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A SECOND ELASTICITY ELEMENT USING THE MATRIX BUBBLE

J. GOPALAKRISHNAN AND J. GUZMÁN

Abstract. We presented a family of finite elements that use a polynomial space aug-
mented by certain matrix bubbles in [Math. Comp., 79 (2010), 1331–1349]. In this sequel,
we exhibit a second family of elements that use the same matrix bubble. This second
element uses a stress space smaller than the first, while maintaining the same space for ro-
tations (which are the Lagrange multipliers corresponding to a weak symmetry constraint).
The space of displacements are of one degree less than the first method. The analysis,
while similar to the first, requires a few new adjustments as the new Fortin projector may
not preserve weak symmetry, but we are able to prove optimal convergence for all the
variables. Finally, we present a sufficient condition wherein a mixed method with weakly
imposed stress symmetry in fact yields an exactly symmetric stress tensor approximation.

1. Introduction

We introduce a close relative of the family of stress finite elements presented in [15].
These elements are applied to numerically solve the linear elasticity boundary value problem
in a mixed formulation. While the mixed method is attractive in that it gives a direct
approximation to the stress tensor σ, generating symmetric stress tensor approximations
poses significant difficulties. The symmetry is a requirement arising from the conservation
of angular momentum, so it is of some considerable interest to preserve it at the discrete
level. While it may be preferable to use finite elements that keep the exact symmetry
of the stress tensor, the known symmetric stress elements for the mixed formulation have
too many degrees of freedom to make it practically attractive [1, 3, 7]. Hence researchers
have pursued avenues for computing weakly symmetric stress tensor approximations, by
constraining various selected moments of σ − σt to vanish [5, 12, 15, 24, 19]. Our present
contribution deals with a mixed formulation appropriate for weakly imposing symmetry of
stress tensors. However, we also discuss a case where weak symmetry happens to imply
exact symmetry.

The new stress finite element space we consider in this paper, in the three-dimensional
(3D) case, is given by

V (K) = Pk(K) + curl ((curlÃk(K))bK) (1.1)

where K is a tetrahedron, Pk(K) is the space of polynomials of degree k on K, Pk(K) =
[Pk(K)]d×d, and bK is “matrix bubble” introduced in [15], defined by

bK :=
3∑
`=0

λ`−3λ`−2λ`−1 (gradλ`)
t gradλ`. (1.2)

2000 Mathematics Subject Classification. 65M60,65N30,35L65.
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2 GOPALAKRISHNAN AND GUZMÁN

Here λj are the barycentric coordinates of K and the indices are calculated mod 4. Note
that differential operators like curl and grad above are applied row-wise, so in particular
gradλ` is a row vector of derivatives of λ`, so that (gradλ`)

t gradλ` is a 3 × 3 matrix.
In (1.1), we also used the space of anti-symmetric matrix polynomials Ãk(K) defined by

Ak(K) = {η ∈ Pk(K) : η + ηt = 0},
Ãk(K) = Ak(K) ∩Pk

⊥(K),

where Pk
⊥(K) := [Pk⊥(K)]d×d and Pk⊥(K):={v ∈ Pk(K) : (v, w)K = 0 for all w ∈ Pk−1(K)}.

Because of the properties of the of the matrix bubble (detailed later) the space added to
Pk(K) in (1.1) is a space of ‘normal bubbles’ in the sense that they have zero normal
stress components. This was one of the original motivations in the design of bK (see [15]
for details). Indeed, the results of [18] imply that multiplication of matrix polynomials
with bK gives matrices whose row-vectors are in a Nédélec subspace with zero tangential
components, so their curls have zero normal components.

To compare with previously considered elements, let us introduce the mixed approxi-
mation to the elasticity problem with kinematic boundary conditions,

divσ = f in Ω, (1.3a)

Aσ − ε(u) = 0 in Ω, (1.3b)

u = 0 on ∂Ω, (1.3c)

where A is a symmetric positive definite tensor over symmetric matrices and f is a given
load function. The mixed approximations to the stress tensor (σ), the displacement (u),
and the rotation (ρ), form a triple (σh, uh, ρh) ∈ V h ×W h ×Ah where the global finite
element spaces are of the form

V h := {v ∈H(div,Ω) : v|K ∈ V (K), for all K ∈ Ωh}, (1.4a)

W h := {w ∈ L2(Ω) : w|K ∈W (K), for all K ∈ Ωh}, (1.4b)

Ah := {v ∈ L2(Ω) : v|K ∈ A(K), for all K ∈ Ωh}. (1.4c)

Here Ω is a polygonal domain and Ωh is a simplicial finite element subdivision of Ω.
Different authors have chosen different local finite element spaces V (K),W (K) and

A(K), as shown in Table 1, which also shows our choice in this paper. In all cases, the
mixed approximation satisfies the system

(Aσh,v)Ω + (uh, div v)Ω + (ρh,v)Ω =0 (1.5a)

(divσh,ω)Ω =(f ,ω)Ω (1.5b)

(σh,η)Ω =0, (1.5c)

for all (v,ω,η) ∈ V h×W h×Ah. Above and throughout, the notation (ζ,θ)D denotes the
integral over D of the dot product of the vector functions ζ and θ, while for matrix functions
ζ and θ, the same notation (ζ,θ)D denotes the integral over D of their Frobenius inner

product ζ : θ. Note that in (1.4), L2(Ω) is the space of matrix-valued functions whose

entries are in L2(Ω), and H(div,Ω) is the space of matrix-valued functions whose row
vectors belong to the standard H(div ; Ω)-space. Note also that now A is extended so that
it is symmetric positive definite over all matrices. In Table 1, the space RT k(K) denotes
the space of all matrices whose row-vectors belong to the standard Raviart-Thomas space
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Method V (K) W (K) A(K) Order

Stenberg [24] Pk(K) + curl (Pk−1(K)λ0λ1λ2λ3) Pk−1(K) Ak(K) k ≥ 1
peers [4, 12] RT 0(K) + curl (P0(K)λ0λ1λ2λ3) P0(K) CA1(K) k = 0

afw [5] Pk+1(K) Pk(K) Ak(K) k ≥ 0
Our 1st element [15] RT k(K) + curl ((curlÃk(K))bK) Pk(K) Ak(K) k ≥ 1
Section 2 (this paper) Pk(K) + curl ((curlÃk(K))bK) Pk−1(K) Ak(K) k ≥ 1

Section 6 (this paper) Pk(K), on special grids Pk−1(K) Ak(K) k ≥ 2

Table 1. Some combinations of stable tetrahedral finite element spaces for
mixed methods with weakly imposed stress symmetry. (The prefix C in
CA1(K) indicates globally continuous space.)

Pk(K) + xPk(K) and Pk(K) denote vector functions with components in Pk(K). Since
the weak symmetry constraint (1.5c) is imposed using polynomials of the same degree for
all rows in Table 1 (the space Ak(K))we find that the stress space of Section 2 has the
smallest dimension (except for the elements considered in Section 6 which require special
meshes for stability). Table 2 gives the dimension counts of our new element and compares
it to the two elements most recently discovered, [5] and [15].

The choice of spaces considered in [15] can be viewed as a natural matrix extension of
the Raviart-Thomas (RT) [22] element for vector functions, whereas the spaces we consider
here could be thought of as the extension of the Brezzi-Douglas-Marini (BDM) [9, 10, 21]
element. The choice of the displacement space of one less degree underlines the similarity
with the BDM element. However, the AFW element [5] can also be considered as the
analogue of the BDM element (and is indeed considered as such in [12]), so we shall refrain
from calling our new element ‘the BDM analogue’. There appears to be room for multiple
matrix analogues of the vector elements.

The organization of the paper is as follows. In the next section we discuss our new
family of elements in two and three dimensions. In Section 3 we define the corresponding
projection operator and prove key properties. In Section 4 we give an error analysis of
the mixed method. In Section 5 we use connections to the Stokes elements previously
made in [2, 12, 17] to put our two-dimensional element in perspective. In the Section 6
we again use the connection with Stokes elements to argue that in special meshes we can
drop the bubble term appearing in the definition of V (K) and yet obtain a stable method
which in fact produces stress tensors that are exactly symmetric. In Section 8 we present
the hybridized version of our method. In the final section we provide a post-processing
technique which gives an improved approximation for the displacement.

Stress space dimension
Method Formula k = 0 1 2 3 4 5
afw [5] pk + 9(k + 2)(k + 3)/2 36 90 180 315 504 756
Our 1st element [15] pk + 3(k + 1)(k + 2) × 54 126 240 405 630
Section 2 (this paper) pk + 3(k + 1)(k + 2)/2 × 45 108 210 360 567

Table 2. Dimension comparison with two recent works. Here pk denotes
dim(Pk(K)) = 3(k + 1)(k + 2)(k + 3)/2.
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2. The new finite element

In this section we define our new finite element for stresses in two and three dimensions.
The definition is in the style of Ciarlet [13], whereby a finite element is denoted by a triple
describing the geometry, the space, and a set of degrees of freedom. The triple in our case
is (K,V (K),Σ), where the geometric object K is a simplex (triangle or tetrahedron) and
V (K) is given by

V (K) =Pk(K) +B(Ãk(K)), (2.6a)

W (K) =Pk−1(K), (2.6b)

A(K) =Ak(K). (2.6c)

where, letting d denote the ambient space dimension,

B(η) :=

{
curl (curl (η) bK) if d = 2,

curl (curl (η) bK) if d = 3,

bK denotes the (scalar) bubble of the simplex K equaling the product of all its barycentric
coordinates (so when d = 2, we have bK = λ0λ1λ2), and bK is the symmetric matrix bubble
defined by (1.2). As mentioned above, the operator curl when applied to a matrix acts
row-wise in three dimensions. In two dimensions, curl applied to a matrix and a vector is
defined in the following way

curl (η) :=

(
∂1η12 − ∂2η11

∂1η22 − ∂2η21

)
and curl (w) :=

(
∂2w1 −∂1w1

∂2w2 −∂1w2

)
,

respectively.
The set of degrees of freedom Σ are the following linear functionals

`µ(σ) = 〈σn,µ〉F , for all µ ∈ Pk(F ), for all faces F of K, (2.7a)

`v(σ) = (σ,v)K , for all v ∈N k−1(K), (2.7b)

`η(σ) = (σ,η)K , for all η ∈ Ãk(K). (2.7c)

Here N s(K) is the space of matrices whose row-vectors are in the Nédélec space of the first
kind [20] of index s, i.e., it is defined by

N s(K) := Ps−1(K) + Ss(K),

where

Ss(K) := {v ∈ P̃
s
(K) : v x = 0},

for s ≥ 1. Here P̃
s
(K) = [P̃s(K)]d×d and P̃s(K) are the homogeneous polynomials of degree

s. For s = 0, N 0(K) is the empty set. The main result of this section is the following
theorem.

Theorem 2.1 (Unisolvency). Assume k ≥ 1. Let K be a triangle (d=2) or a tetrahedron
(d=3). Any σ in V k(K) is uniquely determined by the degrees of freedom given by (2.7).

Before proving this theorem we need to recall a few results we proved in [15], which are
summarized in the next lemma. Here onwards we will assume k ≥ 1 tacitly.

Lemma 2.2. The following statements hold:
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(1) The form given by

((u,v ))b :=

{
(u bK ,v)K if d = 2,

(ubK ,v)K if d = 3,

is an inner product on Pk(K).
(2) For any matrix u, all the row vectors of the products ubK and u bK have vanishing

tangential trace on ∂K.
(3) If B(η) = ψ with ψ ∈ Pk(K) and η ∈ Ãk(K) then η = 0.

(4) Any ψ ∈ Pk(K) satisfies divψ = 0 and ψn|∂K = 0 if and only if there exists a
v ∈ Pk−1(K) such that ψ = B(v).

Proof. Items (1)–(3) are proved in [15]. Item (4), with ψ ∈ Pk(K) replaced by ψ ∈
RT k(K), is also proved in [15]. That it follows with ψ ∈ Pk(K) is a consequence of the
well known fact that the divergence free subspaces of RT k(K) and Pk(K) coincide. �

We also need the following simple corollary of Lemma 2.2(4).

Lemma 2.3. Any ψ ∈ Pk(K) satisfies divψ = 0 and ψn|∂K = 0 if and only if there
exists a Nédélec polynomial v ∈N k−1(K) such that ψ = B(v).

Proof. From Lemma 2.2 it is obvious that if ψ = B(v) for some v in N k−1(K), then
divψ = 0 and ψn|∂K = 0.

For the converse, consider a ψ satisfying div ψ = 0 and ψn|∂K = 0. By Lemma 2.2(4),
we know that there is a v in Pk−1(K) such that ψ = B(v). Decompose v as

v = ζ + τ ,

where ζ ∈ Pk−2(K) and τ ∈ P̃
k−1

(K). Let z = −τ x/k, and define

w = v + grad z.

Then, we see that curl (v) = curl (w) and so

ψ = B(w).

To complete the proof, we will show that w ∈N k−1(K). Note that w = ζ+τ +grad z,

where ζ ∈ Pk−2(K) and τ + grad z ∈ P̃
k−1

(K). A simple calculation (Euler’s identity)
shows that due to the homogeneity of τ , one has grad (τx)x = kτx. Therefore,

(τ + grad z)x =τ x+ (grad z)x = τ x−
(

1

k
grad (τx)

)
x

=τ x− τ x = 0.

This establishes that τ + grad z is in Sk−1(K) and hence w ∈N k−1(K). �

Now we can prove the main result of this section.

Proof of Theorem 2.1. We first show that dim(V (K)) is equal to the number of indepen-
dent degrees of freedom given in (2.7). To this end, note that

dim(V (K)) = dim(Pk(K)) + dim(Ã(K)),

where we used Lemma 2.2(3). Hence, we must show that

dim(Pk(k)) = dim(N k−1(K)) + (d+ 1) dimPk(F ), (2.8)
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where F is a face of K. The dimension of N k−1(K) can be calculated (see e.g. [21] for
d = 3 or [18] for general d) to be

dim(N k−1(K)) =
(k − 1 + d)! (k − 1)

(d− 1)! k!
d.

Hence the right hand side of (2.8) equals

(k − 1 + d)! (k − 1)

(d− 1)! k!
d + (d+ 1)

(k − 1 + d)!

(d− 1)! k!
d =

(k + d)!

k! d!
d2 = dim(Pk(K))

which proves (2.8).
We next show that if all the degrees of freedom in (2.7) applied to a σ in V (K) vanish,

then σ must vanish. Since σ ∈ V (K), by definition, we can write σ = ψ +B(ζ) for some
ψ ∈ Pk(K) and ζ ∈ Ã(K). Standard arguments using `µ(σ) = `v(σ) = 0 show (see,
e.g. [15]) that

div ψ = 0 on K and ψn = 0 on ∂K. (2.9)

Hence, by Lemma 2.3, we have σ = B(w + ζ) for some w ∈ N k−1(K) and ζ ∈ Ã(K).
Furthermore, since `v(σ) = `η(σ) = 0, we have

0 = (σ,w + ζ)K = (B(w + ζ),w + ζ)K = (( curl (w + ζ), curl (w + ζ) ))b,

where we have used integration by parts and Lemma 2.2(2). Using Lemma 2.2(1) also,
we conclude that curl (w + ζ) = 0 and therefore σ = B(w + ζ) = 0. This completes the
proof. �

3. The projection

The natural interpolant of our finite element defines a Fortin projector with a commuta-
tivity property involving the row-wise divergence. However, unlike the analogous projector
of our first element [15], the new projector does not satisfy the weak symmetry condition in

addition to the commutativity property. Specifically, if Π(1) denotes the projection of [15],
then

(Π(1)σ,η)K = (σ,η)K , for all η ∈ Ak(K),

so that if σ is symmetric, then Π(1)σ is weakly symmetric. But for the current element,
we are only able to show that the above holds under an additional condition (see the next
theorem).

Our projector is denoted by Π and is defined by `(Πσ) = `(σ) for all ` in Σ, i.e., Πσ
is the unique function in V (K) satisfying

〈(Πσ)n,µ〉F = 〈σn,µ〉F , for all µ ∈ Pk(F ), for all faces F of K, (3.10a)

(Πσ,v)K = (σ,v)K , for all v ∈N k−1(K), (3.10b)

(Πσ,η)K = (σ,η)K , for all η ∈ Ãk(K). (3.10c)

Clearly, by the choice of the degrees of freedom, Πσ is in H(div,Ω). The domain of Π
consist of functions σ in H(div,Ω) which are regular enough for all the degrees of freedom
`µ(σ) to exist, e.g., σ ∈ H(div,Ω) ∩ Lp(Ω) for p > 2. The following theorem lists all the
properties of the projection we shall need.

Theorem 3.1. Let P be the L2(Ω)-orthogonal projection onto W h and let σ ∈ dom(Π).
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(1) The following commutativity property holds:

div (Πσ) = P (divσ). (3.11)

(2) If σ is such that divσ is in W h, then

(Πσ,η)K = (σ,η)K , for all η ∈ Ak(K).

(3) If σ is in Hr(K) for some r satisfying 1 ≤ r ≤ k + 1, then

‖Πσ − σ‖L2(K) ≤ C hrK |σ|Hr(K). (3.12)

where hK = diam(K).

In the remainder of this section, we prove this theorem. In (3.12) and elsewhere, we
use C to denote a generic constant dependent only on the shape regularity of the elements
(and not on hK). Let us begin by proving the first assertion of the theorem.

Proof of Theorem 3.1(1). To prove the identity (3.11), first observe that for any ω in
Pk−1(K) we have that gradω ∈N k−1(K). Therefore,

(div (Πσ),ω)K =− (Πσ, gradω)K + 〈Πσn,ω〉∂K
=− (σ, gradω)K + 〈σn,ω〉∂K by (3.10b) and (3.10a),

= (divσ,ω)K , after integration by parts,

= (Pdivσ,ω)K .

This proves item (1) of Theorem 3.1. �

Proof of Theorem 3.1(2). Let η ∈ Ak(K). We know that η can be written in the following
form

η = v + η̃.

where v ∈ Pk−1(K) and η̃ ∈ Ãk(K). Moreover, from [20, 21], we know that

v = ψ + gradω

for some ψ ∈N k−1(K) and ω ∈ P̃
k
(K) ≡ [P̃k(K)]d. Hence, using (3.10b), (3.10c) we have

(Πσ − σ,η)K = (Πσ − σ, gradω)K .

Integrating by parts and using (3.10a), we get

(Πσ − σ,η)K = −(divΠσ − divσ,ω)K = −(Pdivσ − divσ,ω)K .

where we used (3.11). This completes the proof. �

It only remains to prove item (3) of Theorem 3.1. This can be done by a Bramble-

Hilbert argument once we make the mappings clear. Let K̂ be a fixed ‘reference’ simplex.
It can be mapped homeomorphically to any other simplex K by a mapping of the form
F(x̂) = Mx̂ + b where M is a constant matrix and b a constant vector. We use the
same mappings introduced in [15]. Matrix-valued functions σ̂ and (column) vector-valued

functions ŵ on K̂ are mapped to functions on K by

σ(x) = | detM|−1M σ̂(x̂)Mt, (3.13a)

w(x) = M−t ŵ(x̂), (3.13b)
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respectively, and let

τ̌ (x̂) = Mtτ (x)M. (3.13c)

Lemma 3.2. The mapping τ 7→ τ̌ is a homeomorphism from N k(K) onto N k(K̂).

Proof. It suffices to prove that if τ is in N k(K), then τ̌ is in N k(K̂). To this end, we make
two observations. First, note that

τ̌ x̂ = (Mtτ (x)M)x̂ = (Mtτ (x)M)M−1(x− b)
= −Mtτ (x)b+Mtτ (x)x. (3.14)

The second observation is that a function r is in N k(K) if and only if r is in Pk(K) and
the product r x is in Pk(K). This implies that the last term in (3.14) is in Pk(K) (as τ is
in N k(K)). Since the penultimate term in (3.14) is obviously also in N k(K), we find that

τ̌ x̂ is in Pk(K̂), so τ̌ is in N k(K̂). �

Proof of Theorem 3.1(3). Let Π̂ denote the interpolant of the reference element and let σ
and σ̂ be as in (3.13a). Let us first prove that

Π̂σ = Π̂σ̂, (3.15)

where Π̂σ is the function obtained by mapping Πσ from K to K̂ using the map in (3.13a).
Simple calculations show that for all r in N k(K),

(Π̂σ, ř)K̂ = (Πσ, r)K = (σ, r)K = (σ̂, ř)K̂

= (Π̂σ̂, ř)K̂ ,

where we have used (3.10b) on K as well as K̂, and Lemma 3.2. Combining with similar
identities derived using the other degrees of freedom, and the properties of the mappings
in (3.13), we have

(Π̂σ, ř)K̂ = (Π̂σ̂, ř)K̂ , for all ř ∈N k(K̂),

(Π̂σ, η̌)K̂ = (Π̂σ̂, η̌)K̂ , for all η̌ ∈ Ãk(K̂),

〈Π̂σn, µ̂〉∂K̂ = 〈Π̂σ̂n, µ̂〉∂K̂ for all µ̂ ∈ Pk(F̂ ), for all faces F̂ of K̂.

Hence, by the unisolvency result of Theorem 2.1, we conclude (3.15).
The rest of the proof can now proceed by a standard Bramble-Hilbert argument (we

omit the details). �

Remark 3.3. To connect our projection with the standard “BDM projection” as defined
in [21], consider the obvious generalization of the projection of [21] defined (for matrices in
both two and three dimensions) by

〈(ΠBDMσ)n,µ〉F = 〈σn,µ〉F , for all µ ∈ Pk(F ), for all faces F of K, (3.16a)

(ΠBDMσ,v)K = (σ,v)K , for all v ∈N k−1(K). (3.16b)

Comparing with (3.10), we find that Πσ −ΠBDMσ is a function for which all our degrees
of freedom vanish except those of the type (2.7c).
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4. Error analysis

In this section we return to the mixed method (1.5) with the specific choices of our local
finite element spaces. We will prove that the method is stable and optimally convergent.
The error analysis of this section proceeds by obtaining first results as an application of the
Babuška-Brezzi theory [11] and then refining the estimates to separate the errors in each
variable. In either case, the projection Π plays an important role.

To apply the Babuška-Brezzi theory, we must verify (i) the “inf-sup condition”

sup
τ∈V h

(wh, div τ ) + (ζh, τ )

‖τ‖H(div,Ω)

≥ C
(
‖wh‖L2(Ω) + ‖ζh‖L2(Ω)

)
(4.17)

for all ζh in Ah and wh in W h, and (ii) the “coercivity in the kernel” condition

(Aτ , τ )Ω ≥ C‖τ‖H(div,Ω) (4.18)

for all τ in the ‘kernel’ given by {τ ∈ V h : (wh, div τ )Ω + (ηh, τ )Ω = 0 for all wh ∈W h

and all ηh in Ah}. Due to the surjectivity of div : V h 7→W h, condition (4.18) is obvious
in our case. To establish (4.17), we use the following lemma.

Lemma 4.1. Given any w ∈W h and ζ ∈ Ah, there exists a τ ∈ V h satisfying

div τ = w, (4.19a)

(τ ,η) = (ζ,η), ∀η ∈ Ah, and (4.19b)

‖τ‖L2(Ω) ≤ C
(
‖w‖L2(Ω) + ‖ζ‖L2(Ω)

)
, (4.19c)

where C only depends on the shape regularity of the mesh.

Proof. By [5, Theorem 7.1], there exists a τ k+1 in the space {v ∈ H(div,Ω) : v|K ∈
Pk+1(K), for all K ∈ Ωh} such that

div τ k+1 = w,

(τ k+1,η) = (ζ,η), ∀η ∈ Ah, and

‖τ k+1‖L2(Ω) ≤ C
(
‖w‖L2(Ω) + ‖ζ‖L2(Ω)

)
, (4.20)

where C depends on the shape regularity of the mesh. Being a piecewise polynomial, τ k+1

obviously has enough regularity for applying Π, so we may set τ = Πτ k+1. Then

div τ = Pdiv τ k+1 = w, by Theorem 3.1(1)

(τ ,η) = (τ k+1,η) = (ζ,η), ∀η ∈ Ah, by Theorem 3.1(2),

where we used that Pdiv τ k+1 = w = div τ k+1. This proves the first two equations of the
lemma. For the final inequality, we use the triangle inequality and (3.12) to get

‖τ‖L2(K) =‖Πτ k+1‖L2(K)

≤‖τ k+1‖L2(K) + ‖Πτ k+1 − τ k+1‖L2(K)

≤‖τ k+1‖L2(K) + ChK‖τ k+1‖H1(K)

≤C‖τ k+1‖L2(K),

where we used an inverse estimate since τ k+1|K ∈ Pk+1(K). Using (4.20), we complete the
proof. �



10 GOPALAKRISHNAN AND GUZMÁN

Our first theorem shows that the finite element error can be bounded in terms of the
best approximation error:

Theorem 4.2 (Quasioptimality). Let (σ,u,ρ) be the exact solution of (1.3). Suppose

(σh,uh,ρh) satisfies (1.5). Then there is a C > 0 such that

‖σ − σh‖H(div) + ‖u− uh‖L2 + ‖ρ− ρh‖L2 ≤ C
(
‖σ − v‖H(div) + ‖u− ω‖L2 + ‖ρ− η‖L2

)
for all (v,ω,η) ∈ V h ×W h × Ah. In particular, this implies that the method (1.5) is
uniquely solvable.

Proof. The inf-sup condition (4.17) is an immediate consequence of Lemma 4.1. Hence, the
inequality of the theorem follows from the Babuška-Brezzi theory [11].

Since the exact solution (σ,u,ρ) is trivial if all the right hand sides vanish, the unique
solvability of the method follows from the inequality of the theorem. �

Since the space where the displacement is approximated is one order less, let us now
separate the error in u from the remaining variables to get better estimates.

Theorem 4.3. Let P denote the L2-orthogonal projection into Ah. Then

‖σ − σh‖L2(Ω) + ‖ρ− ρh‖L2(Ω) ≤ C
(
‖Πσ − σ‖L2(Ω) + ‖Pρ− ρ‖L2(Ω)

)
.

To prove this theorem, we use the following lemma which estimates the ρ-error in terms
of the error in σ.

Lemma 4.4. We have,

‖ρ− ρh‖L2(Ω) ≤ C (‖σ − σh‖L2(Ω) + ‖Pρ− ρ‖L2(Ω)).

Proof. We start by writing the error equations

(A(σ − σh),v)Ω + (u− uh, div v)Ω + (ρ− ρh,v)Ω =0 (4.21a)

(div (σ − σh),ω)Ω =0 (4.21b)

(σ − σh,η)Ω =0, (4.21c)

for all (v,ω,η) ∈ V h ×W h ×Ah. In (4.21a), we set in place of v, the τ obtained from

Lemma 4.1 with ζ = Pρ− ρh and w = div τ = 0, so that

‖Pρ− ρh‖2
L2(Ω) =(Pρ− ρh, τ )

=− (A(σ − σh), τ ) + (Pρ− ρ, τ ).

Thus,

‖Pρ− ρh‖2
L2(Ω) ≤ (‖σ − σh‖L2(Ω) + ‖Pρ− ρ‖L2(Ω)) ‖τ‖L2(Ω).

The proof is complete once we note that ‖τ‖L2(Ω) ≤ ‖Pρ− ρh‖L2(Ω) by Lemma 4.1. �

Proof of Theorem 4.3. We again use the error equations (4.21). First note that using (3.11)
and (4.21b) we get that

div (Πσ − σh) = 0. (4.22)
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Therefore, using (4.21a) with v = Πσ − σh we get

(A(Πσ − σh),Πσ − σh)Ω

= (A(Πσ − σ),Πσ − σh)Ω − (ρ− ρh,Πσ − σh)Ω.
(4.23)

The last term above can be rewritten as

(ρ− ρh,Πσ − σh)Ω = (Pρ− ρh,Πσ − σh)Ω − (Pρ− ρ,Πσ − σh)Ω

= (Pρ− ρh,Πσ − σ)Ω − (Pρ− ρ,Πσ − σh)Ω,

where we used (4.21c). The penultimate term above can be estimated using Lemma 4.4
and triangle inequality as follows.

(Pρ− ρh,Πσ − σ)Ω ≤C (‖σ − σh‖L2(Ω) + ‖Pρ− ρ‖L2(Ω))‖Πσ − σ‖L2(Ω)

≤ C‖Πσ − σ‖2
L2(Ω) + C (‖Πσ − σh‖L2(Ω) + ‖Pρ− ρ‖L2(Ω))‖Πσ − σ‖L2(Ω)

With these observations, we return to (4.23). Using the positive definiteness of A also, we
find that

‖Πσ − σh‖2
L2(Ω) ≤ C (‖Πσ − σ‖L2(Ω) + ‖P ρ− ρ‖L2(Ω)) ‖Πσ − σh‖L2(Ω)

+ C‖P ρ− ρ‖L2(Ω) ‖Πσ − σ‖L2(Ω) + C‖Πσ − σ‖2
L2(Ω).

By standard manipulations using an arithmetic-geometric mean inequality, we can (kick-
back and) remove the term ‖Πσ − σh‖L2(Ω) from the right hand side. Thus,

‖Πσ − σh‖L2(Ω) ≤C (‖Πσ − σ‖L2(Ω) + ‖P ρ− ρ‖L2(Ω)).

The estimate for σh follows by applying the triangle inequality.
To prove the estimate for ρh, we now only need to apply Lemma 4.4 and the already

proved estimate for σh. �

Now we will prove an error estimate for u by a duality argument. For this, we need
the following dual problem:

divψ =θ in Ω, (4.24a)

Aψ − ε(φ) =0 in Ω, (4.24b)

φ =0 on ∂Ω. (4.24c)

We assume that ψ ∈ domΠ. We also assume that

‖ψ‖Hs(Ω) + ‖φ‖H1+s(Ω) ≤ C‖θ‖L2(Ω), (4.25)

for some 0 ≤ s ≤ 1. Such inequalities are known to hold in several cases, e.g., in the case
of planar elasticity with scalar coefficients on a convex domain, its holds [8] with s = 1.

Theorem 4.5. If the regularity estimate (4.25) holds, then we have

‖Pu− uh‖L2(Ω) ≤ C hr(‖σ −Πσ‖L2(Ω) + ‖ρ− P ρ‖L2(Ω)),

where h = max(hK : K ∈ Ωh) and

r =

{
s, if k ≥ 2,

0, if k = 1.
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Proof. This proof is substantially similar to a proof in [15], so we will only mention the
differences.

First, consider the dual problem (4.24) with θ = Pu−uh. Then, since Pdivψ = divψ,

(Πψ,η)K = (ψ,η)K = 0, for all η ∈ Ak(K),

by Theorem 3.1(2). With this observation, proceeding as in the proof of [15, Lemma 5.2],
we can derive the identity

(Pu− uh,θ)Ω = (A(σ − σh),ψ −Πψ)Ω + (σ − σh, ξ − P ξ )Ω

− (σ −Πσ, grad (φ− Pφ) )Ω + (ρ− P ρ,Πψ −ψ)Ω.

where the gradient is taken element by element. Note that in the lowest order case, Pφ is
piecewise constant (so grad (φ − Pφ) provides no extra power of h). With this in mind,
the stated estimate follows using standard approximation properties for the L2-projections
and Theorem 3.1(3) for Π. �

5. Connection with Stokes elements

It is no secret that there is a close connection between elasticity elements and Stokes
elements [2, 12, 17] in two dimensions. For example, the relationship between the PEERS
elasticity element and the Stokes MINI element was clarified in [17] and again, more re-
cently, in [12]. In [12] such relationships were studied further leading to explicit conditions
on properties of Fortin-like projectors. Our purpose in this section is to briefly recall this
connection and to put our contribution in two dimensions in perspective. More importantly,
this section will set the stage for the following section where we show that some weakly
imposed symmetry methods in fact produce stress tensors that are strongly symmetric.
The results in this section are essentially contained in [12, 16, 17].

First, consider the two-dimensional (2D) case. Suppose we want to construct a stress
finite element space V̂ h (keeping Ah and W h as defined previously) using a Stokes pair
of spaces Sh × Rh ⊆ H1(Ω) × L2(Ω) (velocity and pressure spaces, respectively). We set
the pressure space Rh to {r : r|K ∈ Pk(K) for all elements K}, so that it can put into an
isomorphism with Ah by the map X2 : Rh 7→ Ah defined by

X2w = wχ, where χ =

(
0 −1
1 0

)
.

Then it is easy to see that the following diagram commutes (an easy consequence of a
commuting diagram in [16]):

Rh
1
2
X2−−−→ Ah

P div

x xP skw

Sh
curl−−−→ V̂ h div−−−→ W h −−−→ 0.

(5.26)

Here skw(·) denotes the operator mapping matrices to their skew-symmetric parts, and P
denotes the L2-orthogonal projection onto Rh (and P , as before, denotes the L2-orthogonal
projection ontoAh). The commutativity in the diagram (5.26) can be alternately expressed
as

1

2
X2Pdiv sh = P skw curl sh (5.27)
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for all sh in Sh. Note that it is implicit in the diagram that we require curlSh ⊆ V̂ h and
the map div (·) to be a surjection from V̂ h onto W h.

Proposition 5.1. Assume the following:

(1) V̂ h is such that

curlSh ⊆ V̂ h. (5.28)

(2) H1-continuous right inverse of div in Rh: For any rh in Rh there is a sh in Sh

such that

Pdiv sh = rh, ‖sh‖H1 ≤ C‖rh‖L2 . (5.29)

(3) L2-continuous right inverse of div in W h: For any wh in W h, there is a τ h in
V̂ h such that

div τ h = wh, ‖τ h‖H(div) ≤ C‖wh‖L2 . (5.30)

Then, for any w ∈ W h and ζ ∈ Ah, there exists a τ in V̂ h satisfying (4.19), i.e., the
spaces V̂ h,W h,Ah satisfy the elasticity inf-sup condition.

Proof. We find the required τ in two steps. First, by the given condition (5.30), we find
τ 1 in V̂ h such that

div τ 1 = wh, ‖τ 1‖H(div) ≤ C‖wh‖L2 . (5.31)

Second, by (5.29), we find sh in Sh such that

Pdiv sh = 2X−1
2 P (ζ − skw τ 1), ‖sh‖H1 ≤ C‖ζ − skw τ 1‖L2 .

Setting τ 2 = curl sh and using (5.26), this implies

P skw τ 2 = P (ζ − skw τ 1), ‖τ 2‖H(div) ≤ C(‖ζ‖L2 + ‖τ 1‖L2 (5.32)

Setting τ = τ 1 + τ 2 and combining (5.31) and (5.32), we prove the result. �

Example 5.2. In [17, Example 4.2], we find that the lowest order case of our 2D element is
already discovered by considering the conforming “P+

2 P−1”-Crouzeix-Raviart element. To
explain this, first set the Stokes pair to the Crouzeix-Raviart element by

Rh = {r ∈ L2(Ω) : r|K ∈ P1(K), for all elements K},
Sh = {sh ∈H1(Ω) : sh|K ∈ P2(K) + bK

(
α
β

)
for all elements K}

for some constants α and β. To use Proposition 5.1 so as to obtain a stress element V̂ h,
we must satisfy (5.28), so it is natural to set

V̂ (K) = P1(K) + curl
(
bK
(
α
β

))
and V̂ h = {v ∈H(div,Ω) : v|K ∈ V̂ (K), for all K ∈ Ωh}. This is indeed the same space
we introduced previously, i.e., V̂ h = V h when k = 1 as

{curl
(
bK
(
α
β

))
: α, β ∈ R} = {curl

(
curl

(
0 −γ
γ 0

)
bK
)

: γ ∈ P1(K)}.

Finally note that the closely related Amara-Thomas elements [2] are the same as the our
2D elements in [15]. In the lowest order case, they take the form V̂ (K) = RT 1(K) +
curl

(
bK
(
α
β

))
. �
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Next, let us consider the three-dimensional (3D) case. Now, we must put together
three copies of Stokes spaces to form matrix Stokes elements. Namely, let Sh denote an
H1(Ω)-conforming space of matrix functions and Rh ⊆ L2(Ω). To obtain an analogue
of (5.26), we first set Rh to a space homeomorphic to Ah using the map X3 (in place of
X2 in (5.26)) defined by

X3

r1

r2

r3

 =

 0 −r3 r2

r3 0 −r1

−r2 r1 0

 ,

i.e., we set Rh = X−1
3 A

h. Then, letting tr(·) denote the trace, and defining

Ξv = vt − (trv)I, Ξ−1 = vt − 1

2
(trv)I,

we recall the well known 3D analogue of (5.27), namely

skw curlw =
1

2
X3divΞw.

Set Ŝh = Ξ−1Sh. Introducing appropriate projections, it easily follows that the diagram

Rh

1
2
X3 // Ah

Sh

P div

OO

Ŝ
h curl //

Ξ

OO

V̂
h

P skw

OO

div // W h // 0

commutes. Note that the bottom row is not required to be an exact sequence. (Indeed,
typical exact sequences have a curl-conforming space in place of the H1-conforming Ŝh.)
We only need curl Ŝh ⊆ V̂ h. With the above diagram, the following result is proved along
the same lines of the proof of Proposition 5.1 (so we omit the details).

Proposition 5.3. The statement of Proposition 5.1 holds in three dimensions after replac-
ing (5.28) by

curl Ŝ
h
⊆ V̂ h, (5.33)

and replacing P,Rh, and Sh by P ,Rh, and Sh, respectively.

6. Serendipitous exact symmetry

By way of a final example using the Stokes connection, we now show that in certain
type of meshes, we may omit the bubbles B(Ãk) and still obtain a stable method. This
is a particularly interesting example, as the removal of bubbles implies that the test and
trial space in the weak symmetry constraint (1.5c) use polynomials of the same degree.
Therefore, the method yields stress approximations that are exactly symmetric. It is well
known that stress elements with exact symmetry do not come easy. Known elements [1, 3, 7]
have too many degrees of freedom. So any other game yielding exactly symmetric stress
approximations is worth a pursuit.
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First we consider the 2D case. We recall the conditions on planar meshes that were
discovered in [23, 25] in the context of exactly incompressible Stokes flow approximations
in the assumption below. Its relevance in elasticity will be clear shortly.

Assumption 6.1 (Away from singular vertices [23, 25]). We assume that the planar meshes
are quasiuniform and satisfy the following two conditions:

(1) No interior mesh vertex is “singular” in the sense of [25]. An interior vertex is called
singular if all the edges meeting at this vertex fall on two straight lines.

(2) No vertex is close to singularity in the following sense [23]: Let θi, i = 1, . . . ,m, be
the angles of the triangles meeting at one vertex x. Define R(x) = max{|θi+θj−π| :
1 ≤ i, j ≤ m, i−j = 1 mod m} for interior mesh vertices x. For boundary vertices,
the same definition holds verbatim after “mod” is deleted. We assume that there is
a fixed δ > 0 independent of h such that

R(x) ≥ δ > 0

for all vertices x of all meshes under consideration.
(3) The polynomial degree satisfies k ≥ 3.

One class of meshes for which this assumption holds is the so called Hseih-Clough-
Toucher grids, as observed in [6]. In fact, they also showed that for such grids, the associated
polynomial degree can be further reduced, as stated in the next assumption below.

A complete generalization of the above mentioned concept of singular mesh objects for
3D tetrahedral meshes remains unknown. However in [26], the 3D version of the Hseih-
Clough-Toucher grids is shown to provide a class of meshes without singular vertices and
edges, leading us to consider 3D meshes also in the following assumption:

Assumption 6.2 (Hseih-Clough-Toucher grids [6, 26]). In either the 2D (triangular) or the
3D (tetrahedral) case, assume the following:

(1) The mesh is obtained from a quasiuniform mesh after splitting each of its elements
into d+ 1 elements by connecting the vertices of the element to its barycenter.

(2) In the 2D case, assume k ≥ 1.
(3) In the 3D case, assume k ≥ 2.

Theorem 6.3. Suppose either Assumption 6.1 or Assumption 6.2 holds. Consider the
mixed method (1.5) with the local spaces

V (K) = Pk(K), W (K) = Pk−1(K), A(K) = Ak(K),

(and the degree k as specified in each case in the assumptions). The method is uniquely
solvable, is stable, and quasioptimal. Moreover, its stress approximation σh is exactly
symmetric.

Proof. Consider the 2D case first. We apply Proposition 5.1 after setting the Stokes pair
to

Rh = {r ∈ L2(Ω) : r|K ∈ Pk(K), for all elements K},
Sh = {s ∈H1(Ω) : s|K ∈ Pk+1(K) for all elements K}.

Then, if Assumption 6.1 holds, by [23, Theorem 5.1], there is an H1-continuous right
inverse for the divergence operator for k ≥ 3. If Assumption 6.2 holds, then the same
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result follows from [6] for k ≥ 1. Hence, the choice

V h = {τ ∈ H(div) : τ ∈ Pk(K) for all elements K}

satisfies all the three conditions of Proposition 5.1. Consequently, the method is stable and
Babuška-Brezzi theory gives quasioptimality. The stated exact symmetry of σh follows
because V (K) and A(K) consist of polynomials of the same degree.

In the 3D case of Assumption 6.2, we apply Proposition 5.3 instead, with

Sh = {s ∈H1(Ω) : s|K ∈ Pk+1(K) for all elements K}.

Note that Ŝh and Sh coincide for the above choice of Sh, so (5.33) holds. Moreover, the
analysis in [26] shows that for any rh in Rh ≡ X−1

3 Ah, there is a sh in Sh satisfying
Pdiv sh = rh, and ‖sh‖H1 ≤ C‖rh‖L2 . (We note that although the result in [26] is stated
only for spaces with zero boundary condition, the analysis there holds more generally even
for the space Sh without the boundary condition.) Thus, the conditions of Proposition 5.3
can be verified and the proof can be finished as in the 2D case. �

With a more refined analysis, we can separate the errors in the displacement from that
of the stress and consequently prove optimal estimates for the latter, as we show next.

Theorem 6.4. With the same hypothesis as the previous theorem we have

‖σ − σh‖L2(Ω) + ‖ρ− ρh‖L2(Ω) ≤ C
(
‖ΠBDM σ − σ‖L2(Ω) + ‖Pρ− ρ‖L2(Ω)

)
.

Proof. In the proof of Theorem 6.3, we showed that the inf-sup condition of Lemma 4.1
holds under the given assumptions. Therefore, we can follow along the lines of the proof of
Lemma 4.4 to get

‖ρ− ρh‖L2(Ω) ≤ C
(
‖σ − σh‖L2(Ω) + ‖Pρ− ρ‖L2(Ω)

)
. (6.34)

Next, to control σ − σh, we start by observing that from the second error equa-
tion (4.21b) and the properties of ΠBDM (see (3.16) for definition) that

div (ΠBDM σ − σh) = 0.

Therefore, using (4.21a) with v = ΠBDM σ − σh (note that v does in fact belong to V h)
we get

(A(σ − σh),ΠBDMσ − σh)Ω = −(ρ− ρh,ΠBDMσ − σh)Ω

By Theorem 6.3, σh is symmetric, so the last term can be rewritten as

(A(σ − σh),ΠBDMσ − σh)Ω = −(ρ− ρh,ΠBDM σ − σ)Ω.

By the positive-definiteness of A, we thus have

‖σ − σh‖2
A = (A(σ − σh),σ −ΠBDMσ)Ω − (ρ− ρh,ΠBDM σ − σ)Ω

where ‖v‖2
A = (Av,v)Ω. Now, estimating by elementary inequalities like the Cauchy-

Schwarz inequality, and using (6.34), we finish the proof. �
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7. Some implementation aspects

We conclude by briefly discussing dimension-reduced implementation by hybridization
and an accuracy-enhancing postprocessing technique.

A standard implementation of the mixed method (1.5) results in a large indefinite
matrix system (for the coefficients in a basis) for σh, uh,and ρh. Hybridization can reduce
the size of this system, as well as provide a symmetric positive definite reduced system. To
discuss this, we start, perhaps counterintuitively, by enlarging the mixed method (1.5) to
include an additional unknown λh in

Mh = {µ : µ|F ∈ Pk(F ) for all mesh faces F ∈ Eh, and µ|∂Ω = 0},

and enlarging the space V h by removing its H(div,Ω)-continuity constraints to obtain the
space

Ṽ
h

= {v : v|K ∈ V (K) for all mesh elements K ∈ Ωh}.
Note that for all the choices of V (K) we considered in the previous sections, we have

V (K) ⊂Pk(K)

v n|F ∈Pk(F ) for all faces F of K and for all v ∈ V (K),

hence V h = {v ∈ Ṽ
h

: 〈vn,µ〉∂Ωh
= 0 for all µ ∈Mh}, where

〈ω, v〉∂Ωh
:=

∑
K∈Ωh

〈ω, v〉∂K .

Thus the space Mh is the space of Lagrange multipliers corresponding to the H(div,Ω)-
continuity constraints of V h.

Hybridization removes the stress interelement continuity constraints from the global
finite space and reimposes them as an equation of the method, i.e., the solution of hybridized

method, (σh,uh,ρh,λh) ∈ Ṽ
h
×W h ×Ah ×Mh, satisfies

(Aσh,v)Ωh
+ (uh, div v)Ωh

+ (ρh,v)Ωh
+ 〈λh,vn〉∂Ωh

= 0, (7.35a)

(divσh,ω)Ωh
= (f ,ω)Ωh

, (7.35b)

(σh,η)Ωh
= 0, (7.35c)

〈σhn,µ〉∂Ωh
= 0, (7.35d)

for all (v,ω,η,µ) ∈ Ṽ
h
×W h×Ah×Mh. Here, differential operators are applied element

by element and

(ω, v)Ωh
:=

∑
K∈Ωh

(ω, v)K .

The following result can be proved as in [15].

Proposition 7.1. There is a unique (σh,uh,ρh,λh) ∈ Ṽ
h
×W h × Ah ×Mh satisfy-

ing (7.35). Moreover, the first three components of the solution, namely (σh,uh,ρh) coin-
cide with that of the mixed method (1.5).
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The purpose of discussing the enlarged system (7.35) is that it allows elimination of all
the unknowns (for all choices of stress spaces we considered) except λh. Specifically, there
is a locally computable symmetric coercive bilinear form ah(·, ·) and a linear form `h(·) on
Mh such that λh is the unique solution of

ah(λ
h,µ) = `(µ) ∀µ ∈Mh. (7.36)

This statement can be proved and the forms explicitly written down by the techniques
in [14] (see also [15]). Thus the preferred method of implementation is to solve (7.36) (a
sparse symmetric positive definite system) first for λh. The other unknowns σh,uh and ρh

can then be locally computed using the λh as shown in [14, 15].
Finally, we adapt Stenberg’s postprocessing [24] to our methods, to obtain a better

displacement approximation. On each simplex K ∈ Ωh, the post-processed approximation
uh,? is the (unique) function in Pk+1(K) satisfying

(graduh,?, gradω)K = (Aσh + ρh, gradω)K ∀ω ∈ P
k+1,k−1
⊥ (K),

(uh,?,w)K = (uh,w)K ∀w ∈ Pk−1(K),

where P
k+1,k−1
⊥ (K) := {v ∈ Pk+1(K) : (v,ω)K = 0 for all ω ∈ Pk−1(K)}. Then, taking

advantage of Theorem 4.5 (we note that this result also holds for the methods consid-
ered in Section 6), we can prove that the local post-processing scheme gives an improved
approximation for u.

Theorem 7.2. Suppose u is in Hk+2(Ω) and the regularity assumption (4.25) holds with
s = 1. Then

‖u− uh,?‖L2(Ω) ≤ C hk+` |u|Hk+2(Ω),

where ` = 1 if k ≥ 2 and ` = 1 if k = 1.

The proof is similar to the analogous result in Stenberg [24] hence we omit the details.

Acknowledgements

The results of Section 6 are due to the authors and Professor Richard Falk. The authors
appreciate his encouragement and the opportunities he offered for discussing these results.

References

[1] S. Adams and B. Cockburn, A mixed finite element method for elasticity in three dimensions, J.
Sci. Comput. 25 (2005), no. 3, 515–521.

[2] M. Amara and J. M. Thomas, Equilibrium finite elements for the linear elastic problem, Numer.
Math., 33 (1979), pp. 367–383.

[3] D.N. Arnold, G. Awanou and R. Winther, Finite elements for symmetric tensors in three
dimensions, Math. Comp. 77 (2008), no. 263, 1229–1251.

[4] D.N. Arnold, F. Brezzi and J. Douglas, PEERS: a new mixed finite element for plane elasticity,
Japan J. Appl. Math. 1 (1984), no. 2, 347–367.

[5] D.N. Arnold, R. Falk and R. Winther, Mixed finite element methods for linear elasticity with
weakly imposed symmetry, Math. Comp. 76 (2007), no. 260, 1699–1723.

[6] D. N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, in Advances in
Computer Methods for Partial Differential Equations-VII, R. Vichnevetsky, D. Knight, and G. Richter,
eds., IMACS, 1992, pp. 28–34.

[7] D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numer. Math., 92 (2002),
pp. 401–419.



SECOND STRESS ELEMENT FOR ELASTICITY 19

[8] C. Bacuta and J. H. Bramble, Regularity estimates for solutions of the equations of linear elasticity
in convex plane polygonal domains, Z. Angew. Math. Phys., 54 (2003), pp. 874–878.

[9] F. Brezzi, J. Douglas and L.D. Marini, Two families of mixed finite elements for second order
elliptic problems, Numer. Math. 47 (1985), no. 2, 217–235.

[10] F. Brezzi, J. Douglas, R. Durán and M. Fortin, Mixed finite elements for second order elliptic
problems in three variables, Numer. Math. 51 (1987), no. 2, 237–250.

[11] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computa-
tional Mathematics, 15. Springer-Verlag, New York, 1991.

[12] D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity, Commun.
Pure Appl. Anal. 8 (2009), no. 1, 95–121.

[13] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Com-
pany, Amsterdam, 1978.

[14] B. Cockburn and J. Gopalakrishnan, A characterization of hybridized mixed methods for the
Dirichlet problem, SIAM J. Numer. Anal., 42 (2004), pp. 283–301.

[15] B. Cockburn, J. Gopalakrishnan, and J. Guzmán, A new elasticity element made for enforcing
weak stress symmetry, Math. Comp., 79 (2010), 1331–1349.

[16] R. Falk, Finite elements for linear elasticity, in Mixed Finite Elements: Compatibility Conditions
(eds. D. Boffi and L. Gastaldi), Lecture Notes in Math., 1939 Springer-Verlag, Heidelberg, 2008.

[17] M. Farhloul and M. Fortin, Dual hybrid methods for the elasticity and the Stokes problems: a
unified approach, Numer. Math., 76 (1997), pp. 419–440.
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