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ABSTRACT 
 
Modified Reconstructibility Analysis (MRA), a novel decomposition within the framework of set-theoretic 

(crisp possibilistic) Reconstructibility Analysis, is presented. It is shown that in some cases while 3-

variable NPN-classified Boolean functions are not decomposable using Conventional Reconstructibility 

Analysis (CRA), they are decomposable using Modified Reconstructibility Analysis (MRA). Also, it is 

shown that whenever a decomposition of 3-variable NPN-classified Boolean functions exists in both MRA 

and CRA, MRA yields simpler or equal complexity decompositions. A comparison of the corresponding 

complexities for Ashenhurst-Curtis decompositions, and Modified Reconstructibility Analysis (MRA) is 

also presented. While both AC and MRA decompose some but not all NPN-classes, MRA decomposes 

more classes, and consequently more Boolean functions. MRA for many-valued functions is also presented, 

and algorithms using two different methods (intersection and union) are given. A many-valued case is 

presented where CRA fails to decompose but MRA decomposes. 

1 INTRODUCTION 
 

    One general methodology for understanding a complex system is to decompose it into less complex sub-

systems. Decomposition is used in many situations; for example, in logic synthesis (e.g., Al-Rabadi 2002; 

Ashenhurst 1953; Ashenhurst 1956; Ashenhurst 1959; Curtis 1963; Curtis 1962; Files 2000; Grygiel 2000; 

Muroga 1979) where the number of inputs to the gates is high and cannot be mapped to a standard library 

and in machine learning where data is noisy or incomplete (Files 2000, Grygiel 2000). The primary criteria 

for evaluating the quality of the decomposition process are the amount of information (or the loss of 

information, i.e., error) existing in the decomposed system and the complexity of this decomposed system. 

The objective is obvious: decompose the complex system (data) into the least-complex most-informative 
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(least-error) model. Simplicity is desired since, according to the Occam Razor principle, the simpler the 

model is, the more powerful it is for generalization. Least error is desired since one wants to retain as much 

information as possible in the decomposed system, when compared to the original data. Decomposition 

processes can be generally dichotomized into lossless (no error) versus lossy decompositions. In this paper, 

a comparison of two types of lossless decompositions are considered: the disjoint Ashenhurst-Curtis 

decomposition, and set-theoretic (crisp possibilistic) Modified Reconstructibility Analysis (MRA) 

decomposition. 

    The remainder of this paper is organized as follows: Section 2 presents necessary methodological 

background. CRA, MRA, and AC, complexity results are presented in Section 3. Many-valued MRA is 

presented in Section 4. Conclusions and future work are discussed in Section 5.   

2 BINARY LOGIC FUNCTIONS CLASSIFICATION, COMPLEXITY MEASURES, AND 
DECOMPOSITIONS 
 

    This Section introduces the basic background of the NPN-classification of three-variable 2-valued logic 

functions, Ashenhurst-Curtis (AC), and Reconstructibility Analysis (RA) decomposition methods, and the 

complexity measures utilized here, to compare the efficiencies of AC and RA decompositions.

2.1 NPN-Classification of Binary Logic Functions 
 
    There exist many classification methods to cluster logic functions into families of functions (Muroga 

1979). Two important operations that produce equivalence classes of logic functions are negation and 

permutation (Muroga 1979). Accordingly, the following classification types result: 

1. P-Equivalence class: a family of identical functions obtained by the operation of permutation of 

variables. 

2.  NP-Equivalence class: a family of identical functions obtained by the operations of negation or 

permutation of one or more variables.  

3. NPN-Equivalence class:  a family of identical functions obtained by the operations of negation or 

permutation of one or more variables, and also negation of function. 

    NPN-Equivalence classification will be used in this work. Figure 1 lists 3-variable Boolean functions, for 

the non-degenerate classes (i.e., the classes depending on all three variables). 
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Class Representative Function Number of Functions 

1 F = x1x2 + x2x3 + x1x3                               8 
2 F = x1⊕  x2 ⊕   x3                                            2 
3 F = x1+ x2 +  x3                                             16 
4 F = x1(x2 +  x3 )                                            48 
5 F = x1x2 x3 + x1

’x2
 ‘x3

’ 
                             8 

6 F = x1
’x2 x3 + x1x2

 ‘+ x1x3
’                     24 

7 F = x1(x2 x3 + x2
’x3

 ‘)                                24 
8 F = x1x2 + x2x3 + x1

’x3                  
  24 

9 F = x1
’x2 x3 + x1x2

 ‘x3  + x1 x2x3
’      16 

10 F = x1x2
’
 x3 

‘+ x2
 x3                                   48 

 
Figure 1. NPN-Equivalence classes for non-degenerate Boolean functions of three binary variables 
(Muroga 1979) for a total of  218 Boolean functions, where (,) means negation of a variable, ⊕  is Boolean 
exclusive Sum-Of-Product, + is Boolean OR, and product is Boolean AND. 
 

Example 1. The following steps produce the sets of all possible Boolean functions that are included in 

class #1 in Figure 1 for the representative function F0 = x1x2 + x2x3 + x1x3. 

(1) Negation of variables (N): {F1 = x1
’x2 + x2x3 + x1

’x3, F2 = x1x2
’ + x2

’x3 + x1x3, F3 = x1x2
 + x2x3

’ + x1x3
’, 

F4 = x1
’x2

’ + x2
’x3 + x1

’x3, F5 = x1
’x2 + x2x3

’ + x1
’x3

’, F6 = x1x2
’ + x2

’x3
’ + x1x3

’, F7 = x1
’x2

’ + x2
’x3

’ + x1
’x3

’} 

(2) Permutation of variables (P): does not produce a different function 

(3) Negation of functions (N): {F9 = x1
’x2

’ + x2
’x3

’ + x1
’x3

’} 

F7 and F9 are the same, which gives 8 distinct functions. 

2.2 Complexity Measures 
 

    Decomposability means complexity reduction. Many complexity measures exist for the purpose of 

evaluating the efficiency of the decomposition of complex systems into simpler sub-systems. Such 

complexity measures include: the Decomposed Function Cardinality (DFC) complexity measure (Abu-

Mostafa 1988), and the Log-Functionality (LF) complexity measure (Grygiel 2000). In DFC, complexity is 

a count of the total number of possible functions realizable by the decomposed structure, while LF counts 

the number of non-redundant functions realizable by the decomposed structure. The complexity of the 

decomposed structures is always less or equal to the complexity of the original Look-Up-Table (LUT) that 

represents the mapping of the non-decomposed structure. That is, if a decomposed structure has higher 

complexity than the original structure, then the original structure is said to be non-decomposable. Although 

the DFC measure is easier and more familiar, LF is a better measure because it more properly deals with 

non-disjoint systems (Grygiel 2000). Consequently, the LF measure will be used in this paper. The DFC 
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and LF complexity measures are illustrated using Figure 2, which exemplifies AC decomposition, as 

follows: 

 
 
 
 

Figure 2. Generic non-disjoint decomposition. 
 
    In Figure 2, for the first block , the total number of possible functions for three 2-valued input variables 

is 223 = 256. Also, for the second block, the total number of possible functions is similarly 256. The total 

possible number of functions for the whole structure is equal to 256⋅256 = 65,536. The DFC measure is 

defined as: 

 

CDFC = ∑
j

jDFC                                                                                                                                             (2) 

where Oj is the number of outputs to block j, Ij is the number of inputs to the same block, Equation (1) is the 

complexity for block j, and Equation (2) is the complexity for the total decomposed structure. For instance, 

the DFC for Figure 2 is: CDFC = 1⋅23 + 1⋅23 = 16. It was shown in (Grygiel 2000) that, for Figure 2, the Log-

Functionality complexity measure (CLF) for Boolean functions can be expressed as follows: 

 
)(log2 FFL CC =                                                      

                                                                                                           (3) 
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where X1 is the set of input variables to the first block, X2 is the set of input variables to the second block, 

X3 is the set of overlapping variables between sets X1 and X2, PXi is the product of cardinalities of the input 

variables in set Xi, Y1 is the output of first block, Y2 is the output of second block, and PYi is the product of 

cardinalities of output variables in set Yi. For example, the LF for Figure 2 is: 

 x2 

x1 

x

F 
g 

x3 

)1(2 jI
jj ODFC ⋅=
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    Figure 2 shows a four input function, where the variable sets for the first and second blocks are not 

disjoint. In this paper we are concerned only with 3-input functions, and in this case the AC decomposition 

results in a structure shown in Figure 3. Note that the variable sets for the two blocks with outputs g and F 

are necessarily disjoint, because if the two blocks shared one input variable, F would have three inputs and 

the decomposed structure would be more complex than the original non-decomposed 3-input function. 

Example 2.  
 
 
 
 
 

Figure 3. A decomposed structure. 
 
The Log-Functionality complexity measure of the structure in Figure 3 is obtained as follows: 

Each sub-block in Figure 3 has a total of 162
22 = possible Boolean functions. Figure 4 illustrates all of 

the possible 16 two-variable Boolean functions per sub-block in Figure 3. 

 
 
 
 
 
                                                                  f(1)             f(2)             f(3)           f(4)                     
 
 
 
 

                                                                 f(5)             f(6)             f(7)           f(8)                     
 
 
 
 

                                                                f(9)             f(10)             f(11)           f(12)                     
 
 
 
 
                                                               f(13)             f(14)            f(15)         f(16)                     
 

Figure 4.  Maps of all 16 possible Boolean functions of two variables. 
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  F =0        F=1          F=(ab)’    F=a→b  
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By allowing g and F in Figure 3 to take on all possible maps from Figure 4, one obtains the following count 

of total non-repeated (non-redundant) 3-variable functions, as follows: CF = 88 ⇒  CLF = 6.5. This answer 

agrees with the result of Equation (3) (Grygiel 2000). 

Example 3. RA produces decompositions for 3-variable functions that resemble the structures shown in 

Figure 5. 

 
 
 
 
 
 
                                                                          (a)                           (b) 
                                                      Figure 5. Some RA decomposed structures. 
 
The Log-Functionality complexity measure for the structures in Figure 5, is obtained as follows: Figure 6 

represents a tree that generates all possible functions for the structures 5a and 5b, respectively (Al-Rabadi 

2002; Al-Rabadi et al. 2002). (Superscripts of functions denote the specific edge between two nodes in the 

tree). 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 6. All possible combinations of sub-functions f1 

(i), f2 

(j), and f3 

(k) in Figures 5a and 5b, respectively. 
Log-functionality complexity measure represents the count of all possible non-redundant functions, that is 
all different F(i,j) for Figure 5a, and all different F(i,j,k) for Figure 5b. Where two nodes of the tree are 
superposed (*), they are counted only once. At every node, there are 16 possible 2-variable Boolean 
functions.  
 
Utilizing this methodology of removing redundant functions, one obtains the following results for Log-

Functionality: for Figure 5a, the total number of irredundant sub-functions is CF = 100 ⇒  ∴  CLF = log2 

(100) = 6.6, and for Figure 5b, the total number of irredundant sub-functions is CF = 152 ⇒  ∴  CLF = log2 

(152) = 7.2. (In later tables, CLF values of 4.3 and 6.5 are also reported, for functions F = x1+ x2 +  x3  and F 

= x1(x2 +  x3 ), respectively.) The following example illustrates the use of Figure 6 to eliminate the  

… … … … 

… … … … … … 

… 
F(i,j) = f1 

(i) f2 
(j) 

F(i,j,k) = f1 
(i) f2 

(j)f3 
(k) 

Level 1 

Level 2 

Level 3 

    f1
(16)     f1

(1)     f1
(2) 

… 
    f1

(15) 

    f2
(1)     f2

(16)     f2
(1)     f2

(16) 

    f3
(1)     f3

(16) 

    f2
(16) 

    f3
(16) 

    f2
(1) 

    f3
(1) * 

* 

* 

x1 

x

x

 ∧  F 

 f1 

 f2 

 f3 

 ∧  

x1 

x2 

x3 

 f1 

 f2 

F 
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redundant terms in the process of computing the log-functionality complexity measure. 

Example 4. Utilizing Figure 5a, if one choose the following maps from Figure 4: f1 = f(13) and f2 = f(6) then 

the function F(13,6) = f(13)f(6) will produce the same result as F(13,11) = f(13)f(11)  since (x1⋅x2)(x1+x2) = 

(x1⋅x2)(x1≡x2), and consequently the two paths will lead to the same node in Level 2 in Figure 6. Also, we 

can demonstrate the same calculation for Figure 5b as follows: let f1 = f(8) (b), f2 = f(2), and  

f3 = f(8)(c) then the function F(8,2,8) = f(8)(b)f(2)f(8)(c) will produce the same result as the function  

F(5,3,7) = f(5) (b,c)f(3) (a,b)f(7)(c) where {f1 = f(5) (b,c), f2 = f(3) (a,b), f3 = f(7)(c)} and consequently the two paths 

will lead to the same node in Level 3 in Figure 6.        

2.3 Ashenhurst-Curtis Decomposition 
 

    Ashenhurst-Curtis (AC) decomposition (Al-Rabadi 2002; Ashenhurst 1953, Ashenhurst 1956, 

Ashenhurst 1959, Curtis 1962, Curtis 1963, Files 2000, Grygiel 2000) is one of the major techniques for the 

decomposition of functions commonly used in the field of logic synthesis. The main idea of AC 

decomposition is to decompose logic functions into simpler logic blocks using the compression of the 

number of cofactors in the corresponding representation. This compression is achieved through exploiting 

the logical compatibility (i.e., redundancy) of cofactors (i.e., column multiplicity). As a result of AC 

decomposition (as a result of column compression), intermediate constructs (latent variables) are created, 

and learning is achieved as a result of these variables (Files 2000, Grygiel 2000). A general algorithm of 

the AC decomposition utilizing Karnaugh map (K-map) representation (Muroga 1979), for instance, is as 

follows: 

(1) Partition the input set of variables into free set and bound set, and label all the different columns. 

(2) Decompose the bound set and create a new K-map for the decomposed bound set (utilizing minimum 

graph coloring, maximum clique, or some other algorithm to combine similar columns into a single 

column). Each cell in the new K-map represents a labeled column in the original K-map.   

(3) Encode the labels in the cells of the new K-map using minimum number of intermediate binary 

variables. These intermediate variables are shown as g and h in Example 5 (Figure 7). Express the 

intermediate variables as functions of the bound set variables. 

(4) Produce the decomposed structure, i.e., a K-map specifying the function (F) in terms of the intermediate 

variables and the free set variables. 
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In general, steps (1) and (3) determine the optimality of the AC decomposition (i.e., whether the resulting 

decomposed blocks are of minimal complexity or not).  

Example 5. For the following logic function F = x2x3 + x1x3 + x1x2, let the sub-set of variables {x2, x3} be the 

Bound Set, and the sub-set of variables {x1} be the Free Set. The following is the disjoint AC 

decomposition of F (where {–} means don’t care): 

 

 
 
 
 
 
 
                          (1)                                  (2)                       (3)                                         (4) 
 
 
 
 
 
 
 

Figure 7. AC decomposition. Steps (1)-(4) are discussed in the text.
 
    In Example 5, the first block of the decomposed structure has two outputs (intermediate variables g and 

h). The DFC measure of the decomposed structure is = 2⋅22 + 1⋅23 = 16, while the DFC of the original LUT 

is = 1⋅23 = 8. This shows the inadequacy of DFC as a measure of complexity because the decomposition 

produces a more complex structure than the non-decomposed LUT. By contrast, LF for the decomposed 

structure in Figure 7 is 8, which does not exceed the complexity of the LUT. Thus, for AC decomposition 

of Boolean functions with 3-variables, if the first block of the decomposed structure has two outputs, then 

the decomposed structure is at least as complex as the LUT, and consequently, for the purpose of this 

paper, the decomposition is rejected. For other NPN functions AC decomposition produces only one output 

in the first block. These decompositions are not rejected, and are listed in Figure 12. 

2.4 Reconstructability Analysis: Conventional RA versus Modified RA for the Binary Case   
 
    Reconstructability Analysis (RA) is a decomposition technique for qualitative data (Klir 1996; Klir 

1985; Klir and Wierman 1998; Krippendorff 1986; Zwick 2001). RA data is typically either a set theoretic 

relation or mapping or it is a probability or frequency distribution. The former case is the domain of “set-

theoretic” RA or more precisely crisp possibilistic RA. The latter is the domain of “information-theoretic” 
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RA, or more precisely probabilistic RA. The RA framework can apply to other types of data (e.g., fuzzy 

data) via generalized information theory (Klir and Wierman 1998).  

    In this paper, we are concerned only with crisp possibilistic RA. RA decomposition can also be lossless 

or lossy. In this paper, we are concerned only with lossless decomposition, i.e., with decomposition which 

produces no error. This paper introduces an innovation in set-theoretic RA, which we call “modified” RA 

(or MRA) (Al-Rabadi 2001; Al-Rabadi 2002; Al-Rabadi et al. 2002) as opposed to the conventional set-

theoretic RA (or CRA). This innovation is illustrated by Example 6. 

Example 6. For the logic function:  F = x1x2 + x1x3 

Figure 8 illustrates decomposed structures using both CRA and MRA decompositions, respectively. In 

Figure 8, while CRA decomposes for all values of Boolean functions, MRA decomposes for an arbitrarily 

chosen value of the Boolean functions (e.g., for value “1”). The completely specified Boolean function can 

be retrieved if one knows the MRA decomposition for the Boolean function being equal either to “1” or 

to “0” (Al-Rabadi 2001; Al-Rabadi 2002; Al-Rabadi et al. 2002). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Conventional versus Modified RA decompositions for the Boolean function:  F = x1x2 + x1x3. 
 
       CRA decomposition (Zwick 1995; Zwick and Shu 1995) is illustrated in the upper half of Figure 8, 

while MRA decomposition is illustrated in the lower half of the figure. MRA decomposition yields much 

simpler logic circuit than the corresponding CRA decomposition, while retaining complete information 

about the decomposed logic function. For CRA in Figure 8, the calculated function for model = 

Original Function            Simplest CRA Model              Simplest CRA Circuit Model 
                                                                                                                                                                              x1      x2    x3       F 

0       0      0     0 
0       0      1     0 
0       1      0     0 
0       1      1     0 
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1       0      1     1 
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1       1      1     1 
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x1x2f1:x1x3f2:x2x3f3 (i.e., α:β:γ) is defined as follows: x1x2x3Fmodel ≡ (x1x2f1 ⊗  x3) ∩ (x1x3f2 ⊗  x2) ∩ (x2x3f3 ⊗  x1). 

For lossless CRA decomposition, this equals the original function x1x2x3F that is shown at the top left of 

Figure 8. (For lossy CRA x1x2x3Fmodel would not be equivalent to x1x2x3F). The CRA model can be 

interpreted by the circuit shown at the top right of Figure 8, where different projections of F are labeled f1, 

f2, and f3. MRA simplifies the decomposition problem by focusing, in the original function F, on the three 

shaded tuples (“cubes”) for which F=1. The procedure used to obtain the 1-MRA in Figure 8 is as follows 

(Al-Rabadi 2001; Al-Rabadi 2002; Al-Rabadi et al. 2002): 

(1) Decompose the Boolean function of value “1” into the simplest lossless CRA decomposition. 

(2) For a particular model, get the projections. 

(3) Assign value “1” (for 1-MRA) to the tuples in the resulted projection. Add all tuples that are missing in 

the projections which will have the functional value “0”. 

(4) Perform the AND operation for 1-MRA in the output block to obtain the total functionality. 

Steps (2-)-(4) are illstrated as follows: 

 
 
 
  
                                                                                    
 
 
                                                                                          
 
 
 
 
 
 
The output function in step (4) is the logical AND of the two subfunctions, i.e., F = f2

’(x1)∧  f3
’(x2,x3). Set-

theoretically, this can be represented as F = (x1 ⊗  (1∪ x1
’ ) ⊗  0) ∩ (x2x3 ⊗  (1∪ (x2x3)

’ ) ⊗  0). From Figure 8, 

one observes that MRA possess two main advantages over CRA for the decomposition of Boolean 

functions (which will be further demonstrated in Figure 10): (1) The resulting decomposed structures from 

MRA are less complex that the corresponding decomposed structures from CRA, and (2) The resulting 

decomposed structures from MRA are directly realizable in Boolean-based circuits, while the resulting 

decomposed structures from CRA are not realizable in Boolean-based circuits, but in ternary-valued logic 

circuits, and thus the resulting logic circuits from MRA are directly implementable using the current 

technologies. The idea of 0-MRA versus 1-MRA is illustrated in Example 7. 

Example 7. For the logic function:  F = x1x2 + x1x3 

Figure 9 illustrates the simplest model using both 1-MRA and 0-MRA.  

x1 x2 x3 
1 0 1 
 1 0 
 1 1 

x1 x2 x3 F 
1 0 1 1 
1 1 0 1 
1 1 1 1 

x1 f2’ x2 x3 f3’ 
0 0 0 0 0 
1 1 0 1 1 
  1 0 1 
  1 1 1 
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In this example, The completely specified Boolean function can be retrieved if one knows the MRA 

decomposition for the Boolean function being equal either to “1” (that is 1-MRA) or to “0” (that is 0-

MRA). The procedure used to obtain the 0-MRA in Figure 9 is as follows (Al-Rabadi 2002): 

(1) Decompose the Boolean function of value “0” into the simplest lossless CRA decomposition. 

(2) For a particular model, get the projections. 

(3) Assign value “0” (for 0-MRA) to the tuples in the resulted projection. Add all tuples that are missing in 

the projections which will have the functional value “1”. 

(4) Perform the OR operation for 0-MRA in the output block to obtain the total functionality. 

Steps (2-)-(4) are illustrated as follows: 

 
 
 
 
 
 
 
 
                                    
 
 
 
 
 
The output function in step (4) is the logical OR of the two sub-functions as follows:  

F = f1
” (x1,x2) ∨  f2

”(x1,x3). 

 
 

 
 
 
 
 
 
 
 
 
 
                          Figure 9. 0-MRA versus 1-MRA decompositions for the Boolean function F = x1x2 + x1x3. 
 

    As can be observed from Figure 9, 1-MRA produces less complex decomposed structure than 0-MRA. 

The 0-MRA (LF = 6.6) decomposition should be compared to the 1-MRA decomposition (LF = 6.5) which 

is shown in Figure 8.  

3 RESULTS: COMPARING MRA TO OTHER DECOMPOSITIONS 

    The following Sections compare the complexities of the decomposed structures using MRA with 

complexities of the decomposed structures using CRA (Section 3.1) and AC (Section 3.2). 

x1 x2 x3 F 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 

x1 x2 x1 x3 
0 0 0 0 
0 1 0 1 
1 0 1 0 

x1 x2 f1

” x1 x3 f2

” 
0 0 0 0 0 0 
0 1 0 0 1 0 
1 0 0 1 0 0 
1 1 1 1 1 1 

                                               Simplest 0-MRA Model               Simplest 0-MRA Circuit Model 
                                                                                                                                                                           

  ∨  
x2 

x1 
x3 

 f1
”

 

 f2
” 

F 
α” 

β” 

               x1  x2   f1 

   0  0  0 
   0  1  0 
   1  0  0 
   1  1  1 

 α ”            β ”      

        “      x1 x3   f2
”
 

   0  0  0 
   0  1  0 
   1  0  0 
   1  1  1 x1x2f1

”:x1x3f2
” 

LF = 6.6 
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3.1 Complexity of MRA versus CRA Decompositions 

    Figure 10 compares MRA and CRA decompositions of all NPN-classes of 3-variable Boolean functions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 10. Conventional RA (CRA) versus Modified RA (MRA) for the decomposition of all NPN-classes  
of 3-variable Boolean functions (Compare the right-most two columns), where in the second column from 
left “0” means 0-MRA, “1” means 1-MRA, and * means 0-MRA or 1-MRA. 

 NPN-Representative  MRA     Simplest Modified RA model    Simplest Conventional RA model    C             CLF       CLF 

 Function                                      (0-MRA or 1-MRA)                                                                          (LUT)(CRA) (MRA) 
  x1     x2    f1

0  0    0 
0  1    1 
1  0    1 
1  1    1 

 x2     x3    f2

0  0    0 
0  1    1 
1  0    1 
1  1    1 

 x1     x3    f3 

0  0    0 
0  1    1 
1  0    1 
1  1    1 

non-decomposable

 x2     x3    f2 

0  0    0 
0  1    1 
1  0    1 
1  1    1 

 x1     x2    f1 

0  0    1 
0  1    0 
1  0    0 
1  1    1 

 x1     x3    f2 

0  0    1 
0  1    0 
1  0    0 
1  1    1 

non-decomposable

 x2     x3    f1 

0  0    1 
0  1    0 
1  0    0 
1  1    1 

 x1      f2

0  0  

1  1  

 x1     x2    f1 

0  0    1 
0  1    1 
1  0    0 
1  1    1 

 x1     x3    f2 

0  0    0 
0  1    1 
1  0    1 
1  1    1 

non-decomposable

 x1     x3    f1 

0  0    0 
0  1    1 
1  0    1 
1  1    1 

 x2     x3    f2 

0  0    1 
0  1    0 
1  0    0 
1  1    1 

F = x1x2 + x2x3 + x1x3         1 

    F = x1⊕  x2 ⊕   x3           *             

    F = x1+ x2 +  x3                   0     

    F = x1(x2 +  x3 )                     1       

 F = x1x2 x3 + x1
’x2

 ‘x3
’ 

              1  

 F = x1
’x2 x3 + x1x2

 ‘+ x1x3 
‘
        *        

 F = x1(x2 x3 + x2
’x3

 ‘)             1 

     F = x1x2 + x2x3 + x1
’x3         1 

               F = x1
’x2 x3 + x1x2

 ‘x3  +          * 
                       x1 x2x3

’     

   F = x1x2
’
 x3 

‘+ x2
 x3                 1  

        8           7.2            7.2 

           8             8             6.6 

              8             6.6          6.6 
 
 
 
 
 
              8              8              8  

           8             8             6.6 

              8             8               8     

        8            7.2           6.5 

           8             8            6.5 

Class 1         (8) 

Class 2        (2) 

Class 3       (16) 

Class 4       (48) 

Class 5       (8) 

Class 6      (24) 

Class 7     (24) 

Class 8    (24) 

Class 9    (16) 

Class 10  (48) 

 x1     x2    f1

0  0    0 
0  1    - 
1  0    - 
1  1    1 

 x2     x3    f2 

0  0    0 
0  1    - 
1  0    - 
1  1    1 

 x1     x3    f3 

0  0    0 
0  1    - 
1  0    - 
1  1    1 

non-decomposable

non-decomposable

non-decomposable

 x1     x2    f1 

0  0    - 
0  1    - 
1  0    0 
1  1    1 

 x1     x3    f2 

0  0    0 
0  1    1 
1  0    - 
1  1    - 

non-decomposable

 x1     x2    f1

0  0    0 
0  1    0 
1  0    - 
1  1    1 

 x2     x3    f2 

0  0    0 
0  1    0 
1  0    - 
1  1    1 

 x1     x3    f3 

0  0    0 
0  1    - 
1  0    - 
1  1    - 

non-decomposable

non-decomposable

non-decomposable

              8             8              4.3   

              8             8               8     

 x1     f1 

  0   0    
  1   1 

 x1      f1

0  0  
1  1  

 x2      f2

0   0 
1   1 

 x3      f3

  0    0  
  1    1  
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    Figure 10 shows that in five NPN classes (classes 1, 2, 6, 8, 9) totaling 74 functions MRA and CRA give 

equivalent complexity decompositions, but in the remaining five classes (classes 3, 4, 5, 7, 10) totaling 144 

functions MRA is superior in complexity reduction. This is summarized in Figure 11.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Comparison of the Log-Functionality complexity measure between modified RA (MRA) and 
conventional RA (CRA) of 3-variable NPN-classified Boolean functions. 
 
3.2 Complexity of MRA verus AC Decompositions 
 

    Utilizing the methods described above, one obtains the following results in Figure 12 for the 

decomposition of 3-variable NPN-classified Boolean functions (Figure 1) using MRA and AC 

decompositions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C LF(CRA) 

C LF(MRA) 

                                                     4         5          6          7          8            

  5 

6 

  class 1 (8) •  

•  
class 4 (48) 
 
class 8 (24) 
 

   class 7 (24) 

7 

  8 •  
    classes 2,6,9 (42)   

•  

•  
  class 5,10  (56) •  

  4 

class 3 (16) 

•  
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results in Tabl 4 for the decomposition of the 3-variable NPN-classified Boolean functions (in Table 1) 
using lossless modified RA (MRA) decomposition and the disjoint AC decomposition, respectively.   
 
                                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 12. AC versus MRA for the decomposition of all NPN-classes of 3-variable Boolean functions. 
(Compare the right-most two columns.) Note that all AC decompositions have the same structure, while 
MRA decompositions have four different circuit topologies.  

NPN-Representative   Simplest Modified RA model          Simplest AC circuit                             DFC  Cdata CLF   CLF  

Function                             (0-MRA or 1-MRA)                                                                                         (MRA) (AC)  
  x1     x2    f1 

0  0    0 
0  1    1 
1  0    1 
1  1    1 

 x2     x3    f2 

0  0    0 
0  1    1 
1  0    1 
1  1    1 

 x1     x3    f3

0  0    0 
0  1    1 
1  0    1 
1  1    1 

non-decomposable

 x2     x3    f2

0  0    0 
0  1    1 
1  0    1 
1  1    1 

 x1     x2    f1

0  0    1 
0  1    0 
1  0    0 
1  1    1 

 x1     x3    f2

0  0    1 
0  1    0 
1  0    0 
1  1    1 

non-decomposable

 x2     x3    f1

0  0    1 
0  1    0 
1  0    0 
1  1    1 

 x1      f2

0  0  

1  1  

 x1     x2    f1

0  0    1 
0  1    1 
1  0    0 
1  1    1 

 x1     x3    f2

0  0    0 
0  1    1 
1  0    1 
1  1    1 

non-decomposable

 x1     x3    f1

0  0    0 
0  1    1 
1  0    1 
1  1    1 

 x2     x3    f2

0  0    1 
0  1    0 
1  0    0 
1  1    1 

F = x1x2 + x2x3 + x1x3 

    F = x1⊕  x2 ⊕   x3             

    F = x1+ x2 +  x3      

    F = x1(x2 +  x3 )              

 F = x1x2 x3 + x1
’x2

 ‘x3
’ 

   

 F = x1
’x2 x3 + x1x2

 ‘+ x1x3
’        

 F = x1(x2 x3 + x2
’x3

 ‘)   

     F = x1x2 + x2x3 + x1
’x3 

      F = x1
’x2 x3 + x1x2

 ‘x3  + x1 x2x3
’   

   F = x1x2
’
 x3 

‘+ x2
 x3       

x2 

x3 

x1 

F 
g 

   g = x2 ⊕  x3, F= x1⊕  g  

x2 

x3 

x1 

F 
g 

   g = x2 + x3, F= x1+ g  

x2 

x3 

x1 

F 
g 

   g = x2 + x3, F= x1 g  

x2 

x3 

x1 

F 
g 

   g = x2 x3, F= x1 ⊕  g  

x2 

x3 

x1 

F 
g 

   g = x2 ⊕  x3, F= x1g’  

    20        8         7.2        8           

    20        8         6.6        8     

   20         8        6.6         8      

   32         8          8          8     

    16        8          6.6      8    

     8         8           8       6.5     

    8          8         4.3       6.5         

    12        8         6.5       6.5   

   24         8          8         6.5      

   20         8         6.5       6.5        

Simplest  Modified  
       RA circuit 

Class 1               (8) 

Class 2              (2) 

Class 3             (16) 

Class 4            (48) 

Class 5             (8) 

Class 6            (24) 

Class 7           (24) 

Class 8          (24) 

Class 9         (16) 

Class 10      (48) 

x1 

x2 

x3 

 ∧  F 

 f1 

 f2 

 f3 

- 

 ∧  

x1 

  x2 

x3 

 f1 

 f2 

F 

 ∧  

x2 

x1 

x3 

 f1 

 f2 

F 

 ∧  

x2 

x1 

x3 

 f1 

 f2 

F 

 ∧  

x1 

x3 

x2 

 f1 

 f2 

F 

- 

- 

F  ∧  

x2 

x3 
 f1 

x1 

(SOP) (LUT)   

 x1      f1

  0   0    
  1   1 

x1 

x2 

x3                 f3 

 ∨  F 

 f1 

 f2 

 x1      f1

0  0  

1  1  

 x2      f2

0  0  

1  1  

 x3      f3

0  0  

1  1  

non-decomposable

non-decomposable

non-decomposable

non-decomposable

non-decomposable
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    Figure 12 shows that in three NPN classes (4, 7, 9) totaling 88 functions MRA and AC decompositions 

give equivalent complexity decompositions. In two remaining classes (2, 6), totaling 26 functions, AC 

decomposition is superior, but in five classes (1, 3, 5, 8, 10), totaling 104 functions, MRA is superior. This 

is summarized in Figure 13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                        (a)                                                                            (b) 
Figure 13. Comparison of the Log-Functionality complexity measure between CRA versus AC 
decompositions (a), and MRA versus AC decompositions (b), of 3-variable NPN-classified Boolean 
functions. 
 
    We can also summarize these results, by comparing decomposability versus non-decomposability for the 

various approaches as shown in Figure 14. 

 
 
 
 
 
 
 
 
                                 (a)                                                             (b)                                                           (c) 
Figure 14. Comparison of the Decomposability (D) versus Non-Decomposability (ND) for (a) AC versus 
MRA , (b) CRA versus AC, and (c) CRA versus MRA, respectively. The number of classes are indicated, 
and in parantheses also the number of functions. 
 
    Fom Figure 14, one concludes that for NPN-classified 3-variable Boolean functions, MRA is superior to 

AC (88 versus 26), AC is superior to CRA (66 versus 32), and MRA is superior to CRA (96 versus 0). 

ND  
 
 
D 

 ND                D  ND                 D  ND               D 

ND  
 
 
D 

ND  
 
 
D 

MRA MRA 

AC 

AC 

CRA CRA 

1 4 

2 3 

3 4 

0 3 

3 

1 

4 

2 

(9: 16)  (1,5,8,10: 88) 

(2,6: 26) (3,4,7: 88) 

(2,6,9: 42) 

(1,4,8: 80) 

(3,5,7,10: 96) 

  (0) 

(5,9,10: 72) 
 
 
  
  (1,8: 32) (4: 48) 

   (2,3,6,7: 66) 

CLF(MRA) 

CLF(AC) 

 4                     6                       8 

 4 

   6 

 8 

  . 
             Classes 5,8,10  (80) 

             Classes 4,7 (72) 

  . 

 Class 1 (8)   . 

                               
Classes 2,6  (26)    Class  9 (16)   . 

  . 
  . 

  Class  3 (16) 

CLF(CRA) 

CLF(AC) 

 4                     6                      8 

 4 

   6 

  8 

  . 
             Classes 5,9,10  (72) 

      Classes 2,3,6,7 (66) 
                   Class 4 (48)   . 

 Class   1 (8) 

  . 
   Class  8 (24)   . 

  . 
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4 MANY-VALUED MRA 

    This section presents MRA for many-valued functions and relations. 
 
4.1 General Approach 
 

    Data are in general many-valued. Consequently, if MRA can decompose relations between many-valued 

variables it can have practical applications in machine learning and data mining. Many-valued MRA (Al-

Rabadi 2001; Al-Rabadi 2002; Al-Rabadi and Zwick 2002) can be implemented with two equivalent 

algorithms: intersection-based and union-based. Both algorithms begin with the same two steps: (1) 

partition the many-valued truth table into sub-tables, each contain only single function value (e.g., T = T0 ∪  

T1 ∪  T2 for the corresponding output values O0, O1, and O2 respectively), and (2) perform CRA on all sub-

tables and obtain every Mj decomposition of Tj. Figure 15 illustrates the general pre-processing procedure 

for the two many-valued MRA algorithms, which will be explained in more detail below. 

                                                                         Original 3-valued table 
   0 
   1 
   2 

                                                
                                                              Step (1): Separate one-valued tables 

  0   1   2 

 
                                                     Step (2): CRA decompositions of all one-valued tables 
 
                                                                Step (3): Application of MRA algorithm 
                                                
 
 
                                                                      Intersection             Union 
                                                                     Algorithm                Algorithm 
 
                                                Figure 15. Steps for many-valued MRA. 
 

    For an “n”-valued completely specified function one needs (n-1) values to define the function. We thus 

do all n decompositions and use for our MRA model the (n-1) simplest of these. For example, obtain the 

simplest lossless MRA decomposition for value “0” of the function (denoted as the 0-MRA 

decomposition), for value “1” (1-MRA decomposition), and for value “2” (2-MRA decomposition). By 

selecting the simplest two models from these 0-MRA, 1-MRA, and 2-MRA decompositions, one can 

generate the complete function. 

    In the intersection method, first the CRA decompositions (Mj) are expanded to include the full set of 

variable and function values, and these “expanded” decompositions are then intersected to yield the original 

table. 
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    In the union method the reconstructed function (T*) is the union of all the sub-table decompositions, 

�
1

0

* −

=
⊗=

n

j
OMT jj , where ⊗  is the set-theoretic Cartesian product. The union procedure can also be done 

with (n-1) decompositions. 

4.2 Complete Examples 
 
    The following are two examples which illustrate many-valued Modified Reconstructability Analysis of 

3-valued functions. In the first example MRA can decompose the function for only two values, and one has 

no choice but to use both in the MRA model. In the second example, the function is decomposable for all 

three of its values, and the two simplest decompositions are chosen to define the model. 

    In discussing the second example, we show that this approach is generalizable to set-theoretic relations, 

in addition to mappings. 

Example 8. We will generate the MRA decomposition for the ternary function specified by the following 

ternary map: 

x1x2                     x3 0 1 2 

00 0 0 0 
01 1 1 0 
02 1 1 1 
10 0 0 2 
11 0 0 2 
12 1 1 1 
20 0 2 0 
21 1 1 0 
22 2 2 0         

                                                                                                                                       F 
 
The following is the intersection algorithm for many-valued MRA for the ternary function in Example 8. 
 
Step 1: decompose the ternary chart of the function into three separate tables each for a single function 

value. This will produce the following three sub-tables. 
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              D0                 D1                D2 
 
Step 2: Perform CRA for each sub-table. 
 
Step 2a: The simplest error-free 0-MRA decomposition is the original “0”-subtable itself since it is not 

decomposable. 

Step 2b: 1-MRA decomposition of D1 is as follows: 
 
                        Table 1  Table 2 
                          X1 X2  :   X2X3 

                                         0    1      1   0 
                           0    2      1   1 
                           1    2      2   0 
                           2    1      2   1 
                                         2   2 
                             D11     D12 
 
Step 2c: The 2-MRA decomposition of D2 is as follows: 
 
                       Table 3   Table 4 
                          X1 X3  :  X2X3 

                                         1    2      0   2 
                           2    1      1   2 
                           2    0      0   1 
                                         2   0 
                                         2   1 
                          D21         D22 
 
THE INTERSECTION ALGORITHM 
 
Step 3.1: Select the two simplest error-free decomposed models; these are 1-MRA and 2-MRA 

decompositions. MRA thus gives the decomposition model of D11:D12:D21:D22 from which the original 

function can be reconstructed as follows. 

Value “0”     Value “1”      Value “2” 
 

102 
112 
201 
220 
221 

000 
001 
002 
012 
100 
101 
110 
111 
200 
202 
212 
222 

010 
011 
020 
021 
022 
120 
121 
122 
210 
211 
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Step 3.2: Note that, for Tables 1 and 2, the MRA decomposition is for the value “1” of the logic function. 

Therefore, the existence of the tuples in the decomposed model implies that the function has value “1” for 

those tuples, and the non-existence of the tuples in the decomposed model implies that the function does 

not have value “1” but “0” or “2” for the non-appearing tuples. This is shown in Tables 1’ and 2’, 

respectively. Similarly, for Tables 3 and 4, for the value “2”. The existence of the tuples in the decomposed 

model implies that the function has value “2” for those tuples, and the non-existence of the tuples in the 

decomposed model implies that the function does not have value “2” but “0” or “1” for the non-appearing 

tuples. This is shown in Tables 3’ and 4’, respectively. 

Table 1’    Table 2’            Table 3’     Table 4’ 
X1 X2 F1  :  X2 X3 F2           X1 X3 F3  :  X2 X3 F4 
0  0  0,2      0  0  0,2             0  0  0,1     0  0  0,1 
0  1  1,0,2   0  1  0,2             0  1  0,1     0  1  2,0,1 
0  2  1,0,2   0  2  0,2             0  2  0,1     0  2  2,0,1 
1  0  0,2      1  0  1,0,2          1  0  0,1     1  0  0,1 
1  1  0,2      1  1  1,0,2          1  1  0,1     1  1  0,1 
1  2  1,0,2   1  2  0,2             1  2  2,0,1  1  2  2,0,1 
2  0  0,2      2  0  1,0,2          2  0  2,0,1  2  0  2,0,1 
2  1  1,0,2   2  1  1,0,2          2  1  2,0,1  2  1  2,0,1 
2  2  0,2      2  2  1,0,2          2  2  0,1     2  2  0,1 
 
    In Tables 1’ and 2’ (i.e., the decomposition for value “1” of the function), the existence of value “1” (of 

sub-relations F1 and F2) means that the value “1” appeared in the original non-decomposed function for the 

corresponding tuples that appear in each table, but does not imply that the values “0” or “2” (of sub-

relations F1 and F2) did not exist in the original non-decomposed function for the same tuples. Therefore 

“0” and “2” are added to “1” as allowed values. In the remaining tuples, however, only “0” and “2” are 

allowed since the value “1” did not occur. Similarly, in Tables 3’ and 4’, the existence of the value “2” (of 

sub-relations F3 and F4) means that the value “2” appeared in the original non-decomposed function for the 

corresponding tuples that appear in each table, but does not imply that values “0” or “1” did not exist in the 

original non-decomposed function for the same tuples. Therefore “0” and “1” are added to “2” as allowed 

values. In the remaining tuples, however, only “0” and “1” are allowed since the value “2” did not occur. 

Set-theoretically, obtaining tables 1’, 2’, 3’, and 4’ from tables 1, 2, 3, and 4 is described as follows: 

Table 1’: (D11⊗ (0,1,2))∪ (D11′⊗ (0,2)) 
Table 2’: (D12⊗ (0,1,2))∪ (D12′⊗ (0,2)) 
Table 3’: (D21⊗ (0,1,2))∪ (D21′⊗ (0,1)) 
Table 4’: (D22⊗ (0,1,2))∪ (D22′⊗ (0,1)) 
 
where ′ here means complement of a set. 
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Step 3.3: Tables 1’, 2’, 3’, and 4’ are used to obtain the block diagram in Figure 16, where the following 

set-theoretic Equations govern the outputs of the levels in the circuit shown in the figure: 

F = F5 ∩ F6 
F5 = F1 ∩ F2 
F6 = F3 ∩ F4 
 
where F1 is given by Table 1’, F2 by Table 2’, F3 by Table 3’, and F4 by Table 4’, respectively.  
 

 

 
 
 
    The intermediate sub-functions, F5 and F6 are shown in the following maps, respectively. 
 
x1       x2x3    00 01 02 10 11 12 20 21 22 

0 0,2 0,2 0,2 1 1 0,2 1 1 1 
1 0,2 0,2 0,2 0,2 0,2 0,2 1 1 1 
2 0,2 0,2 0,2 1 1 0,2 0,2 0,2 0,2 

                                                                                                                                                         F5 = F1 ∩ F2 
 
x1       x2x3    00 01 02 10 11 12 20 21 22 

0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 
1 0,1 0,1 2 0,1 0,1 2 0,1 0,1 0,1 
2 0,1 2 0,1 0,1 0,1 0,1 2 2 0,1 

                                                                                                                                                         F6 = F3 ∩ F4 
    Note that in Figure 16 the intersection blocks in the second level and the intersection block at the third 

(output) level, are general and do not depend on the function being decomposed. Only the tables at the first 

level depend upon this function. 

x1 

x2 

x3 

x1 

x3 

x2 

∩ 

∩ 

∩

 Table 1’ 

 Table 2’ 

 Table 3’ 

 Table 4’ 

F1 

F2 

F3 

F4 

F5 

F6 

F 

Figure 16. The decomposed structure resulting from the many-valued MRA decomposition. 
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THE UNION ALGORITHM 

Steps 1 and 2 are the same as in the intersection algorithm. 
 
Step 3.1: Using the decomposition model D11:D12:D21:D22 obtain D1 and D2 by standard CRA as 

follows: 

D1 = (D11⊗ x3)∩(D12⊗ x1) 
D2 = (D21⊗ x2)∩(D22⊗ x1) 
D0 = (D1∪ D2)′ 
 
where D1 is the decomposition for function value “1”, D2 for function value “2”, and x1, x2, and x3 ∈  

{0,1,2}. 

Step 3.2: Perform the set-theoretic operations to obtain the total function from the decomposed sub-

functions. 

x1x2x3F = (D1⊗ 1)∪ (D2⊗ 2)∪ ((D1∪ D2)′⊗ (1∪ 2)′) 
               = (D1⊗ 1)∪ (D2⊗ 2)∪ ((D1∪ D2)′⊗ 0) 
 
Alternatively, one can use all three decompositions: 
 
x1x2x3F = (D0⊗ 0)∪ (D1⊗ 1)∪ (D2⊗ 2) 
 
    The function value of (x1,x2,x3) is determined by the block diagram of Figure 17, where G performs the 

following operation: 

F = 0 if (x1x2x3) ∈  D0 
F = 1 if (x1x2x3) ∈  D1 
F = 2 if (x1x2x3) ∈  D2 

 
                              Figure 17. Block diagram for the union algorithm of MRA of Example 8. 
 
    Note that the logic function in Example 8 is non-decomposable using CRA but decomposable using 

MRA. We now consider an example where CRA does decompose, and also where MRA decomposes for 

all three values. 

Example 9. Let us generate the MRA decomposition for the ternary function specified by the following 

ternary map: 

x1 

x2 

x3 

 G            F 
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x1x2                     x3 0 1 2 

00 0 0 0 
01 1 1 1 
02 1 1 1 
10 0 0 2 
11 0 0 2 
12 1 1 1 
20 0 2 0 
21 1 1 1 
22 2 2 0         

Utilizing the intersection-based algorithm, one obtains the following results for MRA for the ternary 

function in Example 9. 

Step 1: decompose the ternary chart of the function into three separate tables each for a single function 

value. This will produce the following three sub-tables. 

         Value “0”     Value “1”     Value “2” 
 
 
 
 
 
 
 
 
 
 
 
 
               D0                D1                 D2 
 
Step 2: Perform CRA for each sub-table.  
 
Step 2a: The 0-MRA decomposition of D0 is as follows: 
                Table 1   Table 2   Table 3 
                    X1X2    :   X2X3  :  X1X3 

                      0 0         0 0        0 0 
                      1 0         0 1        0 1 
                      1 1         0 2        0 2 
                      2 0         1 0        1 0 
                      2 2         1 1        1 1 
                                    2 2        2 0 
                                                 2 2 
                      D01      D02      D03 
 
Step 2b: The 1-MRA decomposition of D1 is as follows: 

000 
001 
002 
100 
101 
110 
111 
200 
202 
222 

010 
011 
012 
020 
021 
022 
120 
121 
122 
210 
211 
212 

102 
112 
201 
220 
221 
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                       Table 4    Table 5 
                            X1 X2  :   X3 

                             0    1       0 
                             0    2       1  
                             1    2       2  
                             2    1                                                         
                              D11     D12 
 
Step 2c: The 2-MRA decomposition of D2 is as follows: 
                       Table 6   Table 7 
                          X1 X3   :   X2X3 

                                        1    2       0   2 
                          2    1       1   2 
                          2    0       0   1 
                                         2   0 
                                         2   1 
                         D21         D22 
 
THE INTERSECTION ALGORITHM 
 
Step 3.1: Select the two simplest decomposed models, namely the 1-MRA and 2-MRA decompositions. 

These are at a lower level in the lattice of structures than 0-MRA. 

Step 3.2: Analogously to Example 8, one obtains the following expanded tables: 
 

      Table 4’    Table 5’     Table 6’    Table 7’ 
       X1 X2 F1  :  X3 F2        X1 X3 F3  :  X2 X3 F4 
        0  0  0,2      0  1,0,2    0  0  0,1      0  0  0,1 
        0  1  1,0,2   1  1,0,2    0  1  0,1      0  1  2,0,1 
        0  2  1,0,2   2  1,0,2    0  2  0,1      0  2  2,0,1 
        1  0  0,2                      1  0  0,1      1  0  0,1 
        1  1  0,2                      1  1  0,1      1  1  0,1 
        1  2  1,0,2                   1  2  2,0,1   1  2  2,0,1 
        2  0  0,2                      2  0  2,0,1   2  0  2,0,1 
        2  1  1,0,2                   2  1  2,0,1   2  1  2,0,1 
        2  2  0,2                      2  2  0,1      2  2  0,1 
 
    Set-theoretically, obtaining tables 4’, 5’, 6’, and 7’ from tables 4, 5, 6, and 7 is described as follows: 
 

Table 4’: (D11⊗ (0,1,2))∪ (D11’⊗ (0,2)) 
Table 5’: (D12⊗ (0,1,2))∪ (D12’⊗ (0,2)) 
Table 6’: (D21⊗ (0,1,2))∪ (D21’⊗ (0,1)) 
Table 7’: (D22⊗ (0,1,2))∪ (D22’⊗ (0,1)) 
 
Step 3.3: Tables 4’, 5’, 6’, and 7’ are used to obtain the block diagram in Figure 18, where the following 

set-theoretic Equations govern the outputs of the levels in the circuit shown in the figure: 

F = F5 ∩ F6 
F5 = F1 ∩ F2 
F6 = F3 ∩ F4 
 
where F1 is given by Table 4’, F2 by Table 5’, F3 by Table 6’, and F4 by Table 7’, respectively. 
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    The intermediate sub-functions, F5 and F6 are shown in the following maps, respectively. 
 
x1       x2x3    00 01 02 10 11 12 20 21 22 

0 0,2 0,2 0,2 1 1 1 1 1 1 
1 0,2 0,2 0,2 0,2 0,2 0,2 1 1 1 
2 0,2 0,2 0,2 1 1 1 0,2 0,2 0,2 

                                                                                                                                                         F5 = F1 ∩ F2 
 
x1       x2x3    00 01 02 10 11 12 20 21 22 

0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 
1 0,1 0,1 2 0,1 0,1 2 0,1 0,1 0,1 
2 0,1 2 0,1 0,1 0,1 0,1 2 2 0,1 

                                                                                                                                                         F6 = F3 ∩ F4 
 
THE UNION ALGORITHM 
 
Steps 1 and 2 are the same as in the intersection algorithm. 
 
Step 3.1: Using the decomposition model D01:D02:D11:D12:D21:D22 obtain D0, D1, and D2 by standard 

methods as follows: 

D0 = (D01⊗ x3)∩(D02⊗ x1)∩(D03⊗ x2) 
D1 = (D11⊗ x3)∩(D12⊗ x1x2) 
D2 = (D21⊗ x2)∩(D22⊗ x1) 
 
where D0 is the decomposition for function value “0”, D1 is for function value “1”, D2 for function value 

“2”, and x1, x2, and x3 ∈  {0,1,2}. 

x1 

x2 

x3 

x1 

x3 

x2 

∩ 

∩ 

∩

 Table 4’ 

 Table 5’ 

 Table 6’ 

 Table 7’ 

F1 

F2 

F3 

F4 

F5 

F6 

F 

Figure 18. The decomposed structure resulting from the many-valued MRA decomposition. 
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Step 3.2: Perform the set-theoretic operations to obtain the total function from the decomposed sub-

functions. This can be done using only two of the three decompositions, as in Step (3.2) of the union 

algorithm in Example 8, or alternatively, one can use all three decompositions as follows: 

x1x2x3F = (D0⊗ 0)∪ (D1⊗ 1)∪ (D2⊗ 2) 
 
    The function value of (x1,x2,x3) is determined by the block diagram of Figure 19, where G performs the 

following operation: 

F = 0 if (x1x2x3) ∈  D0 
F = 1 if (x1x2x3) ∈  D1 
F = 2 if (x1x2x3) ∈  D2 
 

Figure 19. Block diagram for the union algorithm of MRA of Example 9. 
 
    The logic function in Example 9 is decomposable using CRA with the lossless CRA model 

x1x2:x2x3:x1x3. Consequently, unlike the previous example, both many-valued MRA and CRA decompose  

losslessly. Since both CRA and MRA decompose this function, we would like to be able to compare the 

complexities of the two decompositions. The complexity measure reported in (Al-Rabadi et al. 2002) could 

be used, but needs to be extended to many-valued functions. 

    From the previous discussion, it follows that the extension of many-valued MRA from functions to 

relations is trivial. One just performs the union algorithm using all n decompositions, e.g., for three values 

(D0⊗ 0)∪ (D1⊗ 1)∪ (D2⊗ 2). 

5 CONCLUSION 
 
    A novel RA-based decomposition is introduced; the Modified Reconstructability Analysis (MRA). It is 

shown that in 4 out of 10 NPN classes while 3-variable NPN-classified Boolean functions are not 

decomposable using the Conventional Reconstructibility Analysis (CRA) decomposition, they are 

decomposable using the Modified Reconstructibility Analysis (MRA) decomposition. Also, it is shown that 

whenever a decomposition of 3-variable NPN-classified Boolean functions exists in both MRA and CRA, 

MRA yields simpler or equal complexity decomposition. While the disjoint AC decomposition and MRA 

decompose some but not all NPN-classes, MRA decomposes more classes and consequently more Boolean 

functions than AC. The many-valued MRA decomposition is also presented. Since data are often many-

x1 

x2 

x3 

 G            F 
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valued, future work will apply many-valued MRA to real-life data for machine learning, data mining, and 

data analysis. Future work will also include the investigation of the MRA decomposition of fuzzy 

functions. The use of gates other than the logical AND, and OR gates (e.g., XOR, NAND) at the final stage 

of RA-based decompositions to reduce the complexities of the decomposed structures will also be 

investigated. 
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