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Convergence analysis of a multigrid algorithm for

the acoustic single layer equation

S.Gemmrich∗, J.Gopalakrishnan†, N.Nigam‡

February 29, 2012

Abstract

We present and analyze a multigrid algorithm for the acoustic single
layer equation in two dimensions. The boundary element formulation of
the equation is based on piecewise constant test functions and we make
use of a weak inner product in the multigrid scheme as proposed in [4].
A full error analysis of the algorithm is presented. We also conduct a
numerical study of the effect of the weak inner product on the oscillatory
behavior of the eigenfunctions for the Laplace single layer operator.

This paper is dedicated to Prof. G.C.Hsiao on the occasion of his 75th
birthday.

1 Introduction

A model for the scattering of acoustic waves by a bounded obstacle is given
by the Helmholtz equation in the exterior of the scatterer, with appropriate
growth conditions on the scattered field. One can reformulate this problem in
terms of integral equations on the surface of the scattering object via direct
or indirect boundary integral formulations. Or one may consider scattering
from a coated bounded obstacle, in which case an integral equation can be
used to prescribe a non-reflecting condition on an artificial surface surrounding
the object. In both, one has to find numerical approximations to solutions of
boundary integral equations. In this context, Galerkin type methods have been
studied extensively and become popular over recent years, see for example the
monographs [23], [16].

Our focus in this paper lies on integral equations of the first kind, which
arise naturally in the direct boundary integral method for the Dirichlet problem.
The main integral operator involved is called the single layer operator and may
be viewed as a pseudo-differential operator of order minus one. Several authors
have observed advantages of using integral equations of the first kind (e.g. [17]),
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for example when the scattering object is very thin (e.g. [15]) or when the
scattering surface is not smooth. Indeed, for problems of crack propagation in
elasticity or scattering from a screen, integral equations of the first kind are the
most appropriate model.

Other popular integral equation strategies include the use of combinations
of single and double layer operators, to avoid issues of non-uniqueness and the
potential for numerical instability near possible eigenvalues of the operators.
These approaches include the famous Brakhage-Werner and Burton-Miller for-
mulations. In these cases as well, discrete strategies rely on effective and accu-
rate approximation methods for the layer operators involved.

Due to the non-local behavior of boundary integral operators, they typically
lead to dense linear systems upon discretization. Though one only needs to
mesh on a surface of co-dimension one, the fill-in in the matrices corresponding
to the integral operators is significant. Without some form of preconditioning
or acceleration, these methods then become prohibitive.

One possible preconditioning strategy is the use of a multigrid scheme. How-
ever, the use of standard multigrid smoothing operations is inappropriate for
negative order pseudodifferential operators. Such operators link highly oscil-
latory eigenfunctions to small magnitude eigenvalues. This ruins the basic in-
terplay between standard smoothing of oscillatory error components and the
possibility to represent the remaining error components on coarser grids. The
remedy for this is the use of a weaker inner product in order to modify this
spectral feature of the operator. This approach has first been described in [4]
for positive-definite operators. We follow the same path for the acoustic single
layer equation. The numerical examples in Section 4 exemplify how the spec-
tral behavior of the discretized operators changes through the use of the weaker
inner products.

Several related works can be found in the literature. The single layer equa-
tion associated to Laplace’s equation has been treated and analyzed in [12] using
a BPX preconditioner. The same equation was considered in [19]. Here, the
authors studied a multigrid method for large-scale data-sparse approximations
to the single layer operator. In the acoustics case, the use of Haar basis func-
tions and compression type multilevel algorithms for integral equations of the
first kind has been studied in [21]. Algebraic multigrid preconditioners, based
on the smoother in [4], have been developed in [18].

The purpose of this paper is to prove convergence of the multigrid algorithm
given in [4] when applied to the indefinite acoustic single layer discretization.
We will make use of perturbation-type arguments such as in [3] and [14]. We
also state the algorithm in the situation where a non-uniform discretization is
used.

The design of the algorithm heavily relies on the above references and we
have reported its promising numerical performance in [13]. Currently, our codes
assemble and multiply matrices in O(n2) complexity, and so the computational
cost of the iterative solution by multigrid is the same. The efficient assembly and
matrix multiplication of the corresponding matrices is an active research issue in
multipole and hierarchical matrix theories. Our numerical results indicate that
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we can approach optimality in complexity through multigrid, once assembly and
matrix multiplications are done optimally.

At this juncture, we note important directions for extending this work, moti-
vated by recent developments in the study of boundary integral equation meth-
ods. Firstly, the use of combined integral equation formulations, including those
by Brakhage-Werner [1] and Burton-Miller, provide stable formulations for the
solution of scattering problems. These are popular approaches, and the devel-
opment of a multigrid strategy for these would be of interest. Both the methods
of implementation and analysis would be different than those in this paper, to
account for the different properties of the combined layer operators. Secondly,
the methods presented in this paper are not tailored to high-frequency scat-
tering, and our analysis does not include wave-number explicit bounds. Wave-
number explicit bounds are described, for example, for combined field operator
approaches [8, 9, 10, 22, 20]. The scale resolution condition of kh being suffi-
ciently small (for piecewise linears) needs to be met; in high-frequency settings
non-polynomial approximation spaces may be a better approach, [7]. The de-
pendence of the coarsest mesh on the wave number is assumed to satisfy this
requirement. In this paper, our focus is on a much simpler situation: how to
use a first-kind integral equation with piecewise constant approximants to the
solution, in the low to medium frequency situations of scattering from polygonal
domains.

We now give a brief derivation of the acoustic single layer equation using the
framework of a direct boundary integral approach. We consider the following
exterior Helmholtz problem with prescribed Dirichlet data on the boundary of
a scatterer. Here, Γ is a simple, closed polygonal curve in the plane and Ωext

denotes its exterior domain.

−∆u− κ2u = 0 in Ωext, u = g on Γ and lim
r→∞

r
1
2 (
∂u

∂r
− iκu) = 0.

To guarantee unique solvability we assume a non-zero, real wave-number κ ∈
R, such that κ2 is not an interior eigenvalue of −∆. The Sommerfeld radiation
condition is given in terms of the usual radial component r in polar coordinates.
It is well known that the solution to this problem is fully determined by its
complete Cauchy data g = γ+u and σ = B+

ν u, where γ+ : H1
loc(Ω

ext) →
H1/2(Γ) and B+

ν : H1
loc(Ω

ext) → H−1/2(Γ) denote the exterior trace operator
and the exterior conormal derivative respectively. The normal n is assumed to
be outward to Ωext, ie, it points into the bounded region. In fact, for x ∈ Ωext

one has an integral representation formula for the solution to the boundary value
problem (e.g. [16], [24]), namely

u(x) = −
i

4

∫

Γ
H(1)

0 (κ|x− y|)σ(y)dsy +
i

4

∫

Γ

∂H(1)
0 (κ|x− y|)
∂ny

g(y)dsy. (1)

The kernels of the two integrals are given in terms of the Hankel functionH(1)
0 (z)

and its conormal derivative. According to the representation (1), it is sufficient
to find the unkown surface density σ. To do this, one exploits the jump relations
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of the two integrals, i.e. their behavior in the limit as x approaches Γ from both
the interior and the exterior of the scattering domain. These relations appear
when we take the trace of equation (1) and lead to the following integral equation
for σ:

V σ = f ∈ H1/2(Γ). (2)

Here, the right hand side f = (12I + K) g depends on the Dirichlet trace g
and requires the evaluation of the double layer operator K. The single layer
operator V and the double layer operatorK are both defined in terms of singular
integrals.

V : H−1/2(Γ) → H1/2(Γ), V σ(x) :=
i

4

∫

Γ
H(1)

0 (κ|x − y|)σ(y)dsy x ∈ Γ,

K : H1/2(Γ) → H1/2(Γ), Kµ(x) :=
i

4

∫

Γ

∂H(1)
0 (κ|x− y|)
∂ny

µ(y)dsy x ∈ Γ.

One should note that the above approach to reformulate the original bound-
ary value problem into an integral equation on Γ is by no means unique. How-
ever, several methods lead to a single layer equation of the form (2). In the fol-
lowing, we are interested in the weak form of equation (2). Given f ∈ H1/2(Γ),
find σ ∈ H−1/2(Γ) such that

V(σ, µ) = 〈f, µ〉 for all µ ∈ H−1/2(Γ), (3)

where the continuous sesquilinear form V : H−1/2(Γ)×H−1/2(Γ) → C is defined
by V(σ, µ) = 〈V σ, µ〉, and 〈·, ·〉 denotes the duality pairing between H1/2(Γ) and
H−1/2(Γ). The single layer operator which corresponds to the Laplacian will be
denoted by Λ.

Λ : H−1/2(Γ) −→ H1/2(Γ), Λσ(x) := −
1

2π

∫

Γ
ln(|x− y|)σ(y)dsy x ∈ Γ.

We note that the underlying differential operator is the principal part of the
Helmholtz operator. Its associated sesquilinear form Λ(·, ·), defined similarly to
V(·, ·) above, is positive definite after the region has been scaled properly (see
[24] for details), i.e. there holds

Λ(σ,σ) ≥ C ‖σ‖2H−1/2(Γ) for all σ ∈ H−1/2(Γ). (4)

Consequently, it defines an inner product whose induced norm is equivalent to
the natural energy norm in H−1/2(Γ). This will play an important role in the
analysis of Section 3.

The paper is organized as follows: In Section 2 we present a multigrid al-
gorithm for integral equations of the first kind, and introduce a (computable)
inner product whose induced norm is equivalent to the natural norm in H−1(Γ)
on finite dimensional test spaces. The multigrid strategy relies on reformulating
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Problem (3) using both the standard inner product in H−1(Γ) and the new
computable version for piecewise constant functions. We introduce smoothers,
and present a matrix version of the algorithm. Section 3 consists of a conver-
gence analysis. The key component is a careful study of the difference between
the single layer operators for the Laplacian and for the Helmholtz equation.
We conclude this section with a convergence result. Finally, in Section 4 we
present some numerical experiments describing the spectral behaviour of the
single layer operator, as well as that of the operators used in the reformulated
problem. We see, in the context of a smooth curve (a circle) and a Lipschitz
curve (a square) how the use of the weaker inner product renders the problem
suitable for a multigrid strategy. We conclude by reporting on the convergence
behavior of the algorithm applied to simple test cases.

2 A multigrid algorithm

In this section we present the multigrid algorithm, originally proposed in [4] for
the positive definite pseudodifferential operators of order minus one, and which
was applied to the acoustic case in [13]. The multigrid algorithm is presented
below in terms of a smoother, whose definition is postponed to Subsection 2.2.
The smoother is realized using a weak base inner product. We make this more
precise in Subsection 2.1.

We first establish notations needed to describe the multigrid algorithm. As-
sume that the polygonal boundary Γ is composed of finitely many straight edges
Γj . Each Γj is meshed by a coarse grid of line segments of length l1j .

We successively refine this grid in a uniform way by breaking each element
in half and adding the respective midpoints to the vertices of the next finer
level. On every level of refinement k = 1, 2, . . . , J, we label the vertices in such a
way that xk

1 , x
k
2 , . . . , x

k
Nk

, xk
Nk+1 = xk

1 is a counterclockwise enumeration. Now,

let φki be the characteristic function of the line segment τki = conv(xk
i , x

k
i+1)

(i = 1, 2, . . . , Nk) and denote their span by Mk := span
{

φki
}

. For the sake of
easier notation we will suppress the level number k in our notations whenever
the context rules out any ambiguity. This construction yields a sequence of
nested finite-dimensional spaces

M1 ⊂ M2 ⊂ . . . ⊂ MJ ⊂ H−1/2(Γ).

We now define the discrete operators Vk : Mk → Mk with the help of the
H−1(Γ) inner product, denoted by (·, ·)−1. The defining relation is

(Vkσ, µ)−1 = V(σ, µ) for all σ, µ ∈ Mk. (5)

Analogously, we choose fk ∈ Mk to satisfy (fk, µ)−1 = 〈f, µ〉 for all µ ∈ Mk.
Then, on every level k, the equation of interest can be written in operator form
as

Vk σk = fk. (6)
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In order to describe the algorithm in a function space setting, we shall also need
the H−1- projections Qk : H−1(Γ) → Mk, which are defined by

(Qkσ, µ)−1 = (σ, µ)−1 for all µ ∈ Mk.

We further need a family of smoothing operators Rk : Mk → Mk. It is defined
precisely in Subsection 2.2, but for now, we just assume that Rk are some given
linear operators. Then, given an initial guess σ0 ∈ MJ , the multigrid iteration
computes a sequence of approximate solutions to (6) using an iteration of the
form σi+1 = MgJ(σi, fJ), where MgJ (· , ·) is a mapping of MJ ×MJ into MJ ,
defined recursively by the following algorithm:

Algorithm 1. Set Mg1(σ, f) = V1
−1f . If k > 1 we define Mgk(σ, f) recursively

as follows:

σ1 = σ +Rk(f − Vkσ), (7)

Mgk(σ, f) = σ1 +Mgk−1(0, Qk−1(f − Vkσ1)). (8)

This is a simple variant of a V-cycle multigrid scheme, which only uses pre-
smoothing. Equivalently, we can write the iterative scheme as a linear iteration
method

σi+1 = σi + BJ (fJ − VJ σi),

with an “approximate inverse” BJ : MJ *→ MJ defined by

Bkfk = Mgk(0, fk) for all fk ∈ Mk and k = 2, . . . , J.

This operator is useful as a preconditioner in preconditioned iterative methods.
The matrix version of Algorithm 1 is given in Subsection 2.3.

2.1 Discrete inner products

The use of the H−1(Γ) inner product in defining the operators Vk and Qk for
the multigrid algorithm confronts us with the question of computability. We
will have to work around this issue by introducing equivalent computable inner
products. These inner products will be used to define smoothers in Section 2.2.

The problem of calculating the H−1(Γ) inner product of two elements in Mk

is related to the solution operator of a second order boundary value problem on
the boundary curve, namely

−u′′ + u = v. (9)

Here, v ∈ H−1(Γ) is a given function, u has periodic boundary conditions, and
the primes denote differentiation with respect to arc-length. The weak form of
this problem is uniquely solvable and we denote the bounded solution operator
by T : H−1(Γ) −→ H1(Γ). Then, for v, w ∈ H−1(Γ) it is easily verified that
(v, w)−1 = (Tv, w)Γ = (v, Tw)Γ, where (·, ·)Γ denotes the complex L2(Γ)-inner
product. Unfortunately, the use of the exact solution operator T is infeasible.

6



Instead, we discretize (9) using a second-order finite difference method. This
finite difference method results in an Nk×Nk linear system with an tridiagonal-
like matrix Ak. We need to introduce some more notation in order to see the
details. Functions in Mk can be represented through their basis expansions
with respect to the φkj . This is done via the following map:

ek : Mk −→ C
Nk , [ek(σ)]i =

1

lki
(σ,φki )Γ, (10)

where lki := meas(τki ). Since the basis functions φki are the (orthogonal) in-
dicator functions of the segments τki , the basis expansion for any σ ∈ Mk is

σ =
∑Nk

l=1 [ek(σ)]l φ
k
l , so the map in (10) gives the vector of coefficients.

We then define the (invertible) operator Ak : Mk −→ Mk through

Akσ = σ −
Nk∑

i=1

(
[e(σ)]i+ − [e(σ)]i

l2i
−

[e(σ)]i − [e(σ)]i−
li li−

)

φki , (11)

where we use the notation i+ = (i+ 1 mod Nk) and i− = (i− 1 mod Nk).
As in (11), we will often drop the superscript k and identify lki and li to be the
same for convenience.

The inverse operator A−1
k or equivalently the inverse matrix A−1

k serve as
approximations for the solution operator T . This motivates the definition of
the computable, discrete inner products on the spaces Mk via

[φ,ψ]k :=
(

A−1
k φ,ψ

)

Γ
for all φ,ψ ∈ Mk. (12)

The following lemma shows that ‖ ·‖−1 and [·, ·]k are equivalent norms, with
the equivalence constants independent of the refinement levels k = 1, ..., J . This
result can be found in [4] and [12] for the case of the screen problem when Γ
is in fact an open boundary patch or an open line segment respectively. Here,
we give a proof for a closed boundary curve Γ. For the analysis we will assume
that all the mesh element lengths lki are such that C1hk ≤ lki ≤ C2hk for
some fixed positive constants C1, C2. Here hk is a representative mesh size, e.g.,
hk = max(meas(τki )).

For the proof we need a standard approximation result. Let θ ∈ H1(Γ) and
let θk ∈ Mk denote the piecewise constant approximation defined by

θk :=
Nk∑

i=

θ(xk
i )φ

k
i . (13)

This is well defined for θ in H1(Γ) by the Sobolev inequality

‖θ‖L∞(Γ) ≤ C ‖θ‖H1(Γ) for all θ ∈ H1(Γ). (14)

Then
‖θ − θk‖L2(Γ) ≤ Chk|θ|H1(Γ) for all θ ∈ H1(Γ). (15)
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To prove this, it suffices to observe that

‖θ − θk‖2L2(τk
i ) =

∫

τk
i

|θ(x) − θ(xk
i )|2 dx =

∫

τk
i

∣
∣
∣
∣
∣

∫ x

xk
i

θ′(ξ) dξ

∣
∣
∣
∣
∣

2

dx

≤
∫

τk
i

(
∫ xk

i+1

xk
i

|θ′(ξ)|2 dξ

)

(

x− xk
i

)

dx

=
l2i
2

(
∫

τk
i

|θ′(ξ)|2 dξ

)

=
l2i
2
|θ|2H1(τk

i ).

Equation (15) follows by summing over all elements. We will use (15) in the
proof of the next lemma.

Lemma 1. There exist constants c, C > 0 independent of J such that

c‖σ‖2−1 ≤ [σ,σ]k ≤ C‖σ‖2−1 for σ ∈ Mk (k = 1, . . . , J). (16)

Proof. Given an element

σ =
Nk∑

i=1

[e(σ)]i φ
k
i , we define σ̃ =

Nk∑

i=1

[e(σ)]i ψ
k
i ,

where ψk
i is the continuous and piecewise linear function which takes the value

one at node xk
i and vanishes at every other node (otherwise known as the “hat”

function). Note that σ̃ is in H1(Γ). Then applying (15) to σ̃, we obtain

‖σ − σ̃‖L2(Γ) ≤ C hk ‖∂σ̃‖L2(Γ),

where ∂σ̃ denotes the derivative of σ̃ with respect to arc length. Note that

∂σ̃ =
∑

i

(
[e(σ)]i+ − [e(σ)]i

li

)

φki . (17)

From this it follows by straight forward calculations that

|σ̃|2H1(Γ) ≤ C h−2
k ‖σ‖2L2(Γ). (18)

Before proving the inequalities, we make a few observations. Using the
operator from (11) we see for σ, µ ∈ Mk,

(Akσ, µ)Γ

= (σ, µ)Γ −
∑

i

∫

τi

(
[e(σ)]i+ − [e(σ)]i

l2i
φi −

[e(σ)]i − [e(σ)]i−
lili−

φi

)

[e(µ)]iφi ds

= (σ, µ)Γ −
∑

i

(
[e(σ)]i+ − [e(σ)]i

li
−

[e(σ)]i − [e(σ)]i−
li−

)

[e(µ)]i

= (σ, µ)Γ +
∑

i

([e(σ)]i+ − [e(σ)]i)
(

[e(µ)]i+ − [e(µ)]i

) 1

li

= (σ, µ)Γ +

∫

Γ
∂σ̃ ∂µ̃ ds.

8



by (17). The right hand side above defines a sesquilinear form

a(σ̃, µ̃) = (σ, µ)Γ + (∂σ̃, ∂µ̃)Γ.

It is easy to see that ‖σ‖2L2(Γ) ∼ ‖σ̃‖2L2(Γ), where X ∼ Y indicates that C1X ≤
Y ≤ C2Y holds with some positive constants C1 and C2 independent of the
mesh. Thus we have proven that

‖σ̃‖2H1(Γ) ∼ a(σ̃, σ̃) ≡ (Akσ,σ), for all σ ∈ Mk.

If we combine the above norm equivalence with (18) and write ‖σ‖2Ak
= (Akσ,σ),

it immediately follows that

‖σ‖2Ak
= a(σ̃, σ̃) = ‖σ‖2L2(Γ) + |σ̃|2H1(Γ) ≤ (1 + C h−2

k ) ‖σ‖2L2(Γ) ≤ C h−2
k ‖σ‖2L2(Γ).

Here, C denotes a generic constant independent of meshsize. In other words,
this yields the inequality

λmax(Ak) ≤ Ch−2
k , (19)

which could also be shown using other methods.
We now begin proving the inequalities of the lemma, starting with the second

inequality in (16).

(Akσ,σ)Γ = a(σ̃, σ̃) = sup
µ∈Mk

|a(σ̃, µ̃)|2

a(µ̃, µ̃)
≤ C sup

µ∈Mk

|(Akσ, µ)Γ|2

C1‖µ̃‖2H1(Γ)

≤ C sup
µ∈Mk

|(Akσ, µ̃)Γ|2 + |(Akσ, µ− µ̃)Γ|2

‖µ̃‖2H1(Γ)

≤ C sup
µ∈Mk

|(Akσ, µ̃)Γ|2

‖µ̃‖2H1(Γ)

+
‖Akσ‖2L2(Γ)‖µ− µ̃‖2L2(Γ)

‖µ̃‖2H1(Γ)

≤ C sup
µ∈H1(Γ)

|(Akσ, µ)Γ|2

‖µ‖2H1(Γ)

+ C h2
k ‖Akσ‖2L2(Γ)

= C
(

‖Akσ‖2H−1(Γ) + h2
k ‖Akσ‖2L2(Γ)

)

. (20)

The inverse inequality

‖µ‖L2(Γ) ≤ Ch−1
k ‖µ‖H−1(Γ) for all µ ∈ Mk (21)

can be found in [4, Eq. (3.20)]. Using it in (20), we get the upper bound

(Akσ,σ)Γ ≤ C ‖Akσ‖2H−1(Γ) for all σ ∈ Mk (22)

or equivalently

(A−1
k µ, µ)Γ ≤ C ‖µ‖2H−1(Γ) for all µ ∈ Mk. (23)

This is the upper inequality stated in the lemma.
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It remains to prove the first inequality in (16). For this, we need a stability
result for the L2-orthogonal projection Πk : H1(Γ) → Mk, namely

(AkΠkθ,Πkθ) ≤ C ‖θ‖2H1(Γ). (24)

The result (24) follows once we prove that for all θ ∈ H1(Γ), there exists θk ∈
Mk, such that

‖θk‖Ak ≤ C ‖θ‖H1(Γ) (25)

‖θ − θk‖L2(Γ) ≤ C hk |θ|H1(Γ). (26)

Indeed, writing Πkθ = Πk(θ − θk) + θk,

‖Πkθ‖Ak ≤ ‖Πk(θ − θk)‖Ak + ‖θk‖Ak

≤ C h−1
k ‖Πk(θ − θk)‖L2(Γ) + ‖θk‖Ak by (19)

≤ C h−1
k ‖(θ − θk)‖L2(Γ) + C ‖θ‖H1(Γ) by (25)

≤ C ‖θ‖H1(Γ) by (26).

Therefore, let us now exhibit a θk satisfying (25) and (26).
Consider the θk defined in (13). By (15), we get (26). That θk also satis-

fies (25) is seen using the L2-orthogonal projectionQk into the space of continous
functions on Γ that are linear on each τki . It is well known that Qk is stable in
the H1(Γ)-norm [6]. Hence, using the standard approximation properties of the
projection Qkθ and the linear interpolant θ̃k of θ, we find

|θ̃k|H1(Γ) ≤ |θ̃k −Qkθ|H1(Γ) + |Qkθ|H1(Γ)

≤ C h−1
k ‖θ̃k −Qkθ‖L2(Γ) + |Qkθ|H1(Γ)

≤ Ch−1
k

(

‖θ̃k − θ‖L2(Γ) + ‖θ −Qkθ‖L2(Γ)

)

+ |Qkθ|H1(Γ)

≤ C ‖θ‖H1(Γ). (27)

Moreover, by the Sobolev inequality (14), we also have

‖θk‖2 =
∑

i

|θ(xi)|2‖φi‖2 ≤ ‖θ‖2H1(Γ)

(

∑

i

∫

τi

1

)

≤ C ‖θ‖2H1(Γ). (28)

Therefore, combining (27) and (28), we have

‖θk‖2Ak
= ‖θk‖2L2(Γ) + |θ̃k|2H1(Γ) ≤ C ‖θ‖2H1(Γ),

which proves (25).
To complete the proof of the first inequality in (16) of the lemma,

‖σ‖2H−1(Γ) = sup
θ∈H1(Γ)

(σ, θ)2

‖θ‖2H1(Γ)

= sup
θ∈H1(Γ)

(σ,Πkθ)2

‖θ‖2H1(Γ)

≤ C sup
θ∈H1(Γ)

(σ,Πkθ)2

(AkΠkθ,Πkθ)
= C (A−1

k σ,σ),

where we have used (24).
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2.2 Smoothers

Using the inner products from Section 2.1 we can define a simple Richardson
smoother suitable for multigrid algorithms (see for example [2]). The smoother
is given by

[Rkσ, θ]k =
1

λ̃k
(σ, θ)−1, (29)

where λ̃k is related to the Rayleigh-Ritz quotient involving the positive definite
sesquilinear form Λ(· , ·), namely

λk = sup
θ∈Mk

Λ(θ, θ)

[θ, θ]k
, (30)

as follows: We assume for our analysis that λ̃k is a number that satisfies

λk ≤ λ̃k ≤ Cλk (31)

for some mesh independent constant C.
Define the operator Λk as in (5) but with the sesquilinear form V(·, ·) re-

placed by Λ(·, ·). The eigenvalue λk is then a computable version of the largest
eigenvalue of the operator Λk with respect to the minus one inner product. In
practice, we could choose λ̃k = λk, or an approximation to λk computed by a
few iterations of the power method.

2.3 Matrix version

Now we give a readily implementable matrix version of the previously given
multigrid algorithm. Since Mk ⊆ Mk+1 we can find numbers ci,l such that

φki =
∑Nk+1

l=1 ci,l φ
k+1
l . These entries define the Nk × Nk+1 restriction matrix

Ck by [Ck]i,l = ci,l. This matrix and its transpose are used as intergrid transfer
operators. We further define the operator

fk : Mk −→ C
Nk , [fk(σ)]i = (σ , φki )−1. (32)

Algorithm 1 can then be translated into an approximation scheme for the matrix
version VJu = b of equation (6). Here, the vectors are given by b = fk(fJ )
and u = ek(σJ ) and the system matrix is VJ = [〈VJφJj ,φ

J
i 〉]i,j . This yields

a procedure MgJ (s, b) that outputs an approximation to the solution given an
input iterate s. To describe it we will also need a matrix of the operator Ak,
which we denote by Ak. Specifically Ak is the matrix satisfying ek(Akσ) =
Ak ek(σ). It is a circulant matrix with cyclically shifted rows of the form

Ak = Circulant
[

0 · · · 0, −(li li−)−1, 1 + l−2
i + (li li−)−1, −l−2

i , 0 · · · 0
]

.

Note that Ak is neither tridiagonal nor symmetric, but HkAk is symmetric, where
Hk is a diagonal matrix whose ith diagonal entry is meas(τki ). The translation
of Algorithm 1 into its matrix version is done via the identities of the following
lemma.

11



Lemma 2. The following identities hold:

fk (Vk g) = Vk ek(g), for all g ∈ Mk, (33)

fk−1(Qk−1 g) = Ck−1 fk(g) for all g ∈ Mk, (34)

ek(g) = Ctk−1ek−1(g) for all g ∈ Mk−1, (35)

ek(Rk g) = λ̃−1
k H−1

k Atk fk(g) for all g ∈ Mk, (36)

e1(V
−1
1 g) = V−1

1 f1(g) for all g ∈ M1. (37)

Proof. Let us prove (33):

[fk (Vk g)]i = (Vkg,φ
k
i )−1 = V(g,φki )

=
Nk∑

j=1

[ek(g)]jV(φkj ,φki ) =
Nk∑

j=1

[Vk]i,j [ek(g)]j

= [Vkek(g)]i.

Next, let us prove (34):

[fk−1(Qk−1 g)]i = (Qk−1g,φ
k−1
i )−1 = (g,φk−1

i )−1 = (g,
Nk∑

l=1

[Ck−1]i,lφ
k
l )−1

= [Ck−1fk(g)]i,

since Ck−1 is real. The proof of (35) is similar. To prove (36), observe that

1

λ̃k
[fk(g)]i ≡

1

λ̃k
(g,φki )−1 = [Rkg,φ

k
i ]k = [HkA

−1
k ek(Rkg)]i.

Multiplying both sides by the symmetric matrix AkH
−1
k , we obtain (36). Proofs

of the other identities are similar.
These identities enable us to state a matrix version of Algorithm 1. For

example, applying ek to the step (7) of Algorithm 1 and using (36) and using
Lemma 2, we have

ek(σ1) = ek(σ) + ek(Rk(f − Vkσ)) = ek(σ) + λ̃−1
k H−1

k Atk fk(f − Vkσ))

= ek(σ) + λ̃−1
k H−1

k Atk (fk(f)− Vkek(σ)).

Thus, the matrix version of this step is s1 = s+ λ̃−1
k H−1

k Atk (b− Vks) with s1 =
ek(σ1), s = ek(σ), and b = fk(f). Using also the other identities in (33)–(37),
we can similarly translate the entire algorithm. We then obtain the following
matrix version of the algorithm MgJ(s, b), which outputs an approximation for
the solution of the matrix equation VJu = b, given an input iterate s.

Algorithm 2. Let s and b be any given vectors in CNk . Define Mgk(s, b)
recursively as follows. Set Mg1(s, b) = V−1

1 b. If k > 1, define Mgk(u, b) as the
vector in CNk obtained recursively by:

s1 = s+ λ̃−1
k H−1

k Atk (b − Vks),

Mgk(s, b) = s1 + Ctk−1Mgk−1(0, Ck−1(b− Vks1)).

12



It is important to note that the inverse of Ak is not needed in the implemen-
tation. We only need to multiply by Atk. In the case of a uniform mesh with
mesh size hk the multiplication by the matrix H−1

k reduces to multiplication with
the constant 1/hk. Furthermore, it has been shown in [4] that

λk = O(1/hk). (38)

Motivated by this observation, we could replace the expression λ̃−1
k H−1

k in Al-
gorithm 2 by C, for some constant C (which depends on the geometry of the
domain). This would allow us to bypass the eigenvalue computation, which
would otherwise be inherent in the algorithm. The numerical experiments we
present later, however, explicitly include the expression λ̃−1

k H−1
k .

Note that a matrix preconditioner Bk for Vk is implicit in Algorithm 2 and is
defined by Bkb = Mgk(0, b). A theoretical study of the convergence rate of the
algorithm is presented in the next section.

3 Convergence Analysis

3.1 Preliminary Steps

Before we can give a detailed description of the convergence behavior of Al-
gorithm 1, we need to pave the way with some preliminary discussions. In
particular, we need the Galerkin projections Pk : H−1/2(Γ) −→ Mk satisfying

V(Pkσ, µ) = V(σ, µ) for all µ ∈ Mk. (39)

As we see next, such operators are well defined once the mesh size is sufficiently
small. The assumption on the wave number that κ2 is not an interior eigenvalue
of −∆ implies that for homogeneous right hand side the equation V σ = 0
only has the trivial solution σ = 0. It is then a standard theorem on compact
perturbations (see for example [23, Theorem 4.2.9]), that the discretized version
of equation (2) has a unique solution σk ∈ Mk if the corresponding meshsize
hk is sufficiently small. Furthermore, we know that the Galerkin solutions σk
converge quasi-optimally to the true solution σ, i.e.

‖σ − σk‖H−1/2(Γ) ≤ C min
vk∈Mk

‖σ − vk‖H−1/2(Γ).

Also, once the mesh size is sufficiently small, the Galerkin solutions depend
continuously on the data, i.e.,

‖σk‖H−1/2(Γ) ≤ C ‖f‖H1/2(Γ). (40)

As a consequence, we immediately have the following lemma which shows that
P1 is a well defined continuous operator once h1 is small enough (and so is Pk

for k > 1). In the lemma and elsewhere, we write ‖ · ‖Λ for the vector norm

Λ(· , ·)1/2. We will also use the same notation for the operator norm induced by
this vector norm.
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Lemma 3. There exists an H > 0 such that once the coarse mesh size h1 is
less than H, there is a unique Pkσ satisfying (39) for all k ≥ 1 and moreover,

‖Pkσ‖Λ ≤ C ‖σ‖Λ. (41)

Now let us introduce a few ingredients needed to analyze the multigrid al-
gorithm. A simple induction argument shows that Mgk(· , ·) as defined in Algo-
rithm 1 is linear as a mapping from Mk ×Mk into Mk. It is also consistent in
the sense that σk = Mgk(σk, Vkσk) holds for all σk ∈ Mk. The error reduction
operator of the scheme is given by

E = MgJ(· , 0), (42)

i.e., if ei denotes the error at step i, we have ei+1 = MgJ(e
i, 0). Furthermore, the

error reduction operator admits a product representation as shown in Lemma 4.
This representation will be essential in the convergence analysis of the V-cycle
scheme. Proofs of such results can be found in [2].

Lemma 4. Let Tk = RkVkPk for k ≥ 2 and set T1 = P1. For k ≥ 1 we then
define Eku = u−Mgk(0, VkPku) and set E0 = I, the identity operator. Then,

Ek = Ek−1(I − Tk), and (43)

E = (I − T1)(I − T2) · · · (I − TJ). (44)

The same representation holds for the error reduction operator Ẽ of the def-
inite problem. Analogous to (39), we can define P̃k as the orthogonal projection
into Mk with respect to the Λ(·, ·)-inner product. This is the Galerkin projec-
tion for the principal part of the differential operator. If we set T̃k = RkΛkP̃k,
we get

Ẽ = (I − T̃1) · · · (I − T̃J). (45)

This operator is proved to be a reducer in [4]. Specifically, in [4] the convergence
for the symmetric version of the multigrid algorithm applied to the positive
definite problem was shown. In fact, it was shown that the symmetric error
reduction operator Ẽs in this case is bounded away from 1 independently of the
number of levels of refinement. The symmetric version differs from Algorithm 1
by an additional post-smoothing step. However, it is well known (see, e.g., [5,
Remark 3.4]) that the analogous result holds for Algorithm 1 with just the
pre-smoothing, i.e., we have the following theorem.

Theorem 1. The error reduction operator Ẽ for Algorithm 1 applied to the
positive definite problem satisfies

‖Ẽ‖Λ ≤ δ̃ < 1, (46)

where δ̃ is independent of J .
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In order to analyze the algorithm for the indefinite Helmholtz case we look
at the difference between E and Ẽ. Let Zk = Tk − T̃k, and suppose for some
positive α we have

‖Zk‖Λ ≤ C1 h
α
k for k = 1, . . . , J. (47)

With this assumption, by well known arguments in an abstract multigrid set-
ting [2, 14], we have the following theorem.

Theorem 2. Let E satisfy (44) and Ẽ satisfy (45). Assume that (47) holds.
Then, there exists a positive constant C2 depending on C1, h1, and α above,
such that:

‖E‖Λ ≤ ||Ẽ||Λ + C2 h
α
1 . (48)

We know that ‖Ẽ‖Λ ≤ δ̃ < 1 by Theorem 1. Hence by virtue of Theorem 2,
to prove a convergence result for our multigrid application, we only need to verify
the hypotheses of Theorem 2, namely (47). This will be done in Subsection 3.2.

Before concluding this subsection, we need to establish one more ingredient
for the multigrid perturbation argument. It is well known that the difference
between the single layer potentials of the Helmholtz and the Laplace equations,
namelyD := V −Λ, is compact as a mapH−1/2(Γ) → H1/2(Γ). For our purposes
we need the following lemma.

Lemma 5. D is bounded as a map H−1/2(Γ) −→ H1(Γ).

Proof. In this proof, we use the explicit integral representation of the single
layer potentials as given in Section 1. The operator D = V − Λ generates the
sesquilinear form

D(µ,σ) = 〈Dµ,σ〉,

and is an integral operator whose kernel consists of the function

f(x, y) = g(|x− y|) where g(z) =
i

4
H(1)

0 (κ z) +
1

2π
ln(z).

The function g has the following asymptotic behavior as z approaches 0:

g(z) ∼ c1 +O(z2 log z) (49)

g′(z) ∼ c2(z log z) +O(z) (50)

g′′(z) ∼ c3 +O(log z), (51)

for some constants ci (depending on κ).
Let us now estimate the H1-norm of Dσ. Denote by ∂f the derivative of f

with respect to arc length along Γ. Then

‖Dσ‖2H1(Γ) = ‖Dσ‖2L2(Γ) + ‖∂(Dσ)‖2L2(Γ). (52)
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Let us start by bounding the first term on the right hand side. Letting Fx(y) ≡
f(x, y), we have

‖Dσ‖2L2(Γ) =

∫

Γ

∣
∣
∣
∣

∫

Γ
f(x, y)σ(y) dsy

∣
∣
∣
∣

2

dsx

≤
∫

Γ
‖Fx‖2H1/2(Γ)‖σ‖

2
H−1/2(Γ) dsx. (53)

By the trace theorem

‖Fx‖H1/2(Γ) ≤ C‖Fx‖H1(Br),

for some ball Br of sufficiently large radius r (so that Br contains Γ). The term
‖Fx‖H1(Br) is finite because

∇yFx = g′(|x− y|)
x− y

|x− y|
, (54)

is a square integrable function (due to (50) and the boundedness of (x−y)/|x−
y|).

By a change of variable (mapping x to 0), integrals of Fx can be converted
to integrals of F0 on transformed domains. Hence, by enlarging the transformed
integration region, we have

‖Fx‖H1(Br) ≤ ‖F0‖H1(B2r).

This shows that the first factor in the integrand of (53) admits a bound inde-
pendent of the integration variable x, so

‖Dσ‖2L2(Γ) ≤
∫

Γ
‖Fx‖2H1/2(Γ)‖σ‖

2
H−1/2(Γ) dsx

≤ meas(Γ)C ‖F0‖H1(B2r)‖σ‖
2
H−1/2(Γ)

≤ C ‖σ‖2H−1/2(Γ). (55)

We treat the second term in (52) similarly. Denote by tx the unit tangential
vector to Γ in the point x ∈ Γ, which is defined everywhere except on a set of
measure zero (the corners). Then,

‖∂Dσ‖2L2(Γ) =

∫

Γ

∣
∣
∣
∣

(

∇x

∫

Γ
f(x, y)σ(y) dsy

)

· tx
∣
∣
∣
∣

2

dsx

=

∫

Γ

∣
∣
∣
∣

∫

Γ
(∇xf(x, y)) · tx σ(y) dsy

∣
∣
∣
∣

2

dsx

≤
∫

Γ
‖Gx‖2H1/2(Γ)‖σ‖

2
H−1/2(Γ) dsx (56)

where
Gx(y) = tx ·∇xf(x, y) = −tx ·∇yFx.
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Note that by differentiating (54),

∇yGx = −g′′(|x− y|)
(x− y) · tx
|x− y|2

(x− y) − g′(|x− y|)∇y

(
(x − y) · tx
|x− y|

)

.

The term ∇y(x − y) · tx/|x − y| is O(1/|x − y|), while the multiplying factor
g′(|x− y|) is O(|x− y| log |x− y|) by (50). Hence the last term is O(log |x− y|).
The first term on the right hand side is also O(log |x − y|), because of (51).
Consequently, ∇yGx is locally square integrable on R2. Therefore, returning
to (56), we can complete the estimation using a trace inequality and bounding
‖Gx‖2H1/2(Γ)

independently of x as before. Thus

‖∂Dσ‖2L2(Γ) ≤ C‖σ‖2H−1/2(Γ). (57)

Using (57) and 55 in (52), the proof is finished.

3.2 Convergence

Now we give our main result on the convergence of the multigrid algorithm for
our application. The proof proceeds by verifying the hypotheses of Theorem 2.
For this, we need a regularity result. Consider the solution ε of the adjoint
problem

V(η, ε) = F (η) for all η ∈ H−1/2(Γ), (58)

for some linear functional F on H−1/2(Γ), or in other words F is in H1/2(Γ). If
F is more regular, then we expect the solution ε to be more regular.

To make this precise, note that (58) can be rewritten as

V(ε, η) = F (η),

where V(·, ·) is defined for smooth σ, µ by

V(σ, µ) =
∫

Γ

∫

Γ

i

4
H(1)

0 (κ|x− y|)σ(y)µ(x) dsy dsx.

This form extends continuously to H−1/2(Γ)×H−1/2(Γ) and the operator V ∗ :
H−1/2(Γ) *→ H1/2(Γ) defined by 〈V ∗σ, µ〉 = V(σ, µ) is continuous. It can be
written as

V ∗ = Λ+D∗

where D∗ is an integral operator analogously to D, but with an integral kernel
conjugate to that of D. The same type of arguments as in Lemma 5 show that

D∗ : H−1/2(Γ) *→ H1(Γ)

is continuous. Now, it is well known [23, Thm. 3.2.2] that for the positive
definite problem Λu = F , there is a regularity result:

‖u‖Hs(Γ) ≤ C‖F‖Hs+1(Γ) for 0 ≤ s < s0
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where s0 is a positive number depending only on the angles of Γ. Applying this
result with s = 0 to (58) rewritten as V ∗ε = F , or in other words, Λε = F−D∗ε,
we obtain that

‖ε‖L2(Γ) ≤ C(‖F‖H1(Γ) + ‖D∗ε‖H1(Γ))

≤ C(‖F‖H1(Γ) + ‖ε‖H−1/2(Γ))

by the above mentioned continuity of D∗. Now by the unique solvability of (58),
we also have the stability estimate ‖ε‖H−1/2(Γ) ≤ C‖F‖H1/2(Γ). This, together

with the continuous imbedding of H1(Γ) into H1/2(Γ) shows that

‖ε‖L2(Γ) ≤ C‖F‖H1(Γ). (59)

We will use this regularity result in the proof of the next theorem.

Theorem 3. There is an H > 0 and a 0 < δ < 1 such that whenever the coarse
grid meshsize h1 is less than H, the error reduction operator E of Algorithm 1
applied to the indefinite acoustic single layer equation satisfies

‖E‖Λ ≤ δ. (60)

Here, δ is independent of the refinement level J .

Proof. This proof proceeds by verifying (47) and applying Theorem 2. To verify
(47), we begin with the following:

|D(σ, µ)| = |〈Dσ, µ〉| ≤ ‖Dσ‖H1(Γ)‖µ‖H−1(Γ)

≤ C ‖σ‖H−1/2(Γ)‖µ‖H−1(Γ). (61)

This is a consequence of Lemma 5. We shall use (61) several times below.
We first prove (47) for k > 1. Define D̃k = VkPk −ΛkP̃k. Then 〈D̃kσ, µk〉 =

D(σ, µk) for all σ in H−1/2(Γ) and all µk in Mk.

Zk = Tk − T̃k = Rk

(

VkPk − ΛkP̃k

)

= RkD̃k.

For any σ ∈ MJ and k > 1, we have

‖Zkσ‖2Λ = Λ(RkD̃kσ, RkD̃kσ) ≤ λ̃k [RkD̃kσ, RkD̃kσ]k by (31)

= λ̃k
1

λ̃k
(D̃kσ, RkD̃kσ)−1 = D(σ, RkD̃kσ) by (29)

≤ C ‖σ‖H−1/2(Γ)‖RkD̃kσ‖H−1(Γ) by (61).

The last factor can be estimated by

‖RkD̃kσ‖2H−1(Γ) = (RkD̃kσ, RkD̃kσ)−1 ≤ C [RkD̃kσ, RkD̃kσ]k

= C
1

λ̃k
(D̃kσ, RkD̃kσ)−1 ≤ C

1

λ̃k
‖D̃kσ‖H−1(Γ)‖RkD̃kσ‖H−1(Γ),
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and also noting that

‖D̃kσ‖2−1 = (D̃kσ, D̃kσ)−1 =
(

(VkPk − ΛkP̃k)σ, D̃kσ
)

−1

= D(σ, D̃kσ) ≤ C ‖σ‖H−1/2(Γ)‖D̃kσ‖H−1(Γ).

In combination, these show

‖Zkσ‖Λ = ‖RkD̃kσ‖Λ ≤ C λ̃−1/2
k ‖σ‖H−1/2(Γ) ≤ C h1/2

k ‖σ‖H−1/2(Γ).

The last inequality follows from (31) and (38). Hence, for k ≥ 2,

‖Zk‖ = sup
σ∈Mk

‖Zkσ‖Λ
‖σ‖Λ

≤ C h1/2
k ,

so we have verified (47) with α = 1/2.
To prove (47) on the coarsest level (k = 1), we will use (59) and the following

duality argument along the lines of a similar argument in [11]. Let σ in Mk.
Define

F (η) = (η, (I − P1)σ)−1.

This is a continuous linear functional on H−1/2(Γ) and hence there is a unique
solution ε to (58) with this F . Hence,

‖(I − P1)σ‖2H−1(Γ) = F ((I − P1)σ)

= V((I − P1)σ, ε)

= V((I − P1)σ, ε− ε1)

≤ C‖(I − P1)σ‖H−1/2(Γ)‖ε− ε1‖H−1/2(Γ) (62)

for any ε1 in M1. We choose an ε1 with optimal approximation properties.
Note that since

‖F‖H1(Γ) = ‖(I − P1)σ‖H−1(Γ),

the regularity result (59) holds for ε. Therefore,

‖ε− ε1‖H−1/2(Γ) ≤ Ch1/2
1 ‖ε‖L2(Γ) ≤ Ch1/2

1 ‖F‖H1(Γ)

= Ch1/2
1 ‖(I − P1)σ‖H−1(Γ).

Using this in (62), we conclude that

‖(I − P1)σ‖H−1(Γ) ≤ Ch1/2
1 ‖(I − P1)σ‖H−1/2(Γ). (63)

We use (63) to estimate the norm of Z1 as follows.

Λ(Z1σ, µ1) = Λ((P1 − P̃1)σ , µ1) = D ((I − P1)σ , µ1)

≤ C ‖(I − P1)σ‖H−1(Γ) ‖µ1‖Λ by (61)

≤ C h1/2
1 ‖(I − P1)σ‖H−1/2(Γ) ‖µ1‖Λ by (63)

≤ C h1/2
1 ‖σ‖H−1/2(Γ) ‖µ1‖Λ by Lemma 3.
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This proves (47) for the k = 1 case as well.
Hence, we can apply Theorem 2 with α = 1/2 to get

‖E‖Λ ≤ ‖Ẽ‖Λ + C2h
1/2
1 ≤ δ̃ + C2h

1/2
1 ,

where δ̃ is a positive number less than one given by Theorem 1. It is now clear
that when h1 is small enough, the result follows.

4 Numerical Experiments

4.1 Effect of weaker inner product on eigenfunctions

The performance of the multigrid algorithm described in Section 2 depends
crucially on the spectral behavior of the positive definite operator Λ. For a
discretized version of this integral operator the eigenfunctions corresponding to
small magnitude eigenvalues are highly oscillatory, while those eigenfunctions
corresponding to the large end of the spectrum are non-oscillatory. Standard
multigrid approaches are successful for operator equations with the opposite
spectral behavior and the use of the weaker inner products from Section 2.1
effectively transforms the single layer problem into this setting. In this section
we present the details of two examples showing the undesirable behaviour of the
discrete eigenfunctions of the stiffness matrix associated with Λ while working in
the (natural) H−1/2(Γ) inner product, and the effect of working with the weaker
inner product instead. We demonstrate the effectiveness of this approach for
two geometries, a (smooth) circle and a Lipschitz domain (square).

Recall again that if the boundary Γ is discretized by means of a partition
x1, x2, . . . , xN , xN+1 = x1, we denote by φi and li the characteristic function and
respectively the length of the element τi = conv(xi, xi+1). The span of the {φi}
is denoted byMk. In the case of the square, the boundary discretization consists
of straight line segments; whereas in the case of the circle our discretization
consists of arcs of equal angle. The basis coefficients of an element σ ∈ Mk

with respect to the {φi} are given in terms of the vector e(σ) defined in (10).
For a given discretization we are interested in the spectrum of the N × N

stiffness matrix corresponding to the single layer operator for the Laplacian with
entries [Λ]i,j = 〈Λφj , φi〉. In Figure 1 the left-hand plots show the eigenfunction
of Λ for a circular domain, corresponding to the smallest (top left) and largest
(bottom left) eigenvalues respectively. These figures illustrate the phenomenon
described above.

In Section 2.1 we introduced a discrete inner product on the discretization
space and proved that its associated norm is equivalent to the natural H−1(Γ)
norm. As before we denote by A the finite difference matrix corresponding to
−u′′ + u on Γ with periodic boundary conditions, and by H the diagonal matrix
with ith diagonal entry li. According to the definition of the discrete inner
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product in (12) we find for σ, θ ∈ Mk:

[σ, θ]k = 〈
∑

i

[e(A−1σ)]i φi ,
∑

j

[e(θ)]j φj〉Γ =
∑

i

[e(A−1σ)]i ([e(θ)]i) li

= [e(θ)]∗ H A−1 [e(σ)],

and also,

Λ(θ, θ) =
∑

i,j

[e(θ)]i ([e(θ)]j) Λ(φi,φj)
︸ ︷︷ ︸

Λj,i

= [e(θ)]∗ Λ [e(θ)].

The smoothing procedure, defined in Section 2.2, depends on the largest eigen-
value of the following Rayleigh quotient with respect to the weaker inner prod-
uct.

λ = sup
θ∈Mk

Λ(θ, θ)

[θ, θ]k
= sup

θ∈Mk

e(θ)∗ Λ e(θ)

e(θ)∗ H A−1 e(θ)
= sup

y∈RN

y∗ A∗Λ A y

y∗A∗ H y
.

The two matrices A∗ Λ A and A∗ H are Hermitian. Therefore, λ is the largest
generalized eigenvalue of the problem:

A∗ Λ A y = λ A∗ H y, or equivalently, Λ A y = λ H y. (64)

The corresponding eigenfunction is given in terms of its basis coefficients e(θ) =
A y. We note that the L2 norm of θ is easy to compute.

‖θ‖2L2 =
∑

i,j

[e(θ)]i[e(θ)]j 〈φi,φj〉 = e(θ)∗ H e(θ) = y∗ A∗ H A y.

This allows us to normalize the coefficient vector e(θ) such that θ has norm one
in L2(Γ). We are now ready to examine the spectral behavior in the smoothing
operation in terms of the generalized eigenvalue problem (64).

In the case where Γ is a circle centered at the origin, the entries of the matrix
Λ are particularly simple to compute. We require the radius to be bounded by
R < 1/2 in order to guarantee the positive definiteness of the integral operator
Λ and we discretize the circle with arcs Γi, i = 1..N of equal angle.

[Λ]ij = 〈ΛΦj ,Φi〉 = −
1

2π

∫

Γi

∫

Γj

log(|x − y|)dsxdsy

= −
1

2π

1

2

∫

Γi

∫

Γj

log(2R2 (1− cos(θi − θj)))R
2 dθjdθi

= −
R2

4π

∫

Γi

∫

Γj

log(2R2) dθjdθi −
R2

4π

∫

Γi

∫

Γj

log (1− cos(θi − θj)) dθjdθi

︸ ︷︷ ︸

Iji

= −
R2

4π
log(2R2)

(
2π

N

)2

−
R2

4π
Iji = −

R2

4π

{

log(2R2)

(
2π

N

)2

+ Iji

}

(65)
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Hence, we have to evaluate the weakly singular integrals

Iji =

∫

Γi

∫

Γj

log (1− cos(θi − θj))) dθjdθi

for all possible choices of Γi and Γj . Due to symmetry of the circle, the single
layer matrix is a symmetric Toeplitz matrix and hence it is sufficient to compute
its first row. For |i− j| > 1, the integrand in Iij is smooth, and we use Gaussian
quadrature to compute the entries. In the two remaining cases when either
|i − j| = 1 mod N or i = j, we separate the singularity of the integrand
according to

log(1 − cos(t)) = log(
t2

2
−

t4

4!
+

t6

6!
−

t8

8!
+ . . .)

= log(t2)
︸ ︷︷ ︸

fs

− log(2) + log(1−
2t2

4!
+

2t4

6!
+ . . .)

︸ ︷︷ ︸

fa

(66)

= fs(t) + fa(t).

We then integrate the singular term fs(t) exactly and use Gaussian quadrature
to compute the integral over the nonsingular function fa(t).

Figure 1 shows the effect of the smoothing operator. The eigenfunction of
the generalized eigenvalue problem ΛAy = λHy corresponding to the smallest
eigenvalue (top right) is smooth (and represents a function of period 2π on
the circle. The eigenfunction of the largest eigenvalue (bottom right) is highly
oscillatory. All eigenfunctions shown correspond to N = 300 elements on the
circle.

As a second test case we consider a square with side length 1/2. We compute
the eigenfunctions corresponding to the four smallest and the four largest eigen-
values for both the stiffness matrix Λ and the generalized eigenvalue problem
ΛAy = λHy. Figures 2 and 3 illustrate the results for a uniform discretization
of the boundary courve Γ with meshsize h = 1/50. Again, we observe that the
eigenfunctions of the generalized eigenvalue problem display the reversed (and
sought-after) smoothness behavior. The same behavior has been observed in
cases of quasi-uniform meshes.

4.2 Multigrid convergence results

In this section we present numerical convergence results for the multigrid al-
gorithm described in Section 2 to underline its effective use. Various results
from a different set of experiments have already been reported in [13]. Recall
that we want to solve the exterior Helmholtz problem with prescribed Dirich-
let data on the boundary of a scattering object. The fundamental solution

i/4 H(1)
0 (κ‖x− x∗‖) solves the Helmholtz equation away from its singularity x∗

and satisfies the correct growth condition at infinity. If we place the singularity
into the interior of the scattering domain, we can use this so called point source
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Figure 1: Eigenfunction behavior, circular curve
Eigenfunctions for a circular curve with N = 300. They correspond to
the smallest e-val of Λ (top left), the smallest e-val of ΛAy = λHy (top right),
the largest e-val of Λ (bottom left) and the largest e-val of ΛAy = λHy (bottom
right).
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Figure 2: Eigenfunction behavior, square boundary curve, small eigenvalues
Eigenfunction behavior for a square boundary curve Γ and a uniform mesh with
mesh size h = 1/50. Eigenfunctions correspond to the four smallest
e-vals of Λ (left) and the four smallest generalized e-vals of ΛAy = λHy (right).
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Figure 3: Eigenfunction behavior, square boundary curve, large eigenvalues
Eigenfunction behavior for a square boundary curve Γ and a uniform mesh with
mesh size h = 1/50. Eigenfunctions correspond to the four largest
e-vals of Λ (left) and the four largest generalized e-vals of ΛAy = λHy (right).

problem as a convenient test case, for which the exact solution is known. We
also present results for the scattering of an incident plane wave by polygonal
shaped obstacles. In all the tables below, H is the coarsest mesh size, and h is
the finest mesh.

The fast implementation of the matrix-vector multiplications in the algo-
rithm was not subject of our study and hence we do not report on the over-
all CPU time used by the algorithm. We anticipate that the CPU time will
be competitive once those matrix operations are implemented using matrix-
compression techniques such as H-matrices.

4.2.1 Effect of domain shape on performance

We first present results for point-source scattering from 4 different objects: a
square, a rectangle (sides of ratio 1:4), an equilateral triangle and a thin wedge.
The thin wedge is described in terms of the xy-coordinates of its three corner
points, namely (0, 0), (1/3,

√
3/3) and (0, 1/15). This amount to an angle of

π/3 between the horizontal x-axis and the lower edge of the wedge. In each
of these examples, the diameter of the object is less than 1, which guarantees
the positive definiteness of the potential single layer operator in the sense of
(4). In each of Tables 1-4, the proposed multigrid scheme is used as a linear
solver. We report the number of iteration numbers required to reach a given
relative residual norm. The point source is located inside the domain, so the
true solution is known in each case.
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Table 1: Linear multigrid iteration counts with κ = 2.1, point-source inside
square,10−6 relative residual norm

H Degrees
1/2 1/4 1/8 1/16 1/32 of freedom

1/4 17 - - - - 32
1/8 16 15 - - - 64
1/16 15 15 15 - - 128

h 1/32 15 15 15 15 - 256
1/64 16 16 15 15 15 512
1/128 16 16 16 16 16 1024
1/256 16 16 16 16 16 2048

Table 2: Linear multigrid iteration counts with κ = 2.1, point-source inside
rectangle,10−6 relative residual norm

H Degrees
1/2 1/4 1/8 1/16 1/32 of freedom

1/4 15 - - - - 72
1/8 17 15 - - - 144
1/16 18 18 16 - - 288

h 1/32 18 19 18 16 - 576
1/64 19 19 19 18 16 1152
1/128 19 19 19 19 19 2304

Table 3: Linear multigrid iteration counts with κ = 2.1, point-source inside
triangle,10−6 relative residual norm

H Degr. of
1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 freedom

1/2 21 - - - - - - - 6
1/4 33 30 - - - - - - 12
1/8 37 37 36 - - - - - 24
1/16 28 28 27 27 - - - - 48

h 1/32 24 24 24 23 23 - - - 96
1/64 23 23 23 22 22 22 - - 192
1/128 22 22 22 22 22 21 22 - 384
1/256 21 21 21 21 21 21 21 21 768
1/512 20 20 20 21 21 21 20 20 1536
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Table 4: Linear multigrid iteration counts with κ = 2π, thin wedge, pre-
smoothing only, 10−4 relative residual norm

H Degr. of
1/4 1/8 1/16 1/32 1/64 freedom

1/16 31 21 - - - 352
h 1/32 18 13 9 - - 704

1/64 17 11 8 5 - 1408
1/128 17 11 7 4 3 2816

Table 5: Linear multigrid iteration counts with κ = 10.2, point source inside
triangle, pre-smoothing only, 10−6 relative residual norm

H Degr. of
1/4 1/8 1/16 1/32 1/64 1/128 freedom

1/8 38 - - - - 24
1/16 36 33 - - - - 48

h 1/32 32 30 28 - - - 96
1/64 27 26 25 24 - - 192
1/128 24 23 22 22 22 - 384
1/256 22 21 21 21 21 22 768
1/512 21 21 21 21 21 21 1536

4.2.2 Multigrid as linear solver/ preconditioner

In this section, we provide results about the use of the proposed multigrid
scheme as a linear solver (Tables ??), and as a preconditioner for GMRES
(used without restart, Tables ??). We present iteration counts in each case
with just presmoothing, or with both pre-and post-smoothing. We use the
same equilateral triangle as the domain as in the previous section. Again, a
point-source is placed inside the domain, so we can compare with the exact
solution. In contrast to the previous section, here we present results for wave
number κ = 10.2. The tolerances in relative residual norm are 10−6, 10−9 for the
linear solver and preconditioned GMRES, respectively. For both, multigrid as
a linear solver and preconditioned GMRES, the iteration numbers stay almost
constant with increasing degress of freedom, whereas the iteration numbers of
GMRES grow considerably. Convergence for the algorithm with an additional
postsmoothing step follows from our convergence result by standard arguments
in multigrid theory.

4.2.3 Effect of frequency on performance

Here we present the effect of increasing κ on the number of multigrid iterations
taken to achieve a given relative residual error. We place a point source inside
a square whose diameter is less than 1. We expect the coarsest mesh required
should satisfy the constraint κH ≈ constant. At least in this example, the

26



Table 6: Linear multigrid iteration counts with κ = 10.2,point source inside
triangle, pre- and post-smoothing, 10−6 relative residual norm

H Degr. of
1/4 1/8 1/16 1/32 1/64 1/128 freedom

1/8 19 - - - - 24
1/16 20 17 - - - - 48

h 1/32 18 16 14 - - - 96
1/64 17 15 14 13 - - 192
1/128 15 14 13 13 13 - 384
1/256 15 13 13 13 13 13 768
1/512 16 14 13 13 13 13 1536

Table 7: GMRES iteration counts, κ = 10.2,point source inside triangle, trian-
gle, pre-smoothing only, 10−9 relative residual norm

H GMRES
1/2 1/4 1/8 1/16 without preconditioning

1/8 17 16 - - 16
1/16 23 21 20 - 24

h 1/32 23 22 22 19 31
1/64 24 23 23 22 37
1/128 25 25 24 23 44
1/256 25 27 24 23 52
1/512 26 28 24 24 63
1/1024 27 28 26 26 74

Table 8: GMRES iteration counts, κ = 10.2, triangle, uniform grid, θ = 1, pre
and post-smoothing, 10−9 relative residual norm

H GMRES
1/2 1/4 1/8 1/16 without preconditioning

1/8 18 15 - - 16
1/16 20 17 17 - 242

h 1/32 20 18 18 17 31
1/64 21 19 19 18 37
1/128 21 21 19 19 44
1/256 22 22 21 20 52
1/512 22 24 21 21 63
1/1024 23 24 21 21 74
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Table 9: Linear multigrid iteration counts with κ = 2.1,point source inside
square, pre- and post-smoothing, 10−6 relative residual norm

H Degr. of
1/4 1/8 1/16 1/32 1/64 1/128 1/256 freedom

h 1/32 12 12 12 - - - - 256
1/64 13 13 12 12 - - - 512
1/128 13 13 13 13 12 - - 1024
1/256 13 13 13 13 13 13 - 2048
1/512 14 14 14 14 14 13 13 4096

Table 10: Linear multigrid iteration counts with κ = 10.2,point source inside
square, pre- and post-smoothing, 10−6 relative residual norm. The method did
not converge for H=1/4.

H Degr. of
1/4 1/8 1/16 1/32 1/64 1/128 1/256 freedom

h 1/32 * 15 13 - - - - 256
1/64 * 14 12 11 - - - 512
1/128 * 14 12 11 11 - - 1024
1/256 * 13 12 11 11 11 - 2048
1/512 * 12 12 12 12 12 12 4096

method performs well even though this constraint was not strictly satisfied. For
example, in Table 9, κH = 0.252, while in Table 11, κH = 1.575,

The numerical experiments show that the multigrid algorithm presented
and analyzed in this paper is an efficient tool to solve the first kind single layer
equation when used as a linear solver or as a preconditioning procedure for other
solvers such as GMRES.

Table 11: Linear multigrid iteration counts with κ = 50.4,point source inside
square, pre- and post-smoothing, 10−6 relative residual norm. The method did
not converge for H> 1/32.

H Degr. of
1/4 1/8 1/16 1/32 1/64 1/128 1/256 freedom

h 1/32 * * * * - - - 256
1/64 * * * * - - - 512
1/128 * * * * 13 - - 1024
1/256 * * * * 13 11 - 2048
1/512 * * * * 12 11 11 4096
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Figure 4: Plane-wave scattering from wedge: linear MG is used to compute the
unknown density, and numerical quadrature is used to reconstruct the scattered
field.
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