Can Infopipes Facilitate Reuse in a Traffic Application?

Emerson Murphy-Hill  
*Portland State University*

Chuan-kai Lin  
*Portland State University*

Andrew P. Black  
*Portland State University, black@cs.pdx.edu*

Jonathan Walpole  
*Portland State University*

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

Part of the Databases and Information Systems Commons, and the Digital Communications and Networking Commons

Let us know how access to this document benefits you.

Citation Details


This Poster is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Can Infopipes Facilitate Reuse in a Traffic Application?
Emerson Murphy-Hill, Chuan-kai Lin, Andrew P. Black, and Jonathan Walpole
{emerson,cklin,black,walpole}@cs.pdx.edu
Maseeh College of Engineering & Computer Science
Portland State University

Calculating truck volume on roadways is important in planning, design, and policy decisions. While modern highway instruments can very accurately measure truck volume, many US highways are equipped with antiquated equipment that is designed to detect only total volume.

Infopipes are presented as reusable building blocks for streaming applications. To evaluate this claim, we have built a significant traffic application in Smalltalk using Infopipes. This poster presents a traffic problem and solution, a short introduction to Infopipes, and the types of reuse Infopipes facilitate in our implementation.

Infopipes can be subclassed to specialize behavior. In this application, eight Infopipes reused behavior from their superclass. For instance, a VehicleCounter has the same control, data flow, and connection semantics as a Buffer, so a VehicleCounter is a natural subclass of Buffer.

General-purpose Infopipes should be reusable in any application. Below is a class hierarchy of some well known Infopipes.

We implemented an algorithm described by Kwon and colleagues*. This algorithm allows truck volume to be accurately estimated on a segment of highway using single induction loops. Our implementation of this algorithm is representative of a current, real-world traffic analysis application.

The algorithm rests on two basic assumptions about highway traffic:
1. The innermost lane contains no trucks. Velocity in adjacent lanes is closely correlated.
2. Velocity in adjacent lanes is closely correlated.

The Infopipe abstraction is useful for facilitating reuse in a real-world streaming application.


More information about Infopipes can be found at http://www.cs.pdx.edu/~walpole/infopipes.html