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Field solutions for bidirectional high-gain laser amplifiers and oscillators
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Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500

Lee W. Caspersona)

The Institute of Optics and The Rochester Theory Center for Optical Science and Engineering, University
of Rochester, Rochester, New York 14627-0186

~Received 8 September 1997; accepted for publication 11 November 1997!

General analytical solutions are obtained for the amplitude, phase, and intensity of the
electromagnetic waves in bidirectional homogeneously broadened high-gain laser amplifiers and
oscillators. These solutions are important as increasingly high-gain lasers are being employed in
practical systems. Expressions are derived relating the output power to the input, including the
effects of arbitrary mirror reflectivities and frequency detunings from the line center. For negligible
reflectivities, these regenerative amplifier results reduce to earlier expressions for single-pass
high-gain amplifiers. Multivalued outputs also occur, and in the limit of low gain per pass the results
are consistent with earlier studies of single-frequency laser oscillators. ©1998 American Institute
of Physics.@S0021-8979~98!00305-3#

I. INTRODUCTION

One of the most basic problems in optoelectronics is the
calculation of the output power of saturating laser amplifiers,
and such devices are used in many applications. For instance,
on the large scale, optical amplifiers are the basis for the
highest-powered fusion and weapons systems, while on the
smaller side they have also attracted attention for their po-
tential use in all optical signal processing and communica-
tion systems. Such wide-ranging usage underlines the value
of having analytic models for these amplifiers. Many such
models involving various degrees of approximation have
been developed to study the characteristics of laser amplifiers
and oscillators.1–5

Among the important difficulties in modeling many laser
oscillators are the high gain of the laser medium and the low
reflectivity of the mirrors. These properties may make it nec-
essary to employ spatially dependent models for the electro-
magnetic fields and for the saturating laser medium. How-
ever, the most popular analytical models for laser oscillators
employ an average intensity or photon density inside the
amplifier. This approximation is not justified when the gain
of the amplifier is so high that the sum of the right and left
traveling intensities cannot be approximated with a constant
value. On the other hand, in laser amplifiers the inevitable
small reflectivity of even antireflection coated surfaces may
also make it necessary to include bidirectional effects in the
analysis of what otherwise would be unidirectional systems.
When such reflections are significant, these systems should
sometimes be regarded as regenerative laser amplifiers, and
amplifier gain and efficiency may be increased substantially
through multipass regeneration.6 Useful bistability and

switching behaviors can also occur in amplifier systems with
appropriate feedback.

In many high-gain laser-amplifier systems, feedback is
considered to be undesirable, and in the worst cases prelasing
and parasitic oscillations may drain away pump energy that
would otherwise have contributed to the useful laser output.
Several techniques have been developed to reduce such un-
wanted feedback. Thus, the ends of the laser media may be
cut at an oblique angle to the rod axis, often at the Brewster
angle, or they are coated with antireflection layers.7 Reflec-
tions of off-axis spontaneous emission from the amplifier
sides may be minimized by the use of black coatings, index-
matching fluids, or rough grinding of the sides. If more than
one stage of amplification is required, the stages may be
spaced as widely as possible, or they may be separated by
electro-optical shutters, isolators, or bleachable media.
Whether the feedback occurring in an amplifier system is
desirable or not, its potential consequences should always be
understood.

In this study, we develop a model for the behavior of a
regenerative laser amplifier that consists of a general homo-
geneously broadened amplifying medium situated between
two mirrors. We do not make the average intensity approxi-
mation, and thus we allow for arbitrarily high-gain values
per pass and arbitrary reflectivities. Such generality is needed
for the most useful analysis of laser amplifiers and oscilla-
tors. If the gain coefficient is considered to be negative, the
results are also applicable to absorbing media having reflect-
ing boundaries or situated between mirrors.

Another subject, which we address explicitly, is the
phase of the fields inside the active medium. Most single-
pass and regenerative amplifier models include only intensi-
ties, neglecting the phase. We show that the amplitude and
phase of the fields can be related to each other by a simple
expression, without making any significant approximations.
Thus, once the amplitude of the wave is calculated, the phase
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of the wave can readily be found as well. The amplifier
model we develop includes the effects of cavity frequency
detunings from the line center and saturation-dependent dis-
persion, and the results reduce to known special cases.
Among these special cases are the intensity transfer in a mir-
rorless laser amplifier, the intensity output and oscillation
frequency of a laser oscillator, and the multivaluedness of
the output of a laser above threshold as a function of the
input intensity. Only the low-gain limiting case of this last
effect has been considered previously.8

The basic equations for the electromagnetic fields in a
saturating homogeneously broadened amplifying medium are
developed in Sec. II. A general relation between the ampli-
tude and phase of the field is derived in Sec. III. The equa-
tions are integrated in Sec. IV, and they are shown in Sec. V
to reduce to familiar results for a laser amplifier when the
reflectivities are set equal to zero. In Sec. VI they are shown
to reduce to conventional oscillator formulas for the case of
low gain per pass. Solutions for the general regenerative am-
plifier configuration are reported in Sec. VII.

II. FIELD AND INTENSITY EQUATIONS

The starting point in any derivation of electromagnetic
wave propagation is Maxwell’s equations. For a traveling-
wave laser amplifier, one can assume a propagating-wave
form for the electric field

E~z,t !5 1
2 E8~z!exp~ ikz2 ivt !1c.c., ~1!

where E(z,t) is the magnitude of the electric-field vector
~which is assumed to be polarized in thex direction!, E8(z)
is the slowly varying complex amplitude, and c.c. represents
the complex conjugate. Assuming a similar form for the po-
larization, and after making the usual derivative
approximation,9 one obtains

c1

dE8~z!

dz
1

gcv

V
E8~z!2 i

~v22V2!

2V
E8~z!

5 i
v2

2e1V E
0

`E
2`

`

P8~V,va ,z!dvdva , ~2!

whereP8(v,va ,z) is the complex amplitude of the polariza-
tion as a function of thez component of the velocity of the
active atoms or molecules,va is the center frequency of the
laser transition for members of an atomic or molecular class
a, and z is the position in the amplifier. The background
speed of light in the medium characterized by the permeabil-
ity m1 and permittivitye1 is c15(m1e1)21/2, gc5s/2e1 is
the field decay rate, andV5k(m1e1)21/2 can be recognized
as the optical frequency at which the real part of the polar-
ization vanishes. It is also possible to relate the polarization
term back to the electric field, and for the simple case of a
homogeneously broadened material withV5v, the field
equation can be written10

dA~z!

dz
52

ngc

c FA~z!2
~11 iy !D0~z!A~z!

11y21uA~z!u2 G , ~3!

whereA(z) is a normalized field amplitude given by

A~z!5S ga2gab1gb

2ggagb
D 1/2 mE8~z!

\
, ~4!

the normalized optical frequency isy5(v2v0)/g with v0

the center frequency of the transition,D0(z) is the normal-
ized unsaturated population difference,m is the dipole mo-
ment of the transition,ga andgb are the total decay rates for
the upper and lower laser levels,gab is the rate of direct
decays from the upper level to the lower level, andg is the
decay rate for the off-diagonal elements of the density ma-
trix. In Eq. ~3! n5c/c1 is the background index of refrac-
tion, and the coefficientngc /c corresponds to a loss rate per
unit of propagation distance.

In a standing-wave laser amplifier, one readily finds that
the right and left traveling waves obey equations similar to
Eq. ~3!, except that the saturation terms in these equations
include an oscillating interference term as well as the sum of
the left and right traveling intensities. Thus, the equations for
the right and left traveling waves can be written

dA1~z!

dz
52

ngc

c H A1~z!2
~11 iy !D0~z!A1~z!

11y21@ uA1~z!u21uA2~z!u212uA1~z!A2~z!ucos~2kz!#J , ~5!

dA2~z!

dz
51

ngc

c H A2~z!2
~11 iy !D0~z!A2~z!

11y21@ uA1~z!u21uA2~z!u212uA1~z!A2~z!ucos~2kz!#J , ~6!

whereA1(z) andA2(z) are the normalized complex amplitudes of the right and left traveling waves at a pointz inside the
amplifier, and the relative phases of the right and left waves have been assumed to be unimportant~they could be included by
shifting the arguments of the cos functions!. These equations are quite general and account for the effects of line center
detuning, longitudinal hole burning, and the possibility of high gain per pass.

The above equations govern the spatial evolution of the electromagnetic fields. It is also useful to convert them to an
equivalent set of equations for the right and left traveling intensities. By defining normalized intensitiessI1(z)5uA1(z)u2 and
sI25uA2(z)u2, one can obtain from Eqs.~5! and ~6!
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dI1~z!

dz
52

2ngc

c S I 1~z!2
D0~z!I 1~z!

11y21s$I 1~z!1I 2~z!12@ I 1~z!I 2~z!#1/2 cos~2kz!% D , ~7!

dI2~z!

dz
51

2ngc

c S I 2~z!2
D0~z!I 2~z!

11y21s$I 1~z!1I 2~z!12@ I 1~z!I 2~z!#1/2 cos~2kz!% D . ~8!

In this notationI 1 andI 2 are the actual intensities ands is a
saturation parameter. It should be noticed that although the
set of Eqs.~5! and ~6! closely resemble Eqs.~7! and ~8!, in
going from the former to the latter, information on the phase
of the waves has been lost.

III. PHASE OF THE FIELD IN A BIDIRECTIONAL
AMPLIFIER

Our first goal is to find a relationship between the phase
and the amplitude of the electric field in a bidirectional laser
amplifier. It would then be sufficient to solve the intensity
equations for each particular case without losing the gener-
ality of the problem, because once the intensity or amplitude
distribution has been found the phase distribution is auto-
matically known. To achieve this goal, one can start from
Eqs.~5! and~6!. The right-hand sides of these two equations
differ only by a sign, and one can easily deduce the follow-
ing relationship

1

A1~z!

dA1~z!

dz
1

1

A2~z!

dA2~z!

dz
50. ~9!

From this result follow the constraintsA1A25constant
[s a and uA1u2uA2u25s2I 1I 25s2uau2, where the constant
a has been introduced. This constant is allowed to be a com-
plex quantity, unlike previous studies where the correspond-
ing parameter has always been assumed to be real.1–3 It fol-
lows from these constraints that the right and left traveling
complex amplitudes can be written in the form

A1~z!5s1/2a1/2 exp@a~z!1 ib~z!#, ~10!

A2~z!5s1/2a1/2 exp@2a~z!2 ib~z!#. ~11!

In these expressions,a(z) andb(z) are new~real! functions
of z, as yet unknown.

Equations~10! and~11! can now be substituted back into
the field Eqs.~5! and~6!. For example, if one substitutes Eq.
~10! into Eq. ~5! and cancels the exponential terms, one ob-
tains two equations for the real and imaginary parts:

da~z!

dz
52

ngc

c S 12
D0~z!

11y21suau$exp@2a~z!#1exp@22a~z!#12 cos~2kz!% D , ~12!

db~z!

dz
5

ngc

c

yD0~z!

11y21suau$exp@2a~z!#1exp@22a~z!#12 cos~2kz!%
. ~13!

Equations~12! and ~13! can be combined to get a simple
relationship between the amplitude and phase of the electric
fields. The result is

db~z!

dz
5yFda~z!

dz
1

ngc

c G , ~14!

which can be integrated to obtain

b~z!5ya~z!1y
ngc

c
z1f, ~15!

wheref is an integration constant.
Equation~15! is a simple but powerful result, since it

relates the amplitude and the phase of the electric field in any
bidirectional laser amplifier or oscillator. Therefore, from
Eqs.~10! and~11! the complex electric-field amplitudes now
can be written in terms of only one variable in the form

A1~z!5s1/2a1/2 expF ~11 iy !a~z!1 iy
ngc

c
z1 ifG ,

~16!

A2~z!5s1/2a1/2 expF2~11 iy !a~z!2 iy
ngc

c
z2 ifG .

~17!
These equations are not complete solutions yet. In fact, they
still include two unknowns—the constanta, which may be
calculated using boundary conditions, and the functiona(z),
which is the solution to Eq.~12!.

IV. INTEGRATION OF THE WAVE EQUATION

In the previous section it was shown that it would be
sufficient to integrate the intensity wave equations in a bi-
directional laser, since there is a simple relationship between
the amplitude and the phase of the fields. Unfortunately, the
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more general form of the wave equations@any of Eqs.~5!
and ~6!, ~7! and ~8!, or ~12!# cannot be integrated analyti-
cally, and one needs to make further approximations.

In many practical cases, the effects of the longitudinal
spatial hole burning can be neglected by arguing that the
oscillating term cos(2kz) in the denominator of Eqs.~5! and
~6!, ~7! and ~8!, or ~12! is significant only in the short dis-
tance within a high-gain amplifier where the magnitudes of
the right and left waves are about the same. Alternatively,
one may often argue that spatial cross relaxation causes this
term to average to zero.11 Neglecting longitudinal spatial
hole burning makes the intensity wave equation analytically
solvable, but the results are still very complicated. Another
possible simplification is the neglect of the distributed loss
term, the first term on the right-hand side of Eqs.~5!–~8! and
~12!. Although this simplification is not necessary,2,4,5 it is
appropriate for many practical laser amplifiers, and it makes
the results much less complicated. With these two approxi-
mations, one can reduce Eqs.~5!, ~7!, and~12! to the follow-
ing equations, respectively,

dA1~z!

dz
5

ngc

c

~11 iy !D0~z!A1~z!

11y21@ uA1~z!u21s2uau2/uA1~z!u2#
, ~18!

dI1~z!

dz
5

ngc

c

2D0~z!I 1~z!

11y21s@ I 1~z!1uau2/I 1~z!#
, ~19!

da~z!

dz
5

ngc

c

D0~z!

11y21suau$exp@2a~z!#1exp@22a~z!#%
,

~20!

where in Eqs.~18! and ~19! the relationship following Eq.
~9! has been used. The first two of the above equations are
for the right traveling waves and the equations for the left
traveling waves are similar. We will now assume that the
unsaturated population differenceD0 is independent of posi-
tion z, and thus, Eqs.~19! and~20! are now in an integrable
form. The corresponding phase information can readily be
obtained by application of Eq.~15! once the intensity or
amplitude has been solved. Therefore, we now concentrate
on the intensity wave equations.

By introducing the new gain and saturation parameters

g5
ngc

c

2D0

11y2 , ~21!

s85
s

11y2 , ~22!

Eq. ~19! can be written in the more compact form

dI1~z!

dz
5

gI1~z!

11s8@ I 1~z!1uau2/I 1~z!#
. ~23!

This equation can be integrated and the result is

s8@ I 1~z2!2I 1~z1!#1 lnF I 1~z2!

I 1~z1!G2
s8uau2

I 1~z2!
1

s8uau2

I 1~z1!
5gL.

~24!

The above expression relates the positive traveling inten-
sity at the two ends of the amplifier, the gain–length product
gL, and the modulus of the parametera. On the other hand,
the quantitiesI 1(z1) andI 1(z2) can be related to the ampli-
fier input and output via appropriate boundary conditions. It
is, therefore, useful to solve Eq.~24! for the quantityuau2,
since this quantity should eventually be eliminated from the
equations. Moreover, we previously expressed the electric
field in terms of the two new functionsa(z) andb(z) rep-
resenting the amplitude and the phase of the field, respec-
tively, so the intensity of the waves can be expressed in
terms of the functiona(z) only. In fact, it can be seen from
Eqs.~16! and ~17! that

sI1~z!5uA1~z!u25suauexp@2a~z!#, ~25!

sI2~z!5uA2~z!u25suauexp@22a~z!#. ~26!

Therefore, expressingI 1(z1) and I 1(z2) in terms ofa(z1)
anda(z2) and solving foruau, one obtains from Eq.~24!

uau5
gL22a~z2!12a~z1!

s8 exp@2a~z2!#2s8 exp@2a~z1!#2s8 exp@22a~z2!#1s8 exp@22a~z1!#
. ~27!

Equation ~27! is the solution of the wave equation in the
amplifier. However, the quantitiesuau, a(z1), and a(z2)
should still be related to the amplifier input and output inten-
sities by the appropriate boundary conditions.

Referring to Fig. 1, the boundary conditions at the input
and output side of an amplifier can be written as

I 1
15R1I 1

21T1I i , ~28!

I 2
25R2I 2

1 , ~29!

I 05T2I 2
1 , ~30!

FIG. 1. Definition of intensity, field, and boundary variables in a laser
amplifier.
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whereT1 , T2 , R1 , andR2 are the intensity transmission and
reflection coefficients at the input and output sides of the
amplifier. There is also an output at the left-hand end of the
amplifier, but to be specific we are emphasizing the output
on the right. Now, we can use Eqs.~25! and ~26! and write
the first two of the above boundary conditions in terms of the
variablesa(z1) anda(z2):

uauexp@2a~z1!#5R1uauexp@22a~z1!#1T1I i , ~31!

uauexp@22a~z2!#5R2uauexp@2a~z2!#. ~32!

Solving for a(z1) anda(z2) one obtains

a~z1!5 1
2 lnFT1I i1~T1

2I i
214R1uau2!1/2

2uau G , ~33!

a~z2!5 1
2 lnF 1

~R2!1/2G . ~34!

In solving the above quadratic equations, the positive root
has been chosen because the argument of the logarithm func-
tions should always be positive@a(z1) anda(z2) should be
real#.

By multiplying both sides of Eq.~29! by I 2
1 and noticing

that I 05T2I 2
1 , one may obtain

uau25R2S I 0

T2
D 2

. ~35!

We can now combine the above equations, which include
boundary conditions for input and output intensities with the
results of the integration of the wave equation. For an optical
cavity with the parameters defined in Fig. 1, one has

A1
1

Ai
5

t1

12Gr.t.
, ~36!

wheret1 andGr.t. are the complex field transmission coeffi-
cient at the input side and the complex round-trip gain. Equa-
tion ~36! can easily be extended to relate the input and output
fields:

A0

Ai
5

t1t2Gs.p.

12Gr.t.
, ~37!

where the single-pass gainGs.p.5A1(z2)exp(ikz2)/
A1(z1)exp(ikz1) is the complex gain from the input side to the
output side inside the cavity andt2 is the complex field-
transmission coefficient at the output side of the amplifier.

The above expressions are commonly used for a linear
Fabry–Perot e´talon. However, one can extend them to in-
clude the saturation and detuning effects in an amplifier. To
do this, we need to express the single-pass and round-trip
gains in terms of the results of the previous section, i.e., in
terms of the functiona(z). Making use of Eqs.~16! and
~17!, and assuming again that the distributed loss is small
compared to the gain, we obtain

Gs.p.5
A1~z2!exp~ ikz2!

A1~z1!exp~ ikz1!

5expH ~11 iy !@a~z2!2a~z1!#1 i
nv

c
LJ , ~38!

Gr.t.5
A1~z2!exp~ ikz2!

A1~z1!exp~ ikz1!
3r 23

A2~z1!exp~ ikz1!

A2~z2!exp~ ikz2!
3r 1

5r 1r 2 expH 2~11 iy !@a~z2!2a~z1!#12i
nv

c
LJ ,

~39!

where we have usedL5z22z1 and k5nv/c. It is evident
that these expressions for the round-trip and single-pass gain
are in terms of the quantitya(z2)2a(z1). If we define this
quantity as the new parameter

H5a~z2!2a~z1!, ~40!

then Eq.~37! can be written as

A0

Ai
5

t1t2 expF ~11 iy !H1 i
nv

c
LG

12r 1r 2 expF2~11 iy !H12i
nv

c
LG . ~41!

Equation~41! can also be expressed in terms of the in-
tensities. It can readily be verified that

I 0

I i
5UA0

Ai
U2

5
T1T2 exp~2H !

@12~R1R2!1/2 exp~2H !#214~R1R2!1/2 exp~2H !sin2FyH1
nv

c
L1

u11u2

2 G , ~42!

whereu1 andu2 are the phase shifts for reflection at the boundaries. The parameterH is intrinsically related to the saturating
gain in the amplifier. For a gainless medium, the intensities at both sides of the amplifier are equal@ I 1(z2)5I 1(z1)], and
therefore,H50. In this case, Eq.~42! reduces to

I 0

I i
5UA0

Ai
U2

5
T1T2

@12~R1R2!1/2#214~R1R2!1/2 sin2Fnv

c
L1

u11u2

2 G , ~43!

which is a well-known expression for the power transmission coefficient of a Fabry–Perot e´talon.
The more interesting case is whenH is not zero, where Eq.~42! becomes nonlinear sinceH itself would be a function of

the intensities. To calculateH in this case, one can make use of Eqs.~27!, ~33!, ~34!, and~35! to obtain
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H5a~z2!2a~z1!5s8
R2

1/2

2T2

3I 0H R2
1/22

1

R2
1/21

T1I i1FT1
2I i

214R1R2S I 0

T2
D 2G1/2

2R2
1/2

T2
I 0

2

2R2
1/2

T2
I 0

T1I i1FT1
2I i

214R1R2S I 0

T2
D 2G1/2J 1

gL

2
. ~44!

Therefore, in principle, one can substitute Eq.~44! into Eq. ~42! and obtain the intensity gain coefficient for a saturating
bidirectional amplifier.

The above equation simplifies slightly if we introduce normalized input and output intensities

Ji5T1s8I i , ~45!

J05
2~R1R2!1/2

T2
s8I 0 . ~46!

Using the above-normalized intensities and also definingR25R1R2 , Eqs.~42! and ~44! become

J0

Ji
5

2R exp~2H !

@12R exp~2H !#214R exp~2H !sin2FyH1
nv

c
L1

u11u2

2 G , ~47!

H5
J0

4 F R

R1
2

1

R
1

Ji1~Ji
21J0

2!1/2

J0

2
1

R1

J0

Ji1~Ji
21J0

2!1/2G1
gL

2
. ~48!

These two equations allow for calculation of the output of a
high-gain amplifier for a given input, including saturation
and detuning effects. They should have many applications in
the study of high-gain laser systems, including those with
non-negligible end reflectivities. In the remainder of this
study, we consider several special cases of these equations.

V. SINGLE-PASS AMPLIFIER

Certain special cases of our general amplifier formulas
correspond to previously known results. As a first example,
one may consider the situation in which the feedback in the
bidirectional amplifier is reduced to zero. In this case, the
input–output relation should be the same as for a basic
single-pass amplifier.

If the reflectivityR2 of the output mirror becomes small,
Eq. ~42! reduces to

I 0

I i
5T1T2 exp~2H !, ~49!

and Eq.~44! reduces to

H5s8
R2

1/2

2T2
I 0S 2

1

R2
1/21

T1T2I i

R2
1/2I 0

D 1
gL

2

5
s8

2T2
~T1T2I i2I 0!1

gL

2
. ~50!

These equations may be combined to yield

I 0

I i
5T1T2 expF s8

T2
~T1T2I i2I 0!1gLG , ~51!

a simpler transcendental relationship between the input and
output intensities.

In an ideal amplifier, there would also be no loss at the
ends of the amplifying region. SettingT15T251, Eq. ~51!
can be written in the form

s8I 02s8I i1 lnS s8I 0

s8I i
D5gL. ~52!

If the input signal is at the center frequency of the transition
so thats8 andg have their line-center values, then Eq.~52!
can be recognized as the standard input–output relation for a
homogeneously broadened laser.12,13

VI. LASER OSCILLATOR

A laser oscillator above threshold can be considered as a
laser amplifier with no input. In this case, the frequency of
oscillation and the output intensity are determined by the
cavity itself. The oscillation condition requires the complex
round-trip gain to be unity@this can be seen by setting the
denominator of Eq.~41! to zero#, which by itself amounts to
two conditions: the magnitude of the round-trip gain should
be unity and the round-trip phase delay should be an integral
multiple of 2p. The former condition determines the output
intensity of the laser, while the latter condition determines
the frequency of oscillation. From Eq.~42!, the gain condi-
tion is

~R1R2!1/2 exp~2H !51. ~53!

On the other hand, Eq.~48! in this case simplifies to~by
settingJi to zero!
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H5
J0

4 S R

R1
2

1

R
112

1

R1
D1

gL

2
. ~54!

Combining Eqs.~46!, ~53!, and~54!, one obtains

I 05
T2

s8

gL1 ln~R1R2!1/2

12R21~R2 /R1!1/22~R1R2!1/2, ~55!

which is a known result for the output intensity of a laser
oscillator.1

The condition that the round-trip phase be an integral
multiply of 2p determines the frequency of oscillation. Us-
ing Eq. ~42!, this condition becomes

2yH12
nv

c
L1u11u252mp, ~56!

wherem is an integer. One can combine this result with Eq.
~53! and solve for the oscillation frequency:

v5
~2mp2u12u2!gc2v0c ln~R1R2!1/2

2gnL2c ln~R1R2!1/2 . ~57!

This useful equation describes themth cavity mode oscilla-
tion frequency of a high-gain laser oscillator.

We should be able to reduce Eq.~57! to one of the
well-known expressions for the oscillation frequency of a
laser in some proper limit. To do this, we consider the low-
gain per pass limit, where the reflectivities at the two sides
are close to unity. We, therefore, assume thatR1 andR2 are
each less than unity by a small amount, which we calld1 and
d2 , respectively,R1512d1 , R2512d2 . In this case, the
logarithm functions can be simplified, and Eq.~57! takes the
following form:

v5
~2mp2u12u2!gc1~d11d2!cv0/2

2gnL1~d11d2!c/2
. ~58!

Moreover, in the limit of low gain-per-pass, it may be as-
sumed that it takes many round trips before any significant

change in the amplitude of the waves takes place. Hence, the
losses at the boundaries may be averaged over the round-trip
length of the amplifier, and the cavity lifetime may be de-
fined as

tc5
2nL

c~d11d2!
. ~59!

One can then define the cavity bandwidthDnc5(2ptc)
21

and themth empty cavity mode frequencyvc5@mp2(u1

1u2)/2#c/nL. Moreover, the atomic linewidth can be re-
lated to the decay rateg by g5pDnh . Using these relations,
Eq. ~58! becomes

v5
vcDnh1v0Dnc

Dnh1Dnc
, ~60!

which is a well-known result.14,15 Therefore, the expressions
we have obtained for a high-gain laser amplifier with feed-
back produce appropriate results when applied to the special
case of a laser oscillator with no input.

VII. BIDIRECTIONAL AMPLIFIER

In this section we consider the implications of Eqs.~47!
and~48! when the input to the amplifier is not zero. In their
most general form, these equations cannot be directly solved
to obtain a single explicit expression for the output intensity
of a laser amplifier as a function of the input intensity, al-
though they can be plotted easily using a simple routine. On
the other hand, in some simple cases these equations can be
combined and the output can be expressed in a parametrized
form, for example, as a function of the amplifier gain. We
first start with the special cases where further analytical re-
sults may be obtained, and later consider the most general
form of Eqs. ~47! and ~48!. From Eq. ~47! the round-trip
phase-shiftf is found to be

f5
2nLv

c
12yH1u11u2 . ~61!

FIG. 2. Normalized amplifier output intensity vs normalized input intensity
with zero detuning and a gain–length product ofgL52.5. Other parameters
areR15R250.3, andT15T250.7.

FIG. 3. Normalized amplifier output intensity vs normalized input intensity
for various values of the gain–length productgL. Other parameters are as in
Fig. 2.
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For values off equal to an integral multiple of 2p, the
amplifier is at resonance, i.e., a maximum transmission
would take place. If the frequency of the input coincides with
the center frequency of the atomic transition (y50), the
round-trip phase shift would be constant for a given cavity,
i.e., it would not be a function of input intensity. However, if
y is not zero,f itself becomes intensity dependent via the
parameterH. Hence, one should distinguish between the ef-
fects of detuning from the atomic line-center frequency and
detuning from the cavity resonance.

For the special case ofy being zero, Eq.~47! can be
solved forH

H5 1
2 lnH J0 cosf1Ji6@~J0 cosf1Ji !

22J0
2#1/2

RJ0
J , ~62!

wheref is defined by Eq.~61! with y50. The sign ambigu-

ity in Eq. ~62! is important and its implications will become-
clear shortly. Combining Eqs.~48! and ~62!, one obtains an
implicit input–output equation

lnH J0 cosf1Ji6@~J0 cosf1Ji !
22J0

2#1/2

RJ0
J

5
J0

2 F R

R1
2

1

R
1

Ji1~Ji
21J0

2!1/2

J0

2
1

R1

J0

Ji1~Ji
21J0

2!1/2G1gL. ~63!

This equation can be solved for the output intensity and pa-
rametrized in terms of the overall transmission coefficient
T5J0 /Ji :

J052
ln$T cosf116@~T cosf11!22T2#1/2%2 ln~RT!2gL

R

R1
2

1

R
1

11~11T2!1/2

T
2

1

R1

T

11~11T2!1/2

. ~64!

This result describes the output intensity from an amplifier
with an intensity transmission gain ofT. In this form, the
intensity characteristics of the amplifier can easily be plotted
either as a direct function ofT or by usingT as a parameter.
It may be noted that Eq.~64! also reduces to Eq.~55! in the
limiting case of a laser oscillator~T going to infinity andf
52mp!.

These results are best illustrated by means of a specific
amplifier example. Figure 2 is a plot of the normalized out-
put intensity versus the normalized input to an amplifier for a
gain–length productgL52.5, reflectivities R15R250.3,
transmission coefficientsT15T250.7, and round-trip phase-
shift f52mp. The solid branch is the result of plotting Eq.
~64! with the minus sign, and the dotted branch corresponds
to Eq. ~64! with the plus sign. The solid branch in Fig. 2
starts from a nonzero value for zero input~corresponding to
a transmission gainT of infinity! and describes the stable
behavior of an amplifier above the threshold conditions, i.e.,
the amplifier may oscillate and produce an output even with
no input. On the other hand, the dotted branch passes
through the origin for low values of transmission gainT, and
bends back to the vertical axis asT approaches infinity. This
branch may be considered unstable, since in reality it cannot
be observed. This effect as well as other more detailed as-
pects of the stable and unstable branches have also been
studied by Spencer and Lamb for a laser oscillator subject to
an injected input.8

The transition from below-threshold to above-threshold
conditions is depicted in Fig. 3, which shows the results of
plotting the output power versus input~only the stable
branch! using Eq.~64! for several values of the gain–length
productgL. Other parameters are the same as in Fig. 2. It

can be seen that for small values ofgL, the input–output
curve is almost linear. AsgL becomes larger, the differential
gain close to the origin starts to increase and eventually be-
comes infinite~regenerative amplification!. Further increase

FIG. 4. Normalized amplifier output intensity vs normalized input intensity
for various values of gain–length product and frequency detuning.
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in gL causes oscillation, and the curves no longer pass
through the origin corresponding to above-threshold condi-
tions.

So far, we have only considered the case of zero line-
center and cavity detunings~y50, f52mp!. As mentioned
earlier, Eqs.~47! and ~48! cannot be solved analytically

wheny is not zero. This is because Eq.~47! cannot be solved
for H, and the parametrization procedure used earlier cannot
be carried out directly. However, it is still possible to plot the
output intensityJ0 versus the input intensityJi using a
simple numerical routine. To introduce this procedure, we
write Eqs.~47! and ~48! in the forms

T~H !5
2R exp~2H !

@12R exp~2H !#214R exp~2H !sin2S yH1
nLv

c
1

u11u2

2 D , ~65!

J0~H,T!5

H2
gL

2

1

4 F R

R1
2

1

R
1

11~11T2!1/2

T
2

1

R1

T

11~11T2!1/2G . ~66!

Thus, ifH is taken as a parameter, then the transmission gain
T can be expressed as a function ofH, and the output power
J0 can be expressed as a function ofH andT. Therefore, by
using a simple routine we can plot the input–output curves in
the most general case when the atomic frequency detuningy
is not zero. Moreover, this method of parametrization has the
advantage of generating the stable and unstable branches at
the same time.

Figure 4 illustrates the results of plotting the output of
the amplifier versus the input for three values of line-center
detuningy50, 0.2, and 0.4, and for values of gain–length
product ranging from 1 to 2.5. Also, for simplicity we have
set 2nLv/c1u11u252mp. The case ofy50 in Fig. 4
corresponds to Fig. 3, only now the unstable branches have
been shown as well. It can also be seen that the unstable
branches vanish if the gain–length product is not large
enough. For values ofy not equal to zero, the curves no
longer touch the vertical axis. In physical terms, this means
that the input power has to reach a certain level before the
amplifier is locked to the frequency of the input signal.
Moreover, it takes a larger input level to lock the laser as the
frequency is detuned further away from the center of the
atomic transition. This behavior is again in agreement with
the predictions of Spencer and Lamb8 for the special case of
low-gain per pass.

VIII. CONCLUSION

Analytical solutions have been obtained for the fields in
a homogenously broadened high-gain laser medium includ-
ing a relationship between the phase and the amplitude of the
waves in a bidirectional regenerative laser amplifier. By ap-
plying the appropriate boundary conditions, implicit equa-
tions have been found for the output power as a function of
the input including detuning effects. When suitable limits are
taken, these equations reduce to known results for the output
intensity and the oscillation frequency of laser amplifiers and

oscillators. When the input is not zero, bistability effects are
found; and, for cases where the input is detuned from the
center frequency of the atomic transition, no significant out-
put is produced until the input reaches a critical level. Above
this level, high-intensity oscillations may occur at a fre-
quency that is locked to the input signal. The general results
reported here should be useful for many applications of high-
gain laser systems having non-negligible end reflectivities.
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