Webinar: Letting Bike Riders Catch the Green Wave

Stephen Fickas
University of Oregon

Marc Schlossberg
University of Oregon

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_webinar

Part of the Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning Commons

Let us know how access to this document benefits you.

Recommended Citation

Fickas, Stephen and Schlossberg, Marc, "Webinar: Letting Bike Riders Catch the Green Wave" (2019).
TREC Webinar Series. 43.
https://pdxscholar.library.pdx.edu/trec_webinar/43

This Book is brought to you for free and open access. It has been accepted for inclusion in TREC Webinar Series by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
WEBINAR

Letting Bike Riders Catch the Green Wave

NITC
NATIONAL INSTITUTE for
TRANSPORTATION and COMMUNITIES

December 12, 2019
11 AM PST

Stephen Fickas, PhD
Professor, Computer and Information Science

Marc Schlossberg, PhD
Professor, Community & Regional Planning

Sustainable Cities Institute

UNIVERSITY OF OREGON

NITC
NATIONAL INSTITUTE for
TRANSPORTATION and COMMUNITIES
Context: Increasing Cycling

• More people want to bike than environment supports
• Having more trips by bike are critical
 – Environment, health, freedom, social cohesion, affordability, happiness
• Inefficient for most users
 – Lack of protected lanes
 – Signals timed for speed of cars**
• V2X currently car-centric
 – Only get worse with AVs
Signal Timing & Green Waves

• Why traffic signals?
• Types of traffic signals
 – Actuated & Fixed-time
• Two approaches:
 1. Change signal proactively
 • “Bike Connect” system
 2. Change user behavior with information
 • Predictive via machine learning
 • Direct via signal data feed
 • Combination
“Bike Connect”

https://www.youtube.com/watch?v=bbG_2DbML2Y&t=

Animation and narration by Tala Schlossberg
Into the technical weeds...

• Three Projects
 1. Pilot Study 1: virtual calls to bike-signal
 2. Pilot Study 2: green wave on fixed-time corridor
 3. Current study: green-wave for mixed signal corridor
Pilot Study 1: virtual calls

- Cyclist carries phone with Internet connection
- Created an app to predict when cyclists would reach the signal
- Goal: have the app place signal call to optimize likelihood of green while in flow
Test intersection

<table>
<thead>
<tr>
<th>Phase Timing Bank 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walk</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Ped Clear</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Min Green</td>
<td>0</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Type 3 Disconnect</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Added Per Vehicle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Veh Extension</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Max Gap</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Min Gap</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Max 1</td>
<td>0</td>
<td>30</td>
<td>18</td>
<td>24</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Max 2</td>
<td>0</td>
<td>40</td>
<td>18</td>
<td>40</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Advance/Delay Walk</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PE Min Ped FDW</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Cond. Service</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reduce Every</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yellow Change</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Red Clear</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Vehicle/Ped Vehicle Bike Ped
V2X Setup

Costs:
- Hardware: $200
- Cell: $3/month
- Installation: $2.5K
Results: Virtual Calls

• 10 riders, 3 months, spring/summer 2018
• App-based recording & user-based feedback per ride if needed
• Majority of the time:
 – Users heard the ‘chirp’ of the app engaging
 – Light was green upon arrival in previously empty intersection
 – Users liked the app – provided positive value to ride
Challenges

• Small study; no control group; user feedback declined over time

• While MQTT supports scale, the logistics of the box defeat scale

• Could do better on “guessing” if had info on current phase state and queue states
Meeting those Challenges

In conversations with the City and the controller manufacturer (McCain) to get access to:

1. Information on current controller state from the McCain cloud & integrate into app; and

2. The ability to place the virtual call through the McCain cloud – eliminates the need for the box
Pilot Study 2: User adjusted green wave

- **Corridor** application
- Fixed-timed signals
 - Signals NOT optimized for cyclist speed
- Use of real-time signal data to predict phase changes
 - As back-up, we can use dead-reckoning data
- Give info to cyclist via app to adjust speed
Pilot Study 2: Test Corridor

Signalized intersections:
1: Willamette Street
2: Oak Street
3: High Street
4: Pearl Street
5: Patterson Avenue
6: Hilyard Avenue

Non-Signalized intersections:
A: Mill Street
B: Ferry Street
Pilot Study 2: V2X Setup
Pilot Study 2: User Interface

App interface

Handlebar-mounted

Possible icons
Pilot Study 2: Results

- 30 rides split among 5 riders along the corridor.
- Divided between 3 time-spans: pre-rush, rush, post-rush.
- Provided ride-reporting forms to fill out after each ride.
- Details in paper.

<table>
<thead>
<tr>
<th>SLOT</th>
<th>1 - - - -</th>
<th>2 - - - -</th>
<th>3 - - - -</th>
<th>4 - - - -</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>PRE</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-G</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRE</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRE</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>PRE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-G</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>RUSH</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>RUSH</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-E</td>
</tr>
<tr>
<td>RUSH</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>RUSH</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>RUSH</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>RUSH</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>RUSH</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>RUSH</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>POST</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>POST</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>POST</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>POST</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>POST</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>POST</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>POST</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>POST</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>POST</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

- green (+) – followed directions and found a green.
- yellow (0) – app showed X correctly.
- orange (-R) – app showed X incorrectly.
- purple (-G) – app should have shown X but did not.
- salmon (-E) – other problems encountered (leave notes).
Pilot Study 2: Challenges

• One-size fits all
 – Did not personalize speed parameters
 – At least one participant thought too pessimistic on upper limit.

• Convoys are an issue when inadequate infrastructure bike lane exists
 – Might need to swerve into traffic lane to pass slow moving cyclists
Pilot Study 2: Conclusions

• Works well as ‘band-aid’ on fixed-time routes
 – Syncing signals to average cyclist speed would be better
 – Better (wider & protected) cyclist infrastructure would handle user volume congestion
Fast Track: Allowing Bikes to Participate in a Smart Transportation System

Stephen Fickas, Ph.D.
Marc Schlossberg, Ph.D.
Current Project

• “Green Waves, Machine Learning, and Predictive Analytics: Making Streets Better for People on Bike & Scooter”
 – Corridor-based
 – Fixed-timed and actuated signals
 – Predictive signal assistance using bikeshare (data and location) (hopeful)
 – Direct, cloud-based signal calls (hopeful)
 – Create screen-less, small-sized, handle-bar mounted, user info device
Catching the Green Wave

Stephen Fickas
fickas@cs.uoregon.edu

Marc Schlossberg
schlossb@uoregon.edu