
Portland State University Portland State University 

PDXScholar PDXScholar 

Institute for Natural Resources Publications Institute for Natural Resources - Portland 

8-2022 

An economical and repeatable method for mapping An economical and repeatable method for mapping 

shade cast on water channels shade cast on water channels 

Eric M. Nielsen 
Portland State University, emn2@pdx.edu 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/naturalresources_pub 

 Part of the Environmental Monitoring Commons, Natural Resources and Conservation Commons, and 

the Water Resource Management Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Nielsen, Eric M., "An economical and repeatable method for mapping shade cast on water channels" 
(2022). Institute for Natural Resources Publications. 44. 
https://pdxscholar.library.pdx.edu/naturalresources_pub/44 

This Report is brought to you for free and open access. It has been accepted for inclusion in Institute for Natural 
Resources Publications by an authorized administrator of PDXScholar. Please contact us if we can make this 
document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/naturalresources_pub
https://pdxscholar.library.pdx.edu/naturalresources
https://pdxscholar.library.pdx.edu/naturalresources_pub?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/931?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/168?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1057?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/naturalresources_pub/44
https://pdxscholar.library.pdx.edu/naturalresources_pub/44?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


An economical and repeatable method for mapping shade cast on water 
channels 

Eric M. Nielsen* 

Institute for Natural Resources, Portland State University 
August 2022 

1. Introduction 

1.1. Overview 

The motivation of this work is to provide insights toward determining a viable strategy for statewide 

monitoring of riparian vegetation condition, with particular focus on developing a repeatable, cost-

effective method for assessment of progress toward achieving temperature-based water quality standards 

mandated by the federal Clean Water Act. A reliable monitoring strategy could in turn support a data-

driven prioritization and assessment framework to increase the efficiency, effectiveness and accountability 

of riparian restoration efforts. In this project we developed and tested a method for mapping shade cast on 

water channels by riparian vegetation using optical imagery sources that are affordable and regularly 

available across the state of Oregon.1 We validated the optical imagery-based results against lidar-based 

shade estimates that—while superior for the application—do not represent a viable approach for ongoing 

statewide monitoring due to their expense. 

The optical imagery sources we evaluated were 1-foot resolution aerial imagery from the National 

Agricultural Imagery Program (NAIP) and 10-meter resolution Sentinel-2 satellite imagery. The model 

results were assessed by comparing them to shade estimated using solar-path modeling applied to lidar 

data collected over three study areas spanning a wide range of environmental conditions. The optical-based 

results explain nearly 77% of the variation in lidar-derived shade across the study areas. NAIP-based 

models significantly outperformed Sentinel-2 models; we found that multi-scale image textural 

information derived from NAIP was important in creating accurate shade estimates. Maps of shade from 

the optical-based model were created over the entire Johnson Creek watershed in metropolitan Portland; 

visual inspection of the results shows a very high correspondence to photo-interpreted NAIP imagery, 

including accurate response to subtle and fine-scale variation in conditions. 

This report describes the methods we used to create and assess the optical-based shade map, shares the 

results of the assessment, and provides the modeled output over the Johnson Creek watershed. It also 

describes a sample design and field protocol that were created to support a field effort to provide additional 

validation of the approach. The field effort has not yet been performed, but perhaps is not necessary due 

to the seeming reliability of lidar data as a validation data source. 

1.2. Strategy 

Model construction and validation were originally planned to occur in two phases. First, field shade 

estimates from Solar Pathfinder and/or hemispherical photography were to be used to validate a shade 

model based on gridded lidar data. This model would allow shade mapping within spatial and temporal 

constraints determined by lidar data availability. Second, the lidar shade model was to be used as a bridge 

                                                           
* Correspondence: emn2@pdx.edu. 
1 The primary imagery sources with these characteristics and of sufficient resolution for the task are aerial imagery 

from the National Agricultural Imagery Program (NAIP) and satellite imagery from the Sentinel-2 sensors. Since these 

are optical imagery data sources, we refer to them hereafter as “optical imagery.” 



for development and validation of a shade model based on optical imagery. This second model would 

provide the capability for wall-to-wall shade mapping across the state, with the capacity to be updated 

when new cloud-free imagery is obtained (ideally annually). 

The fieldwork planned by Oregon Department of Environmental Quality (ODEQ) that would validate the 

first modeling phase did not go forward as planned. The results we present here are therefore limited to an 

assessment of the second phase, the validation of optical imagery-based shade maps against lidar-

supported solar modeling. Despite the omission of the ground-truth component, cast shade estimates based 

on lidar imagery have been found to be essentially equivalent to onsite measurements (e.g., National 

Renewable Energy Laboratory 2015). The validation of the optical imagery model presented here is very 

likely to be functionally complete.2  

1.3. Study area 

Three pilot areas were selected for analysis (Figure 1); each of the three contains temperature-priority 

watersheds (TPW) recognized by ODEQ. Collectively, these watersheds include a wide variety of climatic 

conditions (e.g., maritime, inland valleys, high elevation Cascades, and semi-arid east slope Cascades) and 

land use types (e.g., industrial timberland, natural conifer and broadleaf forests, mesic and dryland 

agriculture, and urbanized). The watersheds were selected to permit cost-effective field sampling by ODEQ 

crews. Though they incorporate a broad range of conditions, they are not as representative of non-forest 

land found in more arid regions farther east in Oregon, although the lower portion of the East Cascades 

area has some characteristics in common with that. 

 

Figure 1. Pilot watersheds. From west to east, we refer to these areas as (1) Coast Range, including the North Coast 

Sub-basins & Wilson-Trask-Nestucca TPWs; (2) Johnson Creek, including the Lower Willamette Sub-basin TPW; and 

(3) East Cascades, including the Miles Creeks & Western Hood TPWs. 

                                                           
2 Although information pertaining to the field sample design and protocol is not relevant to the results presented here, 

we have included it to support possible future ground-truth efforts. 



2. Methods 

All analysis steps below were performed in Python 2.7 (mostly using the arcpy library) or in R 4.0.2. 

2.1. Image data processing 

All available lidar data within the pilot areas were acquired from the Oregon Lidar Consortium (Oregon 

Department of Geology & Mineral Industries 2021). The 22 lidar datasets that included both bare earth and 

highest hit elevation layers and appeared to consist of reliable data were processed on a by-quad basis to a 

common horizontal resolution (one meter) and vertical unit (quarter-foot) before calculating canopy height 

as the difference between highest hit and bare earth elevations. We then reprojected the quad data to Zone 

10 UTM using the NAD83 horizontal datum, resampled all layers to 3-meter resolution to ease the 

subsequent processing burden, and mosaicked them across each of the pilot watersheds. The year of each 

collection was extracted and similarly mosaicked across the watersheds. Lidar collection years ranged from 

2009 to 2015. 

1-foot resolution 4-band aerial imagery collected in 2018 was acquired from the Oregon Imagery FIT 

program (Oregon Geospatial Enterprise Office 2021), and nested texture metrics were produced across the 

pilot areas (see Nielsen et al. 2021 for a description of this algorithm, created at INR). The resulting metrics 

were summarized at 10-foot resolution over both the local pixel and over a 130-foot square moving window 

in which each the contribution of each pixel in the south half of the window was weighted proportionally 

to its inverse-distance from the center pixel and to the cosine of the angle between it and the center pixel 

(in order to represent the potential shade cast on the center pixel by vegetation at each nearby pixel). 

Sentinel-2 satellite reflectance data was obtained using Google Earth Engine (Google 2021). A medioid 

mosaic method was used to remove clouds, cloud shadows and other corrupt data from all Sentinel-2 

images collected over the pilot areas between July 1, 2020 and September 1, 2020. The red, green, blue, near-

infrared and two shortwave infrared bands were obtained in this way at their native 10-meter or 20-meter 

resolution. All data were resampled to 10-meter resolution using a cubic convolution resampling method. 

A variety of spectral indices were created from the reflectance data; the metrics are reviewed in Nielsen et 

al. (2021). Like the NAIP metrics, these metrics were summarized both at the local pixel and over an inverse-

distance moving window oriented toward the south. 

Historic image data was needed to assess change across the study area since the date of lidar collection. 

Landsat 5 and Landsat 8 satellite reflectance data was obtained for 2020 and for every year in which any of 

the lidar collections had been obtained (2009, 2010, 213, 2014, 2015). Google Earth Engine was used to create 

a medioid mosaic from imagery collected between July 1 and September 1 of each year. The red, green, 

blue, near-infrared and two shortwave infrared bands were obtained at their native 30-meter resolution. 

2.2. Derived lidar metrics 

2.2.1. Hydrologic flow paths 

We derived flow paths and a channel network from the lidar data, to serve as a check on the NHD channel 

delineation and to provide reference locations likely to be on channels for use in the field sample selection 

to be performed by ODEQ. We first aggregated the lidar bare earth mosaic to 3-meter resolution, a tractable 

but sufficient resolution to support flow modeling. We aggregated using a moving window minimum 

function, to preserve local minimum elevations most likely to represent the exact location of channels. We 

then used the built-in ESRI hydrologic functions to fill sinks and calculate local flow direction and 

accumulation. With reference to Strahler orders from the NHD over coincident channel reaches, we 

estimated minimum flow accumulation breakpoints corresponding to Strahler orders 1, 3, 5 and 7, and 

created a 3-meter resolution raster representing the distribution of these channel orders over the study area. 



2.2.2. Solar modeling 

We used the ArcGIS solar modeling tools (ESRI 2021) to produce solar radiation estimates along channels 

throughout the study area. These tools allow the user to provide a set of points and an elevation surface, 

and calculate the cumulative solar radiation on each point across a selected time window, incorporating 

the shade cast by a surrounding elevation surface.3 By using the highest hit elevation resampled to 3-meter 

resolution as the surface, the impact of surrounding vegetation on incoming radiation can be estimated. 

However, because the thermal load at a given location requires an estimate of radiation impacting the 

ground surface, regardless of the height of the vegetation present above it, the surface provided must have 

the bare earth elevation substituted for the highest hit elevation at each provided point where radiation is 

to be estimated, while using the highest hit elevation to represent the vegetation present at all surrounding 

pixels. 

We accomplished this in two steps, computed separately so as to avoid interfering with each other. In the 

first run, direct radiation impacting NHD channels was estimated by running the solar modeling tool on a 

set of points centered on each 3-meter pixel along all NHD channels, using an elevation raster containing 

the bare earth elevation for the NHD channel pixels but the highest hit elevation value at all other pixels. 

This allowed an estimate of radiation on NHD channel locations, assuming that relatively little shade is 

cast along the direction of the channel itself (this assumption is violated only along extended north-south 

running channel reaches, and even there, the fine analysis resolution reduces the impact to manageable 

levels). A second direct radiation run was conducted for the flow paths designated in the lidar-based 

hydrological analysis. In this case, the bare earth elevation was substituted for the highest hit elevation 

only along the delineated flow paths. The results from the two analyses were converted from point vector 

to raster format and merged into a single raster. In order to separate the shade cast by vegetation from that 

cast by surrounding terrain, an additional direct radiation run was conducted using the bare earth elevation 

at all pixels. We created a metric called “shading fraction” to represent the solar radiation impacting the 

channel surface relative to the radiation that would reach the surface if there were no surrounding vegetation: 

𝑆𝐹 = 1 −
𝐷𝑅𝐻𝐻
𝐷𝑅𝐵𝐸

 

where SF is the shading fraction, DRHH is the direct radiation incorporating shade cast by the surrounding 

highest hit elevation values, and DRBE is the direct radiation incorporating shade cast only by the 

surrounding bare earth elevation values. If SF is near 1, the vegetation is blocking most of the radiation that 

makes it past the surrounding terrain alone; in other words, the vegetation is effectively shading the 

channel. If SF is near 0, the radiation reaching the surface in the presence of surrounding vegetation is 

nearly as high as that reaching based on terrain alone; in other words, surrounding vegetation is 

contributing little toward shading the channel in excess of the shade cast by terrain alone. We use SF here 

as a practical representation of the performance of vegetation in contributing shade at any location. 

However, note that it would not be the best measure for, e.g., identifying “hot spots” along the entire length 

of a stream, because surrounding terrain may provide significant shade in some cases. in this case, DRHH 

would be more appropriate. The two quantities are highly related; if anything, DRHH is easier to map, 

especially from optical imagery. 

                                                           
3 We used the total direct radiation cast on the non-leap year days April 22, May 22, June 21, July 21, August 20 and 

September 19 to create an estimate approximately proportional to the total radiation through the warmer months of 

the year. Radiation was modeled every 15 minutes on each of these days. 



2.3. Landsat change analysis 

Because much of the lidar data available is fairly old, it was necessary to filter out locations that had 

changed significantly since its collection. Removing changed areas from the sample draws for field 

sampling and model training greatly improves the chances that field sample locations represent the current 

conditions they are intended to (see sample stratification below), and that model training samples represent 

similar conditions in the lidar training data, the 2018 aerial imagery, and the 2020 satellite imagery. 

We used a Landsat-based change detection method to find areas where land cover had changed 

substantially between the lidar acquisition and 2020. We began by creating a composite of historic Landsat 

5 imagery, choosing which year to draw each pixel’s reflectance data from based on the year the lidar data 

at that location was collected. We then created a change image by subtracting the historic reflectance data 

from the 2020 Landsat reflectance data. To flag changed areas, we used the ArcGIS Iso-Cluster 

Unsupervised Classification function to create 50 distinct spectral clusters from the change image. Each of 

the 50 clusters was manually assigned to represent either change or no-change based on visual inspection 

of the historic and current imagery. Changed areas—which were primarily associated with logging and 

reforestation, development, and agricultural transitions—were eliminated from consideration for selection 

of field or training samples in the steps below. 

2.4. Sample design 

The sample design involved three main steps: formation of sampling strata along channels in the study 

area, determination of accessibility masks from which samples were drawn, and stratified random selection 

of sites from each strata within the accessibility masks. 

2.4.1. Sample stratification 

The sample design attempted to steer field sampling toward a range of sites sufficient to support the 

construction of models to estimate shade based on independent variables that can be produced wall-to-

wall across the state. The variables included in the stratification are as follows: 

A. Surrounding land cover type, based on dominant National Land Cover Dataset (NLCD) class in 

the surrounding four-hectare area, grouped into (1) conifer forest, (2) broadleaf-mixed forest, (3) 

agriculture, (4) human-developed, and (5) non-forest (often post-logging or otherwise disturbed). 

Justification: The accuracy with which shade can be mapped from lidar or from image-based 

variables will likely vary between different land cover types along with changes in the dominant 

components of ground, shrub and tree layer vegetation and in the spatial scales at which they are 

distributed. The confounding factors impacting the ability to map accurately also may be land 

cover dependent. The image-based variables that are important for estimating shade also likely 

vary between land cover types, so it’s important to make sure models are trained on all of them. 

B. Average precipitation of the months of January, April, July and October, based on PRISM climate 

normals (PRISM Climate Group 2021). The five land cover types above were split into ten 

landscape types using natural breaks in precipitation corresponding to distinct environments. 

Resulting types were dry (east-side) conifer (< 90 mm average), mesic conifer (90-150 mm), wet 

conifer (higher elevations, especially in the coast range, > 150 mm), dry-mesic broadleaf forest (< 

150 mm), wet broadleaf forest (coast range, > 150 mm), dryland agriculture (Hood River and The 

Dalles, < 80 mm), mesic agriculture (> 80 mm), developed, dry non-forest (east-side woodlands, 

shrublands and herbaceous, < 65 mm) and mesic-wet non-forest (mostly logging disturbance, > 65 

mm). Justification: Gridded lidar data only provides information on canopy height and isn’t 

aware of the vertical distribution of canopy. Optical imagery also has little sensitivity to this. 

Although we cannot stratify based on the vertical distribution of canopy per se, annual 



precipitation can serve as a proxy variable for shifts in species composition across the pilot 

project area (from trees with foliage extending well below the canopy top, e.g. western hemlock 

and western red cedar, in the west, to trees with top-heavy foliage distributions, e.g., ponderosa 

pine, in the east).4  

C. NHD channel Strahler order, categorized into small (order 1–2, typically without significant 

break in canopy overhead), medium-small (order 3, often with canopy break), medium-large 

(order 4, usually with canopy break) and large (order 5–7, always with canopy break) channels. 

Intersecting the four channel size categories with the ten landscape types above yielded 40 

classes. Justification: Variation in channel size is associated with changes in vegetation structure, 

on the capability of streamside vegetation to provide shade to channels, and in additional 

covariates (e.g., local slope) that can impact the relationship between remotely sensed image data 

and effective shade. 

D. Shading fraction, defined as 1 −
𝑅𝐻𝐻

𝑅𝐵𝐸
 , where 𝑅𝐻𝐻 represents midsummer direct solar radiation as 

estimated using ArcGIS solar radiation tools parameterized with 3-meter resolution vegetation 

highest hit elevation data,5 and 𝑅𝐵𝐸 represents midsummer direct solar radiation parameterized 

with bare earth elevation. Variation in the intensity of insolation resulting from interaction of the 

local slope and aspect and solar angle was not considered in either of these calculations, because 

this quantity can be easily estimated with a simple physical model. Each of the 40 classes 

resulting from the previous step were broken into four shading fraction quartiles with equal 

number of pixels. Justification: Effective shade is the primary variable we are attempting to map; 

stratification is important to ensure accurate estimation across its range. 

E. Average vegetation height within a 15-meter radius semicircle between 90° and 270° from the 

sample location. This variable integrates both dominant canopy height and canopy cover. 

Abundant classes with a particularly wide range of vegetation heights were divided into tall and 

short vegetation variants by splitting them at the median vegetation height for the class. 40 of the 

160 classes resulting from the previous step were split, resulting in a total of 200 sample strata. 

Justification: Different vegetation types, canopy structures, and distance from sample location 

may result in the same shading fraction. Stratifying based on this variable ensures a sample that 

incorporates these distinct variants. 

2.4.2. Accessibility mask 

Sample sites were chosen along channels represented in the NHD, geographically limited to accessible 

regions. We considered two strategies for representing accessibility. The first strategy is informed by the 

known locations where ODEQ field sampling has occurred in the past. These stations lie along a variety of 

channel sizes in each of the pilot watersheds. Sample sites within 100 meters of the stations—along the 

same channel reach that was visited previously—are likely accessible. The second strategy limits sampling 

to sites on public land (within the pilot areas, mostly within the Tillamook and Clatsop State Forests, the 

Mount Hood National Forest, and on Bureau of Land Management land, along with various chunks of land 

managed by various state and local entities). These sites are subject to the following additional limiting 

criteria: (a) within 20–120 meters of a road that is (b) no more than 10 road kilometers distant from a ODOT-

managed highway or ODEQ station and (c) reachable on foot by traversing a limited cost distance in which 

travel across areas of over 30° slope is penalized and travel across areas of over 45° slope is prohibited.  

                                                           
4 Coniferous and broadleaf forests also will vary in this regard. This is accounted for by the land cover stratification 

variable. 
5 In this calculation, 3-meter pixels along stream channels—as represented by NHD—were assigned the local bare earth 

(terrain) lidar elevation, while all other pixels were assigned the local highest hit (surface) elevation. 



We assessed the representativeness of the two accessibility masks with respect to the overall landscapes 

traversed by channels within the pilot watersheds. We represented the overall riparian landscape by 

buffering all channels by 20 meters, and the accessible riparian landscapes by buffering the two accessibility 

masks by 20 meters. We then summarized and compared the accessible landscapes to the overall landscape 

with respect to the distribution of several key variables (see Appendix A). We found that while the public 

lands mask generally represented the overall riparian landscape faithfully, the stations-based mask differed 

in several key aspects. Areas with vegetation less than one foot in height, at very low elevations, with very 

low slopes, and containing agriculture, development and roads were all substantially over-represented 

near stations. Higher slopes adjacent to channels, upper elevations, and conifer forests were all very poorly 

represented there. Stations were also biased toward medium to large channel sizes, although this did not 

in itself represent an unsurmountable challenge. The single deficiency in the public lands mask was in its 

poor representation of the lowest precipitation area within the pilot watersheds, the lower elevations of the 

‘Miles’ creeks above The Dalles. 

2.4.3. Sample selection 

Because points were drawn from the combined accessibility masks, and the area represented in the public 

lands mask was nearly eight times that represented in the station-based mask, it is likely that the majority 

of potential targets for most strata lie within the public lands mask rather than the station-based mask. 

Although these sites may be somewhat more difficult to reach, they provide a much less biased 

representation of conditions on riparian areas in the study area. 

ODEQ estimated that they would have resources and time available to collect approximately 200 field plots. 

Therefore, we set a goal of one plot collected from each of the 200 strata. ODEQ agreed to review target 

locations in the office in advance of fieldwork, in order to verify that the selected plots were likely reachable 

in the field. INR supported this plan by producing twenty randomly chosen potential sample targets from 

each of the 200 strata, and by providing ODEQ with a simple methodology for selecting a single target for 

each. For each strata, if the first potential sample target did not appear accessible—due to land ownership, 

area closures, road access issues, or other obstacles—the ODEQ analyst would reject that target and proceed 

to examine subsequent potential targets. 

2.5. Field protocol 

INR developed a field protocol for use in gathering data for validation of the lidar-based shade estimates. 

Multiple, spatially distributed estimates of shade are needed in order to reduce field sample estimation 

error and properly validate the lidar-based model, particularly on larger channels where variability in 

shade might be encountered across the channel. 

2.5.1. Basic instructions 

The field procedure proposed by INR is summarized here. The fieldsheet (Appendix B) includes additional 

instructions. 

A. Upon arrival at GPS target location, navigate to the nearest bank of a channel matching the target 

channel size. 

B. Measure azimuth of stream flow and estimate bank to bank channel width perpendicular to flow. 

C. Estimate slope and aspect of land at 20-meter scale, looking away from channel from each bank point. 

D. Establish hemispherical photo point (HPP) on the southernmost bank of the channel, if accessible (this 

instruction is contingent on ODEQ’s report that collecting a photo in the channel center would be 

difficult). If southernmost bank is not accessible, establish photo point on the accessible bank. 

Document photo point location via averaged GPS, plot diagram, cardinal direction photos, and laser-



measured distance and azimuth with respect to true north to witness locations (prominent features 

such as manmade objects, easily identifiable trees etc.). 

E. Collect five Solar Pathfinder shade estimates. The first should be at the same location as the HPP, the 

2nd should be at 25% of the way across the channel, the 3rd at 50%, the 4th at 75%, and the 5th should 

be at the opposite bank. 

F. Complete reference and patch diagrams (see fieldsheet, Appendix B). Areas of relatively homogeneous 

vegetation or land cover should be described as separate patches. Among other purposes, the diagrams 

will be used for later quality control of the plot location, with reference to aerial imagery. 

G. Collect vegetation cover and height data in a half-circle of 20-meter radius centered on the HPP and 

oriented in a southerly direction. Note whether lidar data appears valid, estimate percent canopy cover 

within vegetation  categories (see fieldsheet), and use laser to measure height of tallest vegetation and 

of dominant veg layer. 

H. Collect vegetation cover and height data of vegetation overlapping the channel in a 10-meter wide 

band perpendicular to the channel. 

I. If doable quickly and with confidence, identify up to three dominant species within each vegetation 

category. 

2.5.2. Vegetation/land cover categories 

We developed the following vegetation and land cover categories for use in describing the vegetation 

present in each distinct patch at the field site. We distinguish conifers and broadleaved trees from shrubs 

by specifying that they must regularly attain greater than 20 feet height at maturity. Broadleaved trees in 

our area include red alder, black cottonwood, bigleaf maple, vine maple, Pacific madrone, etc. 

B1: Broadleaf trees, < 5 feet tall 

B2: Broadleaf trees, 5–20 feet tall 

B3: Broadleaf trees, 20–80 feet tall 

B4: Broadleaf trees, 80+ feet tall 

C1: Conifers, < 5 feet tall 

C2: Conifers, 5–20 feet tall 

C3: Conifers, 20–80 feet tall 

C4: Conifers, 80+ feet tall 

S1: Shrubs, < 5 feet tall 

S2: Shrubs, 5+ feet tall 

H: Herbaceous vascular vegetation (including forbs, grasses, sedges, rushes and ferns) 

A: Aquatic vegetation 

U: Unvegetated areas 

W: Water 

2.6. Optical imagery-based shade mapping 

2.6.1. Training data 

The 3-meter resolution lidar-based shading fraction dataset was resampled to 10-foot resolution to match 

the NAIP-based image data, and 3000 training samples were drawn from it. 300 training samples were 

randomly selected from each of the ten landscape types created based on land cover and precipitation (see 

section 4.4.1 #2, above). Shading fraction data were selected only from the lidar-generated flow paths, to 

ensure that the capabilities for optical-based shade mapping were tested on channels rather than in the 

more haphazard NHD locations. 



2.6.2. Predictor data 

In addition to the metrics created from NAIP and Sentinel-2 imagery (described in section 4.1), we 

generated a suite of predictors describing topographic setting and local climate normals. The topographic 

metrics were created from the bare earth lidar data6 across the study area, and the climate normals were 

extracted from the PRISM data. Nielsen et al. (2021) contains a review of the topographic and climate 

metrics used. The Sentinel-2, topographic, and climate metrics were resampled to 10-foot resolution to 

match the NAIP-based metrics. 

2.6.3. Modeling 

We used the R language implementation of random forest (RF) regression modeling (Liaw and Wiener 

2002) to create a model to predict shading fraction from NAIP imagery, Sentinel-2 imagery, and 

topographic and climate metrics. An original predictor selection algorithm, described in Nielsen et al. 

(2021), was used to simultaneously optimize model accuracy and model effective resolution. The optimal 

predictor set was chosen by minimized the sum of out-of-bag root mean square error (RMSE) and mean 

absolute error (MAE). The selected predictors were then used to create a RF regression model of 501 trees. 

Out-of-bag model statistics were extracted, allowing model error assessment either cumulatively or across 

any subset of training plots. We used reduced major axis (RMA) regression to compensate for model bias 

toward the mean at the lowest and highest values of shading fraction (see Belitz and Stackelberg 2021). The 

model was then predicted wall-to-wall at 10-foot resolution across the Johnson Creek pilot area to provide 

an example of an effective shade map produced from optical imagery with no lidar data available. 

3. Results 

3.1. Lidar-based shade map from solar modeling 

Shading fraction, calculated from lidar data as described in section 4.2.2., was mapped across the pilot areas 

for all NHD channels and lidar-derived flow paths. The results appeared very plausible. A small excerpt 

of the layer, in Portland’s Johnson Creek watershed, is shown in Figures 2 and 3. 

                                                           
6 Note that although the topographic metrics were created from lidar bare earth layers, the metrics used could also 

have been created from standard USGS digital elevation models. The resulting model is applicable to a use case where 

lidar data is not available. 



 

Figure 2. Shading fraction generated from lidar-based solar modeling, along and near Johnson Creek just southeast of 

Powell Butte in Portland. Values range from 0 (no shade provided by vegetation, dark red) to 1 (complete shade 

provided by vegetation, dark blue). 



 

Figure 3. Shading fraction as in Figure 2, superimposed on lidar-based vegetation height. Height color ramps from 

white (zero), through blue (~20 feet), green (~40 feet), yellow (~60 feet) to red (80 feet plus). 

3.2. Optical imagery-based shade map 

3.2.1. Selected predictors and predictor importance 

The selected predictors and their relative importance values, which are proportional to the increase in 

model mean square prediction error in runs excluding them, are shown in Table 1. 

Predictor 

name 
Description 

Relative 

importance 

m_u1_md NAIP median near-IR:green contrast, over south-facing shade window 1.000 

s_grn Sentinel-2 green reflectance, local 0.630 

n_gcb NAIP green band 12’ res center pixel vs 8NN median, local 0.233 

m_wa_13 
NAIP green:red contrast standard deviation NDTI, 1’ vs 3’ res, over 

south-facing shade window 
0.177 

m_u4b 
NAIP near-IR:green contrast 4’ res center pixel vs 8NN median, over 

south-facing shade window 
0.161 

t_rough90 topographic roughness at 90-meter scale 0.135 

n_y1_mx NAIP maximum red:blue contrast, local 0.110 

n_wa_26 NAIP green:red contrast standard deviation NDTI, 2’ vs 6’ res, local 0.104 

m_w2b 
NAIP green:red contrast 2’ res center pixel vs 8NN median, over south-

facing shade window 
0.099 



m_gb_4c 
NAIP green band center pixel vs 8NN median NDTI, 4’ vs 12’ res, over 

south-facing shade window 
0.083 

p_ppt_oct average October precipitation 0.078 

m_ub_26 
NAIP near-IR:green contrast center pixel vs 8NN median NDTI, 2’ vs 6’ 

res, over south-facing shade window 
0.071 

t_hl3 topographic heat load at 3-meter scale 0.064 

t_be3m elevation 0.062 

m_ga_13 
NAIP green band standard deviation NDTI, 1’ vs 3’ res, over south-facing 

shade window 
0.058 

s_ndnbp Sentinel-2 near-IR:blue contrast, local 0.049 

n_u1b NAIP near-IR:green contrast 1’ res center pixel vs 8NN median, local 0.047 

n_g4a NAIP green band 4’ res standard deviation, local 0.043 

z_ndgbp Sentinel-2 green:blue contrast, over south-facing shade window 0.038 

m_gb_13 
NAIP green band center pixel vs 8NN median NDTI, 1’ vs 3’ res, over 

south-facing shade window 
0.037 

z_ndswp Sentinel-2 shortwave bands contrast, over south-facing shade window 0.035 

z_ndsip Sentinel-2 red:mid-IR contrast, over south-facing shade window 0.031 

n_n1_mx NAIP maximum near-IR band, local 0.019 

n_ub_13 
NAIP near-IR:green contrast center pixel vs 8NN median NDTI, 1’ vs 3’ 

res, local 
0.010 

Table 1. Selected predictors and relative importance values. Additional information about the terms used in the table 

can be found in Nielsen et al. (2021). 

The predictor importance values, totaled by the data source they were derived from, are shown in Table 2. 

Aerial imagery from NAIP is clearly the most informative overall data source. Sentinel-2 imagery and 

topography provided some additional predictive power when added to the NAIP-based information. 

Predictor source Relative importance 

NAIP 1.000 

Sentinel-2 0.348 

Topography 0.116 

Climate 0.035 

Table 2. Total relative importance of predictors by data source. 

3.2.2. Model accuracy 

The resulting model for shading fraction based on optical imagery, topography, and climate data had an 

R2 of 0.7668. In other words, 76.68% of the variability in shading fraction computed from solar modeling 

using lidar data can be explained without reference to lidar data. The root mean square error (RMSE) and 

mean absolute error (MAE) of the model were 0.1941 and 0.1339 respectively.7 All model accuracy rates 

were estimated over bootstrap-aggregated samples, totally independent from the test data. The estimates 

were made using the same number of trees that were used for the actual predictions. Multiple studies have 

found that RF avoids overfitting to training data (e.g., see Fox et al. 2017) and that model accuracy estimates 

made in this way tend to be conservative. 

                                                           
7 Values of the predicted variable, shading fraction, ranged from 0 – 1. 



3.2.3. Bias correction 

The shading fraction test values and the corresponding raw out-of-bag predictions were used to create the 

density plot shown in Figure 4. Note the strongly bimodal nature of effective shade; many sites are either 

nearly fully shaded or mostly exposed to sun. The deviation from a 1:1 line resulting from over-prediction 

of low values and under-prediction of high values is typical of machine learning regression modeling and 

can be reduced in several ways (Zhang and Lu 2011). We used RMA regression (the regression line labeled 

“RMA” in Figure 4) to match the mean and variance of predicted shading fraction to the test dataset. The 

bias-corrected predictions are shown against the test values in Figure 5. Note that the RMA regression line 

in Figure 5 lies very near the desired 1:1 relationship. 

 

Figure 4. Density plot of shading fraction test values (x axis) and corresponding predictions (y axis), with several best-

fit regression lines computed by various methods. Shading fraction, whose real values range from 0 – 1, is scaled up 

by a factor of 10,000 here. 



 

Figure 5. Density plot of test values (x axis) and bias-corrected predictions (y axis).  

3.2.4. Maps 

The full Johnson Creek watershed is shown in Figure 6, and Figure 7 provides the optical-based shade 

model results. In general, forested areas have very high shading fraction, while heavily urbanized areas, 

agriculture and other cleared areas have very low shading fraction. Residential areas and other land cover 

types tend to have intermediate amounts of shade. Figures 8 and 9 illustrate the same area as Figures 2 and 

3, corresponding to the white box in Figure 6. Both figures show the lidar-based shading fraction again. In 

Figure 8 the lidar-based shade is overlaid on half-meter satellite imagery, while in Figure 9 it is overlaid on 

the optical-based shade results. This allows easy identification of areas of disagreement between the lidar 

and optical models. The optical imagery-based shade results are available over the Johnson Creek 

watershed. The lidar-based shade results are available over the full three large pilot areas.  

 



 

Figure 6. Johnson Creek watershed in southeast Portland, seen in summer 2021 0.5-meter commercial satellite imagery. 

The white box indicates the location of the zoomed view shown in Figures 2, 3, 8 and 9. 

 

Figure 7. Optical imagery-based shading fraction for Johnson Creek watershed. Although the model was trained on 

riparian samples only, it was predicted everywhere. Results may be less reliable away from channels. Shading fraction 

is shown using the same color ramp as in Figures 2 and 3. 

 



 

Figure 8. Shading fraction from lidar-based solar modeling, as in Figures 2 and 3, shown against 0.5-meter optical 

satellite imagery. 



 

Figure 9. Lidar-based shading fraction superimposed on optical imagery-based shading fraction. The linear features 

from the lidar-based layer are only apparent where values disagree. 

4. Discussion 

Although we were not able to validate the lidar-based shade results due to the lack of field data. However, 

noting that they appeared to be quite accurate and matched expectations from imagery very well, we 

proceeded with validation of the optical-based shade model against the lidar-based results. The results of 

this validation indicate that effective shade on channels can be reliably mapped from inexpensive and 

regularly updated optical imagery, and that regular updating of riparian effective shade maps is achievable 

statewide for a very reasonable investment. Two unconventional techniques used to develop the predictor 

data—nested texture metrics (Nielsen and Noone 2014, Nielsen et al. 2021) and summarization of image 

metrics across a south-oriented window—were essential elements in achieving these promising results.  

Optical imagery-based shade mapping could be used to prioritize watersheds for restoration, to help select 

"biggest bang for buck" restoration sites within watersheds, to assess the effectiveness of previous 

restoration efforts, and to provide an "effective shade dashboard" and assessments of improvement at 

reach, watershed, drainage basin, regional and statewide scales. Based on the results, we provide the 

following recommendations to ODEQ and other agencies and organizations committed to improving water 

quality and the health of riparian ecosystems in Oregon: 

A. We strongly recommend that a current shade map be developed statewide or at least over high-

priority TMDL watersheds. The currently available NAIP imagery could be used as a basis for 



this—alternatively, new statewide imagery with similar specifications is being collected during 

Summer 2022. 

B. We recommend that ODEQ proceed as soon as feasible with field sampling for two primary 

purposes. (1) Field sampling is needed to validate the lidar-based shade results with which the 

optical-based model was assessed. Based on manual comparison with imagery, there seems little 

doubt that the lidar results are accurate enough to use for this purpose, but it would be good to 

have the field results to ensure that loop is closed. (2) Field sampling would be helpful in 

determining other site-specific challenges that are not well-represented in lidar imagery which 

might affect optical mapping results under some circumstances. This information could be used to 

refine modeling methods in particular landscape types if desired in the future. 

C. We recommend that impacts of the misregistration of NHD channels on effective shade mapping 

be evaluated. This could be accomplished as an office-based task for areas where lidar has been 

collected or in non-forest conditions, but would require fieldwork in forests without lidar coverage. 

The impacts are likely to vary by application. For example, applications requiring information 

summarized over large extents—such as prioritization of watersheds for restoration—may be little 

affected by NHD misregistration, as errors will likely balance out. But applications relying on site-

specific information—such as identification of high priority restoration sites—may be greatly 

affected by misregistration. Once the impacts are known, attention should be given to assessing 

methods of enhancing or correcting the NHD in problem areas. 
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Appendix A. Accessibility mask representativeness 

 

 

Figure 1a. Probability density function of vegetation height (in feet) within 20 meters of channels over all land in the 

sample watersheds vs. only over public lands. 



  

Figure 1b. Probability density function of vegetation height (in feet) within 20 meters of channels over all land in the 

sample watersheds vs. only within 100 meters of sample stations. 



 

Figure 2a. Probability density function of elevation (in feet) within 20 meters of channels over all land in the sample 

watersheds vs. only over public lands. 



  

Figure 2b. Probability density function of elevation (in feet) within 20 meters of channels over all land in the sample 

watersheds vs. only within 100 meters of sample stations.  



  

Figure 3a. Probability density function of seven lumped NLCD land cover types within 20 meters of channels over all 

land in the sample watersheds vs. only over public lands. 



  

Figure 3b. Probability density function of seven lumped NLCD land cover types within 20 meters of channels over all 

land in the sample watersheds vs. only within 100 meters of sample stations. 



  

Figure 4a. Probability density function of average precipitation of January, April, July and October (in mm) within 20 

meters of channels over all land in the sample watersheds vs. only over public lands. 



  

Figure 4b. Probability density function of average precipitation of January, April, July and October (in mm) within 20 

meters of channels over all land in the sample watersheds vs. only within 100 meters of sample stations. 



  

Figure 5a. Probability density function of slope (in degrees) within 20 meters of channels over all land in the sample 

watersheds vs. only over public lands. 



 

Figure 5b. Probability density function of slope (in degrees) within 20 meters of channels over all land in the sample 

watersheds vs. only within 100 meters of sample stations. 



 

Figure 6a. Probability density function of Strahler stream order within 20 meters of channels over all land in the sample 

watersheds vs. only over public lands. 



 

 

Figure 6b. Probability density function of Strahler stream order within 20 meters of channels over all land in the sample 

watersheds vs. only within 100 meters of sample stations.  



Appendix B. Field sheet 
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