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EXECUTIVE SUMMARY 

Since the 1990s, federal legislation and local and state politics have changed the landscape for 
metropolitan planning of land use and transportation. There is an urgent need for improved 
models that address the interdependencies between land use and transportation, and considerable 
new work is underway to develop such models by Metropolitan Planning Organizations (MPOs). 
These models and planning practices to integrate land use into the process, however, require the 
integration of massive amounts of land use and transportation data that is messy and incomplete.  
There have been considerable advances in the treatment of such data problems, drawing on data 
mining and machine-learning techniques to address issues in various domains.  To date, 
however, little systematic effort has applied these technological advances to the problem domain 
of land use and transportation data.  Experience suggests that as much as 70% of the total effort 
in developing integrated land use and transportation models is directly or indirectly associated 
with data development, integration and cleaning, yet there is remarkably little systematic 
research focused on the development of reusable methods and tools to support this problem 
domain.   

This report presents the results of a data integration project aiming to address this challenge. It 
focuses on bringing interdisciplinary methods to make the best use of available data in land use 
and transportation. Utilizing statistics and machine-learning techniques, we develop reusable 
tools that will create a harmonized and coherent land use database from various public and 
private sources.  

This project develops a continuous approach and reusable tools for data integration. As data 
sources increasingly update more frequently and even in real time, and policy decisions demand 
timely data and more rigorous analysis, data collection and updating increasingly become a 
continuous process. The traditional practice adopted by most planning agencies updates datasets 
as a one-off effort at long intervals, and is very costly and increasingly challenged. We pay 
special attention to preserving temporal dimension of the data and monitoring data quality 
through automated data-quality indicators following continuous software testing procedures, so 
that the quality information is available at all times as data sources are being integrated on a 
continuous basis. In addition, the historical dimension also provides useful information to better 
clean data and enable an understanding of historic trends. 

These tools will be reusable for different time periods and for different regions. We report the 
experiences of testing and applying the approach and tools to our test metropolitan regions, 
including the Portland, OR, and San Francisco Bay Area.  

The data structure, tools for data processing and quality monitoring, and documentation are 
available to the public and can be used by cities, counties, metropolitan planning agencies, state 
agencies, universities or anyone else needing to develop a usable database for use in integrated 
planning and modeling.  
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1.0 INTRODUCTION 

Since the 1990s, federal legislation and local and state politics have changed the landscape for 
metropolitan planning of land use and transportation, and Metropolitan Planning Organizations 
(MPOs) are scrambling to react. There is an urgent need for improved models that address the 
interdependencies between land use and transportation at state and regional levels, and 
considerable new work is underway to develop such models (See, for example, ULTRANS ITS 
UC Davis and HBA Specto Incorporated, 2011; Waddell et al., 2010; Weidner et al., 2009). 
These models and planning practices to integrate land use and transportation, however, require 
the integration of massive amounts of land use and socio-economic data that is messy and 
incomplete. There is a suggestion that as much as 70% of the total effort in developing integrated 
land use and transportation models is directly or indirectly associated with data development, 
integration and cleaning (Waddell et al., 2005). 

Even with such excruciating efforts, current practice of data development in most planning 
agencies is largely ad-hoc and un-reusable. This practice is increasingly challenged, as data 
sources increasingly update more frequently (for example, the Household and Population Census 
moved from a decennial survey to the annual rolling American Community Survey) and even 
real time (such as traffic counts data). In addition, the quality issues coming with the new data 
sources also make the agencies scramble to cope. 

In recent decades, there have been considerable advances in techniques in computer science and 
statistics, such as Bayesian statistics, data mining and machine-learning techniques, which have 
been applied to address such data problems in a wide range of domains. These domains are as 
varied as cleaning of web data, detecting fraud in credit data, reconciling medical records, 
mining the vast streams of email and web content for targeted advertising, and many others (See, 
for example, Hu et al., 2012). To date, most attempts to tackle the problem in the modeling 
communities (Abraham et al., 2009, 2005; for example, Waddell et al., 2005) are tied to a 
specific model system and a chosen study area. Few systematic efforts have applied these 
technological advances to produce re-usable tools in the problem domain of land use and 
transportation data. 

The data integration project aims to address the challenging data problems by leveraging 
interdisciplinary techniques to develop reusable methods and tools. Specifically, we focus on 
making the data preparation process for modeling more systematic and reproducible with a 
harmonized data scheme and re-usable tools. In light of the challenges faced by the modeling 
communities, we envision data development as a continuous process instead of an ad-hoc, one-
off one. Instead of solely focusing on constructing base-year data sets, we pay equal attention to 
preserve historical data as well as current and future data as they become available. Bringing 
these data in equal footing not only enables new possibilities for data analysis and modeling, but 
also creates new opportunity for data cleaning and imputation. To manage the challenges of a 
massive amount of data that is constantly changing, we propose a data-quality monitoring 
framework with indicators. The ultimate goal is to enable the best use of available data to inform 
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policy making and facilitate development of integrated land use and travel demand models at 
various geographical scales.  

This chapter is organized as follows: The next section describes the background of challenging 
data issues and the current practice of data development for land use and transportation 
modeling. The Methodology section then proposes an alternative approach to the data 
development process.  

1.1 BACKGROUND 

Almost every integrated land use and transportation model system, in particular the land use 
model component of such systems, has its own information requirements, which are usually 
extracted and processed from diverse data sources. Table 1.1 shows an incomplete list of the 
main data sets, their sources and updated frequencies.  

Table 1.1 Common Data Sets 
Data Set Main Attributes Data Sources Update Frequency 
Parcels Lot size, property 

value, units, building 
sq ft, year built, land 
use type, geometries 

County Assessors Annually/varies 

Buildings Units, building sq ft, 
stories, footprint 

County Assessors, 
LIDAR 

Varies 

Census Geographies Block group, Census 
tract, PUMA 

Census Bureau Every decade 

Households and 
Persons 

Income and housing 
characteristics (age, 
relation, sex, 
race/ethnicity, 
education) 

Census Bureau Annually 

Businesses Employment, NAICS 
code, location/address 

Census Bureau, BLS, 
BEA, private sources 

Quarterly 

Political Boundaries Geometries Various jurisdictions Infrequently 
Land Use Plans (and 
other land use controls 
and environmental 
protection areas) 

Zoning code 
(restrictions, fees and 
subsidies, geometries) 

Municipal, county, 
regional, and state 
agencies 

Annually/varies 

Real Estate 
Transactions 

Property 
identification/address, 
sale/rental price, 
sale/rental date 

County Assessors, 
private sources 

Varies 

Traffic Counts Screen line location, 
time and duration, 
counts by mode 

DOT, MPO, municipality Varies 
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Travel and Activity 
Survey 

Household and person 
attributes, travel diary, 
activities, vehicle fleet 

DOT and MPO Annually for NHTS; 
Varies for local data 

 

Table 1.1 Common Data Sets (Continued) 
Transportation 
Networks 

Classification, lanes, 
speed, direction, 
geometries 

DOT, MPO Varies 

Traffic Analysis Zones Geometries, other 
attributes aggregated to 
TAZ 

DOT, MPO Infrequently 

 

Because of the diverse sources of data and extensive attributes used in integrated land use and 
transportation models, each region developing such models has its own unique data issues, such 
as missing data sets and values, questionable data quality, etc. For regions facing such 
challenges, the seemingly least-cost path of developing data for a model application is to process, 
impute and transform the available data directly into inputs required by a specific chosen 
modeling platform. This process is usually ad-hoc, as it depends on the data needs of the 
platform, the data available at the time for the region, and particular problems presented in the 
data sets. Because of asynchronous update cycles, different data issues occurring at different data 
snapshots, and data needs for the model system keeping evolving, the data development process 
is also usually a one-off – it can hardly be re-used for historical data or new crops of data. 

Figure 1.1 illustrates the ad-hoc approach to data development, in which an individual data set is 
directly processed for specific models. It may be the fastest and least costly to get the selected 
models up and running in the short term, but it has a few shortcomings, including:  

• The process and resulting data are tied to the chosen modeling platform and don't lend 
themselves well to other model platforms or extra analysis outside the chosen platform.  

• Information from different data sources may contradict each other, which causes an issue 
in model outcomes; there are lost opportunities to utilize the relationship between data 
sets to create consistent inputs.  

• Data processing efforts are not re-usable, as most changes; however small they may be, 
the raw data or the model inputs would require changing the data development process. 
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Figure 1.1 Ad-hoc Approach to Data Development 

In the practice of model development, the ad-hoc approach is the most frequently used approach. 
The data development for the UrbanSim application for the Puget Sound region (Waddell et al., 
2005) exemplifies such an approach, in which data from original sources are processed into data 
tables for UrbanSim. Abraham et al (2005) tested three rule-based approaches to synthesize real-
estate inventory data for modeling applications according to data available in three different 
regions. Each approach is tied to the specific model requirements and geographical resolution 
(TAZ, parcel, or gridcell) specified for one of the regions. While these documents and algorithms 
are useful hints to other regions adopting these models, each region would have to re-create its 
own process and tools to prepare data, not to mention if it wants to switch modeling platforms or 
compare two different platforms. 

1.2 METHODOLOGY  

Land use and transportation modeling is very data intensive, requiring data reflecting various 
aspects of land use and transportation systems. The data requirement understandably varies by 
model system, but even for the same model system the data required could evolve over time as 
the model system evolves. To shift data preparation for land use and transportation models from 
an ever ad-hoc effort to a re-usable one, we propose these principles as the methodology for data 
development: 
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• Reproducible: All changes to the data are done through documented scripts, ideally 
through literate programming (Knuth, 1984) and with necessary version control and 
provenance. The end data should be able to be reproduced from raw data by re-running 
these scripts if necessary. 

• Re-usable: Open sourced and adaptable scripts are preferred to non-repeatable data 
editing (e.g., with Excel); Save data in non-proprietary format (e.g., Excel format). 

• Consistent and harmonized: A harmonized data warehouse (WH) as an intermediary 
between data processing and modeling inputs so that the processed and cleaned data is 
not tied to a specific model system, but can be transformed to feed various model systems 
as needed (Figure 1.2). Such a model-system, agnostic data warehouse would isolate the 
region-specific data issues and system-specific data needs and requirements from 
processes and algorithms that are generic to all regions and model systems. 

• Constant quality monitoring: Quality of the data should be constantly monitored with 
data-quality indicators as the raw data is being loaded and processed. This provides some 
assurance of the quality of the data used in the model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data WH – Data Warehouse 
Figure 2.2 Proposed Approach of Data Development 

Following these principles, we propose a data development work flow (Figure 1.3). Each step in 
the work flow is discussed in turn. 

1.2.1 Extract, Transform and Load (ETL) 

Originated in the data management and business information field, the Extract, Transform and 
Load (ETL), or Extract, Load and Transform (ELT), pattern is able to isolate variations in 
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aspects of data sources (for example, location, format and table structure), and required 
processing from later steps of data management. Such patterns implemented in high-level 
scripting language such as R and Python provides a versatile infrastructure to read and process 
data from various sources quickly without the need to alter other steps, even when data sources 
change. 

The Extract step extracts data from outside sources. As shown in Table 1.1, these sources can be 
very diverse, and this step can thus vary from downloading datasets from websites and unzipping 
compressed files to scraping information from unstructured sources. The Transform step then 
transforms the extracted data so that it conforms to the defined data schemes. The final Load step 
loads the transformed data into the end target, a data warehouse in our case. 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

Data WH – Data Warehouse; DQ – Data Quality; DQI – Data Quality Indicators 
Figure 1.3 Data Development Work Flow 

The difference between ETL and ELT is largely a matter of preference, in particular, of whether 
it is preferable to have the raw information extracted in the E step stored in the target data 
storage (Data Warehouse in our case). If it is, then an ELT pattern is preferred; otherwise an ETL 
one is. Both patterns achieve the goal of isolating diverse data sources from later processing 
equally well. 

A special type of data that is commonly used in transportation and land use modeling is 
geometry (GIS) data. The geometry data is most frequently processed with ArcGIS, and the 
process is hardly reproducible or re-usable. A more reproducible and re-usable alternative we 
propose is PostGIS, a spatial Database Management System (DBMS) based on open sourced 
Postgresql (Obe and Hsu, 2011). Not only can geometry data like shape files be stored in 
PostGIS along with attribute data; it also provides a large set of spatial operations that satisfy 
most data processing needs with reproducible and reusable scripts. 
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1.2.2 Consistent and Harmonized Data Schemes 

Instead of molding data into the requirement of a specific model system, we propose to work 
towards a harmonized data warehouse with pre-defined table schemes, including commonly used 
data tables. The input tables for a specific model can then be generated from the harmonized data 
warehouse with translator scripts. Although this seems to be a detour from directly preparing 
input tables from raw data for the model system, we believe this approach avoids the pitfall of 
the current direct but ad-hoc practice. 

Two successful data projects have adopted the harmonized data schemes to facilitate data use 
from diverse sources: the Metropolitan Travel Survey Archive project (Levinson, 2004; 
Levinson and Deshpande, 2006, 2003) and the Integrated Public Use Micro-data Series (IPUMS) 
project (Ruggles et al., 2010). The Metropolitan Travel Survey Archive project archives 
historical travel surveys done at metropolitan areas across the U.S., while the IPUMS project 
collects available historical micro data from Census counts around the world and harmonizes 
them with uniform code books to facilitate use of the data for research. As far as we know, there 
is no research so far aiming to develop tools and procedures to create consistent and harmonized 
land use and socio-economic data.  

One of the advantages of going through harmonized data schemes is that it makes it easy to 
monitor data quality and offer opportunities to improve consistency between data sets, arguably 
one of hardest issues in developing data for integrated modeling. 

 
1.2.3 Data-quality Monitoring 

Once we have harmonized data schemes, the data-quality monitoring can then be automated 
following continuous software testing procedures so that the data quality from various sources is 
constantly monitored. We envision constant data-quality monitoring with data-quality indicators, 
which provides information of the quality of the harmonized data warehouse and informs the 
data imputation and synthesis process. In addition to data-quality dimensions described in the 
Data-quality Indicators chapter, data-quality indicators can also be adapted to identify outliers. 
Singleton (2013) recently reviewed a series of indicators for outlier identification and applied a 
few of them to clean walk trips in travel survey data. Such indicators can be implemented in the 
monitoring framework, both for quality assurance and for assisting data cleaning and imputation.  

Besides quantitative assessment of data quality with indicators, interactive visualization and 
diagnostic tools such as the OpenRefine software and linked graphs can assist visual inspection 
of individual data observation for potential outlier detection, especially for data sets that are 
linked to each other by associations.  

1.2.4 Data Imputation and Synthesis  

More often than not, data loaded to the warehouse may need to go through an iterative process of 
cleaning, imputation and synthesis, although the extent of the imputation process depends on 
whether the data-quality monitoring step indicates an acceptable quality. Data cleaning removes 
invalid and inaccurate values identified by data-quality indicators or via interactive data 
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inspection, while data imputation fills in incomplete observations and missing values. In the case 
where there are more extensive gaps in the data, data synthesis may be needed to fill these gaps.  

Data cleaning, imputation and synthesis are commonly done through undocumented manual 
programs and processes, such as Excel and text editing software, which creates issues including 
un-reproducible results and un-reusable process. We propose to do these processes with 
documented scripts, loosely following the ETL pattern. Documented scripts working with 
harmonized data schemes make it possible to re-use the data imputation and synthesis process 
across regions, even when each of them face different data issues. 

There has been an expanding list of methods for imputing and synthesizing land use and socio-
economic data that have been tried and proposed by modelers to tackle data issues. From the 
published literature, there are generally four types of imputation and synthesis methods: rule-
based approach, Iterative Proportional Fitting (IPF)-based approach, model-based approach, and 
machine-learning approach.  

The rule-based approach generally imputes data following a deterministic or heuristic rule, such 
as balancing demand and supply. Abraham et al (2005) provide examples of rule-based data 
imputation, in which the authors assign floor space to geography to meet pre-determined 
demand. IPF is the underlying algorithm for population synthesizers that are commonly used in 
transportation demand modeling (See Müller and Axhausen, 2011 for a recent review of popular 
population synthesizers). Abraham et al. (2009) applied IPF for synthesizing real-estate supply 
(built form). In a model-based approach, the data to be imputed or synthesized are outcomes of 
one or more models in the model platform. Since the data itself is from models, there is likely 
less inconsistency issues in data imputed with the model-based approach. Weidner et al (2007) 
uses PECAS to calibrate the base-year demand/supply of floor space; Wang, Waddell and 
Outwater (2011) applied the workplace choice model to synthesize data that is consistent with 
workers’ commute patterns. The machine-learning approach borrows algorithms from computer 
sciences. Waddell (2009) identifies two algorithms that are particularly promising for data 
cleaning and imputation: K-nearest neighbors and Support Vector Machine. A promising new 
approach proposed by Farooq et al (2013) using Markov-Chain Monte Carlo Bayesian 
Simulation for population synthesis; it has the advantage of being able to capture multi-
dimensional dependence among attributes. 

While there is now an expanding list of methodologies for data imputation, it is beyond the scope 
of this project to provide an exhaustive review of such methodologies. We instead focus on one 
promising approach – Multiple Imputation with Chained Equations (MICE)  – for data 
imputation. 

1.2.5 Data Transformation and Application 

Once the data in the data warehouse is of acceptable quality, the final step of the data 
development work flow is to transform it to the format required by the chosen model. The step 
may require recoding of variable values, aggregating or disaggregating attributes from joined 
tables, etc. Transform and Export scripts similar to those for the ETL step can be developed and 
applied for this step. 
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1.3 CHOICE OF SOFTWARE 

In our choice of software for implementing the data development process, we prefer software 
that is free and open source, which is more readily available to the public and more transparent. 
We also prefer command line tools and programming scripts to software with Graphic User 
Interface (GUI), as processes developed over GUIs are less re-producible or re-usable although  
they may have an easier learning curve. 

We eventually selected R as our main scripting language for implementing most of the processes 
in the proposed work flow. R is a free and open-source statistical programming language, which 
is widely used in statistical and computational research and practice. It has also gained wide use 
in the land use and transportation modeling community. There are now both land use and 
transportation models implemented in R by researchers and practitioners, such as MetroScope 
(Metro, 2009); LUDSR; GreenSTEP (Gregor, 2012); TravelR; and JEMnR. Another advantage 
of R is the thousands of packages made available by researchers that extend R to do various 
sophisticated analysis. 

We use PostgreSQL and PostGIS, its extension for geographical data support, as the backend for 
the data warehouse. Postgresql is a free and open source Object-Relational Database 
Management System (ORDBMS) that is one of the most popular and robust systems. 
PostgreSQL supports standard Structural Query Language (SQL) that provides functions for 
queries and data management. In addition, R can directly interact with PostgreSQL via DBI 
APIs. PostGIS adds supports for geographic objects to the PostgreSQL database. Similar to its 
commercial counterparts, such as Oracle Spatial and Graph and ArcSDE Geodatabase, PostGIS 
enables not only storing and retrieving geographic data into and from PostgreSQL databases, but 
also supports of basic spatial queries and operations. 

The report is organized as follows: Chapter 2.0 describes the Extract, Transform, and Load 
(ETL) process. Chapter 3.0 describes data-quality assurance and diagnoses, including data-
quality indicators and interactive inspection tools. Chapter 4.0 demonstrates the MICE tool for 
data imputation. Chapter 5.0 discusses a discrepancy analysis approach for revealing activity 
patterns in travel diaries data. Chapter 6.0 concludes the report and discusses topics for future 
research. Several appendices provide details of scripts and tools used in the report. 

 

2.0 EXTRACT, TRANSFORM AND LOAD (ETL) 

Extract, Transform and Load (ETL) is a process in data warehousing that: 

• Extracts data from varied data sources; 
• Transforms the data for storing it in a proper structure for querying and analysis; and 
• Loads the data into a data warehouse (DW). 
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In the business intelligence domain, the ETL process commonly integrates data coming from 
multiple applications or systems that may be managed and operated by different employees and 
on different hardware (than the data warehouse). Similarly, the data for land use and 
transportation modeling, in particular the land use data, comes from various sources that are 
arguably even more diverse than that in typical business intelligence (BI) application.  

Even though it requires working with diverse data sources, in general the ETL process is easy to 
standardize. There is software specifically implementing the ETL function. There is at least one 
existing R package, ETLUtils, which implements the ETL operations in R. For our purpose, it is 
possible to use the functions in standard R and a few packages for ETL operations. Appendix A-
1 exemplifies the ETL operation in R. In application, we will mix and match snippets of R code 
according to the situation and requirements, and combine them to create an ETL process for a 
particular data set.  

2.1 EXTRACT 

The first step of an ETL process involves extracting the data from sources. The land use and 
transportation data usually consolidate data from multiple sources, and each source may use a 
different data organization and/or format. Common data source formats include:  

• relational databases  
• dbf files 
• csv, tab, or other flat files 
• Excel spreadsheet 
• fixed format 
• SAS, SPSS or other statistical data archive 

In general, the goal of the extraction phase is to convert the source data into a single format 
appropriate for transformation processing. In our case, we will extract data from various sources 
into R data.frame, as almost all data sets for land use and transportation modeling can fit into the 
memory of a high-end desktop computer. If the data cannot fit into the memory, it is possible to 
use R package ff that handles files too large to read into the computer memory all at once. 

2.2 TRANSFORM 

The data transformation step applies a series of rules or functions to the data extracted from the 
source to the desired structure before loading into a data warehouse. In some cases, the data may 
not require any transformation at all. In other cases, one or more of the following transformations 
may be required: 

• Selecting a subset of columns to load: For example, ignore object id column in a dbf file; 
• Selecting only certain rows: For example, ignore all those records where a certain column 

is not present ( = null); 
• Recoding attribute values: For example, recode 1 for male and 2 for female to M for male 

and F for female; 
• Calculating a derived value: For example, population density = population / area; 
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• Joining data from multiple sources (e.g., lookup, merge);  
• Removing  duplicated data; 
• Aggregation: For example, summarizing multiple rows of data; 
• Disaggregation of repeating columns into a separate look-up table: For example, moving 

a series of addresses in one record into single addresses in a set of records in a linked 
address table; 

• Transposing or pivoting: For example, turning multiple columns into multiple rows or 
vice versa; and 

• Splitting a column into multiple columns: For example, converting a comma-separated 
list, specified as a string in one column, into individual values in different columns. 

An important function of data transformation is cleansing and validating data according to a set 
of rules before passing it on to the target. For example, it needs to verify that columns from two 
different sources are using the same data dictionary. These cases must be handled correctly or 
eventually lead to a number of data-quality issues. 

2.3 LOAD 

The load phase loads the data into a data warehouse. Our ideal is that new data in an historical 
form are appended to the data warehouses at regular intervals - for example, annually.  

As the load phase interacts with a database, the constraints defined in the database schema  — 
discussed in the next chapter — apply (e.g., uniqueness, referential integrity, mandatory fields), 
which also contribute to the overall data-quality performance of the ETL process. 

 

 

3.0 DATA-QUALITY ASSURANCE 

Despite being a prominent issue in many disciplines and with recent efforts for an integrated 
view of data quality (Devillers et al., 2007; Yang et al., 2013), data quality is difficult to define, 
as it is domain- and problem-specific (Pipino et al., 2002). Data quality is usually described with 
hyper-dimensions and the data-quality literature has generally identified these dimensions (Hsu, 
2014): 

• Completeness whether each observation in a data is complete row-wise, or whether any 
observation has missing values for certain columns. The completeness can be easily 
measured, for example, as the percentage of observations containing non-null values.  

• Accuracy whether the value recorded in the data reflects the true information of the 
object represented by the observation. For example, whether a household reportedly 
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having 10 vehicles does, in fact, have that many. Usually external data is required to 
cross check the information before an accuracy dimension can be assessed. 

• Validity whether the data value is reasonable in terms of magnitude and units. For 
example, a building cannot have a character as a number of floors or 99 floors if the data 
is not for cities with skyscrapers. Validity is a weaker and easily measured form of 
accuracy. 

• Consistency whether recorded information in one data set is consistent with relevant 
information from another data set. For example, the x, y coordinates of a household’s 
residence location recorded by a GPS may be inconsistent with a misspelled street 
address. 

 
The data-quality indicators or metrics are quantitative measurement of data quality on one or 
more of these dimensions. They provide a gauge of the quality of individual data sets and 
consistency between different data sets.  
 
Hsu (2014) suggests a series of operations for computing data-quality indicators. We adopted 
three of them for our data-quality indicators, namely internal comparisons, partitioning and 
external comparisons (Figure 4.1). Internal comparisons examine the internal consistency 
between columns of a data set; partitioning contrasts different subgroups (n1, n2, …) in a data 
set, while external comparisons compare information from one data set with exogenous 
information (p2).  
 
We adopted his methodology and demonstrate some of the indicators in the next section. The 
measurement of completeness and validity is straightforward, while accuracy and consistency 
have multiple potential metrics. We put more focus on how accuracy and consistency changes 
over time (annually) and over geographical scale (e.g., parcel, block group, tract, municipality, 
county, etc). 

 
p1 are columns of a dataset, while  p2 are columns in an external dataset, n1-n5 are subgroups of dataset.  Source: 
(Hsu, 2014) 

Figure 3.1. Three Strategies for Deriving DQ indicators 

(a)
 

(b)
 

(c)
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3.1 DQIS VS. INTERACTIVE EXPLORATION 

The DQI usage should also follow the re-usable principle. The code snippet below demonstrates 
definition of DQIs functions in R that are re-usable across attributes, data sets or study areas. The 
code defines functions for Standardized Root Mean Square Error (SRMSE) and R2 that are 
useful for internal comparison and external validation. Appendix A-2 showcases an application 
of the DQI functions on housing units between data from the American Community Survey and 
Metro’s Regional Land Information System (RLIS)  

##R code defining DQI functions 
rmse <- function(x=x, y=y) sqrt(mean((x-y)^2)) 
r2 <- function(x=x, y=y, ...) {summary(lm(y~x,...))$r.squared} 
intercept <- function(x=x, y=y, ...) 
                     {coef(lm(y~x,...))["(Intercept)"]} 
slope <- function(x=x, y=y, ...) {coef(lm(y~x,...))["x"]} 
 
##DQI example 
require(plyr) 
require(data.table) 
units <- read.table("housing_units.csv", sep=",", header=T) 
units.dt <- data.table(units, key = "Year") 
 
dqi <- ddply(units.dt, .(Year), summarise,  
      mfh.rmse=rmse(x=RLIS_MFH, y=ACS_MFH), 
      mfh.r2=r2(x=RLIS_MFH, y=ACS_MFH), 
      mfh.intercept=intercept(x=RLIS_MFH, y=ACS_MFH), 
      mfh.slope=slope(x=RLIS_MFH, y=ACS_MFH) 
      ) 
print(dqi) 

In addition to quantitative DQIs intended for automatically monitoring data quality, interactive 
tools are necessary to assist the assessment of DQ and potentially fix data issues. Two examples 
of such tools are OpenRefine and CRANVAS. OpenRefine (http://openrefine.org/) is an open 
source tool for data exploration, cleaning and transformation. It is particularly well suited for 
identifying and processing invalid values. OpenRefine demos and tutorials are readily available 
online.  

CRANVAS provides a linked graph function and is helpful for data exploring and identifying 
inconsistency between data sets. Since inconsistency between data sets is a major difficulty in 
data development for land use and transportation modeling, it is beneficial to be able to dig into 
data points that may be inconsistent across multiple linked data sets. A common example of 
linked data sets is the household travel and activity survey data sets, which usually includes 
individual data sets for households, persons, trips and activities. Figure 4.2 shows an example of 
using CRANVAS, a visualization tool developed in R, for interactively exploring the travel 
survey data sets for the Puget Sound region.  

CRANVAS can simultaneously visualize attributes from multiple data sets, each in any type of 
graph supported by R. The panels in Figure 4.2 show household residence location in a map, 
distribution of household member’s primary mode of transportation in a bar chart, number of 
vehicles versus income category in a scatter plot, and a line graph for various personal attributes. 
What makes CRANVAS useful is that these charts are linked by the data sets’ foreign keys. In 

http://openrefine.org/
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the example shown in Figure 4.2, a household with an exceptionally high number of vehicles 
(hhnumveh=10) is selected in the lower left panel, and the residence location is then 
automatically highlighted in the top left panel while personal attributes for household members 
are highlighted in the lower right panel.  
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Clock-wise from top left: household residence TAZ; Primary mode of transportation for household members; 
number of vehicles and total household income (category); Line graph of person attributes of age range, education, 
sex, is licensed driver, type of person. 

Figure 3.2. Linked Graph for Travel Survey Data Sets 

3.2 DQI CASE STUDY 

In this paper, we focus on a case study in the Portland metropolitan area. The state of Oregon, 
particularly the Portland area, is a pioneer in developing and applying integrated modeling. 
Metro has been systematically collecting, documenting and archiving land use and transportation 
data via its Regional Land Inventory System (RLIS). This case study is thus an easy case study 
to demonstrate the data-quality indicator framework. 
 
Since measuring completeness and validity dimensions of data quality are easy, we focus the 
case study on the far more complex accuracy and consistency measures. Below we show only a 
few examples of data-quality indicators applied in the context of land use and socio-economic 
data sets. They can be applied more extensively to many more attributes and relationships in the 
data. 
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3.2.1 Internal Comparisons 

The internal comparisons example looks into the number of households from the Census versus 
those in the synthesized population by geography. Although they do not exactly conform to 
Figure 4.1(a), the synthesized population originated from the former and should have excellent 
internal consistency between the two, unless there is an error in the synthesis process. Figure 4.3 
shows that the synthesized data fits the original census data perfectly, indicating the population 
synthesizer run was successful by this measure. 

 
Figure 3.3 Household Counts (Census) vs Household Counts in Synthesized Population by Census Tract 

3.2.2 Partitioning 

The partitioning example (Figure 4.4) shows housing units partitioned by unit type and year in a 
box plot. It is clear that, although the mean and mass of the housing units are stable for both unit 
types over years, there are more extreme values in 2011-2012 and more outlier tracts for 
multifamily housing than single-family housing. 
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Figure 3.4. Box Plot of Housing Units by Unit Type and Year  

3.2.3 External Comparisons 

The inconsistency between real estate demand and supply are among some of the major data 
issues in land use and socio-economic data sets. Figure 4.5 presents indicators measuring the 
consistency via external comparisons of real estate inventory (from tax lots) and demand (from 
the Census and LEHD). 
 

                                  (a)                                                                              (b) 
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(a) RMSE and R2 between housing units (tax lot) and households (census) by housing type (Single Family Housing 
and Multi-Family Housing) and year; (b) R2 between building sqft (tax lot) and number of employment (LEHD) by 
NAICS sector and year. 

Figure 3.5. External Comparisons 

Figure 4.5(a) plots the consistency at Public Use of Microdata Area (PUMA) level between 
housing units (from parcels) and households (from Census) for two housing types for the years 
the housing units information are available (2007, 2009-2011), measured by RMSE and R2. The 
higher the RMSE number goes, the less consistent the two data sets are; while the higher the R2, 
the higher the consistency is. Surprisingly, the multifamily housing (MFH) and its residents have 
better consistency than that between the single-family housing (SFH) and its residents. Further 
exploration of the data (not shown here) shows that there are a few PUMAs that have large gaps 
between SFH units and household reported in ACS; future investigation is needed to identify 
which source produces inaccurate numbers. Also note that the indicator values vary by year, 
which indicates there may be an opportunity to utilize historical data to examine and impute data 
for later years. As simple metrics, these indicators provide an overall view of consistency 
between two key data sources. Figure 4.5(b) presents similar consistency metrics between non-
residential real estate demand and supply. Unsurprisingly, the consistency measure for the non-
residential real estate market is much lower than that for the residential real estate market. The 
variation in space occupied by each employee across sector and location is one factor 
contributing to the larger inconsistency; the lower accuracy in the LEHD data series caused by 
jittering could be the other. 

 

4.0 DATA IMPUTATION 

4.1 INTRODUCTION 

As analysis and models for land use and transportation planning gradually move to the micro 
level because of policy requirements and theoretical and technical advantages (Waddell, 2009), 
missing data becomes an increasingly common problem in micro-level land use and 
transportation modeling and policy analysis. According to Waddell et al’s (2005) estimate, up to 
70% of the efforts in land use and transportation modeling are spent on data processing, and 
handling missing data is a major piece of these efforts.  
 
Missing values in land use and transportation data sets, particularly those in land use data sets, 
are generally handled on an ad-hoc basis with either manual inspection and cleaning, or rule-
based or heuristic methods. While these methods can solve one type of missing data problem at a 
time in some user-specified sequence, they are hard to be adapted for different applications and 
there is no systematic way to assess their quality (Waddell, 2009). 
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More sophisticated statistical modeling and machine-learning techniques have been developed in 
statistics and computer sciences, and tested and applied to tackle missing data problems in many 
fields such as industrial engineering (Lakshminarayan et al., 1999) and forestry (Eskelson et al., 
2009) etc. Waddell (2009) suggests that k-nearest neighbors and support vector machines may be 
two promising techniques for imputing missing land use data, particularly parcel-level data. 
However, to our knowledge, there is no systematic research assessing the applicability and 
quality of these techniques in imputing missing land use data.  
 
Furthermore, most applications of data imputation in land use data generate a single imputation 
of the missing value – that is, substitute a missing value with a single best guess. However, 
single imputation masks the uncertainty in the missing values. In other words, the imputed values 
in the data are treated as if they are real observed values, without appropriately addressing the 
uncertainty associated with the substitutions. To this end, Rubin (2004) proposes a multiple 
imputation framework. Instead of producing a single best guess, multiple imputation uses a 
Monte Carlo simulation and replaces each missing entry with a set of m plausible values in 
which m is typically small, say 3 to 10. The advantage of multiple imputation is that each of the 
m imputed data sets can still be analyzed with standard complete-data methods, but the analysis 
results can be combined by simple arithmetic calculations to produce mean estimates, standard 
errors, and p-value for quantities of interest that incorporate uncertainty due to imputation of 
missing data. 
 
A popular approach to implementing multiple imputation, especially for multivariate missing 
data, is multiple imputation by chained equations (MICE), also known as fully conditional 
specification or sequential regression multiple imputation. It has been widely applied in 
psychology (Azur et al., 2011) and medicine and epidemiology (Burgette and Reiter, 2010; 
White et al., 2011), etc. One of the reasons for the popularity of MICE is its flexibility. MICE 
can handle missing continuous and discrete variables because each variable with missing data is 
imputed based on its own imputation model (Azur et al., 2011; Burgette and Reiter, 2010; White 
et al., 2011). Recent studies attempt to implement recursive partitioning within MICE in order to 
automatically preserve interaction effects in the data ((Burgette and Reiter, 2010; Doove et al., 
2014; Shah et al., 2014)). 
 
In this study, we apply the non-parametric MICE approach to impute missing values in parcel 
data. Recently, more and more land use and transportation modeling work and analysis moves to 
use parcel data (Waddell, 2009; Waddell et al., 2005). However, parcel data are prone to 
problems of incomplete or missing values. In addition, in land use and transportation modeling, 
base year data are usually used to project future land use and travel patterns. So, even though the 
number of missing values may be small, it is still necessary to impute them. We aim to test 
different methods in imputing missing parcel data and assess the quality of the imputation 
results, taking the uncertainty into consideration.  
 
The remainder of this paper is organized as follows. The next section overviews the background 
of missing data patterns and mechanisms, multiple imputation, MICE, and the implementation of 
recursive partitioning in MICE. In the Parcel Data Imputation section, we discuss multiple 
imputations for parcel data, along with missing data description, MICE set-up and visual 
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diagnosis. In the section that follows, we discuss the validation of non-parametric MICE. Finally, 
we conclude the paper with some suggestions for future research. 
 

4.2 BACKGROUND 

4.2.1 Patterns and Mechanisms of Missing Data 

For practical reasons, it is useful to distinguish three different patterns of missing data: 
univariate, monotone and arbitrary patterns (Buuren, 2007; Schafer and Graham, 2002). First, a 
missing data pattern is univariate if only one variable has missing values and the remaining 
variables are all completely observed. For the univariate missing data, a variety of parametric or 
non-parametric methods can be used for conducting multiple imputations. Second, in the 
monotone pattern, more than one variable are missing and the missing variables can be ordered 
such that if a variable is missing for a subject, then other variables are also missing for that 
subject. Such a monotone pattern is often observed in a longitudinal data set as one leaves the 
longitudinal study in the middle of entire waves of data collection. In this case, it is possible to 
impute the multivariate missing data by a series of univariate methods for multiple imputations. 
Lastly, an arbitrary pattern is observed from multivariate missing variables, in which their 
missing values can occur in any set of variables for any subjects. Then, we need a truly 
multivariate method for multiple imputations. The arbitrary pattern is the focus of this research. 
 
On the other hand, it is important to understand different mechanisms through which data are 
missing, because different missing mechanisms may cause different risks of bias when missing 
data are excluded in analysis. The missing mechanisms are commonly classified as missing 
completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). 
First, MCAR assumes that the probability of data being missing depends on neither observed nor 
unobserved variables. In this case, the set of subjects that are completely observed is also a 
random sample from the source population. Thus, a complete case analysis in which all missing 
data are excluded gives unbiased results, even if such a simple method is less efficient because 
the entire data set is not used. Second, in the MAR mechanism, the probability that data are 
missing depends on observed variables, but not on unobserved ones. In this case, a complete case 
analysis is no longer based on a random sample, and selection biases are likely to occur. Such a 
bias can be overcome through data imputation, in which a missing value for a subject is replaced 
by a predicted value from the subject’s other known characteristics. Lastly, a mechanism for 
missing data is MNAR if the probability of missing data depends on both observed and 
unobserved variables. In this case, there is no universal method. We may only address the 
MNAR biases by conducting sensitivity analyses in which the effects of different mechanisms 
are compared (Donders et al., 2006). As in many other studies, the MAR mechanism is assumed 
in this study to apply a data imputation approach to the missing data problems. 
 
4.2.2 Multiple Imputation 

Multiple Imputation is a statistical approach to handling missing data, which was first proposed 
in the 1980s by Rubin (2004). It aims to overcome the limitation of single imputation by 
allowing for the uncertainty introduced by missing data. Multiple imputation function is 
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increasingly available in common statistical software, such as R, SAS, Stata, and SPSS. In 
general, multiple imputations consist of three steps. The first step is to construct an imputation 
model, which is sometimes referred to as an imputer or an imputation engine. For a single 
missing variable z, the imputer regresses z on a set of non-missing variables among individuals 
with observed z values. Now each missing value of z is replaced m times by a plausible value 
that is a random draw from the predictive distribution of the imputation model. 
 
The second step is usually simple. Each of the multiple imputed data sets is analyzed separately 
but identically by a complete-data method (e.g., a linear regression) to estimate quantities of 
interest (e.g., the regression coefficients). Since the multiple data sets are identical for the 
complete data but not for the imputed data, this step generates the m different estimates for each 
quantity. 
 
The third step is to combine the m estimates using Rubin’s rules (Rubin, 2004). Suppose that 𝜃𝜃�𝑗𝑗 
is an estimate of a scalar quantity of interest obtained from imputed data set j (j = 1, 2,…, m) and 
𝑊𝑊𝑗𝑗 is the variance of 𝜃𝜃�𝑗𝑗 . The overall estimate 𝜃𝜃� is simply the average of the individual m 
estimates: 
 

𝜃𝜃� =
1
𝑚𝑚
�𝜃𝜃�𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

 
The overall variance of the overall estimate 𝜃𝜃� is formulated with two components: the within-
imputation variance (W) and the between-imputation variance (B): 
 

𝑣𝑣𝑣𝑣𝑣𝑣�𝜃𝜃�� = 𝑊𝑊 + �1 +
1
𝑚𝑚
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The within-imputation variance explains the variation of the estimate in one imputed data set, 
which is calculated by averaging the m variances: 
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The between-imputation variance measures how the estimates vary from imputation to 
imputation to reflect the uncertainty due to missing data, which can be given: 
 

𝐵𝐵 =
1

𝑚𝑚 − 1
�(𝜃𝜃�𝑗𝑗 − 𝜃𝜃�)2
𝑚𝑚

𝑗𝑗=1

 

 
The greater the variation of the estimates across the imputations, the higher the uncertainty 
introduced by missing data. The overall standard error is the square root of 𝑣𝑣𝑣𝑣𝑣𝑣�𝜃𝜃��. A 
significance test of the null hypothesis 𝜃𝜃 = 0 is performed in a usual way. Since single 
imputation omits the between-imputation variance, the standard error is always too small (7). 



 

23 
 

 
4.2.3 Multiple Imputation by Chained Equations (MICE) 

In large data sets with missing values such as the parcel data set, the missing values often occur 
in more than one variable and follow an arbitrary pattern. When the pattern of the multivariate 
missing data is arbitrary, two general multivariate approaches are available for multiple 
imputation: joint modeling (JM) and multiple imputation by chained equations (MICE). The JM 
approach assumes a multivariate normal distribution for all variables in the imputation model. 
Imputed values are obtained from the estimated joint distribution. JM was first proposed by 
Schafer (Schafer, 1997) and was widely used in the earlier applications of multiple imputation to 
multivariate missing data. However, the parametric method of JM may lack flexibility due to its 
normality assumption. In case there are both continuous and discrete variables, the assumption of 
multivariate normality is often violated. The MICE approach is more flexible in that instead of 
assuming multivariate normality, MICE models a series of conditional distributions, one for each 
missing variable, based on the other variables in the imputation model. The semi-parametric 
method of MICE is increasing popular and there are many statistical packages available for 
MICE (Buuren, 2007). 
 
To describe the procedure of generating multiple imputed data sets in MICE, suppose a set of 
variables, y1, …, yj, where some of them are missing. The following steps are involved (6): 

Step 1: Fill in every missing value by a random draw from the observed values, which will 
serve as a placeholder. 

Step 2: For the first missing variable, say y1, return the placeholders to missing, and then 
construct an imputation model that regresses y1 on the other variables, say y2, …, yj, 
only among individuals with the observed y1. 

Step 3: Replace every missing value in y1 by a random draw from the posterior predictive 
distribution of the imputation model for y1. 

Step 4: For the second missing variable, say y2, return the placeholders to missing, and then 
construct an imputation model that regresses y2 on the previously imputed variable(s) 
y1 and the other variables y3, … yj, only among individuals with the observed y2. 

Step 5: Replace every missing value in y2 by a random draw from the posterior predictive 
distribution of the imputation model for y2. 

Step 6: For all other missing variables, repeat Steps 4 and 5. 
Step 7: To stabilize the results, repeat Steps 2 through 6 l times (e.g., 10 to 20), which 

produces one imputed data set. 
Step 8: Repeat Steps 1 through 7 m times (e.g., 5 to 10) to generate m imputed data sets. 

 
The most significant advantage of using MICE is its ability to handle different types of variables 
because each missing variable is imputed from its own imputation model. For example, a linear 
regression imputer can be used to impute missing values in a continuous variable, while a 
logistic regression imputation model may be constructed to impute a discrete missing variable. 
When a missing variable is skewed and its transformation to normality is impossible, Predictive 
Mean Matching (PMM) is usually suggested as an imputer. PMM can be seen as a type of 
random k-nearest-neighbor method (Waddell, 2009). In a PMM model, imputed values are 
simply sampled from the observed values of the missing variable, so that the distribution of the 
imputed values is similar to that of the observed values. Especially, PMM is desirable when the 



 

24 
 

sample size is large and a missing variable is “semi-continuous” for which many values are equal 
(White et al., 2011). 
 
4.2.4 Recursive Partitioning in MICE 

In MICE, it is required to build an imputation model for each of the variables with missing 
values. In practice, however, specifying the imputation models is not an easy task for at least two 
reasons. First, missing variables to be imputed may have complex distributions. In this case, 
standard parametric models are not appropriate for the imputers. Also, data transformations to 
normality are not always possible. Second, interactive and nonlinear relationships among the 
variables in the imputers may exist. The nature of these interactions and nonlinearity is usually 
unknown a priori. It is very laborious to add the interaction and nonlinear effects to the 
imputation models. To mitigate these two challenges, recent studies suggest the use of recursive 
partitioning as an imputation engine within MICE. 
 
One of the most popular recursive partitioning techniques is Classification And Regression Trees 
(CART) (Breiman et al., 1984). CART is called either classification trees or regression trees, 
depending on the response variable of interest being categorical or continuous, respectively. In 
CART, a predictor space is partitioned so that observations are clustered into several groups that 
are relatively homogeneous with respect to the response variable. The best partitions are found 
by recursive binary splits of the predictors. The resulting series of splits are represented in a tree 
structure. The leaves of the tree represent the groups of observations, and the values in each leaf 
approximate the conditional distribution of the response variable based on the predictors. Since 
all splits are conditional on the previous splits, complex interactions are automatically detected in 
the tree. The grown tree is usually pruned to avoid overfitting and for easier interpretation. 
However, when a tree is built for imputation, this pruning procedure is not desirable (Burgette 
and Reiter, 2010). 
 
However, there are two major disadvantages of CART because of its hierarchical nature. First, 
the trees of CART may be suboptimal. A “best” split is determined only locally in each leaf 
regardless of future splits. Second, CART may produce unstable trees because trees may vary 
markedly from sample to sample. In other words, small changes in a sample may lead to 
different initial splits and then yield quite different final trees. Alternatively, another popular 
recursive portioning method is Random Forests. While CART builds a single tree, Random 
Forests generates multiple trees and averages them (Breiman, 2001). Variation in the individual 
trees is produced by bootstrapping and random variable selection. Instead of using all 
observations, a bootstrap sample is used to build each tree. Rather than using all variables, a 
subset of variables is randomly selected to find the best split at each leaf (Doove et al., 2014). 
 

4.3 CASE STUDY: PARCEL DATA IMPUTATION 

Integrated land-use and transportation models are trending towards using disaggregated spatial 
resolution, such as parcel. Although some concerns for using micro-level data have been pointed 
out, such as large data requirements, long computing times, and stochastic variations (Wegener, 
2011), the advantages of using parcels as the spatial unit of analysis are enormous. First, parcels 
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are more behaviorally realistic in modeling the built environment than uniform grid cells as well 
as coarse zones. In the real world, transaction, regulation and development usually occur at the 
parcel level. Second, using the parcel geography allows us to measure walking-scale accessibility 
by representing people’s activity locations on parcels. Walking access to transit stops or grocery 
stores is increasingly important from public health and policy perspectives (Waddell, 2009). 
 
In the U.S., parcel data are usually managed by local governments that assess property taxes. 
There is huge variation in data completeness and data quality across jurisdictions, and missing 
values are common in variables that are necessary for developing integrated models, including 
building square feet, building type, number of stories, year built, building value, land value, land 
use, and so on. Especially for parcels that are exempt from property taxes but nevertheless 
important for models, there tend to be more missing values on the attributes. Therefore, there is a 
significant need for handling missing values in parcel data as the research and practice of 
integrated models move to use parcel as the spatial boundary. 
 
For this study, we picked Multnomah County in Oregon as our study area. Multnomah County 
includes Oregon’s largest city, Portland. The parcel data are obtained from Metro’s Regional 
Land Information System (RLIS), which provides a variety of geographic information for the 
Portland metropolitan area. Metro and the regional partners update the parcel data every quarter. 
For this study, we focus on one parcel data set updated in the fourth quarter of 2011. The parcel 
data set provides information such as parcel area in square feet, building floor area in square feet, 
building value in dollar, land value in dollar, land use type, and so on. We detect a modest 
amount of missing entries from the parcel data set. The missing data pattern is shown in Table 
5.1. Among the total of 271,977 parcels, 83.7% are completely observed for all of the variables. 
The remaining parcels have at least one missing entry for any of the variables. The largest 
number of missing entries (i.e., 37,037 or 13.6%) is observed in the land-value variable, while 
the smallest number of missing entries (i.e., 2,097 or 0.8%) is in the land-use variable. Among 
the parcels with missing entries, 60.6% are missing for only one variable, 37.3% for two 
variables, and 2.2% for three variables. We also notice that the missing entries are scattered 
among the variables. Therefore, we conclude that the missing values in the parcel data set follow 
an arbitrary pattern, which makes MICE a suitable method for imputing the multivariate missing 
values in the parcel data set. 
 
Table 4.1 Missing Data Pattern of 271,977 Parcels 

 
(1 = observed & 0 = missing) 
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4.3.1 Setting Up MICE: Choice of Predictors 

Assuming the MAR mechanism and arbitrary missing pattern, we now set up MICE to impute all 
the multivariate missing values on the Multnomah County parcels. The first step is to determine 
which variables are included as predictors in the imputation models. Table 5.2 is a list of the 
variables. We include all of the four missing variables: building floor area, building value, land 
value, and land use. Since the first three continuous variables include huge values from which it 
is hard to draw meaningful interpretations, we scale down by dividing each of the three variables 
by parcel area. As a result, we use three new missing variables, namely, building floor area per 
parcel area (i.e., FAR; floor area ratio); building value per parcel area (i.e., BVPA); and land 
value per parcel area (i.e., LVPA). It is also important to note that these three missing variables 
are semi-continuous because a large portion of their values is zero and the remaining portion is 
continuous. The other missing variable (i.e., LU) is categorical with nine levels, including 
agriculture, commercial, forest, industrial, multifamily residential, public/semi-public, rural, 
single family residential, and vacant. Additionally, four non-missing variables are included to 
increase the prediction power of the imputation models: Area, District, POP10 and JOB11. Area 
is a continuous predictor, representing the parcel size in square feet, while District is a 
categorical predictor with 10 polygons covering Multnomah County among 20 districts that 
divide the Portland metro area for a variety of planning and analysis purposes. The other two 
non-missing variables are obtained from outside data sources. POP10 represents the 2010 
population size of a Census block group the parcel belongs to, which is obtained from U.S. 
Census data. JOB11, or the number of jobs in a Census block group the parcel belongs to, is 
extracted from the 2011 Workplace Area Characteristics (WAC) file of Longitudinal Employer-
Household Dynamics (LEHD). We use these two outside variables as a proxy for neighborhood 
characteristics of parcels. 
 
Table 4.2 A List of Predictors Included in the MICE Imputers 

 
 
4.3.2 Setting Up MICE: Choice of Imputers 

The aim of this study is to impute missing values in four variables, namely, FAR, BVPA, LVPA, 
and LU using MICE. The key to the success of a MICE application is how well the imputation 
model is specified for each missing variable. In the parcel data set described previously, missing 
values are observed in a mix of continuous and categorical variables with complex distributions. 
Especially, three of them (i.e., FAR, BVPA, and LVPA) are continuous but inflated with zeroes. 
In addition, there may exist a variety of interactions between the predictors. For example, we can 
easily think of the interaction effects of land use type and district geography on the building floor 
area ratio on a parcel. Multifamily residential parcels located in CBD district tend to have a 
higher FAR (i.e., a higher building on a smaller size of parcel) than the same land use type of 
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parcels in other districts. Manually testing such interaction effects in the imputation model is a 
very time-consuming task with no guarantee of success. For these reasons, we initially consider 
two recursive partitioning methods (i.e., CART and Random Forests) as an imputation model of 
MICE. We generate five imputed data sets (m = 5 in Step 8) after five iterations (l = 5 in Step 7). 
 
4.3.3 Visual Diagnosis 

Because we never observe the missing values, we cannot quantitatively assess how well each 
imputation technique performs. An important step in multiple imputation is to diagnose whether 
imputations are plausible or not. As a simple visual way of checking the plausibility of the 
imputations, it is useful to compare the distributions of original data and imputed data. Figure 5.1 
shows the distributions of the three continuous variables as individual (jittered) points, in which 
blue points are observed data and red points are imputed data. The zeroth imputation of all the 
panels contains blue points only, representing the original distribution. The red points follow the 
blue points reasonably well without showing any data points that are clearly impossible. 
However, it should be noticed that the CART-based MICE did not produce proper imputes for 
extreme values of FAR and BVPA. They are severely right skewed; the skewness of FAR, 
BVPA, and LVPA is 265, 92 and 21, respectively. For more graphical diagnostic tools, refer to  
(Abayomi et al., 2008). To be able to quantitatively assess the performance of each imputation 
model, we create a validation data set and compare how well each imputation recovers the true 
values, which will be discussed in the next section. 
 
 
 
 
 

 
Figure 4.3 Visual Diagnosis of the CART-based MICE 

4.4 ASSESSMENT OF MICE 

To evaluate the performance of MICE, we conduct cross validation for the three different MICE 
specifications (i.e., MICE via PMM, MICE via CART, and MICE via Random Forests). The 
combination of MICE with PMM is widely used because, as a semi-parametric approach, it can 
handle any variable types. Especially, PMM is often used to impute a semi-continuous missing 
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variable. It is expected that CART and Random Forests can automatically capture complex 
interaction effects on missing variables with little tuning effort needed in developing the 
imputation models. 
 
To this end, we first create a validation set by removing parcels with any missing values from the 
original parcel data, which produces a validation data set of 227,591 parcels with the eight 
complete variables. Then, from the validation data set, we artificially make 5% of the values in 
the four variables (i.e., FAR, BVPA, LVPA, and LU) to be missing at random (MAR), yielding a 
training set of the same number of parcels but with missing values. As shown in Table 5.3, the 
artificial missing values are evenly scattered across all the missing variables, indicating an 
arbitrary pattern of missing data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4.3 Missing Data Pattern of 227,591 Parcels in the Training Data Set 
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With this training data set, we perform MICE with three different imputation models (i.e., PMM, 
CART and Random Forests). The “mice” package of R is used for the PMM-based MICE and 
the CART-based MICE (Abayomi et al., 2008), while we use the “CALIBERrfimpute” package 
of R for the MICE imputation based on Random Forests (Buuren and Groothuis-Oudshoorn, 
2011). Each of the three MICE imputation runs produces five imputed data sets as designed. It is 
often suggested that small numbers of imputed data sets (e.g., 3 or 5) are sufficient unless 
missing rates are unusually high, say 50% (White et al., 2011). For each imputed data set, we 
compare the imputed values of the training set with the original complete values of the validation 
set. We calculate root mean square error (RMSE) and R-squared for the continuous variables, 
where an accuracy rate is computed for the categorical variable. 
 
Table 5.4 shows the validation results. We find that both of the non-parametric MICE 
imputations perform much better than the semi-parametric MICE for the categorical missing 
variable (i.e., LU), indicated by a higher average accuracy rate for MICE via Random Forest 
(0.934) and MICE via CART (0.927) than MICE via PMM (0.780). However, it is found that 
there are noticeable differences in performance between the two non-parametric imputations for 
the continuous missing variables. The MICE with Random Forests performs best for LVPA; the 
average R-squared for LVPA is 0.450 with Random Forests, 0.426 with CART, and 0.234 with 
PMM. As for FAR and BVPA, the MICE with CART performs best with the highest average R-
square (0.665 for FAR and 0.506 for BVPA). Surprisingly, the Random Forests within MICE 
shows a similar performance to the PMM within MICE (0.568 and 0.569 for FAR; 0.405 and 
0.406 for BVPA). The lower performance of Random Forests in this study can be explained by a 
different level of skewness for the three continuous missing variables. As mentioned earlier, as 
the three variables are semi-continuous, they are all severely positive or right skewed. However, 
there is a significant gap in the skewness level among the semi-continuous missing variables. 
The skewness of FAR, BVPA and LVPA in the training data set is 65, 222, and 16, respectively. 
The relatively high skewness, especially of BVPA, results from some extreme data points or 
outliers as shown in the blue dots of Figure 5.1. Since we build only 10 trees in Random Forests 
due to computational burden, it is possible to easily miss the effects of such extreme values 
during the tree building process of drawing bootstrap samples and selecting random input 
variables. Therefore, we conclude that the CART-based MICE is the most appropriate for 
imputing missing values in a large data set, such as the parcel data in this study. 
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Table 4.4 Validation Results of MICE (PMM vs. CART vs. Random Forests) 

 

4.5 CONCLUSION 

In this paper, we have demonstrated MICE as a flexible method to implement multiple 
imputations for the multivariate missing values in parcel data. We consider MICE via PMM, and 
two recursive portioning techniques (i.e., CART and Random Forests) as imputation engines for 
MICE. To assess their performance, we have conducted cross-validation and found that, under 
limited computing power, the CART-based MICE has performed best for imputing missing 
values in both continuous and discrete variables, especially when the distribution of the 
continuous variables to be imputed is skewed. 
For future research, we plan to improve the performance of Random Forests-based MICE by 
increasing the number of trees, which is expected to produce more reliable imputers. In addition, 
although we have generated multiple imputed data sets, we have not taken full advantage of 
them. We plan to conduct standard statistical analyses with the resulting multiple imputed data 
sets and assess the uncertainty introduced via imputed data. Lastly, this study focuses primarily 
on recursive partitioning methods as an imputation model. There are many other machine-
learning techniques, such as k-nearest neighbor, support vector machine, and Bayesian network 
that have been used in data imputation. It would be interesting to benchmark them with the 
methods in this study. 
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5.0 DISCREPANCY ANALYSIS OF ACTIVITY SEQUENCES 

Over the past four decades, the goals of urban transportation planning and policies have shifted 
from meeting “long-term, supply-oriented, mobility” needs to facilitating “short-term, demand-
oriented, accessibility” needs. This shift has created a new paradigm called activity-based travel 
behavior analysis (Pinjari and Bhat, 2011). The underlying theory of the activity-based analysis 
recognizes that travel is a derived demand to participate in activities that are separated in time 
and space. The theory implies that “travel can be best understood in the broader context of 
activity patterns” (Ettema, 1996). An individual’s activity pattern is a complex phenomenon 
resulting from interactions of multiple dimensions, such as timing, duration, locations, activity 
types, travel mode, trip chaining, activity jointness, activity substitution, activity priority, activity 
planning horizon, and so on (Burnett and Hanson, 1982). 
 
Given that it is very difficult to capture their full complexities with all the dimensions, two 
general approaches have been used to measure the complexity of activity-travel patterns (Burnett 
and Hanson, 1982). One is decomposing an individual’s activity pattern into numerous 
dimensions and generating separate measures for each of the dimensions. The other is treating 
the pattern as a multidimensional “holistic” entity. Currently, the first approach is dominant in 
activity-pattern research, in part because most existing operational activity-based travel 
forecasting systems are implemented on a micro-simulation framework that consists of a series 
of calibrated econometric models to address the multiple dimensions either individually or 
jointly (Davidson et al., 2007). Discrete choice models, discrete-continuous choice models, and 
hazard-based duration models are widely used as the basis of the micro-simulation 
implementation framework (Pas, 1983). The second approach to measuring activity patterns, 
which relates to this paper, was popular in the early stage of the activity-based travel behavior 
analysis. Many transportation researchers recognized early on the complexity of activity patterns 
and emphasized the need to understand individual activity patterns as a whole (Koppelman and 
Pas, 1984; Pas, 1983; Recker et al., 1985). The holistic approach focuses more on interpreting 
people’s daily or weekly activity patterns into homogeneous groups, and identifying 
determinants or constraints that influence the homogeneous patterns. 
 
The early efforts on the holistic approach fall into two categories (Pas, 1983). First, each activity 
pattern is described by numerous measures, and then the measures are used for factor analysis or 
principal components analysis to identify its salient features. The latter information is often used 
to classify the whole set of activity patterns into a small number of similar groups. The second 
holistic method is comparing individuals’ activity-travel patterns with each other, which is often 
represented on time-slice variables. The comparison produces a matrix of pairwise dissimilarities 
between the patterns, which is subsequently used for cluster analysis. 
 
Given our limited knowledge about human activity decisions, both atomistic and holistic 
approaches to accounting for the complexity of activity patterns are equally important and 
complementary (Burnett and Hanson, 1982). The atomistic or decomposing approach serves as a 
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core part of activity-based models to predict the patterns, while the holistic approach provides 
theoretical and empirical foundations by identifying travel determinants. However, it is 
surprising that although attention to the former is prominent today, the latter has seen little 
progress since the development of the cosine similarity index by Koppelman and Pas (1984) and 
the feature extraction of Recker, McNally and Root (1985), even if those classifications may be 
not satisfactory in that they only explain a small amount of variability within the clusters 
(Schlich and Axhausen, 2003). 
 
The holistic approach to understanding complex activity patterns has recently received new 
attention since the introduction of sequence alignment methods into time use and transportation 
research (Wilson, 1998). In existing literature, sequence alignment methods are almost always 
combined with cluster analysis. Although this cluster-based approach has been proven powerful 
for discovering a typology of activity patterns, it does not seem successful in identifying various 
contexts that would impact the patterns. This is because cluster analysis may cause too much 
information loss as a result of reducing a large set of observations into a limited number of 
clusters (Studer et al., 2011). Consequently, we need a direct analysis of the association between 
pairwise dissimilarity measures and explanatory variables without any prior clustering. Inspired 
from the work of Studer et al. (2011), this paper proposes a new combination of sequence 
alignment with ANOVA-like tools, not with cluster analysis. The proposed method was 
originally developed in ecology under the name of a non-parametric MANOVA (Anderson, 
2001), and recently introduced into sociology with the name of discrepancy analysis (Studer et 
al., 2011) and ANODI (the Analysis of Dissimilarity) (Bonetti et al., 2013). In addition to the 
methodological combination, an induction tree is built to visualize how activity sequences may 
vary with the value of covariates. 
 

5.1 SEQUENCE ALIGNMENT METHODS FOR ACTIVITY-PATTERN 
ANALYSIS 

Sequence alignment methods, also known as optimal matching (OM), measure the dissimilarity 
between two sequences of characters by calculating the minimal cost of transforming one 
sequence into the other (Martin and Wiggins, 2011; Wilson, 1998). Two basic operations are 
used in the sequence transformation: substitutions and indels. The substitution operation replaces 
an element of one sequence with the different element located at the same position of the other 
sequence. The indel, an OM jargon standing for the insertion or deletion of an element, causes a 
one-position movement of all the elements to the right. The transformation costs for substitutions 
and indels are assigned by the researcher in advance either theoretically or empirically. A 
dynamic programming algorithm is usually used to repeat the sequence alignment for all pairs of 
sequences. The final output of sequence alignment is a pairwise distance matrix of activity 
sequences, which is almost always used as input for cluster analysis. The resulting cluster 
membership is often associated with other variables, either as a dependent variable (e.g., 
multinomial logit models) or as an independent variable (e.g., ANOVA). 
 
Sequence alignment methods were initially developed in biology in the 1970s from the needs of 
analyzing DNA sequences of nucleic acids or protein sequences of amino acids, and introduced 
into social science in the 1980s (Abbott and Tsay, 2000). It was in the late 1990s that the 
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methods were first adopted for the analysis of people’s activity patterns (Wilson, 1998). 
Recently, sequence alignment is applied in the goodness-of-fit testing for activity-based travel 
demand micro-simulation models, in which predicted activity-travel patterns are compared with 
the observed one at an agent level (Sammour et al., 2012). Table 5.1 summarizes some 
applications of sequence alignment methods to activity-pattern analysis. 
 
 
Table 5.5 Applications of Sequence Alignment Methods to Activity-Pattern Analysis 

Citation 
Sequence 

Specification 
Assigning 

Transformation Costs 
Number 

of 
Clusters 

Subsequent 
Data Analysis 

sequence element time scale substitutions indels 

(Wilson, 
2001) 

activity only 30 min varying by activity 
being compared 

gap opening; 
extension 4 ANOVA 

activity; 
location; 

person present 
30 min complicated gap opening; 

extension 4 ANOVA 

 (Shoval 
and 

Isaacson
, 2007) 

location only 1 sec not used gap opening; 
extension 3 contingency 

table analysis 

 
(Saneine
jad and 
Roorda, 
2009) 

activity; 
location 15 min not used gap opening; 

extension 9 descriptive 
statistics 

 
Wilson (2001) examined the activity patterns of 248 Canadian women who were selected as a 
5% random sample from the main time-use survey. The 248 activity diaries were converted into 
two sets of sequences: one was composed of only one dimension (i.e., activity type) and the 
other had three dimensions (i.e., activity type, location and the presence of other persons). The 
author defined 15 activity types regardless of in-home or out-of-home; five locations (i.e., home, 
workplace, other place, traveling or unknown); and five types of persons present with the survey 
respondent (i.e., alone, household members, friends, other persons or unknown). Both the 
activity-only sequences and the activity-setting sequences were specified in 30-minute time 
intervals. In the activity-only sequence alignments, the substitution costs varied with the type of 
activities being compared. The indel costs were also further refined into two types; a gap open 
penalty for the first indel position and a gap extension penalty for all the subsequent indels. For 
the activity-settings sequences, the transformation costs of substitutions were more complicated 
due to the many ways of combining levels of the activity settings, and the same indel costs were 
assigned as in the activity-only sequences. Both sets of sequences were visually clustered into 
four similar patterns. Subsequently, the author conducted ANOVA to examine discriminatory 
power of the cluster membership with regard to socioeconomic characteristics. 
 
Shoval and Isaacson (2007) investigated the moving paths of visitors to the Old City of Akko in 
Israel. For this study, 40 visitors were given GPS devices to track their movements in space and 
time. The study area was divided into 26 polygons, with each polygon representing a single 
location, and each visitor’s polygon locations were consecutively recorded every second during 
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the visit. Since visitors started their trip at different times of day and their visit durations were 
different from each other, the sequence lengths of visitors varied. Only indel operations were 
used to align the location sequences of different lengths. The authors identified three distinct 
moving paths. In addition, they conducted a contingency table analysis. 
 
Saneinejad and Roorda (2009) measured similarities between weekly activity sequences of 282 
individuals who participated in a special survey in which, among other information, respondents 
were directly asked to describe activities that they normally do every week. The authors defined 
10 activity types (i.e., nine routine and one non-routine) and two activity locations (i.e., in-home 
and out-of-home). Two letters representing activity type and location were specified on every 15-
minute time interval of five weekdays for each individual, and thus the length of all sequences is 
equal to 480. No substitutions were used, while two types of indels were defined: gap opening 
indels and gap extending indels. The authors identified nine different schedules of routine 
weekly activities. Then, they described socioeconomic characteristics of individuals within each 
cluster. 
 
It has been demonstrated that sequence alignment methods outperform in classifying activity-
travel patterns compared to other conventional dissimilarity measures, such as Euclidean 
distance measures and signal-processing theoretical measures (Joh et al., 2001). Only sequence 
alignment methods can capture sequential information imbedded in activity patterns. This unique 
ability of sequence alignment methods may yield better cluster solutions that are more likely to 
be sensitive to activity-travel constraints. On the other hand, there are many controversial issues 
for using sequence alignment in social science rather than in biology (Aisenbrey and Fasang, 
2010). The issues include the meaning of indels and substitutions in the context of human 
behavior analysis; the arbitrary assignment of transformation costs for substitutions and indels; 
required symmetry of the pairwise distance matrix; the lack of proper support of multi-
dimensional analysis; and time distortion by indels. Fortunately, a “second wave” of sequence 
alignment toward methodological improvements is currently observed in sociology (Aisenbrey 
and Fasang, 2010) as well as transportation (Joh et al., 2002; Wilson, 2008). 
 

5.2 DATA AND METHODS 

The Portland metropolitan portion of the 2011 Oregon Travel and Activity Survey (OTAS) is 
used for this study. The portion of the survey records all locations visited by approximately 
15,000 persons in nearly 6,500 Portland-area households during a scheduled day. A random 
sample of 1,000 persons, which accounts for about 6.5% of the main survey, is selected to reduce 
the computational burden of performing a series of proposed methods. In addition, for simplicity 
reasons 24 types of self-reported original activities are aggregated into 12 major activity types, as 
shown in Table 2. It should be noted that all at-home activities are grouped into three different 
categories: home at the beginning of the day (HB); home returning temporarily in the middle of 
the day (HR); and home at the end of the day (HE). This categorization of at-home activities may 
help partially avoid time distortion that often occurs by indels. Time distortion by indels is a 
unique feature of sequence alignment in matching sequences of varying lengths. In the case of 
aligning sequences involving timing and duration of episodes, the indel operations need to be 
carefully used to prevent excessive time distortion (Lesnard, 2010; Wilson, 2001). A simpler 
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way of avoiding time distortion, as in this study, might be roughly disaggregating a sequence 
state (i.e., at-home activity) by time periods (i.e., at the beginning, middle and end of the day). 
 
Table 5.6 Activity Aggregation and Average Duration (1,000 Persons) 

12 Activity Types 
(Aggregated) 

24 Activity Types 
(Originally Self-Reported) Code No. of 

Episodes 

Average 
Duration 

(min.) 

Home in the beginning work at home; 
all other activities at home HB 968 495 

Home returning temporarily work at home; 
all other activities at home HR 410 121 

Home in the end work at home; 
all other activities at home HE 848 560 

Work work; all other activities at work; 
work related WK 625 312 

School attending class; 
all other activities at school SC 218 355 

Escort drop off; 
pick up EC 270 10 

Eat out eat meal outside of home EO 196 44 

Household maintenance routine shopping; major shopping; 
household errands HM 516 28 

Personal business service private vehicle; personal business; 
health care PB 226 71 

Social recreation civic/religious activities; outdoor/indoor 
recreation; visit friends; loop trip SR 375 134 

Other Other OT 4 387 

Trip for the activity not categorized in the survey, 
but explicitly included for this study TR 3656 19 

 
The goal of this paper is to identify determinants that influence individuals’ daily activity-travel 
patterns from the holistic perspective. To achieve this goal, four sequential steps are proposed: 1) 
representing an individual’s activity diary as a sequence of characters; 2) performing sequence 
alignment to produce a pairwise distance matrix among all activity sequences; 3) conducting 
discrepancy analysis to examine the association between activity sequences characterized by the 
distance matrix and one or more categorical predictors; and 4) building an induction tree to help 
interpret how activity sequences change with the predictors. All of these steps are implemented 
in R with the TraMineR package (Gabadinho et al., 2011; Studer et al., 2011). 
 
5.2.1 Sequence Representation 

Like all other household activity-travel surveys, the OTAS data is released in a spell format, 
where each record represents an activity spell or episode of variable duration undertaken by a 
person, and each person may have more than one activity episode during a day. To conduct 
sequence alignment, an individual’s activity diary first needs to be converted from the spell 
format to a sequence of letters representing activity states on a fixed time scale. In this study, 
individual activity diaries are reconstructed with 12 aggregated activity types on five-minute 
time intervals from 3 a.m. through 2:59 a.m. the next day, so that each activity sequence consists 
of 288 consecutive activity codes. Figure 1 shows a “sequence index plot” and a “state 
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distribution plot” for the transformed activity sequences. In the activity sequence index plot, the 
first 10 sequences of the subsample are individually rendered with stacked bars depicting the 
activity states over time. The sequence index plot is useful to visualize individual activity 
trajectories and the duration spent in each successive activity episode. The activity state 
distribution plot shows the distribution of activity states at each time interval for all sequences in 
the subsample (Gabadinho et al., 2011). Both plots will be used for building an induction tree as 
the displayed node content. 

 
Figure 5.4 Activity Sequence Index Plot and Activity State Distribution Plot 

5.2.2 Sequence Alignment 

Once activity diaries are represented as state sequences with a single attribute of activity type on 
time intervals of a fixed length, the next step is to align the activity sequences for measuring the 
dissimilarities between each pair. One of the controversial issues of sequence alignment methods 
in human behavioral applications, as in this study, is how to set up transformation costs or 
penalties for the two basic operations – substitutions and indels. In fact, existing literature 
suggests various ways of assigning the transformation costs. For example, the indel cost can be 
separated into two types – gap opening penalty and gap extension penalty (Saneinejad and 
Roorda, 2009; Shoval and Isaacson, 2007; Wilson, 2001). A higher penalty can be given for gap 
openings in the first time position of an activity episode than for gap extensions in all the 
subsequent time positions of that episode. In addition, instead of using a single substitution cost, 
it is possible to develop a matrix that specifies the substitution costs between all pairs of 
sequence states (Wilson, 2001). The substitution cost matrix can also be derived from the 
probability of transition between sequence states, given that a higher transition rate between two 
states may indicate a less costly substitution of these states (Lesnard, 2010). However, this study 
follows the default settings, focusing more on evaluating the validity of sequence discrepancy 
analysis that is new in transportation research. In other words, the substitution and indel costs are 
set to 2 and 1, respectively, in this study. 
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5.2.3 Discrepancy Analysis of Activity Sequences 

This paper introduces a new methodology for a direct analysis of the association between 
complex objects described by a distance matrix and one or more categorical variables; there is no 
need for any prior data reduction technique, such as cluster analysis. This new method is a 
generalization of MANOVA (Anderson, 2001). The standard MANOVA is concerned with 
measurable objects that are characterized by multiple continuous dependent variables. On the 
other hand, the generalized MANOVA can handle complex objects that are not directly 
measurable, but can be described by a pairwise dissimilarity matrix, such as ecosystems, life 
trajectories and activity diaries. 
 
The purpose of ANOVA is to test for significant differences among group means by analyzing 
the variance. Recall that given a certain sample size, the sample variance is a function of the sum 
of squared deviation from the mean, or SS for short. The essence of ANOVA is partitioning the 
total variance (SST) into two different sources of variance: the within-group variance (SSW) and 
the among-group variance (SSA). Then, the two variance sources are compared to produce the 
test statistic of F-ratio. The larger the F-ratio value, the more likely it is to reject the null 
hypothesis that there is no difference among the group means. 
 
For one-way univariate ANOVA, in which a single response variable is linked to one predictor, 
SSW is the sum of (deviation) squares between individual cases and their group mean, while SSA 
is the sum of (deviation) squares between group means and the overall sample mean. Next, 
consider one-way multivariate ANOVA, in which multiple responses are associated with one 
predictor. Traditionally, MANOVA compares the among-group variance/covariance matrix 
versus the within-group variance/covariance matrix, instead of the corresponding variances. The 
covariance here is included because the multiple response variables may be correlated and we 
need to consider these correlations for the significance test. In that case, the correlations between 
response variables do not really matter as in independent activity-sequence objects; however, we 
can simply add up the sums of squares across all response variables. Then, we can construct an 
F-ratio test statistic, as in the univariate ANOVA problem. Such an additive partitioning of the 
sums of squares in MANOVA can also be thought of geometrically, as shown in Figure 5.1 
(Anderson, 2001). 
 
The key to generalize the geometric approach of MANOVA to complex objects is based on the 
fact that “the sum of squared distances between points and their centroid is equal to the sum of 
squared interpoint distances divided by the number of points” (Anderson, 2001). This 
relationship has an important implication that an additive partitioning of sums of squares can be 
obtained without calculating the central locations of groups. For the Euclidean distance measure, 
the relationship between distances to the centroid and interpoint distances was well known early 
on. It was found that this key relationship holds for any non-Euclidean distance measures 
equivalently. The importance of this finding is substantial because, unlike the Euclidean 
distances, the calculation of a central location for non-Euclidean distances, such as a pairwise 
distance matrix resulting from sequence alignments, is often problematic. Further, Studer et al. 
(2011) demonstrate that if the distance measure is non-Euclidean, the non-Euclidean distances do 
not need to be squared before summing them. In short, the new method generalizes the notion of 
“sum of squares” in ANOVA to non-Euclidean measures of dissimilarity. 
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Once the test statistics of pseudo F-ratio with any non-Euclidean distance measure is obtained, 
we need to test the statistical significance. However, we cannot conduct the classical F-test as in 
the standard ANOVA because the distances between complex objects are not normally 
distributed, and thus the pseudo F-ratio statistic does not follow a Fisher distribution under the 
null hypothesis. Instead, we need to consider a permutation test in order to obtain a new 
distribution of the pseudo F-ratio under the null hypothesis. The permutation test works as 
follows: First, the complex objects are exchanged among the different groups of a categorical 
predictor through a random permutation. Second, a new pseudo F-ratio statistic, called Fpermuted, 
is computed. Third, the first and second steps are repeated for all possible permutations, which 
give the entire distribution of the pseudo F-ratio statistic under the true null hypothesis. Fourth, 
from this distribution, the p-value of the observed pseudo F-ratio statistic (Fobserved) is assessed by 
evaluating the proportion of Fpermuted that are higher than Fobserved. Since the number of all 
possible permutations is often huge, it is usually practical to perform 1,000 permutations for tests 
with a 5% significance level (Anderson, 2001; Studer et al., 2011). Table 3 compares standard 
ANOVA versus generalized MANOVA in one-way design with respect to the calculation of a 
test statistic and the significance test. 
 
Table 5.7  Standard ANOVA vs. Generalized MANOVA: One-Way Design 

 Standard ANOVA Generalized MANOVA 

Test 
Statistic 

𝐹𝐹 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑆𝑆𝑆𝑆𝐴𝐴 (𝑎𝑎 − 1)⁄
𝑆𝑆𝑆𝑆𝑊𝑊 (𝑛𝑛 − 𝑎𝑎)⁄  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐹𝐹 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

𝑆𝑆𝑆𝑆𝐴𝐴∗ (𝑎𝑎 − 1)⁄
𝑆𝑆𝑆𝑆𝑊𝑊∗ (𝑛𝑛∗ − 𝑎𝑎)⁄  

• 𝑆𝑆𝑆𝑆𝑇𝑇 = 𝑆𝑆𝑆𝑆𝑊𝑊 + 𝑆𝑆𝑆𝑆𝐴𝐴 • 𝑆𝑆𝑆𝑆𝑇𝑇∗ = 𝑆𝑆𝑆𝑆𝑊𝑊∗ + 𝑆𝑆𝑆𝑆𝐴𝐴∗ 

• 𝑆𝑆𝑆𝑆𝑇𝑇 is the sum of squared Euclidean 
distances from individuals to the grand 
centroid 

• 𝑆𝑆𝑆𝑆𝑇𝑇∗  is the sum of all pairwise distances 
divided by the number of objects 

 

• 𝑆𝑆𝑆𝑆𝑊𝑊 is the sum of squared Euclidean 
distances from individuals to their 
group centroid 

• 𝑆𝑆𝑆𝑆𝑊𝑊∗  is the sum of all pairwise 
distances within groups divided by the 
number of objects 

• 𝑆𝑆𝑆𝑆𝐴𝐴 is the sum of squared Euclidean 
distances from group centroids and the 
grand centroid 

• 𝑆𝑆𝑆𝑆𝐴𝐴∗ = 𝑆𝑆𝑆𝑆𝑇𝑇∗ − 𝑆𝑆𝑆𝑆𝑊𝑊∗  

p-value F test permutation test 

Note: (1) a refers to the number of levels or groups of a covariate; (2) in the generalized 
MANOVA, n* = n (n - 1) / 2 where n is the sample size. 
 
In the above, the one-way design of discrepancy analysis was discussed; that is, a single factor is 
associated with a distance matrix of the complex sequence objects. The one-way design can be 
nicely extended to a multi-way design in which multiple factors are involved. For more 
information on formula of SST, SSW, and SSA to compute a pseudo F test statistic in the multi-way 
design, refer to McArdle and Anderson (2001). As in the one-way discrepancy analysis, since the 
F distribution is not suitable for evaluating the pseudo F-ratio statistic, we consider the 
permutation test again. This paper conducts the multi-way discrepancy analysis to 
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simultaneously find out multiple factors that explain discrepancies among individuals’ activity 
patterns. Since those factors are often highly correlated, their unique effects after controlling for 
other effects are more appropriate than their marginal effects obtained from a series of the one-
way discrepancy analysis. 
 
5.2.4 Tree-Structured Analysis of Sequences 

Indeed the sequence discrepancy analysis with either a single factor or multiple factors can 
explain which variables have significant effects on the discrepancy among activity sequences. 
However, it is hard to tell what the effects are, namely, how activity sequences may vary with the 
value of the predictors. To complement this limitation, an induction tree is built. In general, trees 
work as follows: First, all sequence objects are located in an initial node. Then, each node is 
recursively partitioned by the value of a predictor. The predictor and the split are determined so 
that the resulting child nodes are different from one another as much as possible. The procedure 
is repeated at every new node until certain stopping criteria are met. As building a tree with state 
sequences is very rare in existing literature, however, this study follows the instructions 
suggested by Studer et al. (2011). Their tree is slightly different than popular tree algorithms, 
such as CHi-squared Automatic Interaction Detection (CHAID), in several aspects. First, while 
CHAID can only handle a categorical variable, the proposed tree is built on the basis of sequence 
objects that are neither continuous nor categorical. Second, the proposed tree is binary in that 
each node is split into only two subsamples, unlike multi-branch trees of CHAID. Third, a 
pseudo R2 derived from the one-way discrepancy analysis is used as a node splitting criterion. In 
other words, each node is split with the predictor and its value achieving the highest pseudo R2 
value. Fourth, the significance of the one-way pseudo F-ratio that is determined through 
permutation tests is used as a stopping criterion. At each node, the tree stops growing a branch 
once the selected split encounters a non-significant F value. 
 

5.3 RESULTS AND DISCUSSIONS 

5.3.1 Sequence Discrepancy Analysis with Multiple Factors 

Table 4 shows the results of the multifactor discrepancy analysis of activity sequences 
characterized by a pairwise sequence alignment distance matrix. For illustrative purposes, only 
seven significant covariates were selected, including one interaction term. The set of covariates 
explained approximately 19.4% of the total discrepancy among the daily activity sequences of 
1,000 persons since the global pseudo R2 = 0.194. The overall model was statistically significant, 
indicated by the global pseudo F value of 34.064 and p < .05. The most significant factor was an 
indicator of whether or not the person was a K-12 student. If the K-12 indicator was removed, 
the global pseudo R2 decreased by 0.046. This difference was significant since the pseudo F 
value for that indicator was 57.034, which was a value attained less than five times out of the 
thousand permutations. The worker indicator was also significant. Removing the indicator 
variable from the model reduced the global pseudo R2 by 0.043, which was significant since the 
pseudo FWorker = 52.904 was attained less than five times amongst the thousand permutations. As 
for the other indicator variables, results indicated that full-time college students, persons with a 
driver’s license, and adults over age 65 made moderate but significant contributions to explain 
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the total discrepancy of activity sequences. There also existed statistically significant discrepancy 
in activity sequences among five groups of different household size (1, 2, 3, 4 and 5+). Finally, 
the sequence discrepancy of activity diaries were strongly influenced by an interaction of the 
Worker and Adult-over-age-65 covariates 
 
5.3.2 Tree Analysis of Activity Sequences 

Using the same set of covariates as in the previous multifactor discrepancy analysis, but without 
the interaction term, an induction tree was built for the subsample of 1,000 activity trajectories, 
which is shown in Figure 2. To display more comprehensive information about the content at 
each node, the same tree was built with both activity sequence index plots and activity state 
distribution plots in the top and bottom panels of Figure 2, respectively. In addition to the node 
content, other important information is displayed on each node, including node size (n) and 
within-node discrepancy (s2). Moreover, a selected split covariate and its associated one-way 
pseudo R2 are shown at the bottom of each parent node. The selected binary split of a covariate is 
indicated at the top of each child node. 
 
Table 5.8  Multifactor Discrepancy Analysis 

Variable Variable Type Pseudo F 
(for each variable) 

∆Pseudo R2 
(for each variable) p-value 

Worker indicator 52.904 0.043 0.001 

K-12 student indicator 57.034 0.046 0.001 

Full-time college student indicator 2.829 0.002 0.008 

Licensed indicator 4.658 0.004 0.001 

Adult over age 65 indicator 3.220 0.003 0.003 

Household size 5 categories 2.361 0.002 0.017 

Worker * Adult over age 65 interaction 2.337 0.002 0.027 

Global 
Pseudo F 
(for total) 

Pseudo R2 
(for total) p-value 

34.064 0.194 0.001 
 
The global pseudo R2 of the tree was 18.96%, which is slightly lower than that of the multifactor 
discrepancy analysis in Table 4. However, it should be noticed that while in the discrepancy 
analysis the seven covariates including one interaction term turned out to be significant, only 
four covariates of them were involved for developing the tree to produce the similar pseudo R2 
value. This might be because several interaction effects are automatically detected on the tree. 
For example, it was found that household size had more influences on the activity sequences of 
non-workers who do not go to K-12 school (e.g., homemaker) than those of K-12 students. As 
for workers, household size mostly influenced the daily activity patterns of younger workers 
(less than age 65), not older workers (over age 65). 
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(a)  
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(b)  

Figure 5.2 Induction Trees of Activity Sequences: (a) with activity sequence index plots and (b) with activity state 
distribution plots  
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In addition to the automatic detection of interaction effects and the provision of a comprehensive 
view of the sequence-covariate link, the induction tree yielded seven clusters at the terminal 
nodes. As shown in the tree with state distribution plots, it is possible to discover the differences 
among the seven clusters in the distribution of activity types at each five-minute time point. For 
example, see the terminal node indicating K-12 students. Most of them conducted the “school” 
activity (yellow) in the midday and their “trip” activity (black) was noticeably peaked at two 
time points. In addition, non-workers who are not a K-12 student were separated by household 
size. Those with small household size (h_size <= 2) spent more time at home (grey) than those 
with large household size (h_size > 2). Further, one cluster of older workers was discovered, 
which differs from the other three clusters of younger workers. Compared to younger workers, 
older workers spent less time on working (blue) and social recreation (green), and more time on 
personal business (violet) such as health care. Not surprisingly, the “trip” activity of older 
workers was spread over the midday without any clear peak time points. 
 

5.4 CONCLUSION 

Individuals’ daily activity-travel patterns are complex due to interactions of numerous aspects 
embedded in them. An “old” question in activity-based travel behavior analysis is what explains 
the complexity of activity-travel patterns. To answer the question, this study proposed the 
discrepancy analysis of activity sequences. Viewing individual activity patterns as holistic and 
sequential objects, activity diaries were first converted into sequences of characters representing 
activity states. Then, the total discrepancy in the activity sequences was defined with a pairwise 
dissimilarity matrix between all sequences that was obtained from sequence alignment methods. 
Following the principle of ANOVA, the total sequence discrepancy was partitioned into 
explained among-groups discrepancy and residual within-groups discrepancy. This partition 
enabled to measure the strength of the association between activity sequences and covariates by 
calculating a pseudo R2 and to assess the statistical significance of the association through the 
permutation tests of a pseudo F-ratio value. In addition to the sequence discrepancy analysis, this 
study developed an induction tree to help understand how individual activity sequences vary 
with the influential covariates. 
 
Most of the existing applications of sequence alignment to activity-travel diary data have been 
restricted to calculating and classifying the dissimilarities of activity sequences, missing useful 
knowledge on activity sequences. It is expected that this research will allow us to explore the 
unknown area. In addition, this study would make a practical contribution to a micro-simulation 
framework for activity-based travel demand modeling. Some activity-based models assume a 
sequential scheduling process in which individuals decide what to do next at every time point. 
The approach is often criticized for the absence of any pre-planning process where activities are 
scheduled first on the basis of their priority and the schedule is implemented next. Gliebe and 
Kim (2010) respond to this criticism by assigning household roles to individuals before 
simulating them. This market segmentation can create a propensity for a certain type of behavior 
from which a wide range of activity-travel patterns may emerge. However, the market 
segmentation does not really capture the sequential decision process in advance. Discrepancy 
analysis with sequence alignment proposed in this paper may enable a more suitable 
segmentation for agents who are simulated through a sequential scheduling process. 
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This study certainly leaves room to be improved in several aspects. First of all, sequence 
alignment methods combined with discrepancy analysis in this paper can be further fine-tuned 
with different transformation cost settings for indels and substitutions. In addition, activity 
sequences can be represented in a different way by considering multiple activity attributes 
simultaneously, such as activity location, travel mode and time, the presence of persons, etc. 
Lastly, it is worthwhile to compare the cluster solutions discovered by building a tree with those 
obtained from a classical cluster analysis following sequence alignment methods. Thus, it may 
be possible to empirically verify whether or not the new methodological combination presented 
in this paper will truly overcome information loss caused by the previous popular cluster-based 
approach. 
 

6.0 CONCLUSIONS 

This paper presents the work of a data-integration project aimed to start addressing the 
challenges in data development for integrated land use and transportation modeling. As data 
sources increasingly update more frequently and even in real time, and policy decisions demand 
timely data and more rigorous analysis, data collection and updating increasingly become a 
continuous process. Traditional practice adopted by most planning agencies of updating datasets 
as a one-off effort at long intervals is very costly and increasingly challenged.  

The project focuses on bringing interdisciplinary methods to make the best use of available data 
in the land use and transportation modeling domain. Utilizing statistics and machine-learning 
techniques, this project develops a continuous approach and reusable tools for data integration. 
We began by suggesting a data development process centered on a data warehouse (DW) for 
common data sets used in integrated modeling, in contrast to the commonly used ad-hoc 
approach. Accordingly, we propose a data development work flow that isolates generic 
components such as data-quality assurance and data imputation from region-specific data and 
system-specific requirements. This work flow involves ETL, data models, data-quality 
assurance, data imputation/synthesis, and finally data transformation to feed into applications.  

These tools will be reusable for different time periods and for different regions. We tested and 
applied the approach and tools to our test metropolitan regions including Portland, OR, and the 
San Francisco Bay Area. The data structure, tools for data processing and quality monitoring, 
and documentation are available to the public on the project website 
https://cities.github.io/smartdata. These can be used by public agencies, researchers, or anyone 
else needing to develop a usable database for use in integrated planning and modeling. 

With this project, we have nourished the goal of a data development process that can preserve 
historical as well as current data, and monitor data quality automatically and constantly as new 
data are being integrated on a continuous basis. Eventually we hope that both historical and 
current data are available on equal footing for modeling inputs, calibration and validation. 
Models using these data as inputs can seamlessly switch base year among years for which we 

https://cities.github.io/smartdata
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have data, essentially a process that helps alleviate some of the hardest challenges in integrated 
modeling.  

We have started addressing some of the challenging problems, and some of solutions we came 
up with are very promising. However, probably not surprisingly, we were not able to solve all 
the problems within the scope of this project. A few related research topics we wish to explore in 
the future include data-synthesis approaches and their application in land use data. While 
population synthesizers have been widely used in both land use and transportation modeling, the 
application of data synthesis to land use data has not been fully explored. Although the MICE 
approach is versatile and produces reasonable results in our tests, there is vast number of 
alternative machine-learning approaches available and largely under-studied. An area of 
particular interest is to utilize the temporal dimension of the data for data imputation.  
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8.0 APPENDICES 

APPENDIX A-1 R AND SHELL SCRIPTS FOR ETL 

Extract 

# extracts data from dbf files 
require('foreign') 
data.df  <- read.dbf('/workspace/sanfrancisco/shapefiles/zone.dbf') 

# extracts data from csv files 
data.df <- read.csv("/workspace/sanfrancisco/parcels.txt", sep=",", header=T) 

#extract data from SAS export file 
require('foreign') 
data.df <- read.xport('/workspace/sanfrancisco/pub_comp_house1f_with_xy.xpt') 

#extract data from DBMS (e.g. MySQL) 
require(RMySQL) 
conn <- dbConnect(MySQL(), group='db_server', dbname='sanfrancisco_baseyear') 
data.df  <- dbReadTable(conn, 'zones', row.names=NULL) 

#Extract fixed width format (Bay Area Travel Survey data, available at 
ftp://ftp.abag.ca.gov/pub/mtc/planning/BATS/BATS2000) 
fname = "/workspace/MTC/BATS2000_Public_Release_v3.0/vehicle.dat" 
data.df<-read.fwf(fname, widths=c(6,2,3,5,3,5,7,7,7,2,2,6,2,2,2,7,2,5,3,5,3), 
col.names=c("HHID","HHVEHNUM","MAKMODEL","VEHYEAR","MONPOSS","YEARPO
SS","MILEPOSS","MILEDAY1","MILEDAY2","MAIL","PROXY","HOMEZIP","SAMPTYP
","STATUS","HHVEHICLES","C_TRACT","C_BLKGRP","C_PUMA","R_SD","R_TAZ1454
","R_COUNTY_FIPS"), comment.char="") 

#extract data from Excel spreadsheets 
require(gdata) 
data.df  <- read.xls("Puma2000.xls", sheet=1) 

#read data directly from URL 
require(RCurl) 
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urlfile = getURL(“/url/to/csv/file”) 
data.df <- read.csv(textConnection(urlfile)) 

#Load GIS data into PostgreSQL/PostGIS in a linux shell with PostGIS installed  
# Example - Metro UGB shapefile; 2913 is the Spatial Reference Identifier for NAD83(HARN)  
shp2pgsql -d -I -s 2913 /workspace/RLIS/ugb.shp | psql -h postgres_server -U 
postgres_username -d portland 

# load all shapefile in the current directory 
for f in *.shp; do shp2pgsql -d -I -s 2913 $f | psql -h postgres_server -U postgres_username -d 
portland; done 

Transform 

# merge two data tables 
data.df.extra <- merge(data.df, df.extra, by.x='TAZ', by.y='zone_id') 

#append rows 
 

Load (to a PostgreSQL database) 

# Load R data.frame in data.df to table “table.name” in PostgreSQL database bayarea 
require(RPostgreSQL) 
conn <- dbConnect(PostgreSQL(), user= "postgres", password="***", dbname="bayarea") 
dbListTables(conn) 
if (dbExistsTable(conn, table.name)) dbRemoveTable(conn, table.name) 
dbWriteTable(conn, table.name, data.df, row.names = F) 
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APPENDIX A-2 DATA-QUALITY INDICATORS 
# Example for single and multiple family housing 
# comparing ACS and RLIS 
 
setwd("/workspace/DQI") 
 
library(ggplot2) 
library(RPostgreSQL) 
library(plyr) 
library(data.table) 
library(reshape2) 
 
########################### 
# Data Quality Indicators # 
########################### 
 
# functions to calculate several data quality indicators 
count.na <- function(x) sum(is.na(x)) 
all.na <- function(x, y) max(count.na(x), count.na(y))==length(y) 
rmse <- function(x=x, y=y) sqrt(mean((x-y)^2)) 
r2 <- function(x=x, y=y, ...) {if(!all.na(x, y)) summary(lm(y~x,...))$r.squared else 0.0} 
intercept <- function(x=x, y=y, ...) {if(!all.na(x,y)) coef(lm(y~x,...))["(Intercept)"] else 0.0} 
slope <- function(x=x, y=y, ...) {if(!all.na(x,y)) coef(lm(y~x,...))["x"] else 0.0} 
 
# create a table for data quality indicators 
all.dt <- data.table(all, key = "year") 
dqi <- ddply(all.dt, .(year,unit_type), summarise,  
  rmse=round(rmse(x=num_units.rlis, y=num_units.acs),2), 
  r2=round(r2(x=num_units.rlis, y=num_units.acs),2), 
  intercept=round(intercept(x=num_units.rlis, y=num_units.acs),2), 
  slope=round(slope(x=num_units.rlis, y=num_units.acs),2)) 
dqi <- dqi[order(rev(dqi$year),dqi$unit_type),] 
dqi[dqi==0] <- NA 
dqi$year <- as.numeric(dqi$year) 
 
# create graphs 
rmse <- ggplot(data=dqi,aes(x=year,y=rmse))+ 
  geom_point(aes(shape=unit_type),size=5)+ 
  theme(legend.position="none")+ 
  xlim(2007,2011) 
r2 <- ggplot(data=dqi,aes(x=year,y=r2))+ 
  geom_point(aes(shape=unit_type),size=5)+ 
  theme(legend.position="none")+ 
  xlim(2007,2011) 
intercept <- ggplot(data=dqi,aes(x=year,y=intercept))+ 
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  geom_point(aes(shape=unit_type),size=5)+ 
  theme(legend.position="bottom")+ 
  xlim(2007,2011) 
slope <- ggplot(data=dqi,aes(x=year,y=slope))+ 
  geom_point(aes(shape=unit_type),size=5)+ 
  theme(legend.position="none")+ 
  xlim(2007,2011) 
 
png(file="dqi_housing.png") 
multiplot(rmse,slope,r2,intercept,cols=2) # the "multiplot" function must be generated first 
dev.off() 
 
# Multiple plot function 
# 
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects) 
# - cols:   Number of columns in layout 
# - layout: A matrix specifying the layout. If present, 'cols' is ignored. 
# 
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), 
# then plot 1 will go in the upper left, 2 will go in the upper right, and 
# 3 will go all the way across the bottom. 
# 
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { 
  require(grid) 
 
  # Make a list from the ... arguments and plotlist 
  plots <- c(list(...), plotlist) 
 
  numPlots = length(plots) 
 
  # If layout is NULL, then use 'cols' to determine layout 
  if (is.null(layout)) { 
    # Make the panel 
    # ncol: Number of columns of plots 
    # nrow: Number of rows needed, calculated from # of cols 
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 
                    ncol = cols, nrow = ceiling(numPlots/cols)) 
  } 
 
 if (numPlots==1) { 
    print(plots[[1]]) 
 
  } else { 
    # Set up the page 
    grid.newpage() 
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) 
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    # Make each plot, in the correct location 
    for (i in 1:numPlots) { 
      # Get the i,j matrix positions of the regions that contain this subplot 
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) 
 
      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, 
                                      layout.pos.col = matchidx$col)) 
    } 
  } 
} 
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APPENDIX A-3 DATA IMPUTATION WITH MICE 
setwd("/workspace/data_imputation") 

library(RPostgreSQL) # to connect the PostgreSQL database 
library(mice) 
rm(list=ls()) 

### connect to the PostgreSQL database 
conn <- dbConnect(PostgreSQL(), host="postgres_server", user="postgres_user", 
password="postgres_passwd", dbname="portland") 

### read taxlots20XX 

taxlots2011 <- dbReadTable(conn, c("rlis","taxlots2011")) 

### create a data set for imputation 

ds <- taxlots2011[c("area","bldgsqft","landval","bldgval","landuse","juris_city")] 

SFR <- subset(ds, landuse=='SFR')    # select tax lots with SFR 

SFR$bldgsqft[which(SFR$bldgsqft==0)] <- NA  # recode bldgsqft with zero to NA 

SFR$landval[which(SFR$landval==0)] <- NA  # recode landval with zero to NA 

SFR$bldgval[which(SFR$bldgval==0)] <- NA  # recode bldgval with zero to NA 

SFR$juris_city <- as.factor(SFR$juris_city)  # convert data type of juris_city from 
character to factor 

SFR$far <- SFR$bldgsqft / SFR$area    # floor area ratio 

SFR$lvpa <- SFR$landval / SFR$area    # land value per area 

SFR$bvpa <- SFR$bldgval / SFR$area    # building value per area 

 

SFR <- SFR[c("area","juris_city","far","lvpa","bvpa")] 

### validation 

# create a validation data set 

# in which we draw a 5% random sample for each variable and replace them with NA 

SFR.val <- subset(SFR, !is.na(far) & !is.na(lvpa) & !is.na(bvpa)) 
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set.seed(1234) 

SFR.val$far[sample(nrow(SFR.val),0.05*nrow(SFR.val))] <- NA 

SFR.val$lvpa[sample(nrow(SFR.val),0.05*nrow(SFR.val))] <- NA 

SFR.val$bvpa[sample(nrow(SFR.val),0.05*nrow(SFR.val))] <- NA 

# inspect missing values across the variables from the validation data set 

md.pattern(SFR.val) 

 

# conduct MICE via CART using the validation data set 

system.time(imp.cart.SFR.val <- mice(SFR.val, seed=1234, method="cart", minbucket=5)) 

print(imp.cart.SFR.val) 

 

SFR$rowname <- as.numeric(row.names(SFR)) 

 

imp.far <- imp.cart.SFR1$imp$far 

imp.far$rowname <- as.numeric(row.names(imp.far)) 

imp.far <- merge(imp.far, SFR, by="rowname") 

 

imp.lvpa <- imp.cart.SFR1$imp$lvpa 

imp.lvpa$rowname <- as.numeric(row.names(imp.lvpa)) 

imp.lvpa <- merge(imp.lvpa, SFR, by="rowname") 

 

imp.bvpa <- imp.cart.SFR1$imp$bvpa 

imp.bvpa$rowname <- as.numeric(row.names(imp.bvpa)) 

imp.bvpa <- merge(imp.bvpa, SFR, by="rowname") 
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rmse.1 <- sqrt(mean((imp.far$'1'-imp.far$far)^2)) 

rmse.2 <- sqrt(mean((imp.far$'2'-imp.far$far)^2)) 

rmse.3 <- sqrt(mean((imp.far$'3'-imp.far$far)^2)) 

rmse.4 <- sqrt(mean((imp.far$'4'-imp.far$far)^2)) 

rmse.5 <- sqrt(mean((imp.far$'5'-imp.far$far)^2)) 

r2.1 <- summary(lm(imp.far$'1' ~ imp.far$far))$r.squared 

r2.2 <- summary(lm(imp.far$'2' ~ imp.far$far))$r.squared 

r2.3 <- summary(lm(imp.far$'3' ~ imp.far$far))$r.squared 

r2.4 <- summary(lm(imp.far$'4' ~ imp.far$far))$r.squared 

r2.5 <- summary(lm(imp.far$'5' ~ imp.far$far))$r.squared 

 

table.far <- matrix(c(rmse.1, rmse.2, rmse.3, rmse.4, rmse.5, r2.1, r2.2, r2.3, r2.4, r2.5), 2, 5, 
byrow=TRUE) 

dimnames(table.far) = list(c("rmse", "r2"), c("mi_1", "mi_2", "mi_3", "mi_4", "mi_5"))  

table.far 

 

rmse.1 <- sqrt(mean((imp.lvpa$'1'-imp.lvpa$lvpa)^2)) 

rmse.2 <- sqrt(mean((imp.lvpa$'2'-imp.lvpa$lvpa)^2)) 

rmse.3 <- sqrt(mean((imp.lvpa$'3'-imp.lvpa$lvpa)^2)) 

rmse.4 <- sqrt(mean((imp.lvpa$'4'-imp.lvpa$lvpa)^2)) 

rmse.5 <- sqrt(mean((imp.lvpa$'5'-imp.lvpa$lvpa)^2)) 

r2.1 <- summary(lm(imp.lvpa$'1' ~ imp.lvpa$lvpa))$r.squared 

r2.2 <- summary(lm(imp.lvpa$'2' ~ imp.lvpa$lvpa))$r.squared 

r2.3 <- summary(lm(imp.lvpa$'3' ~ imp.lvpa$lvpa))$r.squared 

r2.4 <- summary(lm(imp.lvpa$'4' ~ imp.lvpa$lvpa))$r.squared 

r2.5 <- summary(lm(imp.lvpa$'5' ~ imp.lvpa$lvpa))$r.squared 
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table.lvpa <- matrix(c(rmse.1, rmse.2, rmse.3, rmse.4, rmse.5, r2.1, r2.2, r2.3, r2.4, r2.5), 2, 5, 
byrow=TRUE) 

dimnames(table.lvpa) = list(c("rmse", "r2"), c("mi_1", "mi_2", "mi_3", "mi_4", "mi_5"))  

table.lvpa 

 

rmse.1 <- sqrt(mean((imp.bvpa$'1'-imp.bvpa$bvpa)^2)) 

rmse.2 <- sqrt(mean((imp.bvpa$'2'-imp.bvpa$bvpa)^2)) 

rmse.3 <- sqrt(mean((imp.bvpa$'3'-imp.bvpa$bvpa)^2)) 

rmse.4 <- sqrt(mean((imp.bvpa$'4'-imp.bvpa$bvpa)^2)) 

rmse.5 <- sqrt(mean((imp.bvpa$'5'-imp.bvpa$bvpa)^2)) 

r2.1 <- summary(lm(imp.bvpa$'1' ~ imp.bvpa$bvpa))$r.squared 

r2.2 <- summary(lm(imp.bvpa$'2' ~ imp.bvpa$bvpa))$r.squared 

r2.3 <- summary(lm(imp.bvpa$'3' ~ imp.bvpa$bvpa))$r.squared 

r2.4 <- summary(lm(imp.bvpa$'4' ~ imp.bvpa$bvpa))$r.squared 

r2.5 <- summary(lm(imp.bvpa$'5' ~ imp.bvpa$bvpa))$r.squared 

 

table.bvpa <- matrix(c(rmse.1, rmse.2, rmse.3, rmse.4, rmse.5, r2.1, r2.2, r2.3, r2.4, r2.5), 2, 5, 
byrow=TRUE) 

dimnames(table.bvpa) = list(c("rmse", "r2"), c("mi_1", "mi_2", "mi_3", "mi_4", "mi_5"))  

table.bvpa 

 

prmse1 <- rmse1 / nrow(imp.far) 

prmse2 <- rmse2 / nrow(imp.far) 

prmse3 <- rmse3 / nrow(imp.far) 

prmse4 <- rmse4 / nrow(imp.far) 
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prmse5 <- rmse5 / nrow(imp.far) 

 

imp.lvpa <- imp.cart.SFR1$imp$lvpa 

imp.lvpa$rowname <- row.names(imp.far) 

 

imp.bvpa <- imp.cart.SFR1$imp$bvpa 

imp.far$rowname <- row.names(imp.far) 

 

system.time(imp.pmm <- mice(SFR, seed=1234)) 

# stripplot 

png("stripplot.pmm.png"); stripplot(imp.pmm, pch=20, cex=1.2); dev.off() 

png("stripplot.cart.png"); stripplot(imp.cart, pch=20, cex=1.2); dev.off() 

 

# xyplot 

png("xyplot.pmm1.png"); xyplot(imp.pmm, bldgsqft~landval | .imp, pch=20, cex=1.4); dev.off() 

png("xyplot.pmm2.png"); xyplot(imp.pmm, bldgsqft~bldgval | .imp, pch=20, cex=1.4); dev.off() 

png("xyplot.pmm3.png"); xyplot(imp.pmm, bldgsqft~juris_city | .imp, pch=20, cex=1.4); 
dev.off() 

 

png("xyplot.cart1.png"); xyplot(imp.cart, bldgsqft~landval | .imp, pch=20, cex=1.4); dev.off() 

png("xyplot.cart2.png"); xyplot(imp.cart, bldgsqft~bldgval | .imp, pch=20, cex=1.4); dev.off() 

png("xyplot.cart3.png"); xyplot(imp.cart, bldgsqft~juris_city | .imp, pch=20, cex=1.4); dev.off() 

 

png("xyplot.cart1.png"); xyplot(imp.cart, far~lvpa | .imp, pch=20, cex=1.4); dev.off() 

png("xyplot.cart2.png"); xyplot(imp.cart, far~bvpa | .imp, pch=20, cex=1.4); dev.off() 

png("xyplot.cart3.png"); xyplot(imp.cart, far~juris_city | .imp, pch=20, cex=1.4); dev.off() 
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# densityplot 

png("densityplot.pmm.bldgsqft.png"); densityplot(imp.pmm, ~bldgsqft | .imp); dev.off() 

png("densityplot.pmm.landval.png"); densityplot(imp.pmm, ~landval | .imp); dev.off() 

png("densityplot.pmm.bldgval.png"); densityplot(imp.pmm, ~bldgval | .imp); dev.off() 

 

png("densityplot.cart.bldgsqft.png"); densityplot(imp.cart, ~bldgsqft | .imp); dev.off() 

png("densityplot.cart.landval.png"); densityplot(imp.cart, ~landval | .imp); dev.off() 

png("densityplot.cart.bldgval.png"); densityplot(imp.cart, ~bldgval | .imp); dev.off() 

 

png("densityplot.cart.far.png"); densityplot(imp.cart, ~far | .imp); dev.off() 

png("densityplot.cart.lvpa.png"); densityplot(imp.cart, ~lvpa | .imp); dev.off() 

png("densityplot.cart.bvpa.png"); densityplot(imp.cart, ~bvpa | .imp); dev.off() 

 

# after MICE 

fit <- with(imp.cart, lm(far~lvpa+bvpa)) 

summary(fit) 

est <- pool(fit) 

est 
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