted to the time the first piece of data appears 20 seconds 

h""';-----\,-,.T"h~e ·total ti"me taken to complete aquery 1 minute 
Jitter - The variability in tim-e-to-co-'-m-p"'"le-t-e-t'Th-e-q-u-e-r-y---+-0"".-=5-s-e-c-o-nd-'s---" 

(measuring the internal consistency of timeliness parameters 
Query scope - query search scope in a ",lteb document 

r-~""----\-;;Q:-u-e"';ry'--coverage - Number of network nodes or Web 
sites accessed 

FR Freshness of query result - the usefulness duration 
of a result item since its last modification 

h"""'----\-,,;R-e""'d-u-n-;d-a-n-cy-rate of query result - percentage of 
duplicate items 

~. 
I Accuracy of the query - the percentage of the retrieved 

documents or result items satisfying the query condition 
PR Precision of the query - the fraction of the retrieved 

documents or result items which is relevant 
RC Recall of the query - the fraction of relevant 

documents or result items that has been retrieved 
RL Relevance of the query result - percentage of result items 

that may not satisfy the query condition 
ND Number of Web documents (files) accessed 

INA Total size of the query result - the number of result 
items returned in an execution of a ':!.':"'l':r 

Table 1: Typical QoS pal'ameters fol' Web queries 

5 days 

0.004 ---j 
0.9 

0.99 

I 

I 0.12 

! 0.15 
1O,000docs I 

'~20 it"l'l1" I 

The term "result item" used in Table 1 is defined as a data object or an URL of 

a related document for Web information sources. The query scope (QS) is defined 

in terms of a subset of record field tags for data files or a subset of HTML (or 

XML) tags for HTML (or XML) documents. A QS value specifies a minimum set 

of content tags that the InfoFilter query processor has to search. For example, a QS 

value { <H2>. <B> , <HREF> } means to search at least the text appearing in the header 

parts, the bold parts, and the embedded URL links of each HTML document. A 

QS value Table means to search the table defined by the pail' of start and end table 

tags <table> and </table>. The default value of QS is <HTML>, which means to 

search the whole document. A freshness value FR indicates the duration of an item 

sillce its existence. It is an important quality measurement for Web queries sillce 

most of the users are not be interested in "out of date" information. The accuracy 

of the query result (A C) is defined as 

AC NC/NA 

where NC is the number of correct items in the query result. We define the precision 

PR of a query as follows: 

PR= (NAnNR)/NA 

http:r-""":-----+""R""e-d.,.u-n-;d-a-n-c-y~ra.te
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where NR is the total number of relevant documents or relevant objects at the 

sources of the query. (NAn N R) is the total number of retrieved documents that 

is relevant. A precision of 90% means that 90% of the query result are relevant 

and there are 10% of irrelevant result items in the result. We define the recall of a 

query as 

RE= (NAnNR)/NR. 

A recall of 100% means that the query returns all the relevant objects at the 

sources. A recall of 90% means that the query returns 90% of the relevant objects 

and missed 10% of the relevant objects. 

Typically, users specify a requirement threshold (minimum/maximum value) 

for each quality parameter when he/she issues a request. The InfoFilter request 

manager checks if the execution of the query meets the quality requirements by 

examining the values of quality parameters. The quality of service inspection mod

ule sets off an alarm when a quality parameter drops below the minimum required 

QoS value or rises above the maximum. We refer to the QoS values specified by a 

user as user-defined quality parameter values. In contrast, the quality parameter 

values obtained at run time during Web query processing are called execution-time 

quality parameter values. We say that a Web query execution is successful under 

QoS control if all of its execution-time parameter values are equal to or better than 

(smaller or greater depending on the semantics of each parameter) the user-defined 

quality parameter values. 

2.3 QoS as a Distance Measure 
A distance function 11) is defined over a single parameter of a given QoS metrics. 

It is used to measure the distance between two quality parameter values. Such dis

tance value is a useful indicator of the relative goodness of the two QoS parameter 

values. 

Distance function. 

Let P be a QoS parameter, domain(P) denote the domain of P, and domain(P) 

f 0. Let u,v,w E domain(P). A function Dp(U,v) is a distance function for the 

parameter P, if it has the following properties: 

1. Sp is a function from domain(P) x domain(P) to a set of real numbers, 

denoted by R, and domain(R) [0,1]; 

2. \Ju, v E domain(P), Dp(u, v) = Dp(V, u); (Symmetry) 

3. \Ju,v, wE domain(P), Dp(U, v) + Dp(v, w) 2: Dp(U, w). (Triangle inequal-
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ity) 

Consequently domain(P) is a metric space. Let each value in domain(P) denote a 

presentation state of the query result object o. The distance function lip can be 

defined as the absolute value of the difference between two presentation states of 

the object o. By the definition of lip (u, v) where u, v E domain{ P), the following 

properties holds: 

(a) lip(u, v) 0 jf and only if u = v. 

(b) Jp(u, v) > 0 if and only if lip (v, u) < o. 

(c) ifJp(u,v) > 0 and Jp(v,w) > 0, then Jp(u,w) > O. 

The property (a) amounts to say that two property values are identical if their 

distance is zero. The property (b) implies that if a property value u is better than 

v, then v is worse than u. The property (c) says that if u is better than v and v 

is again better than w, then we can say u is better than w. These properties are 

frequently used in QoS control systems. 

Consider the list of QoS properties in Table 1. For response time RT, round 

trip time TT, freshness FR, redundancy rate RD, and relevance RL, the smaller 

the parameter value is, the higher the quality. Therefore, we define the distance 

function as 

Jp(u, v) = v - u, where P E {RT, TT, JT, F R, RD, RL}. 

However, for other parameters such as accuracy AG, precision PR, recall RE, the 

larger the parameter value is, the higher the quality. We define the distance function 

as 

Jp(u, v) u - v, where P E {AC, P R, RE}. 

For the rest of parameters the definition of its distance function is more sophisti

cated. User-defined quality criteria can be used in such cases to determine the best 

quality between two sets of parameter values. For instance, a user may consider 

that the query results returned by searching over a larger coverage are better in 

quality. 

Very often, users need to specify a set of quality parameters for each con

sumer request. To compare two sets of quality parameter values, we need to intro

duce an aggregate distance function that allows us to compute the distance between 

two multi-dimensional quality parameter vectors. The design of a concrete distance 

function is a subject of our ongoing research. One possible solution is to define the 
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aggregate distance function as a weight function by assigning a weight to each 

quality dimension. The sampling approach or self-adaptive learning approach can 

be employed to determine the weight values for different quality dimensions. 

2.4 Constructing Requests with QoS Parameters 
In InfoFilter, two types of consumer requests are supported with quaE ty of service 

guarantee. The first type of requests is called ad-hoc queries. An ad-hoc query 

performs a conditional search over the remote information sources. The second type 

of requests is called QoS-guaranteed query subscription. Each query subscription 

is modeled as a continual query". We define a query siIbscription in terms of 

four components: triggering event, standing query, start and stop condition. The 

triggering event can be a recurring time event (e.g., every 10 minutes), a system 

state (e.g., when a thermometer reaches the temperature of 100F), or a combination 

of both. The standing query is a normal query on the data sources (in this case, 

pulling selected sensor data) that is executed each time the triggering event becomes 

true. The query result is pushed to the user or program that created the request 

whenever the trigger condition is met. Like the triggering event, the start and stop 

condition of a query subscription can be a combination of time-based or content

based events. A subscription is deactivated after the stop condition has occurred. 

For example, the query subscription" transmit the last 2 minutes of buffered infrared 

videotape when the seismic senso'r indicates an explosion nearby' can be specified 

as an InfoFilter continual query. 

Formally, a QoS guaranteed query subscription, denoted as (fcq, fQos), is 

defined by a continual query component fcq and a QoS specification component 

fQos. We define the continual query component fcq as a quadruplet (Q, Tcq,Start,stop), 

consisting of a normal query Q, a trigger condition Tcq , a begin condition Start, 

and a termination condition Stop. Tcq , Start, and Stop in general may depend 

on many different parameters, and in the sequel we omit their parameters for clar-

ity. In contrast to ad-hoc queries in conventional database systems or current Web 

search engine-based information retrieval systems, an InfoFilter query subscription, 

once activated (installed and started) runs continually over the set of information 

sources. Whenever its trigger condition becomes true, the new result since the 

previous execution of the query will be returned if it meets the QoS specification. 

Below we illustrate the construction of InfoFiIter query subscription requests using 

., A continual query (CQ)4) is a standing query that, once installed, runs continually over the 
targeted information sources and returns the new results when the amount of information 
updates reaches a specified threshold. 
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an example: 

Example 2.1 

"I want all SAR (Synthetic Aperture Radar) Imagery within 100 miles of my (time

varying) location". Suppose this query has the following quality requirements: the 

precision of 100 miles of my location is 90%, the duplication rate of the query 

result is zero, and the maximum query turnaround time latency is 2 minute. \Ve 

can perform this request by installing the following continual query: 

fcq == (Q : Select * From SARImagerySource 
Where my_location - 100 miles < distance-range 
AND distance-range < my~ocation + 100miles, 
Tcq: my~ocation changes From LocationCoordinateSource, 
Start: now, 
Stop: 24 hours) 

fQos = (TT:2min,SC:{<SARImagery>,<distance-range>,<LocationCoordinate>}, 

AC:O.9, RD:O.O). 

Note that we use the trigger condition Tcq to monitor the changes of "myJocation" 

and use the query Q to filter those SAR Imagery within 100 miles of distance to 

each given value of "my Jocation". The QoS specification of the request will be 

translated into lower level of QoS properties for fine-granularity resource manage

ment and control by the dynamic QoS adaptation controller. 

2.5 QoS Specification of Server Resources 
It is well understood that a QoS model must tie the users' needs (application 

QoS) to the amount of resources required to provide them. The resource-level 

QoS specification describes the system resources that are required by the server to 

fulfill the application requests. Typical server resources associated with consumers' 

requests to \Veb pages include resource types (such as the percentage of server 

resources allocated to a page request), performance characteristics (such as the 

number of requests per second for the page, or the number of kilobytes of a page 

transmitted per second), and scheduling policies for each type of resources. 

In order to measure the performance and the cost of each resource at dif

ferent operational points, a cost function associated with each type of resources 

will be developed. Typically, the resource QoS is managed according to the re

source model of the underlying system, which describes the resource capacity of 

each information server at a given moment, including CPU speed, local CPU load 

factor, memory, file server's capacity, network bandwidth, local area network char-
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acteristics. A common abstraction to specify the capacity of an information server 

is in terms of bytes per second. Using this abstraction, each information server 

periodically determines the number of bytes per second it can deliver. Concrete 

formula for computing the resource capacity of an InfoFilter server is still under 

development and will be reported in a forthcoming pape(7). 

2.6 System-Level QoS Specification 
In distributed computing environments, users and applications often compete with 

one another for system resources. Consequently, application QoS and resource QoS 

may have some conflicting goals. The system perspective of the QoS model needs 

mechanisms to reconcile the conflicting goals between different types of applica

tions, between heterogeneous resources, and between application perspectives and 

resource perspectives. For example, when a new application is started and there 

are not enough resources to perform it with the desired QoS, several methods can 

be used to free up some resources. One can degrade the QoS requirement of this 

new application, or degrade the QoS of a less important application that is already 

running. One of the main mechanisms for dealing with such resource contention 

problems is to define a set of end-ta-end system policies. An example system policy 

could be to define the action that should be taken when a new application is started 

and there are not enough resources to perform it with the desired QoS. An obvious 

approach to handling competing users or competing applications is to define and 

evaluate the relative importance of different applications that are contending for 

the resource. One of the effective mechanisms is to use the price (cost) that the 

user is willing to pay for a server of a given quality as the measurement of relative 

importance. 

In InfoFilter, we describe system-level QoS requirements in terms of QoS 

constraints. For \Veb applications, QoS constraints for various requests are a form 

of specification used to describe how a server's resources should be allocated. Typ

ical system-level QoS specifications include specification of guarantees about byte 

transfer rates and page request rates, allocation of specific and relative amount of 

server resources to specific page requests, time-based and link-relation-based alIa

cation of resources, scalable allocation of resources, required system throughput, 

to name a few. We define a QoS constraint to be a conditional QoS specification 

in the sense that the QoS specification must be guaranteed when the condition is 

true. Other issues related with system perspective of the QoS model is the multi

layer QoS enforcement architecture, which is omitted in this paper due to the space 

restriction. 
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§ 3 QoS Information Server 

3.1 Infopipe Abstraction 
The implementation of the InfoFilter QoS model described in Section 2 is a signifi

cant undertaking. To make our implementation feasible and simpler, we will build 

the InfoFilter QoS Information Server using the InJopipe abstraction, being devel

oped in the Infosphere project, which is building the system software to support 

the next generation information flow applications. 

Infopipe is represented by an explicit description of the syntax, semantics, 

and QoS requirements of the information flow. Typically the information flow is 

divided into logical units (potentially of variable length), and the component fields 

within the units are described by a microlanguage similar to C records or database 

schema description, which captures the information semantics. The semantics de

scription is needed during the interpretation of the information flow. In addition to 

the syntax component and the semantics component, the third main component of 

Infopipe description consists of the QoS requirements of the applications producing 

and consuming the information flow. This is a major departure from traditional 

systems supporting QoS, since the QoS specification and representation are usually 

implicitly described or handled by the applications themselves. By attaching the 

QoS requirements to the information flow itself, our goal is to provide the under

lying system with enough guidance to make informed decisions in resource man

agement tradeoffs, for example, what to do under system saturation. The Infopipe 

software toolkit handles the translation of the Infopipe description into executable 

code, much the same way the Remote Procedure Call (RPC) stub generators take 

care of the code to marshal/unmarshal parameters into/from messages. 

Each Infopipe has an input end, a processing middle, and an output end. 

The input and output ends are described by a Typespec, which is the explicit 

description of the syntax, semantics, and QoS requirements of the information 

flow at both producer end and consumer end. The processing middle transforms 

the information flow from the input Typespec into the output Typespec, while 

guaranteeing the QoS properties specified at the two ends of the infopipe. The 

middle also handles buffering and active push, for example. The details ofInfopipe 

abstracts will be described in another paper 7). 

3.2 Infopipe Software Toolkit 
The Infopipe software toolkit contains four main components. The first component 

of the toolkit is the InJopipe stub generators, the equivalent of RPC stub generators 



InfoFilter: Supporting Quality of Service for Fresh Information Delivery 13 

for Infopipes. It handles primarily the syntax and semantics for correct interpre

tation of the information flow. Given the Typespec of an end, the toolkit will 

generate the appropriate code for the parsing and generation of information flow. 

Our current design decision uses XML as the wire format for high-level information 

flows. The code to parse XML input and generate XML output is automatically 

generated by the toolkit. 

The second part of the toolki t is the system code that handles QoS prop

erties in the kernel, of the information source, the user (or another programmed 

robot information consumer), and the intermediate nodes along the information 

flow path. This could be a modification of the operating system kernel, e.g., the 

Quasar implementation built into the Linux kernel. Alternatively, it could be user 

routines written on top of the kernel, e.g., the Resource Kernel work on Windows 

NT. The system support typically consists of adaptive resource (e.g., CPU, mem

ory, disk and network bandwidth) management mechanisms (e.g., control-system 

based Microfeedback 9) and saturation situation management policies (e.g., trade

offs between CPU, memory, and network bandwidth). 

The third part of the toolkit is the library code the applications and the 

systems need in order to interpret the QoS requirements. In addition, it also 

contains the current system state, so the component nodes may exchange system 

status information and take appropriate adaptive action if needed. This part of the 

code observes the system and application behavior, and then invokes appropriate 

adaptation mechanisms in the operating system according to the policies specified 

by the application designer. 

The fourth part of the toolkit is the software supporting lnfopipe compo

sition, forming larger or longer composite Infopipes. The main research challenge 

in this part of the toolkit is the preservation of predictable QoS properties during 

composition. Our goal is to be able to provide the application designer clear control 

over the QoS properties from an end-to-end perspective. 

3.3 Development of QoS Information Server 
There are four issues that are critical for providing QoS guarantees for fresh infor

mation delivery. The first issue is QoS specification, which we have discussed in 

Section 2. The second issue is QoS MapP'ing. The QoS specifications associated 

with the consumers' requests are at the application level. As the processing of a con

sumer's query involves resources such as CPU, memory, and network connection, 

the application-level QoS specifications must be mapped to resource requirements. 

For example, QoS parameters (such as bandwidth) have to be derived for the net-
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work connection. Similarly, given a timeliness parameter, the mapping operation 

derives the amount of processing required so that the CPU capacity can be allo

cated to ensure the processing is performed at the desired rate. Figure 1 shows 

the QoS specification and mapping operations implemented in terms of infopipes. 

The third issue is QoS enforcement, which is mainly concerned with scheduling 

Infopipe 
Compositions 

RESOURCES 

i , , 

Application 

Infopipe QoS Abstraction 

cPU MEMORY CONNECTION 

Fig. 1 Mapping application-level QoS specification to resource-level QoS requirements 

shared resources during data transfer or data processing. The goal is to schedule 

all application threads for data transfers and data processing in such a way that 

they obtain their required share of the CPU and network resources in each period. 

This is the same as ensuring that all threads meet their deadlines. The fourth 

issue is QoS adaptation, which monitors the state of shared resources and fires the 

adaptive re-scheduling process whenever it is necessary. Figure 2 shows the main 

components used for the QoS implementation and adaptation. All concurrent ap

plications are controlled by one adaptor for each type of system resource (most 

notably CPU and network bandwidth), in order to maintain fairness and stabil

ity. Each adaptor consists of monitoring task and adaptation task. The former 

observes the stale changes and notifies the adaptation module when the amount 

of changes reaches certain threshold. The feedback-based configuration controller 

maps the adaptation decisions made by the adaptor to application-specific parame

ter tuning and reconfigures adaptation choices within the application. Hence, each 

application needs to have a corresponding feedback-based configuration controller. 

More concretely, at the QoS mapping phase, the end-to-end QoS specifica

tions of the application are translated into the third component (QoS specification) 

of the Infopipe Typespec. Since the Infopipe Typespec is a declarative specification 

of machine resources requirements, this translation effectively isolates the under-
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Fig. 2 QoS Implementation and Aaptation 

lying hardware from the application. On the programmer side, the writing of 

Typespec will be handled by a QUI that speeds up the process. Then the Infopipe 

Typespec QoS specifications are translated into code by applying the Infosphere 

toolkit parts discussed in Section 3.2. In the case of QoS Information Server, we 

will use the part 1 of toolkit to generate the XML parser and generator code for 

each Infopipe. Part 2 of the toolkit consists of the system code running underlying 

the QoS Information Server components. Part 3 of the toolkit takes the Typespec 

specifications (second step) and communicates with the Part 2 kernel calls that al

locate resources. In particular, the monitoring code will be generated to watch over 

the maintenance of QoS during execution. If saturation occurs, tradeoffs specified 

by the application designers will be used to invoke appropriate resource manage

ment mechanisms to recover from the saturation situation. Part 4 of the toolkit is 

invoked to glue together the components into the information flow grid that forms 

the QoS Information Server. 

Consider the InfoFilter query subscription request of Example 2.1 given 

in Section 2.4. At the beginning, the InfoFilter query "SAR Imagery" is installed 

at the QoS-aware InfoFilter Server 4) through a message. There are two parts 

of the query: the trigger part and the query proper. For the query proper, the 

InfoFilter Server is connected to the SAR Imagery information sources through 

Infopipes. For the trigger part, the InfoFilter Server is connected to the sensors 

that monitor my current location, also through Infopipes. In this example, the 

"2 minutes turnaround" QoS specification is translated into QoS requirements to 
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the SAR Infopipe. Let us assume that the SAR Images returned are about 80MB 

each set, and that for land movements in a car, the coverage of images results 

in maximum two sets of SAR data every 2 minutes. The SAR Infopipe therefore 

will be annotated with the QoS requirement of latency and bandwidth that will 

transmit 160MB within the 2-minute limit. Let us further assume that the network 

link to SAR is a T3 connection at 45Mbit/sec, resulting in about 40 seconds of 

transmission time for each set. Finally, let us assume that the InfoFilter Server 

has enough processors to take about 30 seconds to process each SAR data set for 

display, for a maximum of 60 seconds for two sets. This means that the sensor 

trigger must be polled at least once every 20 seconds, so there is enough time for 

transmitting and processing 2 sets of 80MB SAR data after movement is detected. 

The sensor Infopipe therefore is annotated with the QoS requirement that the 

sensor information must be up-to-date to within 20 seconds of the actual event 

being observed (location change). 

With the Infopipes properly annotated, the QoS Information Server, con

sisting of the InfoFilter Server, the location sensors, and the SAR Imagery source, is 

ready to provide the QoS requested. The sensors "know" that they must notify the 

InfoFilter server of a location change within 20 seconds, and the sensor Infopipes 

take care of the system resource management to make that happen. Once notified, 

the InfoFilter Server fetches the SAR data sets within 40 seconds (provided by 

Infopipe), processes them within 60 seconds, and generates the results within the 

2-minute specified turnaround time. 

Note that scalability is inherent in the architecture. For example, suppose 

we connect to a source generating larger SAR data sets that require more processing 

than available within the InfoFilter Server. We upgrade the Infopipe bandwidth 

to the new SAR source to reduce the transmission latency, and add two high

bandwidth, low-latency lnfopipes between the InfoFilter Server and a specialized 

processing unit for SAR data. The InfoFilter Server gets the larger data sets, 

sends them to the specialized processing unit, and then returns the results to the 

user. The configuration upgrade is transparent to the application using the QoS 

Information Server, and the higher performance is achieved with minimal code 

change at the system level. Most of the change is captured by the Infopipe QoS 

specifications and handled by Infosphere software. 

§4 Related Work 
The notion of quality of service has been studied in great detail within the con

text of networking 0) and multimedia systems 10). OUf work overlaps with the 
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research on quality of service in distributed systems where various QoS models and 

scheduling algorithms have been developed for supporting specific QoS guarantees. 

In particular, the development of our QoS model was inspired by the study on 

taxonomy of QoS specifications 3), the QoS support for HTTP servers and Web 

servers 1.2.0), and the Quasar QoS model 11). However, our work differs from the 

previous research in a number of ways. First, our work focuses on the development 

of generic QoS definition and QoS specification language for distributed informa

tion flow systems. Second, we employ the Infopipe abstraction as the fundamental 

building blocks for implementing the QoS information flow servers. Infopipe is a 

natural solution for the construction of QoS Information Servers because of the 

close match between the information flow nature of Information Servers and the 

Infopipe definition, designed explicitly to support such information flows. While 

client/server architectures based on RPC work well for specific situations (e.g., 

single-company electronic commerce), Infopipes provide much more scalability and 

evolvability, particularly with regard to QoS support. 

§5 Conclusion 
We have presented the design of a distributed information flow system InfoFilter, 

which implements a quality of service model. The distinct characteristics of the 

InfoFilter QoS model is its generic framework that unifies the QoS specifications 

at application-level, resource-level and system-level. Such an integrated framework 

enables a server to determine how consumers' requests for various web pages should 

be served. Several QoS enforcement mechanisms were discussed, including methods 

for setting priorities among various requests, association of constraints on system's 

resource usage. 

Our future work involves the formalization of the InfoFilter QoS model, 

and an implementation of the InfoFilter system on top of the WebCQ system 

(http://www.cc . gatech. edu/pro j ectsl disl/WebCQ), currently operational at Geor

gia Tech. In addition, we plan to conduct experiments for comparing performance 

of the QoS-aware InfoFilter server with the WebCQ server we have built for mon

itoring Web information changes. Typical experiments we have in mind are mea

surement of behavior of QoS server with differing number of concurrent requests, 

comparison of throughputs and average response times of WebCQ and InfoFilter 

servers, as well as benefits and overhead of QoS guaranteed services. 
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