
Portland State University Portland State University

PDXScholar PDXScholar

Systems Science Faculty Publications and
Presentations Systems Science

8-2004

Enhancements to Crisp Possibilistic Enhancements to Crisp Possibilistic

Reconstructability Analysis Reconstructability Analysis

Anas Al-Rabadi
Portland State University

Martin Zwick
Portland State University, zwick@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/sysc_fac

 Part of the Logic and Foundations Commons, Multivariate Analysis Commons, and the Systems

Architecture Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Al-Rabadi, Anas and Zwick, Martin, "Enhancements to Crisp Possibilistic Reconstructability Analysis"
(2004). Systems Science Faculty Publications and Presentations. 40.
https://pdxscholar.library.pdx.edu/sysc_fac/40

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Systems Science
Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can
make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/sysc_fac
https://pdxscholar.library.pdx.edu/sysc_fac
https://pdxscholar.library.pdx.edu/sysc
https://pdxscholar.library.pdx.edu/sysc_fac?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/182?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/824?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/sysc_fac/40
https://pdxscholar.library.pdx.edu/sysc_fac/40?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

1

Enhancements to Crisp Possibilistic Reconstructability
Analysis

Anas N. Al-Rabadi(1) and Martin Zwick(2)

(1) ECE Department (2) Systems Science Ph.D. Program @Portland State University
[alrabadi@ece.pdx.edu] (1), [zwick@sysc.pdx.edu] (2)

KEYWORDS

Reconstructability Analysis, Ashenhurst-Curtis Decomposition, Boolean Functions, NPN-Classification,

Log-Functionality Complexity Measure.

ABSTRACT

Modified Reconstructibility Analysis (MRA), a novel decomposition within the framework of set-theoretic

(crisp possibilistic) Reconstructibility Analysis, is presented. It is shown that in some cases while 3-

variable NPN-classified Boolean functions are not decomposable using Conventional Reconstructibility

Analysis (CRA), they are decomposable using Modified Reconstructibility Analysis (MRA). Also, it is

shown that whenever a decomposition of 3-variable NPN-classified Boolean functions exists in both MRA

and CRA, MRA yields simpler or equal complexity decompositions. A comparison of the corresponding

complexities for Ashenhurst-Curtis decompositions, and Modified Reconstructibility Analysis (MRA) is

also presented. While both AC and MRA decompose some but not all NPN-classes, MRA decomposes

more classes, and consequently more Boolean functions. MRA for many-valued functions is also presented,

and algorithms using two different methods (intersection and union) are given. A many-valued case is

presented where CRA fails to decompose but MRA decomposes.

1 INTRODUCTION

 One general methodology for understanding a complex system is to decompose it into less complex sub-

systems. Decomposition is used in many situations; for example, in logic synthesis (e.g., Al-Rabadi 2002;

Ashenhurst 1953; Ashenhurst 1956; Ashenhurst 1959; Curtis 1963; Curtis 1962; Files 2000; Grygiel 2000;

Muroga 1979) where the number of inputs to the gates is high and cannot be mapped to a standard library

and in machine learning where data is noisy or incomplete (Files 2000, Grygiel 2000). The primary criteria

for evaluating the quality of the decomposition process are the amount of information (or the loss of

information, i.e., error) existing in the decomposed system and the complexity of this decomposed system.

The objective is obvious: decompose the complex system (data) into the least-complex most-informative

2

(least-error) model. Simplicity is desired since, according to the Occam Razor principle, the simpler the

model is, the more powerful it is for generalization. Least error is desired since one wants to retain as much

information as possible in the decomposed system, when compared to the original data. Decomposition

processes can be generally dichotomized into lossless (no error) versus lossy decompositions. In this paper,

a comparison of two types of lossless decompositions are considered: the disjoint Ashenhurst-Curtis

decomposition, and set-theoretic (crisp possibilistic) Modified Reconstructibility Analysis (MRA)

decomposition.

 The remainder of this paper is organized as follows: Section 2 presents necessary methodological

background. CRA, MRA, and AC, complexity results are presented in Section 3. Many-valued MRA is

presented in Section 4. Conclusions and future work are discussed in Section 5.

2 BINARY LOGIC FUNCTIONS CLASSIFICATION, COMPLEXITY MEASURES, AND
DECOMPOSITIONS

 This Section introduces the basic background of the NPN-classification of three-variable 2-valued logic

functions, Ashenhurst-Curtis (AC), and Reconstructibility Analysis (RA) decomposition methods, and the

complexity measures utilized here, to compare the efficiencies of AC and RA decompositions.

2.1 NPN-Classification of Binary Logic Functions

 There exist many classification methods to cluster logic functions into families of functions (Muroga

1979). Two important operations that produce equivalence classes of logic functions are negation and

permutation (Muroga 1979). Accordingly, the following classification types result:

1. P-Equivalence class: a family of identical functions obtained by the operation of permutation of

variables.

2. NP-Equivalence class: a family of identical functions obtained by the operations of negation or

permutation of one or more variables.

3. NPN-Equivalence class: a family of identical functions obtained by the operations of negation or

permutation of one or more variables, and also negation of function.

 NPN-Equivalence classification will be used in this work. Figure 1 lists 3-variable Boolean functions, for

the non-degenerate classes (i.e., the classes depending on all three variables).

3

Class Representative Function Number of Functions

1 F = x1x2 + x2x3 + x1x3 8
2 F = x1⊕ x2 ⊕ x3 2
3 F = x1+ x2 + x3 16
4 F = x1(x2 + x3) 48
5 F = x1x2 x3 + x1

’x2
 ‘x3

’
 8

6 F = x1
’x2 x3 + x1x2

 ‘+ x1x3
’ 24

7 F = x1(x2 x3 + x2
’x3

 ‘) 24
8 F = x1x2 + x2x3 + x1

’x3
 24

9 F = x1
’x2 x3 + x1x2

 ‘x3 + x1 x2x3
’ 16

10 F = x1x2
’
 x3

‘+ x2
 x3 48

Figure 1. NPN-Equivalence classes for non-degenerate Boolean functions of three binary variables
(Muroga 1979) for a total of 218 Boolean functions, where (,) means negation of a variable, ⊕ is Boolean
exclusive Sum-Of-Product, + is Boolean OR, and product is Boolean AND.

Example 1. The following steps produce the sets of all possible Boolean functions that are included in

class #1 in Figure 1 for the representative function F0 = x1x2 + x2x3 + x1x3.

(1) Negation of variables (N): {F1 = x1
’x2 + x2x3 + x1

’x3, F2 = x1x2
’ + x2

’x3 + x1x3, F3 = x1x2
 + x2x3

’ + x1x3
’,

F4 = x1
’x2

’ + x2
’x3 + x1

’x3, F5 = x1
’x2 + x2x3

’ + x1
’x3

’, F6 = x1x2
’ + x2

’x3
’ + x1x3

’, F7 = x1
’x2

’ + x2
’x3

’ + x1
’x3

’}

(2) Permutation of variables (P): does not produce a different function

(3) Negation of functions (N): {F9 = x1
’x2

’ + x2
’x3

’ + x1
’x3

’}

F7 and F9 are the same, which gives 8 distinct functions.

2.2 Complexity Measures

 Decomposability means complexity reduction. Many complexity measures exist for the purpose of

evaluating the efficiency of the decomposition of complex systems into simpler sub-systems. Such

complexity measures include: the Decomposed Function Cardinality (DFC) complexity measure (Abu-

Mostafa 1988), and the Log-Functionality (LF) complexity measure (Grygiel 2000). In DFC, complexity is

a count of the total number of possible functions realizable by the decomposed structure, while LF counts

the number of non-redundant functions realizable by the decomposed structure. The complexity of the

decomposed structures is always less or equal to the complexity of the original Look-Up-Table (LUT) that

represents the mapping of the non-decomposed structure. That is, if a decomposed structure has higher

complexity than the original structure, then the original structure is said to be non-decomposable. Although

the DFC measure is easier and more familiar, LF is a better measure because it more properly deals with

non-disjoint systems (Grygiel 2000). Consequently, the LF measure will be used in this paper. The DFC

4

and LF complexity measures are illustrated using Figure 2, which exemplifies AC decomposition, as

follows:

Figure 2. Generic non-disjoint decomposition.

 In Figure 2, for the first block , the total number of possible functions for three 2-valued input variables

is 223 = 256. Also, for the second block, the total number of possible functions is similarly 256. The total

possible number of functions for the whole structure is equal to 256⋅256 = 65,536. The DFC measure is

defined as:

CDFC = ∑
j

jDFC (2)

where Oj is the number of outputs to block j, Ij is the number of inputs to the same block, Equation (1) is the

complexity for block j, and Equation (2) is the complexity for the total decomposed structure. For instance,

the DFC for Figure 2 is: CDFC = 1⋅23 + 1⋅23 = 16. It was shown in (Grygiel 2000) that, for Figure 2, the Log-

Functionality complexity measure (CLF) for Boolean functions can be expressed as follows:

)(log2 FFL CC =

 (3)
where:

)(3F
X

F C pC ′=
 ,),(),

1

0
(1

3

1
1

1

2

3

2

ip
p

p
Sip

p

i
pPC Y

X

X
Y

Y

Y

p

p

F

X

X

−−∑
−

=
=′

)!(

!
),(

kn

n
knP

−
= , () nik

k

i i

ki
k

knS)(
0

)1(
!

1
),(−∑

=
−= ,

)!(!

!

iki

k

i

k

−
=





,

}{},,{},,,{ 12134123211 xXXXxxXxxxX =∩=== , Y1 = g, Y2 = F

∏=
∈ 1

||1
Xx

iX
i

xp , ∏=
∈ 2

||2
Xx

iX
i

xp , ∏=
∈ 3

||3
Xx

iX
i

xp , ∏=
∈ 1

1 ||
Yy

iY
i

yp , ∏=
∈ 2

2 ||
Yy

iY
i

yp

where X1 is the set of input variables to the first block, X2 is the set of input variables to the second block,

X3 is the set of overlapping variables between sets X1 and X2, PXi is the product of cardinalities of the input

variables in set Xi, Y1 is the output of first block, Y2 is the output of second block, and PYi is the product of

cardinalities of output variables in set Yi. For example, the LF for Figure 2 is:

 x2

x1

x

F
g

x3

)1(2 jI
jj ODFC ⋅=

5

}{},,{},,,{ 12134123211 xXXXxxXxxxX =∩===

,2,2

,2,422,8222

21

321

==
==⋅==⋅⋅=∴

YY

XXX

pp

ppp

88)2,4()2,
1

0
22(=−−∑

=
=′ iSi

i
PCF

.92.12)744,7(log744,7 2 ==⇒=∴ LFF CC

 Figure 2 shows a four input function, where the variable sets for the first and second blocks are not

disjoint. In this paper we are concerned only with 3-input functions, and in this case the AC decomposition

results in a structure shown in Figure 3. Note that the variable sets for the two blocks with outputs g and F

are necessarily disjoint, because if the two blocks shared one input variable, F would have three inputs and

the decomposed structure would be more complex than the original non-decomposed 3-input function.

Example 2.

Figure 3. A decomposed structure.

The Log-Functionality complexity measure of the structure in Figure 3 is obtained as follows:

Each sub-block in Figure 3 has a total of 162
22 = possible Boolean functions. Figure 4 illustrates all of

the possible 16 two-variable Boolean functions per sub-block in Figure 3.

 f(1) f(2) f(3) f(4)

 f(5) f(6) f(7) f(8)

 f(9) f(10) f(11) f(12)

 f(13) f(14) f(15) f(16)

Figure 4. Maps of all 16 possible Boolean functions of two variables.

x1

x

x3

F
g

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

0 0
0 0

1 1
1 1

1 1
1 0

1 1
0 1

1 0
1 1

0 1
1 1

1 1
0 0

1 0
1 0

0 0
1 1

0 1
0 1

1 0
0 1

0 1
1 0

0 0
0 1

0 0
1 0

0 1
0 0

1 0
0 0

 F =0 F=1 F=(ab)’ F=a→b

 F=b→a F= a+b F= a’ F= b’

 F=a F=b F=eq(a,b) F=a⊕ b

 F= ab F= (a→b)’ F= (b→a)’ F= (a+b)’

a a a a

a a a a

a

a

a

a

a

a

a

a

b b b b

b b b

b

b b

b b

b

b

b

6

By allowing g and F in Figure 3 to take on all possible maps from Figure 4, one obtains the following count

of total non-repeated (non-redundant) 3-variable functions, as follows: CF = 88 ⇒ CLF = 6.5. This answer

agrees with the result of Equation (3) (Grygiel 2000).

Example 3. RA produces decompositions for 3-variable functions that resemble the structures shown in

Figure 5.

 (a) (b)
 Figure 5. Some RA decomposed structures.

The Log-Functionality complexity measure for the structures in Figure 5, is obtained as follows: Figure 6

represents a tree that generates all possible functions for the structures 5a and 5b, respectively (Al-Rabadi

2002; Al-Rabadi et al. 2002). (Superscripts of functions denote the specific edge between two nodes in the

tree).

Figure 6. All possible combinations of sub-functions f1

(i), f2

(j), and f3

(k) in Figures 5a and 5b, respectively.
Log-functionality complexity measure represents the count of all possible non-redundant functions, that is
all different F(i,j) for Figure 5a, and all different F(i,j,k) for Figure 5b. Where two nodes of the tree are
superposed (*), they are counted only once. At every node, there are 16 possible 2-variable Boolean
functions.

Utilizing this methodology of removing redundant functions, one obtains the following results for Log-

Functionality: for Figure 5a, the total number of irredundant sub-functions is CF = 100 ⇒ ∴ CLF = log2

(100) = 6.6, and for Figure 5b, the total number of irredundant sub-functions is CF = 152 ⇒ ∴ CLF = log2

(152) = 7.2. (In later tables, CLF values of 4.3 and 6.5 are also reported, for functions F = x1+ x2 + x3 and F

= x1(x2 + x3), respectively.) The following example illustrates the use of Figure 6 to eliminate the

… … … …

… … … … … …

…
F(i,j) = f1

(i) f2
(j)

F(i,j,k) = f1
(i) f2

(j)f3
(k)

Level 1

Level 2

Level 3

 f1
(16) f1

(1) f1
(2)

…
 f1

(15)

 f2
(1) f2

(16) f2
(1) f2

(16)

 f3
(1) f3

(16)

 f2
(16)

 f3
(16)

 f2
(1)

 f3
(1) *

*

*

x1

x

x

 ∧ F

 f1

 f2

 f3

 ∧

x1

x2

x3

 f1

 f2

F

7

redundant terms in the process of computing the log-functionality complexity measure.

Example 4. Utilizing Figure 5a, if one choose the following maps from Figure 4: f1 = f(13) and f2 = f(6) then

the function F(13,6) = f(13)f(6) will produce the same result as F(13,11) = f(13)f(11) since (x1⋅x2)(x1+x2) =

(x1⋅x2)(x1≡x2), and consequently the two paths will lead to the same node in Level 2 in Figure 6. Also, we

can demonstrate the same calculation for Figure 5b as follows: let f1 = f(8) (b), f2 = f(2), and

f3 = f(8)(c) then the function F(8,2,8) = f(8)(b)f(2)f(8)(c) will produce the same result as the function

F(5,3,7) = f(5) (b,c)f(3) (a,b)f(7)(c) where {f1 = f(5) (b,c), f2 = f(3) (a,b), f3 = f(7)(c)} and consequently the two paths

will lead to the same node in Level 3 in Figure 6.

2.3 Ashenhurst-Curtis Decomposition

 Ashenhurst-Curtis (AC) decomposition (Al-Rabadi 2002; Ashenhurst 1953, Ashenhurst 1956,

Ashenhurst 1959, Curtis 1962, Curtis 1963, Files 2000, Grygiel 2000) is one of the major techniques for the

decomposition of functions commonly used in the field of logic synthesis. The main idea of AC

decomposition is to decompose logic functions into simpler logic blocks using the compression of the

number of cofactors in the corresponding representation. This compression is achieved through exploiting

the logical compatibility (i.e., redundancy) of cofactors (i.e., column multiplicity). As a result of AC

decomposition (as a result of column compression), intermediate constructs (latent variables) are created,

and learning is achieved as a result of these variables (Files 2000, Grygiel 2000). A general algorithm of

the AC decomposition utilizing Karnaugh map (K-map) representation (Muroga 1979), for instance, is as

follows:

(1) Partition the input set of variables into free set and bound set, and label all the different columns.

(2) Decompose the bound set and create a new K-map for the decomposed bound set (utilizing minimum

graph coloring, maximum clique, or some other algorithm to combine similar columns into a single

column). Each cell in the new K-map represents a labeled column in the original K-map.

(3) Encode the labels in the cells of the new K-map using minimum number of intermediate binary

variables. These intermediate variables are shown as g and h in Example 5 (Figure 7). Express the

intermediate variables as functions of the bound set variables.

(4) Produce the decomposed structure, i.e., a K-map specifying the function (F) in terms of the intermediate

variables and the free set variables.

8

In general, steps (1) and (3) determine the optimality of the AC decomposition (i.e., whether the resulting

decomposed blocks are of minimal complexity or not).

Example 5. For the following logic function F = x2x3 + x1x3 + x1x2, let the sub-set of variables {x2, x3} be the

Bound Set, and the sub-set of variables {x1} be the Free Set. The following is the disjoint AC

decomposition of F (where {–} means don’t care):

 (1) (2) (3) (4)

Figure 7. AC decomposition. Steps (1)-(4) are discussed in the text.

 In Example 5, the first block of the decomposed structure has two outputs (intermediate variables g and

h). The DFC measure of the decomposed structure is = 2⋅22 + 1⋅23 = 16, while the DFC of the original LUT

is = 1⋅23 = 8. This shows the inadequacy of DFC as a measure of complexity because the decomposition

produces a more complex structure than the non-decomposed LUT. By contrast, LF for the decomposed

structure in Figure 7 is 8, which does not exceed the complexity of the LUT. Thus, for AC decomposition

of Boolean functions with 3-variables, if the first block of the decomposed structure has two outputs, then

the decomposed structure is at least as complex as the LUT, and consequently, for the purpose of this

paper, the decomposition is rejected. For other NPN functions AC decomposition produces only one output

in the first block. These decompositions are not rejected, and are listed in Figure 12.

2.4 Reconstructability Analysis: Conventional RA versus Modified RA for the Binary Case

 Reconstructability Analysis (RA) is a decomposition technique for qualitative data (Klir 1996; Klir

1985; Klir and Wierman 1998; Krippendorff 1986; Zwick 2001). RA data is typically either a set theoretic

relation or mapping or it is a probability or frequency distribution. The former case is the domain of “set-

theoretic” RA or more precisely crisp possibilistic RA. The latter is the domain of “information-theoretic”

x1

x2x3

 00 01 11 10
0 0 0 1 0

1 0 1 1 1

A B C B
F

 0 1

0 A B
1 B C

x2
x3

 0 1

0 0,0 0,1
1 0,1 1,0

x2
x3

 g,h
 g = x2x3
 h = x2⊕ x3

x1

gh

 00 01 11 10

0 0 0 - 1

1 0 1 - 1

F

 F
 g x2

x1

x3

 h

 A = 0,0 B = 0,1 C = 1,0

9

RA, or more precisely probabilistic RA. The RA framework can apply to other types of data (e.g., fuzzy

data) via generalized information theory (Klir and Wierman 1998).

 In this paper, we are concerned only with crisp possibilistic RA. RA decomposition can also be lossless

or lossy. In this paper, we are concerned only with lossless decomposition, i.e., with decomposition which

produces no error. This paper introduces an innovation in set-theoretic RA, which we call “modified” RA

(or MRA) (Al-Rabadi 2001; Al-Rabadi 2002; Al-Rabadi et al. 2002) as opposed to the conventional set-

theoretic RA (or CRA). This innovation is illustrated by Example 6.

Example 6. For the logic function: F = x1x2 + x1x3

Figure 8 illustrates decomposed structures using both CRA and MRA decompositions, respectively. In

Figure 8, while CRA decomposes for all values of Boolean functions, MRA decomposes for an arbitrarily

chosen value of the Boolean functions (e.g., for value “1”). The completely specified Boolean function can

be retrieved if one knows the MRA decomposition for the Boolean function being equal either to “1” or

to “0” (Al-Rabadi 2001; Al-Rabadi 2002; Al-Rabadi et al. 2002).

Figure 8. Conventional versus Modified RA decompositions for the Boolean function: F = x1x2 + x1x3.

 CRA decomposition (Zwick 1995; Zwick and Shu 1995) is illustrated in the upper half of Figure 8,

while MRA decomposition is illustrated in the lower half of the figure. MRA decomposition yields much

simpler logic circuit than the corresponding CRA decomposition, while retaining complete information

about the decomposed logic function. For CRA in Figure 8, the calculated function for model =

Original Function Simplest CRA Model Simplest CRA Circuit Model
 x1 x2 x3 F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Simplest 1-MRA Model Simplest 1-MRA Circuit Model

 0 0 0
 0 1 0
 1 0 -
 1 1 1

 x1 x2 f1

α β γ

 0 0 0
 0 1 0
 1 0 -
 1 1 1

 x1 x3 f2
 0 0 0
 0 1 -
 1 0 -
 1 1 -

 x2 x3 f3
 f1

 f2

x2
x3

x1

∩ F

α

β

 γ
 f3

X1X2f1:X1X3f2: X2X3f3
LF = 7.2

 x1 f2
’ x2 x3 f3

’

 0 0
 1 1

 0 0 0
 0 1 1
 1 0 1
 1 1 1

δ ’ γ ‘ f2
’

 f3
‘

 x3

 x2

 x1 ∧ F δ ‘

γ ’

x1f2’:x2x3f3’
LF = 6.5

10

x1x2f1:x1x3f2:x2x3f3 (i.e., α:β:γ) is defined as follows: x1x2x3Fmodel ≡ (x1x2f1 ⊗ x3) ∩ (x1x3f2 ⊗ x2) ∩ (x2x3f3 ⊗ x1).

For lossless CRA decomposition, this equals the original function x1x2x3F that is shown at the top left of

Figure 8. (For lossy CRA x1x2x3Fmodel would not be equivalent to x1x2x3F). The CRA model can be

interpreted by the circuit shown at the top right of Figure 8, where different projections of F are labeled f1,

f2, and f3. MRA simplifies the decomposition problem by focusing, in the original function F, on the three

shaded tuples (“cubes”) for which F=1. The procedure used to obtain the 1-MRA in Figure 8 is as follows

(Al-Rabadi 2001; Al-Rabadi 2002; Al-Rabadi et al. 2002):

(1) Decompose the Boolean function of value “1” into the simplest lossless CRA decomposition.

(2) For a particular model, get the projections.

(3) Assign value “1” (for 1-MRA) to the tuples in the resulted projection. Add all tuples that are missing in

the projections which will have the functional value “0”.

(4) Perform the AND operation for 1-MRA in the output block to obtain the total functionality.

Steps (2-)-(4) are illstrated as follows:

The output function in step (4) is the logical AND of the two subfunctions, i.e., F = f2

’(x1)∧ f3
’(x2,x3). Set-

theoretically, this can be represented as F = (x1 ⊗ (1∪ x1
’) ⊗ 0) ∩ (x2x3 ⊗ (1∪ (x2x3)

’) ⊗ 0). From Figure 8,

one observes that MRA possess two main advantages over CRA for the decomposition of Boolean

functions (which will be further demonstrated in Figure 10): (1) The resulting decomposed structures from

MRA are less complex that the corresponding decomposed structures from CRA, and (2) The resulting

decomposed structures from MRA are directly realizable in Boolean-based circuits, while the resulting

decomposed structures from CRA are not realizable in Boolean-based circuits, but in ternary-valued logic

circuits, and thus the resulting logic circuits from MRA are directly implementable using the current

technologies. The idea of 0-MRA versus 1-MRA is illustrated in Example 7.

Example 7. For the logic function: F = x1x2 + x1x3

Figure 9 illustrates the simplest model using both 1-MRA and 0-MRA.

x1 x2 x3
1 0 1
 1 0
 1 1

x1 x2 x3 F
1 0 1 1
1 1 0 1
1 1 1 1

x1 f2’ x2 x3 f3’
0 0 0 0 0
1 1 0 1 1
 1 0 1
 1 1 1

11

In this example, The completely specified Boolean function can be retrieved if one knows the MRA

decomposition for the Boolean function being equal either to “1” (that is 1-MRA) or to “0” (that is 0-

MRA). The procedure used to obtain the 0-MRA in Figure 9 is as follows (Al-Rabadi 2002):

(1) Decompose the Boolean function of value “0” into the simplest lossless CRA decomposition.

(2) For a particular model, get the projections.

(3) Assign value “0” (for 0-MRA) to the tuples in the resulted projection. Add all tuples that are missing in

the projections which will have the functional value “1”.

(4) Perform the OR operation for 0-MRA in the output block to obtain the total functionality.

Steps (2-)-(4) are illustrated as follows:

The output function in step (4) is the logical OR of the two sub-functions as follows:

F = f1
” (x1,x2) ∨ f2

”(x1,x3).

 Figure 9. 0-MRA versus 1-MRA decompositions for the Boolean function F = x1x2 + x1x3.

 As can be observed from Figure 9, 1-MRA produces less complex decomposed structure than 0-MRA.

The 0-MRA (LF = 6.6) decomposition should be compared to the 1-MRA decomposition (LF = 6.5) which

is shown in Figure 8.

3 RESULTS: COMPARING MRA TO OTHER DECOMPOSITIONS

 The following Sections compare the complexities of the decomposed structures using MRA with

complexities of the decomposed structures using CRA (Section 3.1) and AC (Section 3.2).

x1 x2 x3 F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0

x1 x2 x1 x3
0 0 0 0
0 1 0 1
1 0 1 0

x1 x2 f1

” x1 x3 f2

”
0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 1 1 1

 Simplest 0-MRA Model Simplest 0-MRA Circuit Model

 ∨
x2

x1
x3

 f1
”

 f2
”

F
α”

β”

 x1 x2 f1

 0 0 0
 0 1 0
 1 0 0
 1 1 1

 α ” β ”

 “ x1 x3 f2
”

 0 0 0
 0 1 0
 1 0 0
 1 1 1 x1x2f1

”:x1x3f2
”

LF = 6.6

12

3.1 Complexity of MRA versus CRA Decompositions

 Figure 10 compares MRA and CRA decompositions of all NPN-classes of 3-variable Boolean functions.

Figure 10. Conventional RA (CRA) versus Modified RA (MRA) for the decomposition of all NPN-classes
of 3-variable Boolean functions (Compare the right-most two columns), where in the second column from
left “0” means 0-MRA, “1” means 1-MRA, and * means 0-MRA or 1-MRA.

 NPN-Representative MRA Simplest Modified RA model Simplest Conventional RA model C CLF CLF

 Function (0-MRA or 1-MRA) (LUT)(CRA) (MRA)
 x1 x2 f1

0 0 0
0 1 1
1 0 1
1 1 1

 x2 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

 x1 x3 f3

0 0 0
0 1 1
1 0 1
1 1 1

non-decomposable

 x2 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

 x1 x2 f1

0 0 1
0 1 0
1 0 0
1 1 1

 x1 x3 f2

0 0 1
0 1 0
1 0 0
1 1 1

non-decomposable

 x2 x3 f1

0 0 1
0 1 0
1 0 0
1 1 1

 x1 f2

0 0

1 1

 x1 x2 f1

0 0 1
0 1 1
1 0 0
1 1 1

 x1 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

non-decomposable

 x1 x3 f1

0 0 0
0 1 1
1 0 1
1 1 1

 x2 x3 f2

0 0 1
0 1 0
1 0 0
1 1 1

F = x1x2 + x2x3 + x1x3 1

 F = x1⊕ x2 ⊕ x3 *

 F = x1+ x2 + x3 0

 F = x1(x2 + x3) 1

 F = x1x2 x3 + x1
’x2

 ‘x3
’

 1

 F = x1
’x2 x3 + x1x2

 ‘+ x1x3
‘
 *

 F = x1(x2 x3 + x2
’x3

 ‘) 1

 F = x1x2 + x2x3 + x1
’x3 1

 F = x1
’x2 x3 + x1x2

 ‘x3 + *
 x1 x2x3

’

 F = x1x2
’
 x3

‘+ x2
 x3 1

 8 7.2 7.2

 8 8 6.6

 8 6.6 6.6

 8 8 8

 8 8 6.6

 8 8 8

 8 7.2 6.5

 8 8 6.5

Class 1 (8)

Class 2 (2)

Class 3 (16)

Class 4 (48)

Class 5 (8)

Class 6 (24)

Class 7 (24)

Class 8 (24)

Class 9 (16)

Class 10 (48)

 x1 x2 f1

0 0 0
0 1 -
1 0 -
1 1 1

 x2 x3 f2

0 0 0
0 1 -
1 0 -
1 1 1

 x1 x3 f3

0 0 0
0 1 -
1 0 -
1 1 1

non-decomposable

non-decomposable

non-decomposable

 x1 x2 f1

0 0 -
0 1 -
1 0 0
1 1 1

 x1 x3 f2

0 0 0
0 1 1
1 0 -
1 1 -

non-decomposable

 x1 x2 f1

0 0 0
0 1 0
1 0 -
1 1 1

 x2 x3 f2

0 0 0
0 1 0
1 0 -
1 1 1

 x1 x3 f3

0 0 0
0 1 -
1 0 -
1 1 -

non-decomposable

non-decomposable

non-decomposable

 8 8 4.3

 8 8 8

 x1 f1

 0 0
 1 1

 x1 f1

0 0
1 1

 x2 f2

0 0
1 1

 x3 f3

 0 0
 1 1

13

 Figure 10 shows that in five NPN classes (classes 1, 2, 6, 8, 9) totaling 74 functions MRA and CRA give

equivalent complexity decompositions, but in the remaining five classes (classes 3, 4, 5, 7, 10) totaling 144

functions MRA is superior in complexity reduction. This is summarized in Figure 11.

Figure 11. Comparison of the Log-Functionality complexity measure between modified RA (MRA) and
conventional RA (CRA) of 3-variable NPN-classified Boolean functions.

3.2 Complexity of MRA verus AC Decompositions

 Utilizing the methods described above, one obtains the following results in Figure 12 for the

decomposition of 3-variable NPN-classified Boolean functions (Figure 1) using MRA and AC

decompositions.

C LF(CRA)

C LF(MRA)

 4 5 6 7 8

 5

6

 class 1 (8) •

•
class 4 (48)

class 8 (24)

 class 7 (24)

7

 8 •
 classes 2,6,9 (42)

•

•
 class 5,10 (56) •

 4

class 3 (16)

•

14

results in Tabl 4 for the decomposition of the 3-variable NPN-classified Boolean functions (in Table 1)
using lossless modified RA (MRA) decomposition and the disjoint AC decomposition, respectively.

Figure 12. AC versus MRA for the decomposition of all NPN-classes of 3-variable Boolean functions.
(Compare the right-most two columns.) Note that all AC decompositions have the same structure, while
MRA decompositions have four different circuit topologies.

NPN-Representative Simplest Modified RA model Simplest AC circuit DFC Cdata CLF CLF

Function (0-MRA or 1-MRA) (MRA) (AC)
 x1 x2 f1

0 0 0
0 1 1
1 0 1
1 1 1

 x2 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

 x1 x3 f3

0 0 0
0 1 1
1 0 1
1 1 1

non-decomposable

 x2 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

 x1 x2 f1

0 0 1
0 1 0
1 0 0
1 1 1

 x1 x3 f2

0 0 1
0 1 0
1 0 0
1 1 1

non-decomposable

 x2 x3 f1

0 0 1
0 1 0
1 0 0
1 1 1

 x1 f2

0 0

1 1

 x1 x2 f1

0 0 1
0 1 1
1 0 0
1 1 1

 x1 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

non-decomposable

 x1 x3 f1

0 0 0
0 1 1
1 0 1
1 1 1

 x2 x3 f2

0 0 1
0 1 0
1 0 0
1 1 1

F = x1x2 + x2x3 + x1x3

 F = x1⊕ x2 ⊕ x3

 F = x1+ x2 + x3

 F = x1(x2 + x3)

 F = x1x2 x3 + x1
’x2

 ‘x3
’

 F = x1
’x2 x3 + x1x2

 ‘+ x1x3
’

 F = x1(x2 x3 + x2
’x3

 ‘)

 F = x1x2 + x2x3 + x1
’x3

 F = x1
’x2 x3 + x1x2

 ‘x3 + x1 x2x3
’

 F = x1x2
’
 x3

‘+ x2
 x3

x2

x3

x1

F
g

 g = x2 ⊕ x3, F= x1⊕ g

x2

x3

x1

F
g

 g = x2 + x3, F= x1+ g

x2

x3

x1

F
g

 g = x2 + x3, F= x1 g

x2

x3

x1

F
g

 g = x2 x3, F= x1 ⊕ g

x2

x3

x1

F
g

 g = x2 ⊕ x3, F= x1g’

 20 8 7.2 8

 20 8 6.6 8

 20 8 6.6 8

 32 8 8 8

 16 8 6.6 8

 8 8 8 6.5

 8 8 4.3 6.5

 12 8 6.5 6.5

 24 8 8 6.5

 20 8 6.5 6.5

Simplest Modified
 RA circuit

Class 1 (8)

Class 2 (2)

Class 3 (16)

Class 4 (48)

Class 5 (8)

Class 6 (24)

Class 7 (24)

Class 8 (24)

Class 9 (16)

Class 10 (48)

x1

x2

x3

 ∧ F

 f1

 f2

 f3

-

 ∧

x1

 x2

x3

 f1

 f2

F

 ∧

x2

x1

x3

 f1

 f2

F

 ∧

x2

x1

x3

 f1

 f2

F

 ∧

x1

x3

x2

 f1

 f2

F

-

-

F ∧

x2

x3
 f1

x1

(SOP) (LUT)

 x1 f1

 0 0
 1 1

x1

x2

x3 f3

 ∨ F

 f1

 f2

 x1 f1

0 0

1 1

 x2 f2

0 0

1 1

 x3 f3

0 0

1 1

non-decomposable

non-decomposable

non-decomposable

non-decomposable

non-decomposable

15

 Figure 12 shows that in three NPN classes (4, 7, 9) totaling 88 functions MRA and AC decompositions

give equivalent complexity decompositions. In two remaining classes (2, 6), totaling 26 functions, AC

decomposition is superior, but in five classes (1, 3, 5, 8, 10), totaling 104 functions, MRA is superior. This

is summarized in Figure 13.

 (a) (b)
Figure 13. Comparison of the Log-Functionality complexity measure between CRA versus AC
decompositions (a), and MRA versus AC decompositions (b), of 3-variable NPN-classified Boolean
functions.

 We can also summarize these results, by comparing decomposability versus non-decomposability for the

various approaches as shown in Figure 14.

 (a) (b) (c)
Figure 14. Comparison of the Decomposability (D) versus Non-Decomposability (ND) for (a) AC versus
MRA , (b) CRA versus AC, and (c) CRA versus MRA, respectively. The number of classes are indicated,
and in parantheses also the number of functions.

 Fom Figure 14, one concludes that for NPN-classified 3-variable Boolean functions, MRA is superior to

AC (88 versus 26), AC is superior to CRA (66 versus 32), and MRA is superior to CRA (96 versus 0).

ND

D

 ND D ND D ND D

ND

D

ND

D

MRA MRA

AC

AC

CRA CRA

1 4

2 3

3 4

0 3

3

1

4

2

(9: 16) (1,5,8,10: 88)

(2,6: 26) (3,4,7: 88)

(2,6,9: 42)

(1,4,8: 80)

(3,5,7,10: 96)

 (0)

(5,9,10: 72)

 (1,8: 32) (4: 48)

 (2,3,6,7: 66)

CLF(MRA)

CLF(AC)

 4 6 8

 4

 6

 8

 .
 Classes 5,8,10 (80)

 Classes 4,7 (72)

 .

 Class 1 (8) .

Classes 2,6 (26) Class 9 (16) .

 .
 .

 Class 3 (16)

CLF(CRA)

CLF(AC)

 4 6 8

 4

 6

 8

 .
 Classes 5,9,10 (72)

 Classes 2,3,6,7 (66)
 Class 4 (48) .

 Class 1 (8)

 .
 Class 8 (24) .

 .

16

4 MANY-VALUED MRA

 This section presents MRA for many-valued functions and relations.

4.1 General Approach

 Data are in general many-valued. Consequently, if MRA can decompose relations between many-valued

variables it can have practical applications in machine learning and data mining. Many-valued MRA (Al-

Rabadi 2001; Al-Rabadi 2002; Al-Rabadi and Zwick 2002) can be implemented with two equivalent

algorithms: intersection-based and union-based. Both algorithms begin with the same two steps: (1)

partition the many-valued truth table into sub-tables, each contain only single function value (e.g., T = T0 ∪

T1 ∪ T2 for the corresponding output values O0, O1, and O2 respectively), and (2) perform CRA on all sub-

tables and obtain every Mj decomposition of Tj. Figure 15 illustrates the general pre-processing procedure

for the two many-valued MRA algorithms, which will be explained in more detail below.

 Original 3-valued table
 0
 1
 2

 Step (1): Separate one-valued tables

 0 1 2

 Step (2): CRA decompositions of all one-valued tables

 Step (3): Application of MRA algorithm

 Intersection Union
 Algorithm Algorithm

 Figure 15. Steps for many-valued MRA.

 For an “n”-valued completely specified function one needs (n-1) values to define the function. We thus

do all n decompositions and use for our MRA model the (n-1) simplest of these. For example, obtain the

simplest lossless MRA decomposition for value “0” of the function (denoted as the 0-MRA

decomposition), for value “1” (1-MRA decomposition), and for value “2” (2-MRA decomposition). By

selecting the simplest two models from these 0-MRA, 1-MRA, and 2-MRA decompositions, one can

generate the complete function.

 In the intersection method, first the CRA decompositions (Mj) are expanded to include the full set of

variable and function values, and these “expanded” decompositions are then intersected to yield the original

table.

17

 In the union method the reconstructed function (T*) is the union of all the sub-table decompositions,

�
1

0

* −

=
⊗=

n

j
OMT jj , where ⊗ is the set-theoretic Cartesian product. The union procedure can also be done

with (n-1) decompositions.

4.2 Complete Examples

 The following are two examples which illustrate many-valued Modified Reconstructability Analysis of

3-valued functions. In the first example MRA can decompose the function for only two values, and one has

no choice but to use both in the MRA model. In the second example, the function is decomposable for all

three of its values, and the two simplest decompositions are chosen to define the model.

 In discussing the second example, we show that this approach is generalizable to set-theoretic relations,

in addition to mappings.

Example 8. We will generate the MRA decomposition for the ternary function specified by the following

ternary map:

x1x2 x3 0 1 2

00 0 0 0
01 1 1 0
02 1 1 1
10 0 0 2
11 0 0 2
12 1 1 1
20 0 2 0
21 1 1 0
22 2 2 0

 F

The following is the intersection algorithm for many-valued MRA for the ternary function in Example 8.

Step 1: decompose the ternary chart of the function into three separate tables each for a single function

value. This will produce the following three sub-tables.

18

 D0 D1 D2

Step 2: Perform CRA for each sub-table.

Step 2a: The simplest error-free 0-MRA decomposition is the original “0”-subtable itself since it is not

decomposable.

Step 2b: 1-MRA decomposition of D1 is as follows:

 Table 1 Table 2
 X1 X2 : X2X3

 0 1 1 0
 0 2 1 1
 1 2 2 0
 2 1 2 1
 2 2
 D11 D12

Step 2c: The 2-MRA decomposition of D2 is as follows:

 Table 3 Table 4
 X1 X3 : X2X3

 1 2 0 2
 2 1 1 2
 2 0 0 1
 2 0
 2 1
 D21 D22

THE INTERSECTION ALGORITHM

Step 3.1: Select the two simplest error-free decomposed models; these are 1-MRA and 2-MRA

decompositions. MRA thus gives the decomposition model of D11:D12:D21:D22 from which the original

function can be reconstructed as follows.

Value “0” Value “1” Value “2”

102
112
201
220
221

000
001
002
012
100
101
110
111
200
202
212
222

010
011
020
021
022
120
121
122
210
211

19

Step 3.2: Note that, for Tables 1 and 2, the MRA decomposition is for the value “1” of the logic function.

Therefore, the existence of the tuples in the decomposed model implies that the function has value “1” for

those tuples, and the non-existence of the tuples in the decomposed model implies that the function does

not have value “1” but “0” or “2” for the non-appearing tuples. This is shown in Tables 1’ and 2’,

respectively. Similarly, for Tables 3 and 4, for the value “2”. The existence of the tuples in the decomposed

model implies that the function has value “2” for those tuples, and the non-existence of the tuples in the

decomposed model implies that the function does not have value “2” but “0” or “1” for the non-appearing

tuples. This is shown in Tables 3’ and 4’, respectively.

Table 1’ Table 2’ Table 3’ Table 4’
X1 X2 F1 : X2 X3 F2 X1 X3 F3 : X2 X3 F4
0 0 0,2 0 0 0,2 0 0 0,1 0 0 0,1
0 1 1,0,2 0 1 0,2 0 1 0,1 0 1 2,0,1
0 2 1,0,2 0 2 0,2 0 2 0,1 0 2 2,0,1
1 0 0,2 1 0 1,0,2 1 0 0,1 1 0 0,1
1 1 0,2 1 1 1,0,2 1 1 0,1 1 1 0,1
1 2 1,0,2 1 2 0,2 1 2 2,0,1 1 2 2,0,1
2 0 0,2 2 0 1,0,2 2 0 2,0,1 2 0 2,0,1
2 1 1,0,2 2 1 1,0,2 2 1 2,0,1 2 1 2,0,1
2 2 0,2 2 2 1,0,2 2 2 0,1 2 2 0,1

 In Tables 1’ and 2’ (i.e., the decomposition for value “1” of the function), the existence of value “1” (of

sub-relations F1 and F2) means that the value “1” appeared in the original non-decomposed function for the

corresponding tuples that appear in each table, but does not imply that the values “0” or “2” (of sub-

relations F1 and F2) did not exist in the original non-decomposed function for the same tuples. Therefore

“0” and “2” are added to “1” as allowed values. In the remaining tuples, however, only “0” and “2” are

allowed since the value “1” did not occur. Similarly, in Tables 3’ and 4’, the existence of the value “2” (of

sub-relations F3 and F4) means that the value “2” appeared in the original non-decomposed function for the

corresponding tuples that appear in each table, but does not imply that values “0” or “1” did not exist in the

original non-decomposed function for the same tuples. Therefore “0” and “1” are added to “2” as allowed

values. In the remaining tuples, however, only “0” and “1” are allowed since the value “2” did not occur.

Set-theoretically, obtaining tables 1’, 2’, 3’, and 4’ from tables 1, 2, 3, and 4 is described as follows:

Table 1’: (D11⊗ (0,1,2))∪ (D11′⊗ (0,2))
Table 2’: (D12⊗ (0,1,2))∪ (D12′⊗ (0,2))
Table 3’: (D21⊗ (0,1,2))∪ (D21′⊗ (0,1))
Table 4’: (D22⊗ (0,1,2))∪ (D22′⊗ (0,1))

where ′ here means complement of a set.

20

Step 3.3: Tables 1’, 2’, 3’, and 4’ are used to obtain the block diagram in Figure 16, where the following

set-theoretic Equations govern the outputs of the levels in the circuit shown in the figure:

F = F5 ∩ F6
F5 = F1 ∩ F2
F6 = F3 ∩ F4

where F1 is given by Table 1’, F2 by Table 2’, F3 by Table 3’, and F4 by Table 4’, respectively.

 The intermediate sub-functions, F5 and F6 are shown in the following maps, respectively.

x1 x2x3 00 01 02 10 11 12 20 21 22

0 0,2 0,2 0,2 1 1 0,2 1 1 1
1 0,2 0,2 0,2 0,2 0,2 0,2 1 1 1
2 0,2 0,2 0,2 1 1 0,2 0,2 0,2 0,2

 F5 = F1 ∩ F2

x1 x2x3 00 01 02 10 11 12 20 21 22

0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
1 0,1 0,1 2 0,1 0,1 2 0,1 0,1 0,1
2 0,1 2 0,1 0,1 0,1 0,1 2 2 0,1

 F6 = F3 ∩ F4
 Note that in Figure 16 the intersection blocks in the second level and the intersection block at the third

(output) level, are general and do not depend on the function being decomposed. Only the tables at the first

level depend upon this function.

x1

x2

x3

x1

x3

x2

∩

∩

∩

 Table 1’

 Table 2’

 Table 3’

 Table 4’

F1

F2

F3

F4

F5

F6

F

Figure 16. The decomposed structure resulting from the many-valued MRA decomposition.

21

THE UNION ALGORITHM

Steps 1 and 2 are the same as in the intersection algorithm.

Step 3.1: Using the decomposition model D11:D12:D21:D22 obtain D1 and D2 by standard CRA as

follows:

D1 = (D11⊗ x3)∩(D12⊗ x1)
D2 = (D21⊗ x2)∩(D22⊗ x1)
D0 = (D1∪ D2)′

where D1 is the decomposition for function value “1”, D2 for function value “2”, and x1, x2, and x3 ∈

{0,1,2}.

Step 3.2: Perform the set-theoretic operations to obtain the total function from the decomposed sub-

functions.

x1x2x3F = (D1⊗ 1)∪ (D2⊗ 2)∪ ((D1∪ D2)′⊗ (1∪ 2)′)
 = (D1⊗ 1)∪ (D2⊗ 2)∪ ((D1∪ D2)′⊗ 0)

Alternatively, one can use all three decompositions:

x1x2x3F = (D0⊗ 0)∪ (D1⊗ 1)∪ (D2⊗ 2)

 The function value of (x1,x2,x3) is determined by the block diagram of Figure 17, where G performs the

following operation:

F = 0 if (x1x2x3) ∈ D0
F = 1 if (x1x2x3) ∈ D1
F = 2 if (x1x2x3) ∈ D2

 Figure 17. Block diagram for the union algorithm of MRA of Example 8.

 Note that the logic function in Example 8 is non-decomposable using CRA but decomposable using

MRA. We now consider an example where CRA does decompose, and also where MRA decomposes for

all three values.

Example 9. Let us generate the MRA decomposition for the ternary function specified by the following

ternary map:

x1

x2

x3

 G F

22

x1x2 x3 0 1 2

00 0 0 0
01 1 1 1
02 1 1 1
10 0 0 2
11 0 0 2
12 1 1 1
20 0 2 0
21 1 1 1
22 2 2 0

Utilizing the intersection-based algorithm, one obtains the following results for MRA for the ternary

function in Example 9.

Step 1: decompose the ternary chart of the function into three separate tables each for a single function

value. This will produce the following three sub-tables.

 Value “0” Value “1” Value “2”

 D0 D1 D2

Step 2: Perform CRA for each sub-table.

Step 2a: The 0-MRA decomposition of D0 is as follows:
 Table 1 Table 2 Table 3
 X1X2 : X2X3 : X1X3

 0 0 0 0 0 0
 1 0 0 1 0 1
 1 1 0 2 0 2
 2 0 1 0 1 0
 2 2 1 1 1 1
 2 2 2 0
 2 2
 D01 D02 D03

Step 2b: The 1-MRA decomposition of D1 is as follows:

000
001
002
100
101
110
111
200
202
222

010
011
012
020
021
022
120
121
122
210
211
212

102
112
201
220
221

23

 Table 4 Table 5
 X1 X2 : X3

 0 1 0
 0 2 1
 1 2 2
 2 1
 D11 D12

Step 2c: The 2-MRA decomposition of D2 is as follows:
 Table 6 Table 7
 X1 X3 : X2X3

 1 2 0 2
 2 1 1 2
 2 0 0 1
 2 0
 2 1
 D21 D22

THE INTERSECTION ALGORITHM

Step 3.1: Select the two simplest decomposed models, namely the 1-MRA and 2-MRA decompositions.

These are at a lower level in the lattice of structures than 0-MRA.

Step 3.2: Analogously to Example 8, one obtains the following expanded tables:

 Table 4’ Table 5’ Table 6’ Table 7’
 X1 X2 F1 : X3 F2 X1 X3 F3 : X2 X3 F4
 0 0 0,2 0 1,0,2 0 0 0,1 0 0 0,1
 0 1 1,0,2 1 1,0,2 0 1 0,1 0 1 2,0,1
 0 2 1,0,2 2 1,0,2 0 2 0,1 0 2 2,0,1
 1 0 0,2 1 0 0,1 1 0 0,1
 1 1 0,2 1 1 0,1 1 1 0,1
 1 2 1,0,2 1 2 2,0,1 1 2 2,0,1
 2 0 0,2 2 0 2,0,1 2 0 2,0,1
 2 1 1,0,2 2 1 2,0,1 2 1 2,0,1
 2 2 0,2 2 2 0,1 2 2 0,1

 Set-theoretically, obtaining tables 4’, 5’, 6’, and 7’ from tables 4, 5, 6, and 7 is described as follows:

Table 4’: (D11⊗ (0,1,2))∪ (D11’⊗ (0,2))
Table 5’: (D12⊗ (0,1,2))∪ (D12’⊗ (0,2))
Table 6’: (D21⊗ (0,1,2))∪ (D21’⊗ (0,1))
Table 7’: (D22⊗ (0,1,2))∪ (D22’⊗ (0,1))

Step 3.3: Tables 4’, 5’, 6’, and 7’ are used to obtain the block diagram in Figure 18, where the following

set-theoretic Equations govern the outputs of the levels in the circuit shown in the figure:

F = F5 ∩ F6
F5 = F1 ∩ F2
F6 = F3 ∩ F4

where F1 is given by Table 4’, F2 by Table 5’, F3 by Table 6’, and F4 by Table 7’, respectively.

24

 The intermediate sub-functions, F5 and F6 are shown in the following maps, respectively.

x1 x2x3 00 01 02 10 11 12 20 21 22

0 0,2 0,2 0,2 1 1 1 1 1 1
1 0,2 0,2 0,2 0,2 0,2 0,2 1 1 1
2 0,2 0,2 0,2 1 1 1 0,2 0,2 0,2

 F5 = F1 ∩ F2

x1 x2x3 00 01 02 10 11 12 20 21 22

0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
1 0,1 0,1 2 0,1 0,1 2 0,1 0,1 0,1
2 0,1 2 0,1 0,1 0,1 0,1 2 2 0,1

 F6 = F3 ∩ F4

THE UNION ALGORITHM

Steps 1 and 2 are the same as in the intersection algorithm.

Step 3.1: Using the decomposition model D01:D02:D11:D12:D21:D22 obtain D0, D1, and D2 by standard

methods as follows:

D0 = (D01⊗ x3)∩(D02⊗ x1)∩(D03⊗ x2)
D1 = (D11⊗ x3)∩(D12⊗ x1x2)
D2 = (D21⊗ x2)∩(D22⊗ x1)

where D0 is the decomposition for function value “0”, D1 is for function value “1”, D2 for function value

“2”, and x1, x2, and x3 ∈ {0,1,2}.

x1

x2

x3

x1

x3

x2

∩

∩

∩

 Table 4’

 Table 5’

 Table 6’

 Table 7’

F1

F2

F3

F4

F5

F6

F

Figure 18. The decomposed structure resulting from the many-valued MRA decomposition.

25

Step 3.2: Perform the set-theoretic operations to obtain the total function from the decomposed sub-

functions. This can be done using only two of the three decompositions, as in Step (3.2) of the union

algorithm in Example 8, or alternatively, one can use all three decompositions as follows:

x1x2x3F = (D0⊗ 0)∪ (D1⊗ 1)∪ (D2⊗ 2)

 The function value of (x1,x2,x3) is determined by the block diagram of Figure 19, where G performs the

following operation:

F = 0 if (x1x2x3) ∈ D0
F = 1 if (x1x2x3) ∈ D1
F = 2 if (x1x2x3) ∈ D2

Figure 19. Block diagram for the union algorithm of MRA of Example 9.

 The logic function in Example 9 is decomposable using CRA with the lossless CRA model

x1x2:x2x3:x1x3. Consequently, unlike the previous example, both many-valued MRA and CRA decompose

losslessly. Since both CRA and MRA decompose this function, we would like to be able to compare the

complexities of the two decompositions. The complexity measure reported in (Al-Rabadi et al. 2002) could

be used, but needs to be extended to many-valued functions.

 From the previous discussion, it follows that the extension of many-valued MRA from functions to

relations is trivial. One just performs the union algorithm using all n decompositions, e.g., for three values

(D0⊗ 0)∪ (D1⊗ 1)∪ (D2⊗ 2).

5 CONCLUSION

 A novel RA-based decomposition is introduced; the Modified Reconstructability Analysis (MRA). It is

shown that in 4 out of 10 NPN classes while 3-variable NPN-classified Boolean functions are not

decomposable using the Conventional Reconstructibility Analysis (CRA) decomposition, they are

decomposable using the Modified Reconstructibility Analysis (MRA) decomposition. Also, it is shown that

whenever a decomposition of 3-variable NPN-classified Boolean functions exists in both MRA and CRA,

MRA yields simpler or equal complexity decomposition. While the disjoint AC decomposition and MRA

decompose some but not all NPN-classes, MRA decomposes more classes and consequently more Boolean

functions than AC. The many-valued MRA decomposition is also presented. Since data are often many-

x1

x2

x3

 G F

26

valued, future work will apply many-valued MRA to real-life data for machine learning, data mining, and

data analysis. Future work will also include the investigation of the MRA decomposition of fuzzy

functions. The use of gates other than the logical AND, and OR gates (e.g., XOR, NAND) at the final stage

of RA-based decompositions to reduce the complexities of the decomposed structures will also be

investigated.

6 REFERENCES

Abu-Mostafa, Y. 1988. Complexity in Information Theory, Springer-Verlag, New York.

Al-Rabadi, A. N. 2001. “A Novel Reconstructability Analysis For the Decomposition of Boolean
Functions”. Technical Report #2001/005, Electrical and Computer Engineering Department, Portland State
University, Portland, Oregon, 1st July 2001.

Al-Rabadi, A. N. 2002. Novel Methods for Reversible Logic Synthesis and their Application to Quantum
Computing. Ph.D. Dissertation, Electrical and Computer Engineering Department, Portland State
University, Portland, Oregon.

Al-Rabadi, A. N., M. Zwick, and M. Perkowski 2002. “A Comparison of Enhanced Reconstructability
Analysis and Ashenhurst-Curtis Decomposition of Boolean Functions”. Book of Abstracts of the 12th
international World Organization for Systems and Cybernetics (WOSC) Congress and the 4th International
Institute for General Systems Studies (IIGSS) workshop, Pittsburgh, Pennsylvania, p. 12, 24-26th March
2002.

Al-Rabadi, A. N. and M. Zwick, 2002. “Modified Reconstructability Analysis for Many-Valued Logic
Functions”. Book of Abstracts of the WOSC/IIGSS’2002, Pittsburgh, Pennsylvania, p. 90, 24-26th March
2002.

Al-Rabadi, A. N. and M. Zwick, 2002. “Reversible Modified Reconstructability Analysis of Boolean
Circuits and its Quantum Computation”. Book of Abstracts of the WOSC/IIGSS’2002, Pittsburgh,
Pennsylvania, p. 90, 24-26th March 2002.

Ashenhurst, R. L. 1953. ”The Decomposition of Switching Functions”. Bell Laboratories’ Report, Vol. 1,
pp. II-1-II-37.

Ashenhurst, R. L. 1956. ”The Decomposition of Switching Functions”. Bell Laboratories’ Report, Vol. 16,
pp. III-1-III-72.

Ashenhurst, R. L. 1959. ”The Decomposition of Switching Functions”. In: International Symposium on the
Theory of Switching Functions, pp. 74-116.

Conant, R. 1981. “Set-Theoretic Structural Modeling”. International Journal of General Systems: 7: 93-
107.

Curtis, H. 1963. ”Generalized Tree Circuit”. ACM, pp. 484-496.

Curtis, H. 1963. ”Generalized Tree Circuit-The Basic Building Block of an Extended Decomposition
Theory”. ACM, Vol. 10, pp. 562-581.

Curtis, H. A. 1962. A New Approach to the Design of Switching Circuits, Princeton, Van Nostrand, NJ.

Files, C. M. 2000. A New Functional Decomposition Method as Applied to Machine Learning and VLSI
Layout, Ph.D. Dissertation, Electrical and Computer Engineering Department, Portland State University,
Portland, Oregon.

27

Grygiel, S. 2000. Decomposition of Relations as a new Approach to Constructive Induction in Machine
Learning and Data Mining. Ph.D. Dissertation, Electrical and Computer Engineering Department, Portland
State University, Portland, Oregon.

Klir, G. 1985. Architecture of Systems Problem Solving. Plenum Press, New York.

Klir, G., editor, 1996. “Reconstructability Analysis Bibliography”. International Journal of General
Systems, 24:225- 229.

Klir, G. and M. J. Wierman, 1998. Uncertainty-Based Information: Variables of Generalized Information
Theory, Physica-Verlag, New York.

Krippendorff, K. 1986. Information Theory: Structural Models for Qualitative Data. Sage Publications,
Inc.

Muroga, S. 1979. Logic Design and Switching Theory, Wiley, New York.

Shannon, C. E. and W. Weaver 1949. A Mathematical Theory of Communication, University of Illinois
Press.

Zwick, M. 1995. ”Control Uniqueness in Reconstructibility Analysis”. International Journal of General
Systems, 23(2).

Zwick, M. and H. Shu, 1995. ”Set-Theoretic Reconstructability of Elementary Cellular Automata”.
Advances in System Science and Application, Special Issue I, PP.31-36.

Zwick, M. 2001. Wholes and Parts in General Systems Methodology. In: The Character Concept in
Evolutionary Biology, edited by G. Wagner, Academic Press.

 Anas N. Al-Rabadi is currently a post-doctoral research fellow in the Systems Science
 Ph.D. Program at Portland State University. He received his Ph.D. in Electrical and
 Computer Engineering from Portland State University, Portland, Oregon in 2002 in
 the field of Advanced Logic Synthesis and Quantum Computing. He received his
 M.S. in Electrical and Computer Engineering from Portland State University in
 1998 in the area of Power Electronics Systems Design and Feedback Control
 Systems Design. His current research areas include logic synthesis, reversible logic,
 quantum logic, multiple-valued logic, reconstructability analysis, signal processing,
 image processing, logic testing, and two-dimensional and three-dimensional regular
 structures.

 Martin Zwick is currently Professor of Systems Science at Portland State
 University, Portland, Oregon. He received his Ph.D. in Biophysics from MIT in
 1968, did post-doctoral work in the Department of Biochemistry of Stanford
 University, and was Assistant Professor in the Department of Biophysics &
 Theoretical Biology at the University of Chicago. His research in this period was in
 mathematical crystallography and macromolecular structure. In the 1970’s his
 interests shifted to systems theory, methodology, and philosophy, and in 1976 he
 took his present position in the Systems Science Ph.D. Program at PSU. During the
 years 1984-1989, he was Director of the Program. His current research is primarily
 in three areas: (1) information and set-theoretic modeling (synchronic and time-
 series analysis of nominal or nominalized data); (2) “artificial life” (evolutionary
 simulations, genetic algorithm optimization, chaotic & nonchaotic dynamics in
 cellular automata); (3) systems philosophy (the metaphysics of “problems”). He also
 continues research in mathematical crystallography using systems methodologies.

28

	Enhancements to Crisp Possibilistic Reconstructability Analysis
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1453835266.pdf.RhprE

