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Field solutions for bidirectional high-gain laser amplifiers and oscillators
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Lee W. Casperson?
The Institute of Optics and The Rochester Theory Center for Optical Science and Engineering, University
of Rochester, Rochester, New York 14627-0186

(Received 8 September 1997; accepted for publication 11 Novembej 1997

General analytical solutions are obtained for the amplitude, phase, and intensity of the
electromagnetic waves in bidirectional homogeneously broadened high-gain laser amplifiers and
oscillators. These solutions are important as increasingly high-gain lasers are being employed in
practical systems. Expressions are derived relating the output power to the input, including the
effects of arbitrary mirror reflectivities and frequency detunings from the line center. For negligible
reflectivities, these regenerative amplifier results reduce to earlier expressions for single-pass
high-gain amplifiers. Multivalued outputs also occur, and in the limit of low gain per pass the results
are consistent with earlier studies of single-frequency laser oscillatord 998 American Institute

of Physics[S0021-897@8)00305-3

I. INTRODUCTION switching behaviors can also occur in amplifier systems with
appropriate feedback.

One of the most basic problems in optoelectronics is the  In many high-gain laser-amplifier systems, feedback is
calculation of the output power of saturating laser amplifiersconsidered to be undesirable, and in the worst cases prelasing
and such devices are used in many applications. For instancand parasitic oscillations may drain away pump energy that
on the large scale, optical amplifiers are the basis for thevould otherwise have contributed to the useful laser output.
highest-powered fusion and weapons systems, while on th8everal techniques have been developed to reduce such un-
smaller side they have also attracted attention for their powanted feedback. Thus, the ends of the laser media may be
tential use in all optical signal processing and communicaCut at an oblique angle to the rod axis, often at the Brewster
tion systems. Such wide-ranging usage underlines the valu@ngle, or they are coated with antireflection layeReflec-
of having analytic models for these amplifiers. Many suchtions of off-axis spontaneous emission from the amplifier
models involving various degrees of approximation havesSides may be minimized by the use of black coatings, index-
been developed to study the characteristics of laser amplifief8atching fluids, or rough grinding of the sides. If more than
and oscillatord—5 one stage of amplification is required, the stages may be

Among the important difficulties in modeling many laser SPaced as widely as possible, or they may be separated by

oscillators are the high gain of the laser medium and the lovf|€Ctro-optical - shutters, isolators, or bleachable media.

reflectivity of the mirrors. These properties may make it nec—Whether the feedback occurring in an amplifier system is

essary to employ spatially dependent models for the electroqes'rable or not, its potential consequences should always be

o . . understood.
magnetic fields and for the saturating laser medium. How- In this study, we develop a model for the behavior of a

ever, the most popular analytical models for laser oscillators . o .
. ; T regenerative laser amplifier that consists of a general homo-
employ an average intensity or photon density inside the

amplifier. This approximation is not justified when the gain geneously broadened amplitying medium situated between

. . . two mirrors. We do not make the average intensity approxi-
of the amplifier is so high that the sum of the right and Iertmation, and thus we allow for arbitrarily high-gain values

traveling intensities cannot be approximated with a constante yass and arbitrary reflectivities. Such generality is needed
value. On the other hand, in laser amplifiers the inevitablgq, the most useful analysis of laser amplifiers and oscilla-
small reflectivity of even antireflection coated surfaces may,,s |f the gain coefficient is considered to be negative, the

also make it necessary to include bidirectional effects in thgesyits are also applicable to absorbing media having reflect-
analysis of what otherwise would be unidirectional systemsing poundaries or situated between mirrors.

When such reflections are significant, these systems should  another subject, which we address explicitly, is the

sometimes be regarded as regenerative laser amplifiers, apflase of the fields inside the active medium. Most single-

amplifier gain and efficiency may be increased substantiallyass and regenerative amplifier models include only intensi-
through multipass regeneratiénUseful bistability and ties, neglecting the phase. We show that the amplitude and
phase of the fields can be related to each other by a simple

apermanent address: Department of Electrical Engineering, Portland Staf@XPression, without making any Significant approximations.
University, P.O. Box 751, Portland, Oregon 97207-0751. Thus, once the amplitude of the wave is calculated, the phase
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of the wave can readily be found as well. The amplifierwhereP’(v,w,,2) is the complex amplitude of the polariza-
model we develop includes the effects of cavity frequencytion as a function of the component of the velocity of the
detunings from the line center and saturation-dependent digctive atoms or moleculesy, is the center frequency of the
persion, and the results reduce to known special casekser transition for members of an atomic or molecular class
Among these special cases are the intensity transfer in a mire, and z is the position in the amplifier. The background
rorless laser amplifier, the intensity output and oscillationspeed of light in the medium characterized by the permeabil-
frequency of a laser oscillator, and the multivaluedness ofty «; and permittivity e; is ¢;=(u1€1) Y2 y.=0/2¢; is
the output of a laser above threshold as a function of th¢he field decay rate, an@ =k(u,€;) ¥ can be recognized
input intensity. Only the low-gain limiting case of this last as the optical frequency at which the real part of the polar-
effect has been considered previouSly. ization vanishes. It is also possible to relate the polarization
The basic equations for the electromagnetic fields in derm back to the electric field, and for the simple case of a
saturating homogeneously broadened amplifying medium areomogeneously broadened material with= w, the field
developed in Sec. II. A general relation between the ampliequation can be writtéfi
tude and phase of the field is derived in Sec. Ill. The equa-
tions are integrated in Sec. IV, and they are shown in Sec. V

to reduce to familiar results for a laser amplifier when the dA(Z) nyc A(z)— (1+'y2)D°(Z)A(ZZ) , (3)
reflectivities are set equal to zero. In Sec. VI they are shown dz 1+y*+[A(2)]
to reduce to conventional oscillator formulas for the case of
low gain per pass. Solutions for the general regenerative amMyhereA(z) is a normalized field amplitude given by
plifier configuration are reported in Sec. VII.
_ 1/2 ’
IIl. FIELD AND INTENSITY EQUATIONS A(Z):(Va Yant Vo) " LE(2) (4)
2yYaYo h

The starting point in any derivation of electromagnetic
wave propagation is Maxwell's equations. For a traveling- . _ . .
wave laser amplifier, one can assume a propagating-waJée normalized optical frequency ¥s= (w — wo)/y with wg

form for the electric field the center frequency of the transitidDy(z) is the normal-
) _ _ ized unsaturated population differenge,is the dipole mo-
E(zt)= z E'(2)expikz—iwt) +c.c., (1) ment of the transitiony, andy, are the total decay rates for

the upper and lower laser levels,, is the rate of direct
decays from the upper level to the lower level, ant the
gecay rate for the off-diagonal elements of the density ma-
trix. In Eq. (3) n=c/c, is the background index of refrac-
tion, and the coefficiemy./c corresponds to a loss rate per
unit of propagation distance.
In a standing-wave laser amplifier, one readily finds that
dE'(Z) 7c ( -0% the right and left traveling waves obey equations similar to
dz E'(2)- 20 E'(2) Eqg. (3), except that the saturation terms in these equations
include an oscillating interference term as well as the sum of
fo'w P'(V,0,,2)dvdaw,, ) the left and right traveling intensities. Thus, the equations for

where E(z,t) is the magnitude of the electric-field vector
(which is assumed to be polarized in thelirection, E’ (2)

is the slowly varying complex amplitude, and c.c. represent
the complex conjugate. Assuming a similar form for the po-
larization, and after making the usual derivative
approximatior?, one obtains

C1

= 2619

the right and left traveling waves can be written
|
dA+(Z) LT (1+iy)Do(2)A™(2) 5
dz c (2)- 1+y?+[|AT(2)|?+|A"(2)|?+2|AT(2)A” (2)|cog 2k2) ]|’ ®
dA (2) _ nyc A (1+iy)Do(2)A™(2) 5
dz (2)- 1+y2+[|AY(2)|2+]|A (2)|?+2|AT (2)A™ (2)|cog2kz2) ]’ ©

whereA™(z) andA~(z) are the normalized complex amplitudes of the right and left traveling waves at azpioisite the
amplifier, and the relative phases of the right and left waves have been assumed to be unirtthestaauld be included by
shifting the arguments of the cos functign§hese equations are quite general and account for the effects of line center
detuning, longitudinal hole burning, and the possibility of high gain per pass.
The above equations govern the spatial evolution of the electromagnetic fields. It is also useful to convert them to an
equwalent set of equations for the right and left traveling intensities. By defining normalized intesisities=| A" (z)|? and
=|A"(2)|?, one can obtain from Eqg5) and(6)
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di*(z2) 2nyc( . Do(2)l " (2)
dz ¢ (Z)‘1+y2+s{l+<z>+l(z)+2[|*<z>|<z>]1’2cos(2kz>})' "
di= (2 2ny.[ _ Do(2)1 " (2)
dz ¢ (' (Z)‘1+y2+s{l+<z>+l(z>+2[|*<z>|(z)]l’zcos(zkz»)' ®

In this notationl * andl ~ are the actual intensities asds a  From this result follow the constraint&*A~ =constant
saturation parameter. It should be noticed that although thess a and|A™|?|A™|2=s?1 "1~ =s?|a|?, where the constant
set of Eqs(5) and(6) closely resemble Eq$7) and(8), in a has been introduced. This constant is allowed to be a com-
going from the former to the latter, information on the phaseplex quantity, unlike previous studies where the correspond-

of the waves has been lost. ing parameter has always been assumed to be Tékilfol-
lows from these constraints that the right and left traveling

Ill. PHASE OF THE FIELD IN A BIDIRECTIONAL complex amplitudes can be written in the form

AMPLIFIER

Ouir first goal is to find a relationship between the phase
and the amplitude of the electric field in a bidirectional laser
amplifier. It would then be sufficient to solve the intensity
equations for each particular case without losing the gener- B 1o 12 )
ality of the problem, because once the intensity or amplitude A (2)=s"a "~ exd —a(2)—iB(2)]. 11
distribution has been found the phase distribution is auto-
matically known. To achieve this goal, one can start from i )
Egs.(5) and(6). The right-hand sides of these two equations!n these expressiong,(z) and 3(2) are new(rea) functions
differ only by a sign, and one can easily deduce the follow-Of 2, as yet unknown.

A" (z)=sYa'? exd a(z) +iB(z)], (10)

ing relationship Equations(lO) and(11) can now be_substituted _back into
. - the field Eqs(5) and(6). For example, if one substitutes Eq.
1 dA"(2) 1 dA (2 ~0 ) (10) into Eg. (5) and cancels the exponential terms, one ob-

A*(z) dz * A (z) dz tains two equations for the real and imaginary parts:

da(Z)__% 1- Dy(2) 12
dz ¢ 1+y*+s|al{exd 2a(z)]+exd —2a(z)]+2 cog2kz)} )’
dg(z) _nv. yDo(2) 13
dz ¢ 1+y’+s|al{exg2a(z)]+exd —2a(z)]+2 cog2kz)}
|
Equations(12) and (13) can be combined to get a simple Vo1 . Conye .
relationship between the amplitude and phase of the electric A" (2)=s"a EXF{(1+W)H(Z)+IY e Z+l¢>},
fields. The result is (16)
n
dg(z) _ [da(z) ny. (14) A~ (z)=s"%al? exp{—(lﬂy)a(z)—iy iz—iq&}.
dz dz c | c
(17)
which can be integrated to obtain These equations are not complete solutions yet. In fact, they
still include two unknowns—the constaat which may be
Ny calculated using boundary conditions, and the functi¢n),
B(2)=ya(2)+y =zt ¢, (15 which is the solution to Eq(12).

where ¢ is an integration constant.

Equation(15) is a simple but powerful result, since it
relates the amplitude and the phase of the electric field in any In the previous section it was shown that it would be
bidirectional laser amplifier or oscillator. Therefore, from sufficient to integrate the intensity wave equations in a bi-
Egs.(10) and(11) the complex electric-field amplitudes now directional laser, since there is a simple relationship between
can be written in terms of only one variable in the form  the amplitude and the phase of the fields. Unfortunately, the

IV. INTEGRATION OF THE WAVE EQUATION
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P oIz) = 1A (2)2 where in Egs.(18) and (19) the relationship following Eq.
slo= AR ‘ST: A2 - ol = AP (9) has been used. The first two of the above equations are
. T for the right traveling waves and the equations for the left
si=la@ | Sti=lA — =T T slo= 1R traveling waves are similar. We will now assume that the
- sI*2) = IA*z)2 unsaturated population differenBg, is independent of posi-
1, b By, T 2 t2, R, T2 tion z, and thus, Eqs(19) and(20) are now in an integrable
' ' > form. The corresponding phase information can readily be
1 L 2 obtained by application of Eql5) once the intensity or

amplitude has been solved. Therefore, we now concentrate
FIG. 1. Definition of intensity, field, and boundary variables in a laser On the intensity wave equations.

amplifier. By introducing the new gain and saturation parameters
n’yc 2D0
9= Try? .

more general form of the wave equatidmy of Eqgs.(5)
and (6), (7) and (8), or (12)] cannot be integrated analyti- s = S 22)
cally, and one needs to make further approximations. 1+y?’

In many practical cases, the effects of the IongitudinaIEq. (19) can be written in the more compact form
spatial hole burning can be neglected by arguing that the di*(2) gl (2)

oscillating term cos(&2 in the denominator of Eq45) and — _ (23)
(6), (7) and(8), or (12) is significant only in the short dis- dz — 1+s'[I7(2)+[a]*/17(2)]

tance within a high-gain amplifier where the magnitudes ofThijs equation can be integrated and the result is

the right and left waves are about the same. Alternatively, 1*(zp] s'lal?  s'|al?

one may often argue that spatial cross relaxation causes this[| *(z,) —1*(z;)]+In| — 22— T T =gL.
term to average to zerd.Neglecting longitudinal spatial 1"(z)] 17(z2) 17(z0)

hole burning makes the intensity wave equation analytically

solvable, but the results are still very complicated. Another ~ The above expression relates the positive traveling inten-
possible simplification is the neglect of the distributed losssity at the two ends of the amplifier, the gain—length product
term, the first term on the right-hand side of E@9—(8) and gL, and the modulus of the parameterOn the other hand,
(12). Although this simplification is not necessa&r§® it is  the quantitied *(z;) andl *(z,) can be related to the ampli-
appropriate for many practical laser amplifiers, and it makedier input and output via appropriate boundary conditions. It
the results much less complicated. With these two approxiis, therefore, useful to solve E4) for the quantity|a|?,

mations, one can reduce E@S), (7), and(12) to the follow-
ing equations, respectively,

dA*(2) ny. (1+iy)Do(2)A(2)
dz ¢ 1+y2+[|AT %+ Sa¥AT )" (18
dl*(z) Ny 2Dy(2)1 " (2)
dz ¢ 1+yZ+s[I7(2)+|a]Z17(2)]’ (19
da(z) ny, Do(2)
dz ¢ 1+y?+slal{exi2a(z)]+exd —2a(2)]}’
(20)

gL—2a(z,)+2a(zy)

since this quantity should eventually be eliminated from the
equations. Moreover, we previously expressed the electric
field in terms of the two new functions(z) and B8(z) rep-
resenting the amplitude and the phase of the field, respec-
tively, so the intensity of the waves can be expressed in
terms of the functiore(z) only. In fact, it can be seen from
Egs.(16) and(17) that

sl (2)=|A" (2)|*=slalexd 2a(2)], (29

sI™(2)=|A"(2)|?>=s|alexd —2a(2)]. (26)

Therefore, expressing™(z;) and1*(z,) in terms of a(z,)
and a(z,) and solving for|a|, one obtains from Eq24)

lal= s’ exd2a(zy)]—s' exd2a(z))]—s" exd —2a(z,)]+s’ exgd —2a(z;)]’

Equation (27) is the solution of the wave equation in the

amplifier. However, the quantitier|, a(z;), and a(z,)

should still be related to the amplifier input and output inten-

sities by the appropriate boundary conditions.

Referring to Fig. 1, the boundary conditions at the input

and output side of an amplifier can be written as

(27)

[
I7 =Ryl +T4l;, (28
I, =R,l;, (29
lo=Tal, , (30)
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whereT,, T,, Ry, andR, are the intensity transmission and where the single-pass gainGs_p.=A+(zz)equkzz)/
reflection coefficients at the input and output sides of theA*(z)exp(kz,) is the complex gain from the input side to the
amplifier. There is also an output at the left-hand end of theutput side inside the cavity ang is the complex field-
amplifier, but to be specific we are emphasizing the outputransmission coefficient at the output side of the ampilifier.

on the right. Now, we can use Eq25) and(26) and write The above expressions are commonly used for a linear
the first two of the above boundary conditions in terms of theFabry—Perot &@lon. However, one can extend them to in-
variablesa(z;) and «(z,): clude the saturation and detuning effects in an amplifier. To
do this, we need to express the single-pass and round-trip
|alexd 2a(z,)]=Ry|alexd —2a(z;) ]+ T4l;, (3D gains in terms of the results of the previous section, i.e., in
terms of the functione(z). Making use of Eqs(16) and
|alexi —2a(z,) 1= R;lalexg 2a(z,)]. B2 (17), and assuming again that the distributed loss is small
Solving for a(z;) and a(z,) one obtains compared to the gain, we obtain
i Tali+(T212+ 4R, |a]?) Y2 =3 e At (z,)explikzy)
a(z)=z1In 2[a : SPT AT (z,)exp(ikzy)
N 1 ) Nw
a(z;)=31In R (39 =exp (1+iy)[a(zy) —a(z)]+i < L, (38

In solving the above quadratic equations, the positive root

. . _ .
has been chosen because the argument of the logarithm func- G :A (zz)exp(!kzz) Ai(zl)exp(?kzl)
- ” T AT (z)expikzy) T 2T A (zy)explikzy) Tt
tions should always be positijer(z;) and «(z,) should be 1 1 2 2
reall. Nw

By multiplying both sides of Eq(29) by | and noticing =rqf, exp[ 2(1+iy)[ a(zy) — a(zy) ]+ 2i < L],
thatl,=T,l, , one may obtain

|2 (39
2_p |0
2l _R2(T2) : 39 \where we have used=2z,—2z; andk=nw/c. It is evident

W bi he ab . hich incl dthat these expressions for the round-trip and single-pass gain
e can now combine the above equations, Which Includ ¢ i, tarms of the quantity(z,) — a(z;). If we define this

boundary con_dltlons for input and output mtensmes with t,heﬁ:]uantity as the new parameter
results of the integration of the wave equation. For an optica

cavity with the parameters defined in Fig. 1, one has H=a(z,)— a(zy), (40)
+
'Ai: b (36) then Eq.(37) can be written as
A 1-G’
wheret; andG,, are the complex field transmission coeffi- tit, eXF{(l.}.iy)H_’_i ne L}
cient at the input side and the complex round-trip gain. Equa- 70 _ ¢ (41)
i il to relate the i A Nw
tion (3.6) can easily be extended to relate the input and output 1—rr, exg 2(14+iy)H+2i 2L
fields: c
ﬁ: % (37) Equation(41) can also be expressed in terms of the in-
A 1-G tensities. It can readily be verified that
|
lo_|Ao®_ T,T, exp(2H) 2
A 12 2 12 ; nw 01+ 65|’
[1—(R{R,) Y2 exp(2H) ]2+ 4(R;R,) 2 exp(2H) sir? yH+ — L+ —

where 6, and 6, are the phase shifts for reflection at the boundaries. The parahhéseintrinsically related to the saturating
gain in the amplifier. For a gainless medium, the intensities at both sides of the amplifier ar¢léqagi=1"(z;)], and
therefore,H=0. In this case, Eq42) reduces to

lo |Ag|? T.T

0 ‘_0 _ 112 , 43)

B Nw 0,+ 0
[1- (RiRo) Y2+ 4(RyRy) Y2 sir? —— L + %

which is a well-known expression for the power transmission coefficient of a Fabry—Raimt.e
The more interesting case is whihis not zero, where Eq42) becomes nonlinear sind¢ itself would be a function of
the intensities. To calculatd in this case, one can make use of E@), (33), (34), and(35) to obtain
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1/2
H=a(z,)~ a(z) =S =

2T,
| \2]12 oRY2
Tyli+| T2+ 4R,Ry| — CE
1/2 T2 T2 gL
Xlgy Rz _ﬁ'Rlz"‘ SRI? VANTE +7- (44)
2 2 2,2 0
lo Teli+| T3l +4R1R2(—) }
T2 T2

Therefore, in principle, one can substitute E44) into Eq. (42) and obtain the intensity gain coefficient for a saturating
bidirectional amplifier.
The above equation simplifies slightly if we introduce normalized input and output intensities

\]i:Tlslli, (45)
2(R:R 1/2
g 2R ”
T2
Using the above-normalized intensities and also defiffg R;R,, Eqgs.(42) and(44) become
J 2R exp(2H
3" . ! (47)
Ji ) _ nw 0,46,
[1-R exp(2H)]?+ 4R exp(2H)sir? yH+ — L+ —
|
B[R 1 J+(32+33H*? lo p[ '
==t — —=T,T, exg= (T,Toli—lg)+gL]|, 51
4[R1R J ] 112 T2(12| 0tg (51
1 Jo gL a simpler transcendental relationship between the input and
-0 2= . itios.
R, \]i+(Ji2+J(2))1/2:| 2 (48 output intensities

In an ideal amplifier, there would also be no loss at the
These two equations allow for calculation of the output of aends of the amplifying region. Setting,=T,=1, Eq. (51
high-gain amplifier for a given input, including saturation can be written in the form
and detuning effects. They should have many applications in
the study of high-gain laser systems, including those with  g/| —s’|,+In ,—) =gL. (52
non-negligible end reflectivities. In the remainder of this s'li
study, we consider several special cases of these equationg.the input signal is at the center frequency of the transition
so thats’ andg have their line-center values, then E§2)
can be recognized as the standard input—output relation for a
V. SINGLE-PASS AMPLIFIER homogeneously broadened laset?

!

s'ly

Certain special cases of our general amplifier formulas
correspond to previously known results. As a first example,
one may consider the situation in which the feedback in the/l. LASER OSCILLATOR

bidirectional amplifier is reduced to zero. In this case, the , ,
input—output relation should be the same as for a basic A laser oscillator above threshold can be considered as a

single-pass amplifier. Iase_r amplifier with no inpu_t. In this case, the frgquency of
If the reflectivity R, of the output mirror becomes small, ©scillation and the output intensity are determined by the
Eq. (42) reduces to cavity itself. The oscillation condition requires the complex
round-trip gain to be unitythis can be seen by setting the
lo denominator of Eq(41) to zerd, which by itself amounts to
F_Tsz exp(2H), (49) two conditions: the magnitude of the round-trip gain should
be unity and the round-trip phase delay should be an integral

and Eq.(44) reduces to multiple of 2. The former condition determines the output

H Ré’zl ( 1 Tszli) gL intensity of the laser, while the latter condition determines
=S’ - — + = . . . i

2T, © @2 R§72|o 2 the f_requency of oscillation. From E(42), the gain condi

tion is
s’ L 12 —
_ f(Tszh—'o)ﬂLg?- (50 (R1Ry)™* exp(2H) =1. (53
2 On the other hand, Eq48) in this case simplifies tdby

These equations may be combined to yield settingJ; to zerg
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FIG. 2. Normalized amplifier output intensity vs normalized input intensity F|G. 3. Normalized amplifier output intensity vs normalized input intensity

with zero detuning and a gain—length producgaf=2.5. Other parameters
areR;=R,=0.3, andT;=T,=0.7.

R NP T 54
4\R;, R R, 2
Combining Eqs(46), (53), and(54), one obtains

T, gL+In(R;R,)Y?

IO:? 1-R,+ (R, /R~ (R R,)Y? (55

for various values of the gain—length prodagdt. Other parameters are as in
Fig. 2.

change in the amplitude of the waves takes place. Hence, the
losses at the boundaries may be averaged over the round-trip
length of the amplifier, and the cavity lifetime may be de-
fined as

2nL

RCEErs) o

which is a known result for the output intensity of a laser

oscillator?

One can then define the cavity bandwidih.=(27t.) !

The condition that the round-trip phase be an integraRnd themth empty cavity mode frequenay.=[mm— (6,
multiply of 27 determines the frequency of oscillation. Us- + 62)/2]c/nL. Moreover, the atomic linewidth can be re-

ing Eq.(42), this condition becomes
Nw
2yH+2? L+ 64+ 6,=2mm, (56)

wherem is an integer. One can combine this result with Eq
(53) and solve for the oscillation frequency:

_ (2m7T_ 01_ 92) YC— wqoC |n(R1R2)1/2 (57)
B 2ynL—c In(R;R,)? '

w

This useful equation describes theh cavity mode oscilla-
tion frequency of a high-gain laser oscillator.
We should be able to reduce E(7) to one of the

lated to the decay ratgby y= wA v, . Using these relations,
Eq. (58) becomes

WA VLT wpA v,

= Avp+Av, (60

which is a well-known resuft*® Therefore, the expressions
we have obtained for a high-gain laser amplifier with feed-
back produce appropriate results when applied to the special
case of a laser oscillator with no input.

VII. BIDIRECTIONAL AMPLIFIER
In this section we consider the implications of E¢&7)

well-known expressions for the oscillation frequency of aand(48) when the input to the amplifier is not zero. In their
laser in some proper limit. To do this, we consider the low-most general form, these equations cannot be directly solved
gain per pass limit, where the reflectivities at the two sidego obtain a single explicit expression for the output intensity

are close to unity. We, therefore, assume fRatindR, are

each less than unity by a small amount, which we 8aknd

8,, respectivelyR;=1- 61, R,=1-5,. In this case, the
logarithm functions can be simplified, and E§7) takes the
following form:

_(2mm— 6~ 6,) ye+ (81 + 5;)Cawl2
B 2ynL+ (8,+ 8,)cl2

Moreover, in the limit of low gain-per-pass, it may be as-

w

(58

sumed that it takes many round trips before any significant ¢=

of a laser amplifier as a function of the input intensity, al-
though they can be plotted easily using a simple routine. On
the other hand, in some simple cases these equations can be
combined and the output can be expressed in a parametrized
form, for example, as a function of the amplifier gain. We
first start with the special cases where further analytical re-
sults may be obtained, and later consider the most general
form of Egs.(47) and (48). From Eq.(47) the round-trip
phase-shifp is found to be

_ 2nLw

+2yH+ 0,4 6,. (61)
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For values of¢ equal to an integral multiple of 2 the ity in Eq. (62) is important and its implications will become-
amplifier is at resonance, i.e., a maximum transmissiortlear shortly. Combining Eq$48) and (62), one obtains an
would take place. If the frequency of the input coincides withimplicit input—output equation
the center frequency of the atomic transition=0), the
round-trip phase shift would be constant for a given cavity, [Jo c0s$+J,=[(Jo cos ¢+ J;)%— 5112
i.e., it would not be a function of input intensity. However, if " RJp
y is not zero,¢ itself becomes intensity dependent via the
parameteH. Hence, one should distinguish between the ef- B[R 1 J+(32+32)w2
fects of detuning from the atomic line-center frequency and = =2 [ — 4+ X 70
detuning from the cavity resonance. 2[Ry R Jo

For the special case of being zero, Eq(47) can be
solved forH 1 Jo

+gL. (63

Jo cos p+J;=[(Jg cos ¢+ J;)2—J312 _ _ _ _
RJ , (62 This equation can be solved for the output intensity and pa-
0 rametrized in terms of the overall transmission coefficient
where ¢ is defined by Eq(61) with y=0. The sign ambigu- T=Jy/J;:

H=11In

In{T cos ¢+ 1+[(T cosp+1)°—T?]¥3—In(RT)—gL

Jo=2 R 1 1+(1+T1H2 1 T ' 64

R, R T R 1+(1+TH

This result describes the output intensity from an amplifiercan be seen that for small values @f, the input—output
with an intensity transmission gain @f. In this form, the curve is almost linear. AgL becomes larger, the differential
intensity characteristics of the amplifier can easily be plottedjain close to the origin starts to increase and eventually be-
either as a direct function af or by usingT as a parameter. comes infinite(regenerative amplificationFurther increase

It may be noted that Eq64) also reduces to Eq55) in the

limiting case of a laser oscillatdil going to infinity and¢

=2mm).

These results are best illustrated by means of a specific 510 T T T
amplifier example. Figure 2 is a plot of the normalized out- 3 | 2.52 -
put intensity versus the normalized input to an amplifier for a 3 15
gain—length productgL=2.5, reflectivities R;=R,=0.3, 805 gL=1.0 ]
transmission coefficients; = T,=0.7, and round-trip phase- é oo -
shift $=2m. The solid branch is the result of plotting Eq. 5 00 : | | |

(64) with the minus sign, and the dotted branch corresponds 0.0 0.5
to Eq. (64) with the plus sign. The solid branch in Fig. 2

<1.0 , ,
starts from a nonzero value for zero ingabrresponding to *g 35
a transmission gaiff of infinity) and describes the stable 5 [ 2.0

. g s . (@] 1.5
behavior of an amplifier above the threshold conditions, i.e., T 05 i
the amplifier may oscillate and produce an output even with N gL=10
no input. On the other hand, the dotted branch passes g y=02 ]
through the origin for low values of transmission gainand 2 00 l l 1 1

o
o
3]

bends back to the vertical axis @sapproaches infinity. This 0 Normalized Input J;
branch may be considered unstable, since in reality it cannot

—
o

be observed. This effect as well as other more detailed as- N 25
pects of the stable and unstable branches have also been 2'01_5
studied by Spencer and Lamb for a laser oscillator subject to =10

an injected input.

The transition from below-threshold to above-threshold
conditions is depicted in Fig. 3, which shows the results of
plotting the output power versus inpgonly the stable Normalized Input Jj

branch using Eq-(64) for several values of the gajn—[ength FIG. 4. Normalized amplifier output intensity vs normalized input intensity
productgL. Other parameters are the same as in Fig. 2. ltor various values of gain-length product and frequency detuning.

Normalized Output Jq
o
[3,]
T
]

©
o

o
=)

0.5
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in gL causes oscillation, and the curves no longer passheny is not zero. This is because Eg.7) cannot be solved
through the origin corresponding to above-threshold condifor H, and the parametrization procedure used earlier cannot
tions. be carried out directly. However, it is still possible to plot the

So far, we have only considered the case of zero lineeutput intensityJ, versus the input intensity); using a
center and cavity detuningg=0, ¢=2m). As mentioned simple numerical routine. To introduce this procedure, we
earlier, Egs.(47) and (48) cannot be solved analytically write Eqgs.(47) and(48) in the forms

2R exp(2H)
T(H)= , 65
2 . an 01"’02
[1—R exp(2H)]?+ 4R exp(2H)sir? yH+ —+—
gL
Jo(H,T)= "2 66
oHD=7Tr 71 1+(1+T9)7? 1 T : (66)
4R, R' T R, 1+(1+ T2

Thus, ifH is taken as a parameter, then the transmission gaiascillators. When the input is not zero, bistability effects are
T can be expressed as a functionHhfand the output power found; and, for cases where the input is detuned from the
Jo can be expressed as a functiontbfindT. Therefore, by  center frequency of the atomic transition, no significant out-
using a simple routine we can plot the input—output curves irput is produced until the input reaches a critical level. Above
the most general case when the atomic frequency detyningthis level, high-intensity oscillations may occur at a fre-
is not zero. Moreover, this method of parametrization has thguency that is locked to the input signal. The general results
advantage of generating the stable and unstable branchesraported here should be useful for many applications of high-
the same time. gain laser systems having non-negligible end reflectivities.
Figure 4 illustrates the results of plotting the output of
the amplifier versus the input for three values of line-cente
detuningy=0, 0.2, and 0.4, and for values of gain—length
product ranging from 1 to 2.5. Also, for simplicity we have This work was supported in part by the National Science
set hLw/ct+ 60,+ 6,=2mm. The case ofy=0 in Fig. 4 Foundation under Grant Nos. PHY94-15583 and ECS-
corresponds to Fig. 3, only now the unstable branches hav@014481. One of the authof&.W.C.) would also like to
been shown as well. It can also be seen that the unstabéxpress his appreciation to members of the Rochester Theory
branches vanish if the gain—length product is not largeCenter for Optical Science and Engineering and the Institute
enough. For values of not equal to zero, the curves no of Optics for valuable discussions and hospitality during his
longer touch the vertical axis. In physical terms, this meansabbatical visit.
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