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ANALYSIS OF THE DPG METHOD FOR THE POISSON EQUATION

L. DEMKOWICZ AND J. GOPALAKRISHNAN

Abstract. We give an error analysis of the recently developed DPG method applied to
solve the Poisson equation and a convection-diffusion problem. We prove that the method
is quasioptimal. Error estimates in terms of both the mesh size h and the polynomial
degree p (for various element shapes) can be derived from our results. Results of extensive
numerical experiments are also presented.

1. Introduction

We present an analysis of a discontinuous Petrov-Galerkin (DPG) method for a simple
model problem involving the Poisson equation. Although DPG methods for the Poisson
equation have been in existence for long (e.g., [8]), we have in mind the new class of
DPG methods constructed by following the framework we developed in [14, 15, 17, 25].
These papers explored how one can achieve the best possible stability (or close to it) by
designing test spaces suitably.

Our first paper [14] gave an analysis of a DPG discretization of a simple transport
problem in two dimensions. In this simple case we had the benefit of being able to tweak
a hand-calculated test space that is “optimal” in terms of stability. With a view towards
applying the DPG methodology to more complicated problems in an automatic fashion,
we modified the DPG framework in [15], bringing it closer to the least-square Galerkin
methods such as in [4]. What distinguishes our methodology from other least square
methods is the possibility to locally compute a test space that is close to optimal. Our
remaining papers [15, 17, 25] gave numerical evidence of the extraordinary stability of the
resulting methods when applied to various problems. However, the theoretical analysis in
these papers, unlike [14], was restricted to problems in one space dimension. The purpose
of this paper is to give a few new techniques to analyze DPG methods for problems in
higher space dimensions.

Although the subject here is the Poisson equation, we are not advocating that one
should use the DPG method for the simple Poisson equation (for which many competitive
methods exist). Indeed, the real potential of the DPG methodology is clearly evident
only in high order simulation of more complex problems. What we aim for in this work is
more limited, but clear-cut: We want theoretical techniques that permit a fairly complete
analysis of the method for a simple elliptic multidimensional model problem. Since the
DPG method is fundamentally different from other standard methods, few tools were
available for its theoretical understanding. One of the techniques we introduce in this

Key words and phrases. DPG method, discontinuous Galerkin, discontinuous Petrov-Galerkin,
Helmholtz decomposition, adaptive, hp, finite element method, convection-diffusion.
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2 L. DEMKOWICZ AND J. GOPALAKRISHNAN

paper is a decomposition of a discontinuous function into a (conforming) solution of
a mixed method and a (discontinuous) piecewise harmonic function. This leads to an
inf-sup condition and facilitates the error analysis of the DPG method for the Poisson
equation. Such techniques may find applicability beyond the Poisson example. Another
unexpected example of the impact of the present theoretical study is that it indicates that
for optimal convergence rates, while the numerical fluxes may be approximated using the
same polynomial degrees as the interior variables, the DPG numerical traces need higher
degree polynomials. Such insights can be valuable when applying the DPG methodology
to more complex applications.

DPG methods fall into the general category of discontinuous Galerkin (DG) methods,
so let us review DG methods for elliptic problems. The literature in this area is vast, so
we will be brief and cite only works necessary to put this paper in broad perspective. One
of the first DG methods, called the interior penalty (IP) method [3], used a penalization
parameter. An inconvenient feature of this method is that for stability it required the
penalization parameter to be a “sufficiently” large (practically unknown) number. This
was remedied by the LDG methods [7, 10] which also enjoyed the additional property that
fluxes can be eliminated locally. The IP and LDG methods, and indeed all the “older” DG
methods for the Poisson equation, have been reviewed thoroughly in [2]. They showed that
almost all the DG methods in existence at the time of their writing could be recast into a
system of two equations with specific prescriptions of the so-called “numerical trace” and
the “numerical flux” on element interfaces (see (15) below for more on the terminology).

The further developments in this area yielding “newer” DG methods, not covered by [2],
can be understood from various angles. To offer one perspective, many researchers con-
sidered the specific prescriptions of numerical traces and fluxes as adhoc and difficult to
generalize for complex problems. Shouldn’t a good method find the right numerical trace
automatically? A partial answer was provided by the recently developed hybridized DG
(HDG) method [9], which generalized an idea in mixed-hybrid methods [6] to DG schemes.
Namely, it lets the numerical trace be an unknown to be determined automatically by the
method, and yet maintains the local elimination and flexible stabilization properties that
endeared DG methods. Nonetheless, although the HDG method automatically finds the
“right” numerical trace, its numerical flux must again be prescribed. In this perspective,
the next natural question is whether there are stable DG methods which let both the
numerical flux and the numerical trace to be unknowns (so that none of these needs to
prescribed adhoc). The DPG method analyzed in this paper answers this question in the
affirmative.

We begin by recalling a salient result for abstract DPG methods in Section 2. The
development of the bilinear and linear forms that constitute the DPG method appears in
Section 3. Next, in Section 4, we give an error analysis of the method. In Section 5 we
point out how the new techniques of analysis can be extended to a more general second
order elliptic problem. Finally, numerical experiments are presented in Section 6.

2. The abstract DPG method

In this section we summarize the DPG framework developed in [14, 15, 17, 25] and
state an abstract result which we will use for error analysis.

Let U (the “trial” space) and V (the “test” space) be vector spaces over R and b(·, ·) :
U × V 7→ R be a bilinear form. Let U be a reflexive Banach space under the norm ‖ · ‖U .
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We assume that V is a Hilbert space under an inner product (·, ·)V with a corresponding
norm ‖ · ‖V . We assume that

‖v‖opt,V = sup
u∈U

b(u, v)

‖u‖U
(1)

is a norm on V . This is called the optimal test space norm for reasons explained in [25].
The norms ‖v‖opt,V and ‖v‖V are not equal in general.

The variational problem we wish to approximate is as follows.{
Find U ∈ U such that

b(U , v) = l(v), ∀v ∈ V.
(2)

Here l(·) is a given real-valued continuous linear functional on V . We assume that

{w ∈ U : b(w, v) = 0, ∀v ∈ V } = {0}. (3)

The DPG approximation of u ∈ U is denoted by uh. It lies in Uh, a subspace of U . We
define the trial-to-test operator T : U 7→ V by

(Tw, v)V = b(w, v), ∀v ∈ V and ∀w ∈ U. (4)

Let Vh = T (Uh). The DPG approximation Uh ∈ Uh satisfies

b(Uh, vh) = l(vh) ∀vh ∈ Vh. (5)

This is a Petrov-Galerkin type formulation as Uh and Vh are not generally identical.
Nonetheless, the resulting stiffness matrix is symmetric and positive definite even if

b(·, ·) has no symmetry properties. To see this, suppose {ej} is a basis for Uh. Then the
collection tj = Tej forms a basis for Vh because (3) implies that T is injective. Now, the
(i, j)th entry of the stiffness matrix of b(·, ·) with respect to the basis ej is Bij = b(ej, tj).
But, by (4),

Bij = b(ej, ti) = (Tej, ti)V = (Tej, T ei)V ,= (Tei, T ej)V = b(ei, tj) = Bji, (6)

so B is symmetric. The positive definiteness of B is a consequence of (3). A basic
convergence result for the abstract method is proved in [25, Theorem 2.1]. Let us restate
it here in a form convenient for the current application.

Theorem 2.1. Suppose U and Uh satisfy (2) and (5), resp. Assume that (3) holds and
and that there are positive constants C1, C2 such that

C1‖v‖V ≤ ‖v‖opt,V ≤ C2‖v‖V , ∀v ∈ V. (7)

Then

‖U − Uh‖U ≤
C2

C1

inf
wh∈Uh

‖U − wh‖U .

In the remainder, we wish to apply this theorem to the particular case of a DPG method
for the Poisson equation. To this end, we will develop an ultra-weak formulation for the
Poisson equation and verify the assumptions of Theorem 2.1.
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3. Application to the Poisson equation

In this section, we derive a DPG method for the Poisson equation and set up a suitable
functional framework. Let Ω be a bounded simply connected open subset of RN with
connected Lipschitz boundary, where N = 2 or 3. We assume that Ωh is a disjoint
partitioning of Ω into open “elements” K, i.e., ∪{K̄ : K ∈ Ωh} = Ω̄. The collection of
element boundaries ∂K (for all the elements K ∈ Ωh) is denoted by ∂Ωh. At this point,
we need not assume that elements are of any particular shape, but so as to apply trace
theorems later, we will assume their boundaries ∂K are Lipschitz.

The boundary value problem targeted for approximation is

−~∇ · (α~∇u) = f on Ω (8a)

u = 0 on ∂Ω. (8b)

Here α(~x) is a given measurable coefficient function satisfying

0 < α0 ≤ α(~x) ≤ α1, ∀~x ∈ Ω. (9)

The load f is in L2(Ω) (although it will be clear later that this can be relaxed).

3.1. The ultra-weak formulation. We will now develop a variational formulation of (8)

where u is only required to be in L2(Ω) and the “flux” of the solution, namely ~σ = −α~∇u,
is also only required to be in L2(Ω)N . Hence the name “ultra”-weak formulation. (This
name was used in the same spirit in [22] for a different method.)

To motivate the derivation of this ultra-weak formulation, let us temporarily assume
that the solution and flux are smooth enough to allow integration by parts, i.e., we
reformulate (8) as the first order system

α−1~σ + ~∇u = 0, (10a)

~∇ · ~σ = f, (10b)

and integrate these equations by parts on one element K to get

(α−1~σ, ~τ)K − (u, ~∇ · ~τ)K + 〈u, ~τ · ~n〉∂K = 0, ∀~τ ∈ H(div, K), (11a)

−(~σ, ~∇v)K + 〈v, ~σ · ~n〉∂K = (f, v)K , ∀v ∈ H1(K). (11b)

Here ~n denotes the outward unit normal on ∂K. The outward unit normal on any other
domain will also be generically denoted by ~n (the underlying domain will be clear from the
context). The notations (·, ·)D and 〈·, ·〉∂D denote the L2(D) and L2(∂D) inner products,
resp., on any domain D. Above and later, we use the standard notations for Sobolev
spaces, such asH1(D) andH(div, D). Additionally, note that the completion of compactly
supported smooth functions in the H1(D) and H(div, D)-norms will be denoted by H1

0 (D)
and H0(div, D), resp.

We now replace the terms 〈u, ~τ · ~n〉∂K and 〈v, ~σ · ~n〉∂K by 〈û, ~τ · ~n〉1/2,∂K and 〈v, σ̂n〉1/2,∂K ,
resp., where û and σ̂n are new unknowns, and 〈·, `〉1/2,∂K denotes the action of a functional

` in H−1/2(∂K). This motivates the following ultra-weak formulation.{
Find (~σ, u, û, σ̂n) ∈ U such that

b( (~σ, u, û, σ̂n), (~τ , v) ) = l(~τ , v), ∀(~τ , v) ∈ V,
(12)
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where the spaces are defined by

U = L2(Ω)× L2(Ω)×H1/2
0 (∂Ωh)×H−1/2(∂Ωh), (13)

V = H(div, Ωh)×H1(Ωh). (14)

The notations here are defined by

H
1/2
0 (∂Ωh) = {η : ∃w ∈ H1

0 (Ω) such that η|∂K = w|∂K ∀K ∈ Ωh},

H−1/2(∂Ωh) = {η ∈
∏
K

H−1/2(∂K) : ∃ ~q ∈ H(div, Ω) such that η|∂K = ~q · ~n|∂K ∀K ∈ Ωh},

H(div, Ωh) = {~τ : ~τ |K ∈ H(div, K), ∀K ∈ Ωh}
H1(Ωh) = {v : v|K ∈ H1(K), ∀K ∈ Ωh}.

Note that w|∂K , ~q · ~n|∂K etc. are abbreviated notations for appropriate trace operators.
These traces are all well defined in the Sobolev spaces used above. The forms b and l
in (12) are defined by

b( (~σ, u, û, σ̂n), (~τ , v) ) = (α−1~σ, ~τ)Ωh
− (u, ~∇ · ~τ)Ωh

+ 〈û, ~τ · ~n〉∂Ωh

− (~σ, ~∇v)Ωh
+ 〈v, σ̂n〉∂Ωh

,

l(~τ , v) = (f, v)Ωh
.

Note that the derivatives in the bilinear form are calculated element by element. Here
and throughout, for concise notation that reflects the element by element calculations, we
use

(r, s)Ωh
=
∑
K∈Ωh

(r, s)K , 〈w, `〉∂Ωh
=
∑
K∈Ωh

〈w, `〉1/2,∂K .

We will also use ‖r‖Ωh
to denote the norm (r, r)

1/2
Ωh

. The natural norms on the “broken”

spaces H1(Ωh) and H(div, Ωh) are defined by

‖v‖2H1(Ωh)
= (v, v)Ωh

+ (~∇v, ~∇v)Ωh

‖~q ‖2H(div,Ωh)
= (~q , ~q )Ωh

+ (~∇ · ~q , ~∇ · ~q )Ωh
.

They determine the ‖ · ‖V -norm for the space in (14).
The DPG solution of (12) consists of four components. While ~σ and u are simply called

the flux and the solution components, resp., the customary names for the other two are

numerical trace (û) and numerical flux (σ̂n). (15)

As indicated above, these lie in H
1/2
0 (∂Ωh) and H−1/2(∂Ωh), resp. Note that these spaces

consist of functions (or functionals, resp.) that can be interpreted as “single-valued” on
element interfaces. They are normed by quotient norms, i.e.,

‖û‖
H

1/2
0 (∂Ωh)

= inf
{
‖w‖H1(Ω) : ∀w ∈ H1

0 (Ω) such that û|∂K = w|∂K
}
, (16a)

‖σ̂n‖H−1/2(∂Ωh)
= inf

{
‖~q ‖H(div,Ω) : ∀~q ∈ H(div, Ω) such that σ̂n|∂K = ~q · ~n|∂K

}
. (16b)

By standard arguments, we can conclude the existence of linear continuous liftings Egrad :

H
1/2
0 (∂Ωh) 7→ H1

0 (Ω) and Ediv : H−1/2(∂Ωh) 7→ H(div, Ω) such that

‖Egradû‖H1(Ω) = ‖û‖
H

1/2
0 (∂Ωh)

, ‖Edivσ̂n‖H(div,Ω) = ‖σ̂n‖H−1/2(∂Ωh)
. (17)
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This completes the description of the ultra-weak formulation (12) and its associated spaces
and norms.

We note that the DPG method is conforming in the sense that we use a trial subspace
Uh ⊆ U . All components of U in (13) have finite element subspaces of discontinuous

functions, except H
1/2
0 (∂Ωh). Thus, an essential theoretical difference between DPG and

standard DG methods is that the space of DPG numerical traces consist of continuous
functions (although, even with the discontinuous numerical traces, the method performs
very well in practice, as reported in our earlier preprint [16, Section 6]).

3.2. The optimal test norm. The optimal test norm was abstractly given in (1). For
this specific application, it is easy to calculate it. We have

‖(~τ , v)‖opt,V = sup
(~σ,u,û,σ̂n)∈U

b( (~σ, u, û, σ̂n), (~τ , v) )

‖ (~σ, u, û, σ̂n) ‖U

= sup
(~σ,u,û,σ̂n)∈U

(~σ, α−1~τ − ~∇v)Ωh
− (u, ~∇ · ~τ)Ωh

+ 〈û, ~τ · ~n〉∂Ωh
+ 〈v, σ̂n〉∂Ωh(

‖~σ‖2L2(Ω) + ‖u‖2L2(Ω) + ‖û‖2
H1/2(∂Ωh)

+ ‖σ̂n‖2H−1/2(∂Ωh)

)1/2 .

Elementary arguments then show that

‖(~τ , v)‖2opt,V = ‖α−1~τ − ~∇v‖2Ωh
+ ‖~∇ · ~τ‖2Ωh

+
∥∥[~τ · ~n]

∥∥2
∂Ωh

+
∥∥[v~n]

∥∥2
∂Ωh

, (18)

where∥∥[~τ · ~n]
∥∥
∂Ωh

def
= sup

û∈H1/2
0 (∂Ωh)

〈û, ~τ · ~n〉∂Ωh

‖û‖
H

1/2
0 (∂Ωh)

= sup
w∈H1

0 (Ω)

〈w,~τ · ~n〉∂Ωh

‖w‖H1(Ω)

, (19a)

∥∥[v~n]
∥∥
∂Ωh

def
= sup

σ̂n∈H−1/2(∂Ωh)

〈v, σ̂n〉∂Ωh

‖σ̂n‖H−1/2(∂Ωh)

= sup
~q∈H(div,Ω)

〈v, ~q · ~n〉∂Ωh

‖~q ‖H(div,Ω)

. (19b)

The last equalities in either case are a consequence of the definition of the spaces and
their quotient norms, as defined in (16). E.g., to prove the last equality in (19b), observe
that for every ~q in H(div, Ω), the trace σ̂n|∂K = ~q · ~n|∂K satisfies

〈v, σ̂n〉∂Ωh

‖σ̂n‖H−1/2(∂Ωh)

≥〈v, ~q · ~n〉∂Ωh

‖~q ‖H(div,Ω)

due to (16b). Hence the first supremum in (19b) is greater than or equal to the second.
The reverse inequality also holds because for every σ̂n in H−1/2(∂Ωh), there is a function
~q in H(div, Ω), namely ~q = Edivσ̂n (see (17)) such that ~q · ~n|∂K = σ̂n and ‖~q ‖H(div,Ω) =
‖σ̂n‖H−1/2(∂Ωh)

.
The norms in (19) measure the size of “jumps” across interelement boundaries. Indeed,

it is easy to see that when applied to functions without jumps they are zero, specifically,∥∥[~ρ · ~n]
∥∥
∂Ωh

= 0 ∀~ρ ∈ H(div, Ω), (20a)∥∥[φ~n]
∥∥
∂Ωh

= 0 ∀φ ∈ H1
0 (Ω). (20b)
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E.g., to prove (20a), consider the numerator 〈w, ~ρ · ~n〉∂Ωh
in (19a) for some w in H1

0 (Ω).
We first integrate by parts locally, and next globally, to get

〈w, ~ρ · ~n〉∂Ωh
= (~∇w, ~ρ )Ωh

+ (w, ~∇ · ~ρ )Ωh

= (~∇w, ~ρ )Ω + (w, ~∇ · ~ρ )Ω

= 〈w, ~ρ · ~n〉∂Ω
which vanishes due to the global boundary condition of w in H1

0 (Ω). Similarly, we can
prove (20b).

As shown abstractly in [15, 25], if one is able to compute the trial-to-test operator with
respect to the optimal test norm – i.e., use ‖·‖opt,V in place of ‖ · ‖V in (4) – then the
DPG solution would coincide with the best approximation from Uh in U -norm. However,
in most examples, including our current application, the optimal test norm is not easy to
compute with. The optimal norm given in (18) is inconvenient for practical computations,
due to the last two “jump” terms. These terms would make the trial-to-test computation
in (4) non-local.

Therefore, a fundamental ingredient in our analysis (in the next section) is the proof of
equivalence of the optimal norm in (18) with the simpler standard V -norm

‖ (~τ , v) ‖2V = ‖~τ‖2H(div,Ωh)
+ ‖v‖2H1(Ωh)

. (21)

This “broken” or “localizable” test space norm does not have any jump terms.

4. Error estimates

The DPG method uses the ultra-weak formulation developed in § 3.1 together with a
(conforming) subspace Uh of the space U in (13). This section is devoted to proving the
following results on bounds for the discretization error.

Theorem 4.1 (Quasioptimality). Suppose U ≡ (~σ, u, û, σ̂n) and Uh ≡ (~σh, uh, ûh, σ̂n,h) be
the exact and approximate solutions in U and Uh, resp., i.e., they satisfy (2) and (5),
resp. Let the discretization error (D) and the best approximation error (A ) be denoted by

D = ‖~σ − ~σh‖L2(Ω) + ‖u− uh‖L2(Ω) + ‖û− ûh‖H1/2
0 (∂Ωh)

+ ‖σ̂n − σ̂n,h‖H−1/2(∂Ωh)
,

A = inf
(~ρ h,wh,ẑh,η̂n,h)∈Uh(
‖~σ − ~ρ h‖L2(Ω) + ‖u− wh‖L2(Ω) + ‖û− ẑh‖H1/2

0 (∂Ωh)
+ ‖σ̂n − η̂n,h‖H−1/2(∂Ωh)

)
.

Then there is a C(α) > 0 independent of the subspace Uh and the partition Ωh such that

D ≤ C(α) A

The value of C(α) is an increasing function of α1 and 1/α0.

The proof of Theorem 4.1 appears in § 4.4 below. Note that the discretization subspace
Uh is unspecified in the theorem – the result holds for any Uh. In this sense, the theorem
is comparable to Céa lemma (although the proof is much more involved). If we specify
any particular finite element subspace Uh, with specific finite element shapes (simplices,
quadrilaterals, etc.) whose best approximation properties are known, we can conclude
rates of convergence.
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As an example, let us consider the case of a finite element space built on a tetrahe-
dral mesh. Let Pp(D) denote the set of functions that are restrictions of (multivariate)
polynomials of degree at most p on a domain D. Let

Sh,p = {~ρ : ~ρ |K ∈ Pp(K)N}, Wh,p = {v : v|K ∈ Pp(K)}.

Define the numerical trace and flux approximation spaces by

Mh,p = {η : ∃w ∈ Wh,p ∩H1
0 (Ω) such that η|∂K = w|∂K ∀K ∈ Ωh},

Qh,p = {η : η|E ∈ Pp(E), ∀ mesh faces E}.

We assume p ≥ 1 so that Mh,p is non-trivial. Let p̃ = max(p, 2).
Let us apply Theorem 4.1 with these as the trial spaces for each solution component.

Then, to obtain rates of convergence, we only need to examine how the best approximation
error converges in terms of h and p. It is well known that for s > 0,

inf
wh∈Wh,p

‖u− wh‖L2(Ω) ≤ Chsp̃−s|u|Hs(Ω), (s ≤ p+ 1). (22)

A similar best approximation estimate obviously holds for ~σ as well.
The only best approximation terms that need further explanation are the terms involv-

ing the numerical traces and fluxes. Since the exact solution û is the trace of u and the
exact flux σ̂n is the trace of the interfacial normal components of ~σ, we have

inf
ẑh∈Mh,p

‖û− ẑh‖H1/2
0 (∂Ωh)

≤ ‖u−Πgradu‖H1(Ω)

inf
η̂n,h∈Qh,p

‖σ̂n − η̂n,h‖H−1/2(∂Ωh)
≤ ‖~σ −Πdiv~σ‖H(div,Ω),

where Πgradu ∈ H1
0 (Ω) and Πdiv~σ ∈ H(div, Ω) are suitable projections, such that their

traces Πgradu|E and Πdiv~σ · ~n|E on any mesh edge E is in Pp(E).
Such conforming projectors providing approximation estimates with constants indepen-

dent of p are not easy to construct. However they are now available from recent results
in [12, 13, 18, 19, 20]. In [13, Corollaries 1 and 2], and later in the corrected version of
the results in [12, Theorem 5.3], projectors Πgrad and Πdiv satisfying

‖u−Πgradu‖H1(Ω) ≤ C ln(p̃)2 hsp̃−s|u|Hs+1(Ω), (s ≤ p), (23a)

‖~σ −Πdiv~σ‖L2(Ω) ≤ C ln(p̃)hsp̃−s|~σ|Hs+1(Ω), (s ≤ p+ 1). (23b)

were given under the assumption that s > 1/2 and the conjecture that a certain polyno-
mial extension operator exists. The latter conjecture was recently proved in [18, 19, 20]
and as a result, the estimates of (23) are finally proved. Specifically, [20, Theorem 8.1]
gives the estimates of (23).

Furthermore, let us now observe that Πdiv can be chosen to be either a projector into
Sh,p ∩ H(div, Ω) or a projector into the Raviart-Thomas space.1 This is because the
normal traces of functions in both these spaces result in the same Qh,p. Projectors Πdiv

into both these spaces have been analyzed in [12]. Let Πp denote the L2-orthogonal
projection into Wh,p. The projector into the former space satisfies the commutativity

1The Raviart-Thomas space [24] consists of functions in H(div, Ω), which when restricted to a mesh
tetrahedron, takes the form ~rp + ~xsp for some ~rp ∈ Pp(K)N and sp ∈ Pp(K). Although this space is well
defined for any p ≥ 0, here we only need these spaces for p ≥ 1.
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property ~∇ · Πdiv~σ = Πp−1~∇ · ~σ, while the projector into the Raviart-Thomas space

satisfies ~∇ ·Πdiv~σ = Πp
~∇ · ~σ. Hence, for the latter,

‖~∇ · (~σ −Πdiv~σ)‖L2(Ω) ≤ Chsp̃−s|~∇ · ~σ|Hs(Ω), (s ≤ p+ 1). (24)

Thus, although we could have used either projector for estimating best approximation
error for the numerical flux, it is preferable to use the projector into the Raviart-Thomas
space to get the best power of h.

Now, comparing the rates of convergence in (22), (23) and (24), we find that to obtain a
full O(hp+1) order of convergence, we must increase the polynomial degree of the numerical
trace space to p+ 1. Combining these observations, we have the following corollary.

Corollary 4.1 (h and p convergence rates). Suppose Ωh is a shape regular tetrahedral
finite element mesh and let h denote the maximum of the diameters of its elements. Set

Uh = Sh,p ×Wh,p ×Mh,p+1 ×Qh,p.

Then there is a constant C independent of h and p (but dependent on the shape regularity
and α) such that

D ≤ C ln(p̃)2 hsp̃−s(‖u‖Hs+1(Ω) + ‖~σ‖Hs+1(Ω))

for all 1/2 < s ≤ p+ 1.

In the same way, one can derive convergence rates for other element shapes and spaces
(triangles, hexahedra, etc.) from Theorem 4.1. In the remainder, we develop the results
needed to prove Theorem 4.1. The proof proceeds by applying the abstract result of
Theorem 2.1. Hence we must verify its assumptions. The injectivity assumption (3) is
verified in § 4.1. Most of the work is in proving one side of the two sided inequality of the
second assumption (7), which appears in § 4.3. The proof is completed in § 4.4.

4.1. Uniqueness. Let us verify the first assumption of Theorem 2.1, namely (3).

Lemma 4.1. With U and V as set in (13) and (14), suppose (~σ, u, û, σ̂n) ∈ U satisfies

b( (~σ, u, û, σ̂n), (~τ , v) ) = 0 (25)

for all (~τ , v) ∈ V . Then
(~σ, u, û, σ̂n) = 0.

Proof. Eq. (25) implies that on every mesh element K,

(α−1~σ, ~τ)K − (u, ~∇ · ~τ)K + 〈û, ~τ · ~n〉1/2,∂K = 0 ∀~τ ∈ H(div, K) (26)

−(~σ, ~∇v)K + 〈v, σ̂n〉1/2,∂K = 0 ∀v ∈ H1(K). (27)

Choosing an infinitely smooth v compactly supported on K, we find that (27) implies

~∇ · ~σ = 0 (28)

in the sense of distributions. Similarly, (26) implies the distributional gradient of u satisfies

~∇u = −α−1~σ. (29)

We also have that
u|∂K = û|∂K , σ̂n|∂K = ~σ · ~n|∂K . (30)

This is obtained by integrating (26)–(27) by parts and using (28)–(29) to find that
〈û− u, ~τ · ~n〉1/2,∂K = 〈σ̂n − ~σ · ~n, v〉1/2,∂K = 0. Collecting these observations, let us note
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that (28) and (29) imply ~σ ∈ H(div, K) and u ∈ H1(K) for every mesh element K.
Furthermore, (30) then implies that u ∈ H1

0 (Ω) and ~σ ∈ H(div, Ω).
Due to this extra regularity of ~σ and u, we may set ~τ = ~σ and v = u in (26)–(27).

Summing these equations and canceling terms after integrating by parts, we find that

(α−1~σ, ~σ)Ωh
− 〈u, ~σ · ~n〉∂Ωh

+ 〈û, ~σ · ~n〉∂Ωh
+ 〈u, σ̂n〉∂Ωh

= 0. (31)

The last two boundary terms vanish (cf. (20)). Furthermore, 〈u, ~σ · ~n〉∂Ωh
= 〈u, ~σ · ~n〉∂Ω =

0 as u ∈ H1
0 (Ω). Thus, (31) implies that ~σ = 0. Consequently, by (29), u must be

constant. Since u ∈ H1
0 (Ω), this implies that u = 0. Since both ~σ and u vanish, by (30),

the unknowns on the element boundary, û and σ̂n, also vanish. �

4.2. A Poincaré inequality. Next, we give a Poincaré-type inequality for discontinuous
functions. Stronger results are available in [5] (under further conditions on mesh angles
– see e.g., [5, Cor. 6.3]), but we only need the following simple lemma, which holds with
no assumptions on the mesh. A simple proof is included for completeness.

Lemma 4.2. There is a constant CP independent of Ωh such that for all v in H1(Ωh),

‖v‖Ωh
≤ CP

(
‖~∇v‖Ωh

+
∥∥[v~n]

∥∥
∂Ωh

)
.

Proof. Let φ in H1
0 (Ω) solve the Dirichlet problem −∆φ = v. Then, by the weak formu-

lation for φ, we obviously have ‖~∇φ‖2L2(Ω) = (v, φ)Ωh
. Hence

‖v‖2L2(Ω) = (v,−∆φ)Ω = (~∇v, ~∇φ)Ωh
+ 〈v, ∂φ

∂n
〉∂Ωh

≤ ‖~∇v‖Ωh
‖~∇φ‖Ωh

+

(
〈v, ~∇φ · ~n〉∂Ωh

‖~∇φ‖H(div,Ω)

)
‖~∇φ‖H(div,Ω)

≤ ‖~∇v‖Ωh

∣∣(v, φ)Ωh

∣∣1/2 +

(
sup

~q∈H(div,Ω)

〈v, ~q · ~n〉∂Ωh

‖~q ‖H(div,Ω)

)(∣∣(v, φ)Ωh

∣∣+ ‖v‖2Ωh

)1/2
.

Note that the supremum defines
∥∥[v~n]

∥∥
∂Ωh

according to the definition (19b). Applying the

standard Poincaré inequality in H1
0 (Ω) for φ to bound ‖φ‖Ω ≤ C‖~∇φ‖Ω, and performing

obvious estimations using the arithmetic-geometric mean inequality, we obtain the result.
�

4.3. An inf-sup condition. Next, we prove that the inf-sup condition

C1‖(~τ , v)‖V ≤ sup
(~σ,u,û,σ̂n)∈U

b( (~σ, u, û, σ̂n), (~τ , v) )

‖ (~σ, u, û, σ̂n) ‖U
(32)

holds with a constant C1 independent of Ωh. Note that the supremum on the right hand
side is the same as the optimal test norm. Hence, this inf-sup condition is the same as
the lower bound in the assumption (7) of Theorem 2.1.

The idea is to decompose v into two parts v0 and v1. The function v1 is continuous
across elements and solves a mixed problem with nonzero source in general (precisely
described in Lemma 4.4). On the other hand, v0 is harmonic (in the α = 1 case) on each

element but discontinuous across elements. That ~∇v0 can be controlled solely by the jump
terms is the content of the next lemma. Let ‖~r ‖α = (α~r , ~r )Ωh

and ‖~r ‖1/α = (α−1~r , ~r )Ωh
.

From now on, we will use C to denote a generic constant independent of Ωh.
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Lemma 4.3. Let ~τ0 in H(div, Ωh) and v0 in H1(Ωh) satisfy

α−1~τ0 − ~∇v0 = 0, on K, (33a)

~∇ · ~τ0, = 0 on K, (33b)

for every element K in Ωh. Then

‖~τ0‖1/α = ‖~∇v0‖α ≤ C
(∥∥[~τ0 · ~n]

∥∥
∂Ωh

√
1/α0 +

∥∥[v0~n]
∥∥
∂Ωh

√
α1

)
(34)

Proof. Let us consider the three dimensional case first. We need the weighted Helmholtz
decomposition

~τ0 = α~∇ψ + ~∇× ~z (35)

for some ψ in H1
0 (Ω) and ~z in H(curl, Ω). To obtain this decomposition, we first find the

ψ ∈ H1
0 (Ω) by solving

(α~∇ψ, ~∇ϕ)Ω = (~τ0, ~∇ϕ)Ωh
, ∀ϕ ∈ H1

0 (Ω). (36)

Then, since the distributional divergence ~∇ · (~τ0 − α~∇ψ) = 0, by a well-known exact
sequence property implied by our topological assumptions on Ω, we can find a ~z in
H(curl, Ω) such that ~∇ × ~z = ~τ0 − α~∇ψ, which gives (35). By construction, the two

components α~∇ψ and ~∇ × ~z are orthogonal with respect to the (α−1·, ·)-inner product
and

‖~∇× ~z‖21/α + ‖~∇ψ‖2α = ‖~τ0‖21/α. (37)

Using (36), let us estimate ~τ0 as follows.

‖~τ0‖21/α = (α−1~τ0, ~τ0) = (α−1~τ0, α~∇ψ + ~∇× ~z)Ωh

= (~τ0, ~∇ψ)Ωh
+ (~∇v0, ~∇× ~z)Ωh

= −(~∇ · ~τ0, ψ)Ωh
+ 〈ψ,~τ0 · ~n〉∂Ωh

+ 〈v0, ~n · ~∇× ~z〉∂Ωh
,

The first term vanishes by (33b). Hence,

‖~τ0‖21/α = 〈ψ,~τ0 · ~n〉∂Ωh
+ 〈v0, ~n · ~∇× ~z〉∂Ωh

,

=
〈ψ,~τ0 · ~n〉∂Ωh

‖ψ‖H1(Ω)

‖ψ‖H1(Ω) +
〈v0, ~n · ~∇× ~z〉∂Ωh

‖~∇× ~z‖H(div,Ω)

‖~∇× ~z‖L2(Ω)

≤
(

sup
w∈H1

0 (Ω)

〈w,~τ0 · ~n〉∂Ωh

‖w‖H1(Ω)

)
‖ψ‖H1(Ω) +

(
sup

~q∈H(div,Ω)

〈v0, ~n · ~q 〉∂Ωh

‖~q ‖H(div,Ω)

)
‖~∇× ~z‖L2(Ω)

It now follows from (37) and the standard Poincaré inequality ‖ψ‖2Ω ≤ C‖~∇ψ‖2Ω that

‖~τ0‖21/α ≤
∥∥[~τ0 · ~n]

∥∥
∂Ωh

√
1 + C
√
α0

‖~τ0‖1/α +
∥∥[v0~n]

∥∥
∂Ωh

√
α1‖~τ0‖1/α

where we have used the definitions of the norms of the jumps in (19). This proves the
lemma.

In the two dimensional case, the same argument works if the vector potential ~z is
replaced by a scalar potential z and ~∇×~z by the rotated gradient ~∇∧z = (−∂2z, ∂1z). �
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Lemma 4.4. Let ~G ∈ L2(Ω)N and F ∈ L2(Ω). There is a ~τ1 in H(div, Ω) and v1 in
H1

0 (Ω) satisfying

α−1~τ1 − ~∇v1 = ~G, on Ω, (38a)

~∇ · ~τ1, = F on Ω, (38b)

and

‖~τ1‖Ω + ‖~∇v1‖Ω ≤ C

(
(1 + α1)‖~G‖Ω +

(
1 +

α1

α0

)
‖F‖Ω

)
. (39)

Proof. If ~τ1 and v1 satisfy (38), then they form the unique solution of the following well-
known mixed weak formulation: Find τ1 in H(div, Ω) and v in L2(Ω) such that

(α−1~τ1, ~ρ )Ω + (v1, ~∇ · ~ρ )Ω = (~G, ~ρ )Ω ∀~ρ ∈ H(div, Ω) (40a)

(~∇ · ~τ1, w)Ω = (F,w)Ω ∀w ∈ L2(Ω). (40b)

Uniqueness and stability of solutions for this formulation are well-known [6]. These follow
by verifying the conditions of the Babuška-Brezzi theory, namely

α−11 ‖~ρ ‖2Ω ≤ (α−1~ρ , ~ρ )Ω ≤ α−10 ‖~ρ ‖2H(div,Ω), ∀~ρ ∈ H0(div, Ω),

sup
~ρ∈H0(div,Ω)

(v, ~∇ · ~ρ )Ω
‖~ρ ‖H(div,Ω)

≥ CΩ‖v‖Ω, ∀v ∈ L2(Ω).

where CΩ is a constant depending only on Ω. Hence by [6, Ch. II, Prop. 1.3], the solution
of (38) satisfies

‖~τ1‖H(div,Ω) ≤ α1‖~G‖Ω +
α−11 + α−10

CΩα
−1
1

‖F‖Ω (41)

Clearly, (41) and (38a) also imply that

‖~∇v1‖Ω ≤ ‖~G‖Ω + α−10 ‖~τ1‖Ω ≤ (α1 + 1)‖~G‖Ω + CΩ(1 + α1/α0)‖F‖Ω.
Together, they prove the lemma. �

Theorem 4.2 (The inf-sup condition). The inequality (32) holds, i.e., with ‖(~τ , v)‖opt,V
and ‖(~τ , v)‖V as in (18) and (21), resp., the inequality

‖(~τ , v)‖V ≤ Cα ‖(~τ , v)‖opt,V , (42)

holds for all ~τ ∈ H(div, Ωh) and v ∈ H1(Ωh). Here Cα is independent of Ωh and is an
increasing function of α1 and 1/α0.

Proof. Let F = ~∇ · ~τ and ~G = α−1~τ − ~∇v, where as before, the derivatives are calculated
element by element. Clearly F ∈ L2(Ω) and ~G ∈ L2(Ω)N . Let (~τ1, v1) in H(div, Ω) ×
H1

0 (Ω) be the solution of (38) with this F and ~G. Then by Lemma 4.4,

‖~τ1‖Ω + ‖~∇v1‖Ω ≤ C

(
(1 + α1)‖~G‖Ω +

(
1 +

α1

α0

)
‖F‖Ω

)
. (43)

Let ~τ0 = ~τ − ~τ1 and v0 = v − v1. Then, the pair (~τ0, v0) obviously satisfies (33), so by
Lemma 4.3,

‖~τ0‖Ω + ‖~∇v0‖Ωh
≤ C

((√
α1√
α0

+
1

α0

)∥∥[~τ0 · ~n]
∥∥
∂Ωh

+

(
α1 +

√
α1√
α0

)∥∥[v0~n]
∥∥
∂Ωh

)
. (44)
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With these observations, we now proceed to prove the theorem.
Since ~τ = ~τ0 + ~τ1 and v = v0 + v1, by triangle inequality,

‖~τ‖Ω ≤ ‖~τ0‖Ω + ‖~τ1‖Ω ≤ κα
(
‖~G‖Ω + ‖F‖Ω +

∥∥[~τ0 · ~n]
∥∥
∂Ωh

+
∥∥[v0~n]

∥∥
∂Ωh

)
, (45a)

‖~∇v‖Ωh
≤ ‖~∇v0‖Ωh

+ ‖~∇v1‖Ω ≤ κα
(
‖~G‖Ω + ‖F‖Ω +

∥∥[~τ0 · ~n]
∥∥
∂Ωh

+
∥∥[v0~n]

∥∥
∂Ωh

)
. (45b)

where κα is an increasing function of α1 and 1/α0. Now, observe that by (20), the terms∥∥[~τ0 ·~n]
∥∥
∂Ωh

and
∥∥[v0~n]

∥∥
∂Ωh

can be replaced by
∥∥[~τ ·~n]

∥∥
∂Ωh

and
∥∥[v~n]

∥∥
∂Ωh

, resp. Recalling

from (18) that

‖(~τ , v)‖2opt,V = ‖~G‖2Ωh
+ ‖F‖2Ωh

+
∥∥[~τ · ~n]

∥∥2
∂Ωh

+
∥∥[v~n]

∥∥2
∂Ωh

,

we conclude that (45) implies

‖~τ‖Ωh
+ ‖~∇v‖Ωh

≤ Cκα ‖(~τ , v)‖opt,V .

Therefore, to complete the proof of (42), we only need to bound the remaining terms
that compose the norm ‖(~τ , v)‖V . The needed bounds follow from

‖~∇ · ~τ‖Ωh
= ‖F‖Ωh

,

C‖v‖Ωh
≤ ‖~∇v‖Ωh

+
∥∥[v~n]

∥∥
∂Ωh

.

The first statement above is obvious, while the second follows from Lemma 4.2. �

4.4. Proof of Theorem 4.1. We apply Theorem 2.1. Accordingly, we verify its assump-
tions. Assumption (3) is verified by Lemma 4.1, so we only need to verify (7). The lower
bound of (7) is already verified by Theorem 4.2 with C1 = 1/Cα, so let us prove the upper
bound ‖(~τ , v)‖opt,V ≤ C2‖(~τ , v)‖V .

To this end, we consider each of the terms in the optimal norm in (18), beginning with
the jump terms. Integrating by parts locally and applying Cauchy-Schwarz inequality,

∥∥[~τ · ~n]
∥∥
∂Ωh

= sup
w∈H1

0 (Ω)

〈w,~τ · ~n〉∂Ωh

‖w‖H1(Ω)

= sup
w∈H1

0 (Ω)

(~∇w,~τ)Ωh
+ (w, ~∇ · ~τ)Ωh

‖w‖H1(Ω)

≤ ‖~τ‖H(div,Ωh).

A similar argument proves that ∥∥[v~n]
∥∥
∂Ωh
≤ ‖v‖H1(Ωh).

The remaining terms are handled obviously:

‖α−1~τ − ~∇v‖Ωh
≤ α−10 ‖~τ‖H(div,Ωh) + ‖v‖H1(Ωh)

‖~∇ · ~τ‖Ωh
≤ ‖~τ‖H(div,Ωh).

Combining these estimates for each of the terms in the optimal norm, the upper bound
is proved. The result now follows from the abstract conclusion of Theorem 2.1. �
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5. An extension

To show the potential of generalizing the above described technique of analysis to other
problems, we now quickly describe the modifications needed to analyze the convection-
diffusion problem. One of the major issues in schemes for the convection-diffusion problem
is “robustness” with respect to vanishing diffusion. While we have addressed this for the
one-dimensional convection-diffusion problem in [15], the question of showing robustness
of the DPG method remains open in higher dimensions. Nonetheless, below we will
indicate how to show well-posedness and stability of the DPG scheme with diffusion-
dependent constants. Even this is by no means obvious as we must prove an inf-sup
condition with a mesh independent constant.

The boundary value problem under consideration now, in place of (8), is

−~∇ · (α~∇u)− ~β · ~∇u = f on Ω (46a)

u = 0 on ∂Ω, (46b)

where α is as before, and ~β : Ω 7→ RN represents the convection vector field satisfying
~∇ · ~β = 0. We can write it as a first order system similar to (10): Eq. (10a) remains

the same, while (10b) is replaced by ~∇ · (~σ − ~βu) = 0. From this, a DPG ultra-weak
formulation can be derived as before. It reads the same as (12), with the same spaces U
and V , but with the modified forms

b( (~σ, u, û, σ̂n), (~τ , v) ) = (α−1~σ, ~τ)Ωh
− (u, ~∇ · ~τ)Ωh

+ 〈û, ~τ · ~n〉∂Ωh

− (~σ − ~βu, ~∇v)Ωh
+ 〈v, σ̂n〉∂Ωh

,

l(~τ , v) = (f, v)Ωh
.

Now σ̂n represents an approximation of the total flux (~σ−~βu)·~n across element interfaces.
The DPG scheme is now obtained, as before, using a Uh ⊆ U and Vh = T (Uh), where
T is now defined using the above form. Note that the stiffness matrix of the resulting
DPG scheme is symmetric and positive definite (as shown in (6)) even though the original
convection-diffusion operator is not.

With this setting we wish to apply the abstract result of Theorem 2.1. The first step
is to prove uniqueness, i.e., verify the first assumption (3). This proceeds very much like
the proof of Lemma 4.1, so we omit the details. To verify the second assumption (7), we
need the optimal test norm, which is easy to calculate:

‖(~τ , v)‖2opt,V = ‖α−1~τ − ~∇v‖2Ωh
+ ‖~∇ · (~τ − ~βv)‖2Ωh

+
∥∥[~τ · ~n]

∥∥2
∂Ωh

+
∥∥[v~n]

∥∥2
∂Ωh

.

The proof of the upper bound in the assumption (7) proceeds very similarly to the Poisson
case. The only major difference in the entire analysis is the proof of the lower bound, i.e.,
the inf-sup condition.

The proof of the inf-sup condition will proceed as in Theorem 4.2 provided we have
analogues of Lemmas 4.3 and 4.4. We develop these below. From now on we use Cα,β to

denote a generic constant independent of Ωh but dependent on α and ~β. Its value may
differ at different occurrences.
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Lemma 5.1 (Modification of Lemma 4.3). Let ~τ0 ∈ H(div, Ωh) and v0 ∈ H1(Ωh) satisfy

α−1~τ0 − ~∇v0 = 0, on K, (47a)

~∇ · (~τ0 − ~βv0) = 0 on K, (47b)

for every element K in Ωh. Then

‖~τ0‖Ω + ‖~∇v0‖Ωh
≤ Cα,β

(∥∥[~τ0 · ~n]
∥∥
∂Ωh

+
∥∥[v0~n]

∥∥
∂Ωh

)
(48)

Proof. We consider only the three-dimensional case (as the two-dimensional one is sim-
pler). Instead of the Helmholtz decomposition (appearing in the proof of Lemma 4.3), we
now use the following decomposition:

~τ0 = (α~∇ψ + ~βψ) + ~∇× ~z (49)

for a ψ in H1
0 (Ω) and ~z in H(curl, Ω).

To see that such a decomposition exists, we first find ψ in H1
0 (Ω) satisfying

(α~∇ψ, ~∇φ)Ω + (~βψ, ~∇φ)Ω = (~τ0, ~∇φ)Ω, ∀φ ∈ H1
0 (Ω). (50)

Let us check that there is a unique solution to this variational equation. By integration by

parts, (~βφ, ~∇φ)Ω = −(~∇ · (~βφ), φ)Ω = −(~βφ, ~∇φ)Ω, hence (~βφ, ~∇φ)Ω must vanish. Hence

(α~∇φ, ~∇φ)Ω + (~βφ, ~∇φ)Ω = ‖~∇φ‖2α
so the bilinear form in (50) is coercive. Therefore, by the Lax-Milgram lemma, (50) is
uniquely solvable and moreover,

‖ψ‖H1(Ω) ≤ Cα,β‖~τ0‖Ω. (51)

To complete the proof of the existence of the decomposition (49), it suffices to note

that (50) implies that the distributional divergence ~∇· (α~∇ψ− ~βψ)−~τ0) = 0, hence there

exists [21] a ~z in H(curl, Ω) such that ~∇× ~z = (α~∇ψ − ~βψ)− ~τ0, and

‖~∇× z‖Ω ≤ ‖α~∇ψ − ~βψ‖Ω + ‖~τ0‖Ω ≤ Cα,β‖~τ0‖Ω, (52)

where we have used (51). Thus the decomposition in (49) exists and is stable.
Next, let us use (49) to bound ~τ0.

‖~τ0‖21/a = (α−1~τ0, (α~∇ψ + ~βψ) + ~∇× ~z)Ω by (49)

= (~τ0, ~∇ψ)Ωh
+ (~∇v0, ~βψ)Ωh

+ (~∇v0, ~∇× ~z)Ω by (47a)

= −(~∇ · (~τ0 − ~βv0), ψ)Ωh
+ 〈ψ,~τ0 · ~n〉∂Ωh

+ 〈v0, ~n · ~∇× ~z〉∂Ωh

by local integration by parts. The first term on the right hand side vanishes by (47b).
The remaining two can be handled in exactly the same way as in the proof of Lemma 4.3.
The only difference is that we must now use (51) and (52) in place of (37). �

Lemma 5.2 (Modification of Lemma 4.4). Let ~G ∈ L2(Ω)N and F ∈ L2(Ω). There is a
~τ1 in H(div, Ω) and v1 in H1

0 (Ω) satisfying

α−1~τ1 − ~∇v1 = ~G, on Ω, (53a)

~∇ · (~τ1 − ~βv1) = F on Ω, (53b)
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and

‖~τ1‖Ω + ‖~∇v1‖Ω ≤ Cα,β

(
‖~G‖Ω + ‖F‖Ω

)
. (54)

Proof. By the same argument as in proof of Lemma 5.1 (cf. (50)), there is a unique v1 in
H1

0 (Ω) satisfying

(α~∇v1, ~∇w)Ω − (~βv1, ~∇w)Ω = −(α~G, ~∇w)Ω − (F,w)Ω ∀w ∈ H1
0 (Ω).

Setting ~τ1 = α~∇v1 +α~G it is easy to see that ~τ1 and v1 satisfies (53). The same argument
leading to (51) gives the bound

‖v1‖H1(Ω) ≤ Cα,β(‖~G‖Ω + ‖F‖Ω).

The norm ‖~τ1‖Ω is also bounded by the same because of (53a). �

With these modified lemmas, an analogue of Theorem 4.1 for the DPG approximation
of the convection-diffusion problem can be easily proved along the lines of § 4.4.

6. Numerical experiments

We conducted numerical experiments using a code built with modules from an existing
software package [11]. We now report2 the performance of a practical version of the DPG
method under h and p refinements. Since our eventual goal is to apply the DPG method
with fully automatic hp-adaptivity to more complex problems, we will also report results
from an hp-adaptive algorithm (although a convergence theory for this adaptive algorithm
is yet to be developed).

6.1. Practical settings. For all our experiments, we will consider two-dimensional do-
mains Ω subdivided into either fully geometrically conforming or 1-irregular quadrilateral
meshes. (In the latter case, an element can have either one or two elements adjacent
to each of its sides.) Let Ωh denote the collection of mesh elements as before, while Eh
denote the collection of mesh edges. An element edge with a hanging node is consid-
ered as two separate edges. To each mesh element K is associated a polynomial degree
pK ≥ 1 and to each mesh edge E the degree pE. The practical trial space Uh is set to
Uh = Sh ×Wh ×Mh ×Qh, where

Wh = {v : v|K ∈ QpK ,pK (K), ∀K ∈ Ωh}, (55a)

Sh = Wh ×Wh, (55b)

Mh = {µ ∈ H1/2
0 (∂Ωh) : µ|E ∈ PpE+1(E), ∀E ∈ Eh and µ|∂Ω = 0}, (55c)

Qh = {η : η|E ∈ PpE(E), ∀E ∈ Eh}, (55d)

where Ql,m(K) is the space of bivariate polynomials which are of degree at most l in x
and at most m in y.

At this point, we should note the (only) discrepancy between the method we theoret-
ically analyzed and the method we practically implement. Recall that the test space is

2In an early preprint of this paper, archived in [16], we reported numerical experiments with more
“variational crimes”. E.g., to fit into the input paramaters of the software, we previously used a noncon-
forming Mh 6⊂ H1/2

0 (∂Ωh) instead of the current Mh defined in (55c). The code has since been rewritten
to avoid such crimes.
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determined by T , defined by (4). In implementations, in place of T , we use T̃ : U 7→ Ṽ
defined by

(T̃U , ṽ)V = b(U , ṽ), ∀ ṽ ∈ Ṽ ,
where Ṽ is the finite dimensional subspace of V defined by

Ṽ = {(~τ , v) : ~τ |K ∈ Qdiv
p̃K

and v|K ∈ Qp̃K ,p̃K (K)} and p̃K = pK + δp.

We set the enrichment degree δp to be the same for all mesh elements. Here,Qdiv
` (K)

def
= Q`+1,`×

Q`,`+1 is a well known subspace of H(div, K), often called a Nédélec space of the first
kind [23] or the Raviart-Thomas space [24] on squares.

In our earlier numerical experience [15, 17] on various equations, we found that δp = 2
is sufficient to obtain good results, so this will form our default choice. But below we will
also report results with other choices.

The degree of polynomials approximating the numerical fluxes as well as numerical
traces are, by default, set by the maximum rule. To describe this, first note that while
a mesh edge can be shared by at most two mesh elements in conforming meshes, on
1-irregular meshes, we consider the edges split by a hanging node as shared by three
adjacent mesh elements. For any edge E, we set pE in (55) to be the maximum of the
degrees pK for the two or the three adjacent elements K.

We will often report the energy norm of the error, in addition to the L2-norm of the
error in the interior variables. The energy norm [15] in the DPG framework is

‖U ‖E = sup
v∈V

|b(U , v)|
‖v‖V

.

It is easy to see [25] that whenever (7) holds, C1‖u‖U ≤ ‖u‖E ≤ C2‖u‖U . We will verify
the practical manifestation of this equivalence by comparing the errors in the energy
norm and the L2-norm. However, note that the exact energy norm of the error cannot be
computed. Instead what we report is its approximation described below – see (56).

In all our adaptive schemes, we use (an approximation of) the energy norm of the
error as the error indicator. To describe how we compute it, we first define the error
representation function ẽ ∈ Ṽ by ẽ = T̃ (U − Uh). Since (T̃ (U − Uh), ṽ)V = b(U − Uh, ṽ) =
l(ṽ)− b(Uh, ṽ), the error representation function can be computed element by element by
solving

(ẽ, ṽ)V = l(ṽ)− b(Uh, ṽ), ∀ ṽ ∈ Ṽ .
The energy norm of the error is then approximated by

‖U − Uh‖E = ‖T (U − Uh)‖V ≈ ‖T̃ (U − Uh)‖V = ‖ẽ‖V . (56)

The contribution to ‖ẽ‖2V from each element forms the element error indicator. Note that
for the Poisson example, ẽ represents the error in all the four variables (u, ~σ, û and σ̂n).

6.2. Numerical Examples. We consider the following two-dimensional examples. The
first example is on the unit square i.e., we set Ω = (0, 1)× (0, 1) and solve{−∆u = f, on Ω,

u = 0, on ∂Ω,

with f = 2π2 sin(πx) sin(πy), so that the exact solution u = sin(πx) sin(πy) is infinitely
smooth. Initially, Ωh is a uniform mesh of four congruent square elements with pK = 2
for all K ∈ Ωh.
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(a) The square case
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(b) The case of the L-shaped domain

Figure 1. h-convergence rates for the two examples

The second example involves an L-shaped domain, a classical test domain for adaptivity,
namely Ω = (−1, 1)× (−1, 1) \ [−1, 0]× [−1, 0]. We solve

−∆u = 0, on Ω,

u = 0, on the edges of ∂Ω along x and y axes,

∂u

∂n
= g, on the remainder of the boundary ∂Ω.

The Neumann data g is set so that the exact solution is

u(r, θ) = r2/3 sin
(2

3
(θ +

π

2
)
)
.

The derivatives of solution u are singular at the origin. It is well known that the solution
u is in H1+s(Ω) for all s < 2/3. The initial mesh Ωh consists of three congruent squares
with pK = 2 for all three elements.

6.3. Convergence rates in h and p. The observed rates of convergence under uniform
mesh refinement, holding the degree p fixed to 2 for all elements, is reported in Figure 1.
The L2 and energy norms of the errors versus degrees of freedom are plotted in these
figures. When we report the “L2-norm” of the error, we only include ‖u − uh‖L2(Ω) and
‖~σ − ~σh‖L2(Ω). We do not include the errors in numerical flux or trace.

Under uniform h-refinement, the number of degrees of freedom N is O(h−2). Thus,
from Figure 1(a), we find that the observed h-convergence rates for the square domain
are O(N−1.5) = O(h3) = O(hp+1). This is indeed in accordance with Theorem 4.1 and
the well-known best approximation rates for the square elements we used.

Results from the L-shaped domain are in Figure 1(b). Here, we observe that the
convergence rate under uniform h-refinement is ≈ O(N−1/3) = O(h2/3). This is also in
accordance with Theorem 4.1 in view of the limited regularity of the solution.

To study p-convergence, we increased the polynomial degree uniformly on all elements,
holding the mesh fixed (to the initial mesh). The results are in Figure 2. While the
exponential convergence rate is evident (Figure 2(a)) for the infinitely smooth solution on
the square, the p-convergence rate is limited (Figure 2(b)) for the less regular solution on
the L-shaped domain.
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(a) Results from the square domain
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(b) Results from the L-shaped domain

Figure 2. p-convergence rates for the two examples

6.4. Results from the adaptive scheme. We used the standard “greedy” strategy for
h-adaptive refinements, i.e., all elements which contribute within 25% of the maximum
element contribution to the square of total error in energy norm, are marked for the
refinement. For hp-refinements, we have used a common flagging strategy [1]: all elements
adjacent to the origin (the singularity) are h-refined, while the remaining ones are p-
refined. The error estimator, in both cases, is the previously mentioned energy error –
see (56).

The results are in Figure 3. The first graph in Figure 3(a) compares the error reduc-
tion obtained by uniform h-refinement, adaptive h-refinement, and the above mentioned
adaptive hp-refinement. Clearly, the hp-adaptive strategy is superior. As expected, h-
adaptivity restores the optimal rate of convergence for quadratic elements (N−1.5) while
the hp-adaptive strategy delivers exponential convergence despite the singularity of the
solution.

In Figure 3(b), we examine the effectiveness of the error indicator. Comparing the
energy error with the L2-error, we find the two curves follow each other with a ratio
between them close to unity. Note that the same behavior was also seen in Figures 1
and 2.

Next, we consider the secondary effect of the approximation of the optimal test func-
tions. The effect of approximating T by T̃ can be studied by varying the enrichment
degree δp. Results from the h-adaptive algorithm applied to the L-shaped domain with
varying δp are presented in Figure 3(c). The curves are practically identical for δp = 2, 3,
and 4.

We also report the effect of reducing the degree of polynomials used in approximating
the numerical trace (Mh) by one in the context of the same h-adaptive example. Fig-
ure 3(d) shows that the energy error indicator seems to deviate from the optimal curve
as the number of degrees of freedom increase in the case of the reduced trace degree.

Finally, as an illustration, Figure 4 shows the optimal hp mesh obtained after 15 steps
of the adaptive algorithm. The relative L2-error is less than 0.016%. This includes the
error in u and its derivatives. The computed function u is also shown in the figure.
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Figure 4. Left: The hp mesh found by the hp-adaptive algorithm after
15 refinements. (Color scale represents polynomial degrees.) Right: The
corresponding solution u. (Color scale represent solution values.)
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