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COMMUTING SMOOTHED PROJECTORS IN WEIGHTED NORMS
WITH AN APPLICATION TO AXISYMMETRIC MAXWELL
EQUATIONS

J. GOPALAKRISHNAN AND M. OH

ABSTRACT. We construct finite element projectors that can be applied to functions
with low regularity. These projectors are continuous in a weighted norm arising nat-
urally when modeling devices with axial symmetry. They have important commuting
diagram properties needed for finite element analysis. As an application, we use the
projectors to prove quasioptimal convergence for the edge finite element approximation
of the axisymmetric time-harmonic Maxwell equations on nonsmooth domains. Supple-
mentary numerical investigations on convergence deterioration at high wavenumbers and
near Maxwell eigenvalues and are also reported.

1. INTRODUCTION

Projectors (or interpolation operators) into finite element subspaces of Sobolev spaces
are a fundamental ingredient in finite element error analyses. Every finite element has a
canonical projector defined by its degrees of freedom. Often however, a technical problem
arises, namely the unboundedness of the canonical projection in the Sobolev space where
the solution is sought. To overcome this, many early analyses assumed that the solution
is regular enough to be contained in the domain of the canonical projection. Clément [10]
offered an alternative, at least for variational problems set in the Sobolev space H'. The
Clément interpolant is uniformly bounded in the L?-norm and gives optimal approxima-
tion estimates. However, in the analysis of mixed methods, one needs projectors with
further commutativity properties the Clément interpolant does not have. The impor-
tance of such commuting projectors has been evident early on [7, 23, 24] and has only
been enhanced in more recent works [2]. The basic idea of Clément was generalized by
Schéberl in [26, 27, 28] to obtain similar projectors with the additional commutativity
properties. His generalization was substantial, requiring several new ideas. In this paper,
we will refer to operators obtained by his method as Schoberl projectors. Further refine-
ments of Schoberl’s ideas have been recently made in [8] (where the operators were called
“smoothed projectors”) and in [2] (where they were called “bounded cochain projectors”),
but they do not extend to the case we intend to study here.

Key words and phrases. interpolation, finite element, Clement, Schéberl projector, smoothed projector,
bounded cochain projector, axisymmetric, Maxwell, weighted Sobolev, axisymmetry, quasioptimality,
pollution.
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2 J. GOPALAKRISHNAN AND M. OH

Our aim in this paper is to construct Schoberl projectors in the weighted norms aris-
ing in the study of axisymmetric Maxwell equations. Under axial symmetry, the time
harmonic Maxwell equations in cylindrical coordinates (r, 6, z) decouple [3, 12] into two
systems in the rz-halfplane. Due to the Jacobian arising from the change of variables
however, we must work in weighted Sobolev spaces, where the (degenerate) weight func-
tion is the radial coordinate r. Let L? and H,(curl) denote the r-weighted analogues
of the L? and H(curl)-spaces (see their definitions in Section 2). To adapt the stan-
dard finite element techniques to these weighted spaces, we need commuting projectors
in the weighted norms, in particular, the H,(curl)-norm for treating axisymmetric elec-
tromagnetics. A commuting projector bounded in a more regular subspace of H,(curl)
is already known [12]. A weighted Clément operator has been constructed in [4] for ap-
plication to the axisymmetric Stokes problem. Even a commuting projector bounded in
H,(curl) is also already known [11]. But, all these projectors are insufficient for various
axisymmetric electromagnetic applications requiring low-regularity estimates, including
the development of adaptive and multigrid algorithms. Hence we take up the task of con-
structing Schoberl projectors in H,.(curl). In fact, anticipating other applications, we will
do so for all the spaces in an exact sequence of weighted Sobolev spaces. As an example
of how to apply the projector to obtain new results, we include a simple error analysis in
weighted norms, under minimal regularity assumptions, for the axisymmetric indefinite
time-harmonic Maxwell approximation following [22].

The outline of this paper follows the main steps in the construction of Schéberl projec-
tors, as laid out in [26, 27, 28].

(1) First, we recall existing nodal interpolation operators which are well defined for
sufficiently regular functions in the weighted spaces (in Section 2) and summarize
results of [11, 12, 16] in this direction.

(2) Second, we introduce mesh dependent smoothing operators that are bounded in
the weighted spaces (in Section 3) adapting the techniques in [28] to weighted
spaces.

(3) Third, we compose the above two operations to form quasi-interpolation operators
bounded in L? (in Section 4) as in [26, 28].

(4) The quasi-interpolation operators are not projectors. So in a final step, we compose
with a finite dimensional inverse to obtain a projector, as in [27]. This construction
is given in Section 5, where the main result (Theorem 5.1) appears.

In Section 6, as an application, we use the projectors to prove an error estimate for the
finite element method applied to the axisymmetric Maxwell equations under minimal
regularity assumptions.

2. PRELIMINARIES

In this section, we recall the definitions of the weighted Sobolev spaces and the nodal
interpolants of their corresponding finite element spaces.

Let R? denote the rz-halfplane and D < R2 be a domain with Lipschitz boundary.
Due to the axisymmetric applications we have in mind, we will further assume that the
revolution of D about the z-axis, namely (), also has Lipschitz boundary. The weighted



PROJECTORS IN WEIGHTED NORMS 3

L?-space is defined by
L2(D) = {u : f lu*rdrdz < oo} .
D

This is a Hilbert space with the inner product (us,us), = SD uyugrdrdz. For a general
domain G we denote the LZinner product on G by (-,-),c. Let H}(D) be the space of
all functions in L(D) whose first order distributional derivatives are also in L?(D). The
norm and the seminorm on H!(D) are defined by

1/2
[l a0y = ( f (lul? + |arad, uf*) drdz) |
D

1/2
w1y = (J lgrad,_u|*r d'rdz) ,
D

where grad,,u = (0,u,d,u). Furthermore, for any real number 0 < s < 1, H(D) is
defined as the Hilbert interpolation space [H}!(D), L?(D)];_s of index 1 — s between the
spaces H} (D) and L*(D) [6]. In general, we will denote ||-| and |- |x to indicate the
norm and the semi-norm respectively in a Sobolev space X.

Define the two-dimensional curl operator by

(2.1) curl,, (v, v,) = 0,v, — Opv,,
and set
H,(cwrtl; D) = {ve L2(D)*: curl,,v € L}(D)}.
H , (curl; D) is a Hilbert space with the inner product
A(v1,v2) = (v1,v2), + (curl,, vy, curl,,vy),.

The induced norm is denoted by |||,

Now, let 0D = T'g uT'y where I'y is the open segment forming the part of the boundary
of D on the axis of symmetry (z-axis), and I'y= dD\I'y denotes the remainder of the
boundary. (These notations are also marked in a later illustration — see Figure 2.) Then,
it is well-known that functions in H!(D) have traces in L*(T;), i.e., for u in H}!(D), the
trace u|r, makes sense as a function in L(I';), but trace on 'y is not defined in general [19)].
Additionally, since 0D is Lipschitz, the tangential trace operator on H,(curl; D), which
we will denote by v - t|r,, is proved in [12, Proposition 2.2] to be well-defined. Therefore,
we can define the following closed subspaces of H}(D) and H,(curl; D):

H2,(D) = {ue H(D) : ulr, = 0}
H, .(curl; D) = {ve H,(curl; D) : v - t|r, = 0},

where t denotes the unit tangent vector oriented counter-clockwise.

We are interested in constructing commuting projectors on H; (D), H, . (curl; D), and
L?(D) that require lower-order regularity. Assume that D is meshed by a finite element
triangulation 7, satisfying the usual geometrical conformity conditions [9]. We assume
that .7, is quasiuniform with a representative mesh size h. The corresponding lowest order
finite element subspace of H}! (D) is the space of continuous functions that are linear on
each mesh element, denoted by V} .. It has one nodal basis function ¢, for every mesh
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vertex v not on I'y. The lowest order Nédélec subspace [23] of H, ,(curl; D), on the same
mesh is denoted by W, ., with its corresponding edge basis functions {¢.}. And finally,
let Sj, denote the L?(D)-subspace with basis functions {¢x} that are indicator functions
of each mesh element K. That the sequence

(2.2) 0 Vis W, <=, g, 0

is exact is proved in [11, Appendix A| under the further assumptions that I'y is connected
and D is simply connected. We also make the same assumptions throughout this paper.

We will need the following inequalities on polynomial spaces obtained by local homo-
geneity arguments. Let K denote a triangle, r(y) denote the value of the radial coordinate
at a point y € Ri,

grad,.,

hyx = diam(K), rx = maxr(x),
zeK

pi denote the diameter of the largest circle inscribed in K. Finally, let P, denote the
space of polynomials of degree at most ¢ (for some ¢ > 0). Throughout this paper, we use
C' to denote a generic positive constant that is independent of {hx}. Its value may differ
at different occurrences and can depend on shape regularity ratio hx/px, but not on hg
by itself. A proof of the following proposition is indicated in Appendix A.

Proposition 2.1. For allv e P,
lgrad,.vli: ) < Chl[oliay,  lgrad,.vlieg < Chillvle (k)
richic|[v| 7y < Clvlage),
on any K € J},.

For smooth functions, the canonical interpolation operators of the finite element spaces
Vios Wi, and Sy, namely, I}, I, and I}, resp., are such that the following diagram
commutes:

H! (D) n C*(D) H,,(curl, D) n C*(D) 2=, [2(D) A C*(D)
(2.3) l I8 l Ie l 1o

grad, .
—_—

grad,
—_—

curly,
Vo Wy —5 Sh.

The projectors I}, If, and Iy are defined by the natural degrees of freedom (see [16, 12]
for the modifications required in the degrees of freedom in weighted spaces), namely

(2.4) (Lw)(@) = Y w(v)d(),

25) (I2)() = 5( [2tas) oo
(26) e = 5 (i | =) o

where 7 denotes the set of vertices in .7}, not on I'1, & denotes the set of edges in .7,
not on I'y, |K| denotes the measure of K, and K € .7, denotes all triangles in .7,. Note
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z z z
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FI1GURE 1. Domains D, corresponding to point a.

that I and I cannot be applied, however, to all functions in H,{D(D) and H, ,(curl, D),
resp. They can at best be extended to more regular function spaces where the degrees of
freedom make sense.

Our goal is to construct projectors, analogous to I} and Iy, satisfying the same com-
mutativity properties in (2.3), but bounded in L?(D) or L?(D)?. Therefore, in the next
section, we define mesh dependent smoothers for functions in L2(R?) so that we can apply
the classical nodal interpolation operators after we apply these smoothers to L2-functions.

3. SMOOTHING OPERATORS

The purpose of this section is to define smoothing operators S%u, S°v and S°w, which
we will use later. We introduce the notations and an intermediate result that will lead to
Definition 3.1.

Let @ = (a,,a;) be a point in R? and let D, be a closed disk of radius p, or its half,
centered around a or a, as shown in each of the three cases delineated in Figure 1. We
need functions supported within these disks that will act as kernels within the integral
smoothing operations to be defined. This will be obtained using the next proposition.

Proposition 3.1. Let ¢ = 0. In all the three cases in Figure 1, there exists a function
Na(r, 2) € Py such that

(31)  (Ma,p)rp. = pla), Vpe P,
) C 0, in Case 1,
(3.2) ||77a||L2(Da) S 5 where  Ta = min r(y), in Cases 2 and 3,
PTa YEDg
Ta+ P
B3 Iallyon <CL uhere Inaliyo, = | lr) dy

A proof of Proposition 3.1 is included in Appendix A.
Next, let us define the “smoothing domains” D" for each mesh vertex a € 7,. Let
9 > 0 be a global parameter. (We will need to choose it sufficiently small shortly.)

(1) If @ is in (open) Ty, then D" is set to the D, in Case 1 of Figure 1 with p = hd.
(2) If a is in the interior of D, then D" is set to D, of Case 2 in Figure 1 with p = h.
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0 I'

FIGURE 2. A domain, a few vertex patches, and associated smoothing domains

(3) If @ is on Ty, then D" is set to D, of Case 3 in Figure 1 with p = hé and
a =a+ chd(cosf,sind).

These smoothing domains are illustrated in Figure 2. We have to choose ¢, ¢, and @,
noting that ¢ and ¢ are global constants, while § = 6, can vary depending on a. Let D¢
denote the “vertex patch” of a, i.e., the domain formed by the union of all triangles in .7,
connected to the mesh vertex a (see Figure 2). For a not on I'y, due to quasiuniformity,
there exists 0 < dy < 1 such that D" < D@ for all a and the smoothing domains of the
distinct mesh vertices do not intersect. We choose the parameters such that the following
holds: (i) For all a not on I';, we have D" < D® and r, > dh. (This can be ensured by
choosing a § < Jp and making § even smaller if necessary.) (ii) For all @ on I'1, we have
D! < R2\D and r, = 6h. (This can be ensured by choosing § and ¢ appropriately, due
to the uniform cone property [18] implied by the Lipschitz regularity of the boundary.)
Note that with these settings, we have

(3.4) re = 0h

for all mesh vertices in .7, including vertices falling into Case 1.

We need some more notations to define the smoothing operators. We use [...] to denote
the convex hull of its arguments. Accordingly, a triangle K with vertices ai, a-, and ag
is K = [a1, as,as3]. Its three edges are ¢; = [aq, as], e2 = [a3, a;], and e3 = [a;, as]. Let
DZi be the smoothing domains introduced above for the vertices a; (i = 1,2,3), and let

h
y; € Dg.. Set

(3.5) ki(Y;) = 7(Yi)Na: (Y,

where 74, is the function given by Proposition 3.1. We write k123 = K1Kkaks and K13 = K1k,
etc. For each @ € K, let A\;(x) denote its barycentric coordinates in K so that
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Following [27], we now define &, by

(3.6) Ty (@, Y1, ¥s,¥3) = ), Ni(@)y;

i=1

and introduce these mesh dependent smoothers:

Definition 3.1. For all u,w € L2(R?) and v € L?(R%)?, define

[

f‘ f‘
Stu(x) = JDh K123 U(Ty) dysdypdy,,
agJ

Dl Dl

i ( dz,\T

Sv(x) = J K123 <—y> 'U(my) dysdy,dy,
Jopr Jph JDh, dx

r r dz,

Sw(x) = J K1z det w(y) dysdy,dy;,
pk Jpk JDL, dx

[

for all & € K and for each K € .9},.

It is easy to see that an equivalent way to write the last two operators is

3
(3.7) Sv(z) = f J J K123 (Z Y- v(:i:y)gradrz)\i(:c)> dysdy,dy, ,
Da,JDay’ Day

(3.8)  Sw(x) = Lh, Lh Lhﬁzmg <Z (&Am)ym> x <Z (@An)yn> w(Zy) dysdysdy;,

where for two dimensional vectors ¢ = (¢, ¢,) and d = (d,., d.), the (wedge) cross product
yields the scalar ¢ x d = ¢,d, — c.d,.. We will need to use the following properties of these
smoothing operators.

Proposition 3.2. Let v € H'(R2), v € H,(curl,R%) and w € L*(R2). Then the
commutativity properties

(3.9) S¢(grad,,u) = grad,,(S%u)
(3.10) S°(curl,,v) = curl,,(Sv)

hold. Moreover, if (i,j,k) is a permutation of (1,2,3), the following identities hold:

.
(3.11) Stula;) = | miu(y;) dy;,

JDL,

(‘
(3.12) J Sv-tds = J /@ijf v -t dsdy,dy;,

ek JDg JDg, [y;:9]

f‘

(3.13) J S°w dx = J f I€123J w(z) dzdysdy,dy, .
K JD,’;I DLL,Q DZS [Y1,¥2,¥s]
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Proof. The commutativity properties (3.9) and (3.10) hold by construction. It is easy to
see this from Definition 3.1 and the Piola transformation.

To prove (3.11), we use (3.1) of Proposition 3.1, which implies that (7q,, 1),n7,:)g2 =
(Mas 1)T7D33 = 1. Since &, = y, whenever x = a, (see (3.6)) we have

stut@) = | || kisuy)dygdyady, = (o Ve, (o Doy, | sty )y
Dh JDh_JDh Dh

aj

This proves (3.11) (since similar identities obviously hold for i = 2,3 as well).
To prove (3.12), let g(s) = (1—s)as +sas3, 0 < s < 1, and e; = [ay, az]. Then, we have
that

Lscv Ctds = f : Svlq(s))q (5)ds.

- J J J K123 <Z (1 —s)y, + sys)grad, \; ) (az — aq) dysdy,dy,ds,
Dh Dh Dh

=1

= f J J r123(Ys — Yo) - V(1 — 8)y, + syY3) dysdy,dy,ds,
Dh Dh Dh

= f J 5123J v -t ds dysdy,dy;,
.)Dh Dh Dl [y2,y3]

= J Hggj v -t ds dysdy,.
JDQQ D23 [y2,ys]

Here we have used the obvious identities grad, , \i-(az—az) = 0, grad, \s-(az—as) = —1,
and grad,,\; - (a3 — ay) = 1. The identities on the other edges follow similarly.

Finally, to prove (3.13), we use similar manipulations, with the additional observation
that

1
(1 @A (@)y) ¢ (X1 (0 A0 ())y,)

is the Jacobian arising from change of variables from x to x,. 0

4. QUASI—INTERPOLATION OPERATORS

The next step is to study the quasi-interpolation operators that are compositions of
the canonical interpolants and the smoothers of the previous section. From here on, let
u,w € L2(D) and v € L2(D)?. The trivial extension (by zero) of these functions to L2(R?)
and L?(R2)? will be denoted by @, w, and v, resp.

Definition 4.1. Define the quasi-interpolation operators Ry, Ry, and Rj, by
Rju = I}S%, (R} : L2(D) —> Vi),
‘v = I5SD, (R; : L2(D)? — W),
Row = IS, (R : L2(D)?* — Sy,).
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Note that these operators are not projectors as they do not preserve functions that are
already in the finite element spaces. In the remainder of this section, we will establish
two categories of properties of these operators. The first consist of commutativity iden-
tities, collected in Lemma 4.1. The second category, collected in Lemma 4.2, consists of
norm estimates. In particular, we will prove that these quasi-interpolation operators are
uniformly bounded in the weighted LZ-norm.

Lemma 4.1. R}, R, and R} satisfy the following commutativity properties:

(1) grad, (Rlu) = Fi(grad, u), Yue H! (D),
(4.2) curl,,(R;v) = Ry (curl,,v), VveH,,.(curl, D).

Proof. This is obvious from the commutativity properties in Proposition 3.2 and (2.3). O

Lemma 4.2. There exists a constant C independent of h and 6 such that

C

(4.3) | Ry HL2 (D) S 53 ||U||L2 (D) Vue L7(D),
(4.4) | Ry, — uhHL2 (o) < C0° lunlz2 oy Vup € Vi,
(45) IR0l < 5 Pl vve L(D),
(4.6) | Rion = vnl720p) < C8 [vnll 720y » Vo,e Wy,
(47) IRl < 5 el Ve (D),
(4.8) |1 Rpwn — whHi%(D) < 0o Hwh”ig(p) ; V wy € Sp.

Proof. Let K = a1, as, a3] be a fixed triangle in .7, and let Dy denote the union of DZl,
DZZ, and DZS.

Proof of (4.3). Due to the shape regularity of .7, and the fact that u is the extension
of u by zero, it suffices to prove local estimate

C

RS Ul 00 < 55 Vil 2o

The nodal values of Rju on K equal S9u(a;), which can be estimated by

5vii(a)]| = | f iy, )y, by (3.11),
= |(77a SO by (3.5),
< [N L2(Dh.) ”u”L%(DQi)’
C
(4.9) < ——— ] 12pn ) by Proposition 3.1, (3.2).

(hd)?rq,

7
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Therefore,

2
Bl = |
K

< C,Z 5% (@) L (@) () de

x)| r(x)dx

CZ h5 |U||L2(Dh )hQTK by (4.9).
Since 7 < 14, + Ch, the ratio T‘K/’f‘a can be bounded by
K Ch C
4.1 <l4+—<1+—
(4.10) Ta,; * Ta; * )

where we have used (3.4). This proves (4.3).
Proof of (4.4). Again, we only need to prove the local estimate

because 1y, is the extension of u, by zero and .7}, is quasiuniform. First observe that

1(59) (@) — unlas)| = f ra(iin(y,) — un(a2)) .

Dl

< max la; — y;] ngadmﬂhllm(%i) 1774 LL(DL))
. Ta, + ho
< Chd ||grad, . inl - pn (ar—) by (3.3),
< Ché |grad, an |« pn by (3.4).
Hence,
3
Rl < O R (00)() (@ || M) Priz)ie

3
Z h(s ”gradrzuh”L/ (Dh. ) h Tk

i=1
C(ho)? ”gradrzuhHi%(DK) < 0¥ Hﬂh”ig(DK) ;

where we have used Proposition 2.1 in the last step. This proves (4.11).
Proof of (4.5). Let Ck denote the convex hull of D! | D! ~and D! . For the same

al?’ a’
reason as in the previous proofs, it suffices to prove the local estimate
C
e o2 ~ 12
(4.12) HRh"’HLg(K) < 53 ||’UHL3(CK) :

Let ¢; denote the edge connecting a; and a;. Recall that throughout, (7,7, k) denotes a
permutation of (1,2,3). Since R{v|x = Z§=1(Se~ S0 - tds)g,,, with ¢, = £(\;grad, A\, —
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\

FIGURE 3. [lustration of the change of variable in the proof of (4.5).

Axgrad, );), and since Hﬁbei”;(K) < Crg, we have

3 2
Zgzﬁei(w)J S -t ds
=1 ¢

3
(4.13) <C)] J SO -t ds
i=11v¢

Let us now bound summands. By (3.12),

J SO -t ds

r(x)de,

HRflvHig(K) = J
K

2

2 3
lbe 720 < Cric Y.
=1

JSCi;-tds

1
JD} th liij;] 0((1 = s)y; + syp) - (Y, — y;) ds dy,dy;
aj- Hay,

1
<cn| [l [ 1900 = 9y, + sl ds dy,dy,
s I, 0

1/2 1
- Chf f |Rjk|<f +J )'6((1 —s)y; + sy,)| dsdy,dy; = A+ B
ng ng 0 1/2

Here we have broken the integral with respect to s into two integrals, one over s € [0, 1/2]
(named A) and the other over s € [1/2,1] (named B).
The first can be bounded as follows:

1/2
A |l ||l 1900 9y, + swi)| dy, dsdy
ng 0 ng

1/2
(4.14) < J h|/<¢k|f | 7,
th 0

a

L3(Dh) Hf’((l - S)ZJj + Syk))HLg(Dg_) ds dy,.

Now, consider the change of variable z = (1 — s)y; + sy;. Whenever 0 < s < %, we have

r(y;) < 2(1 = s)r(y;) < 2((1 = s)r(y,) + sr(y,)) = 2r(2).
Hence, by Cauchy-Schwarz inequality,

1/2 1/2
[ ot 0= (]
0 ey 0 ng

<C ( f " f r(2) [o(2)]? ud_—) ds) : ,

1/2
r(y,)|o((1 = s)y; + syp)I? dyj> ds
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FIGURE 4. A domain of integration by parts in the proof of (4.6)

where Z; is the transformed domain under the change of variable — see Figure 3. Clearly,
(1—s)2<4 and Z; c Ck. Therefore, continuing from (4.14) and using (3.2),

Ch

A< N 19l 22c10) a2,
By (3.3),
hé
Qg

where we have also used (3.4). Hence

c .
A< 5 e 190 L2y -

By a similar argument, we can bound the other integral B as well. Thus, returning

to (4.13), we have
C/(r r
c 12 K K ~ 12
| Byl 720y < 5 (T o ) 19020y -

a; aj

(4.16)

Estimating the ratios as before — see (4.10) — we prove (4.12).

Proof of (4.6). To perform a similar argument leading to (4.6), we now need to bound
| §,, (5“0, — wp,) - t ds|. To this end, we will use an integration by parts over the area Ljj
enclosed by the line segments [a;, ai], [ar, y.], [yy, y;] and [y;, a;] (see Figure 4), namely

J curl,,v,dx
L

J[ajvak]+[akvyk]+[yk7yj]+[yjﬂj]

Beginning with (3.12) and using the above,

f J Kk J v, - tds — f vy, - tds | dy,dy;

ng ng. [y;,Ys] [a;,ak]

<f f |ﬁjk|( f B, - tds
ng ng [ajvyj]

+ U vy - tds ) dydy;
[ak,ys]

< | iens (Rt o, + 19ulrcy) dud
D4 JDl,

J (Sc’i)h - ’Uh) -tds

_l’_

J curl,, vy dx
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FIGURE 5. K is mapped to K, under the map @ > &, for each choice of {y,}.

where we have used that |L;i| < Ch(hd), |[a;,y;]| < Chd, and |[ar, y;]| < Chd. Thus,

J (Sc’i)h — ’Uh) -tds

< Chd (llenrlea®nl o ey + 180l 20 ) 1 Insco e Iscon,

The L!-norms above are uniformly bounded — see (4.15). Hence, using Proposition 2.1
and proceeding as in (4.13), we reach

| Ryvn — vh”i%(K) < Crich?? ||"~’h||i%(cK) < Co ||’l~’hHig(cK) ;

thus completing the proof of (4.6).
Proof of (4.7). Let

J = det (%) — (;l(wm)ym> x (g(wn)yn>

be the Jacobian appearing in the definition of S° — see (3.8). Let f(y denote the image of
K under the map x — x, (see Figure 5). Obviously,

(4.17) ]| = <
| K|

Then, by (2.6),

2

IR0, = 125702y = ng) dy

2

1
0] —J S dx
FIE] )i

(4.18) <CE J S da
hK K

)
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so now we proceed to estimate the last term. Let T, = {a: e K: \(x } forl </ <3.
Then we may overestimate the integral by

(4.19) L S da < 23]

J S°w dx| .
T,

We will now bound the first summand (and the others will be similarly bounded). By
Fubini’s theorem and Cauchy-Schwarz inequality,

f Sow de| < f J f J 10s | |w(@y)| dysdyydy, do
Ty T Dgl Dgg DZS
=J f | 3] (J J (Y1) |1ar (1) w(y) J| dy, dw) dys dy,
Dh Dh Ty h

1/2
420 < nlion VT [ [ e (f J, ol |J|dy1dw> sy,

To estimate the integral in parenthesis, we first observe that since 1/A;(x) < 3 for all
x € T}, the inequality

) = 5y @) ) < ()
<30 (@) + ra(@lys) + rOu(@lyy) = 3r(@,)

holds, so

f f r(y)[w(@y) 17| dy, dz < C f f (@) [w(@y) 1] dy, da
T, JDh, T1JDL,

| | @l iz,
DL JT
< COP e,

where Tl is the image of 7} under the map = + &, and we have used the bound for
its Jacobian in (4.17). Thus, returning to (4.20), using the above estimate together with
C

Proposition 3.1,
< —2h(h5)||ng(cK)J J o3| dys dy,.
Dk JDZ,

J S°0 dx
T (ho)*rq,

Due to (4.15), this estimate simplifies to

J S0 dx| <
T

A similar estimate holds for all the three integrals in (4.19).

Ch

a

w2
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Therefore, returning to (4.18) we find that

'K 'k | TK
| Rpw|F2) < C <r— + =+ T—) [wlz2c

a as as

and the proof is finished by the estimate (4.10).
Proof of (4.8). On the element K, by virtue of (3.1), we can write

1 -
(Rpwn — wp) |, = 0l L{Lﬁ th JDh k123 (J wi(By) — wi(x)) dysdy,dy, de.

1
= —J f J K123 J~ wi(z) dz — f wp(x) de | dysdy,dy;
K| Dk JDk,JDL, Ky K

by a change of variables. The difference of the integrals within the parenthesis can be
written as integrals over small domains. Indeed,

| w@iz | w@dn= | ) - wn@) e

KynK
+ J wy(z) dz — J wy () de,
Ky\K K\Ky
where the first integral on the right hand side vanishes, and the remaining can be bounded
using |(K,\K) u (K\Ky)| < Ch(hé) — see Figure 5. Thus,
ChQT‘K
|KJ?

< OO wn| 72k

| Rywn — whl7ag0) < R (ho)* | n| L (¢

by Proposition 2.1. This proves the last estimate (4.8). O

5. THE MAIN RESULT

In this section we state and prove our main theorem on the existence of the com-
muting projectors bounded in the weighted L2-norms. As already mentioned, the quasi-
interpolation operators obtained in the previous section are not projectors. So in this
section, we modify these operators to obtain projections. The definitions of the final
projections appear below in Definition 5.1 and the main result is Theorem 5.1.

The basic idea, again due to [27], stems from the observation that each of the op-
erators R;, R and RY, when restricted to their respective range finite element spaces
(Vi.o, Wi, Sh, resp.) are invertible for small 6.

Lemma 5.1. There are operators
J}g : Vh,> - Vh,l>7 J}CL : Wh,> - Wh,ba J}? : Sh I Sh7

and a 6y > 0 such that for all 0 < 0 < 61, the operators Rj|v, , R|w,,, and R7|s, are
invertible, their inverses are J3, Jg, and J?, resp., and their operator norms satisfy

| Jilzy <2, | ilzy <2, |3 leemy < 2.
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Proof. Considering any one of the three operators, say Rj|w,,, we note that by (4.6),
there exists a 0; such that the LZ-operator norm of (I — Ry )|w;, . is less than 1/2 for all
0 < 6;. Consequently, by a standard Neumann series argument, the series
e o]

C C -1 C m

(5.1) Jp, = (]_ (I - Rh)|m,>) = Z (I — Rh|Wh,>) )
m=0

converges in L?(D)-norm, the inverse (Rg|w;, )™ = (I — (I — Rﬁ)|w,w)_1 exists (which
we denote by J), and moreover the norm bound

1 1
120y < . < =2,
PP T = BY)lw sy 1= (172)
holds. Similarly the other two inverses exist and the same bound holds. U

For the rest of the paper, we fix a § € (0,0;], where ¢; is as given by Lemma 5.1. From
now on, we will let our generic constant C' depend on (this fixed) . It will continue to
remain independent of the mesh size h and the functions being estimated. We can now
give the final definition of the smoothed projectors.

Definition 5.1. Define 1] : L2(D) — Vj,,, I : L2(D)* > W, ,, and 119 : L2(D) — S, by
I = JiR,, I = JgR;, 11} = JiR;.
Theorem 5.1. The above operators are projectors and have the following properties:
(1) Continuity. There exists a C > 0 such that

M u| 220y < Cllul|z2(py, Vue L2(D),
5| 20y < Cflv| 220y, Vv e L2(D)?,
5w z2py < Cllw|r2(py, Vw e L2(D).

(2) Commutativity. The operators satisfy the following commuting diagram.:

grad, .,
—_—

H, (D) H,,(curl, D) =5 [2(D)
(5.2) l Iy l i3 l Iy
Vi srade, Wi SLLEN

(3) Approximation. For all 0 < s < 1,
(a) [t — T3], < CR Ju g, for all w e F(D).
(b) o~ ol < OB [l ) for all v e HA(D)?
(c) |w—1{w], < Ch* |w]yypy for all we H (D).

Proof. First, to verify that the operators are projectors, we observe that by Lemma 5.1,
(I1)*u = Ji Ry Ji Ryu = J{ (Ry v, . i) Ryu = J{ Rju = ITju,
so II7 is a projector. Similarly, the other two operators are also projectors.

The continuity estimates follow from the estimates of Lemma 4.2 and Lemma 5.1. For
instance, [T | 220y < |52 | Bl r2py < 2C67272.
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The commutativity identities follow from the commutativity properties of the R;-
operators stated in Lemma 4.1 and those of the J,-operators. The latter follows from
the former. For example, let Jiv, = wy, for vy, wy, € W), .. Then, Rjw; = v, and
curl,, v, = curl,. (R{wy) = Rjcurl,,wy. Thus,

(5.3) Ji (curl,,v,) = J7(Rjcurl,,wy) = curl,,wy, = curl,,(J;vy),

for all v, € W}, .. Hence,

curl,, (Iljv) = curl,.(J; Rjv) = Jycurl,,(Rjvp) by (5.3)
= J; Rjcurl,, vy, by Lemma 4.1.
= II7 curl,,vp,.

This proves the commutativity property in the right end of the diagram (5.2). The
remaining identities are proved similarly.

To prove the approximation estimates, consider a general v, € W}, .. Since IIf is a
projection 1 v, = v;,. Hence,

lv — v 2py = [[(v —vn) = I (v — vi) | 2D
< (1+C)|v —vi] 2

for any v, € Wj, .. Hence taking the infimum over v,

v =150 L2 p) < thiefé‘f,w v —vn|L2(p)-
Similar inequalities hold for the other two projectors as well.

It remains to bound the best approximation error using approximants with known
convergence rates in the weighted norms. In the case of Sy, this is standard (see e.g., [4,
Lemma 5]). In the case of W}, , and V}, ,, this follows from [12]. Namely, the interpolants
constructed in [12, Lemma 5.3] show that for all v € H}(D)? and u € H}(D), there are
v, € W, ., and uy, € Vj,, such that

v — vy, L2(D) Ch|U|H;(D)7

<
lu — unlr2(py < Chlu|m(py.-

Thus the estimates of item (3) are proved for the case s = 1. The same estimates in the
case s = 0 trivially follow item (1). For all intermediate values of s, the estimates follow
by the standard theory of interpolation of operators [5]. O

Remark 5.1. We considered the weight function r because of its many applications in
axisymmetric problems. But the techniques are generalizable to handle other weight
functions. The crucial estimates are those of Lemma 4.2. One would need to generalize
them to the case of the particular weight function of interest.

Remark 5.2. The quasi-interpolants of the previous section themselves have approxima-
tion properties (even though they are not projectors). It may be possible to quantify
these properties in the higher order case by varying ¢ in Proposition 3.1. But note that
in our analysis we have only used the ¢ = 0 case of the proposition.
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6. APPLICATION TO AXISYMMETRIC MAXWELL EQUATIONS

In this section, we will use the commuting projectors of Section 5 to prove a convergence
result for the edge finite element approximation of the so-called “meridian” subproblem of
the axisymmetric Maxwell system. The three-dimensional (3D) time harmonic Maxwell
equations decouples into two two-dimensional (2D) problems: one called the azimuthal
problem and the other the meridian problem [3, 12]. The meridian problem is posed on
the right half of the rz-plane (sometimes called the meridian half-plane). It finds the r
and z components of the electric field, i.e., E,, = F,e, + E.e,. The components E, and
E, are functions of r and z alone (as there is no # dependence due to axial symmetry).

The meridian problem is to find F,, satisfying

1
(6.1) curl,, (—curlrzEm) — k%E,, = F,
1

where the scalar-valued curl,, is as defined in (2.1), the vector-valued curl is defined by

curl,,y) = (8.4, 7 '0,(r)),

the material coefficient p represents magnetic permeability, € is the dielectric constant,
F' represents given sources, all of which are axisymmetric, and x is the wavenumber.
Recall that D < R? denotes the restriction of the original axisymmetric 3D domain,
which we will call Q = R3, to the meridian half-plane, i.e., 0 is obtained by rotating
D about the z-axis. Recall that we have assumed that D has Lipschitz boundary, I'y
is connected, and D is simply connected. This implies that 0f2 is Lipschitz. We are
able to perform the analysis with this minimal regularity on 02 due to the low-regularity
projectors constructed earlier.

Perfect electric boundary conditions on 0f) translates to the boundary condition E,. .-t =
0 on I'y, where t denotes the unit tangent vector. For error analysis, we consider a
model problem for real-valued functions with this boundary condition, together with unit
material properties. Its weak formulation is to find w € H, ,(curl, D) such that

(6.2) A(u,v) = (F,v),, Ywve H,,(curl, D),
where A : H, . (curl, D) x H, .(curl, D) — R is the bilinear form defined by
A(u,v) = (curl,,u, curl,,v), — *(u, v),.

There is a countable set of real values « for which (6.2) does not have a unique solution [21].
Throughout this paper, we will assume that s is chosen so that x? is not a Maxwell
eigenvalue. Then (6.2) is uniquely solvable.

The corresponding discrete problem is to find u, € W}, . such that

(63) A(Uh, ’Uh) = (F, 'Uh)r,
for all vy, € W}, .. For brevity, let us denote the H ,(curl, D)-inner product by
(u,v)p = (curl,u, curl,,v), + (u,v),,
and the corresponding norm by |v|[, = (v, v)}\/ ?. The following error estimate is the main
new result we will prove in this section. Note that an error estimate for the positive
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definite problem (obtained by replacing A(-,+) by (-, )a in (6.3)) follows from the analysis
in [12, Theorem 6.1]. However, the analysis of our indefinite problem is more involved.

Theorem 6.1 (Quasioptimality). Suppose (6.2) has a unique solution w € H, ,(curl, D).
Then, there are constants hy and C' such that, for all 0 < h < hg, (6.3) also has a unique
solution wy, and

(6.4) =l <€ inf Ju— .

The constants hy and C depend on k but are independent of w,uy, and h.

Similar results are well known for the standard (unweighted) Maxwell system. One
of the first such results for the time-harmonic 3D system was proved by Monk in [20]
using a variation of the Schatz [25] duality argument. These techniques were refined
and used in [15, 17| for preconditioning purposes using the new tools introduced in [1].
These works in turn prompted the development of a cleaner error analysis for the 3D
Maxwell equations [22]. All these developments are summarized in the book [21, § 7.2
which also details what is now considered the standard proof of quasioptimality of edge
element approximations of the 3D Maxwell system. The technique we will employ to
prove Theorem 6.1 follows along the lines of this standard proof. We make a few further
simplifications, possible due to the availability of the Schoberl projectors (constructed in
the previous section). However, we need a few new ingredients to handle the additional
complications resulting from our degenerate weight function. We begin with a regularity
result for the meridian problem (6.2).

Lemma 6.1. Suppose F € L*(D)? satisfies
(6.5) (F.grad,.¢), =0 ¥ oe H., (D),
and suppose u solves (6.2). Then

ful 3., + lewhaul ) < CIF,

Proof. We use the available 3D regularity results. For any Sobolev space X (Q), we will
use X () to indicate its subspace of axisymmetric (scalar or vector) functions. Given a
2D vector field v(r, z) = (v.(r, 2),v.(r, 2)) on D, we define its revolution as a 3D vector
field v}(x) on Q by v(r, 0, 2) = v,(r, 2)e, + 0ey + v.(r, 2)e..

By the isomorphisms of axisymmetry in [3] (such as between L2(Q2) and L2(D)), we
know that u® € Hy(curl, Q) and F® e L*(Q)2. Moreover, it was shown in [12] that
condition (6.5) implies that (F®, grad(), = 0 for all ¢ € H}(Q). Therefore, by taking
derivative in the sense of distributions, (div F*, ¢) = 0 for all ¢ € D(Q2), and so div F = 0
in L*(Q2). Similarly a direct calculation from (6.2) shows that curl curl u? — *uft = F9
All together, we have that uf* € Hg(curl, Q) n H(div, ). Therefore, since 02 is Lipschitz,
applying the 3D result of [13, Theorem 2|, we obtain

|u Q)—i—||curluQ|| ) S |F| 120

2 1

H2( HZ(Q
Now, it is known that [3] the spaces Hz(Q) and H2(D) x HZ (D) x H? (D) are isomor-
phic. Since the #-component of curlu® is curl,,u, this implies the stated result. OJ
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The next lemma concerns a “solenoidal” projection operator S. For any w;, € W}, ,
define Swy, € H, ,(curl, D), together with Pwy, € L2(D), as the unique solution of the
dual mixed variational equations

(6.6) (Swy, v), — (Pwp, curl,,v), =0, Vv in H,,(curl, D),
(6.7) (s, curl,, Swy), = (s, curl,,wy),, ¥ sin L(D).
(Note that setting v to gradients, we can conclude that Sw), is solenoidal.)
Lemma 6.2. Let wy, € W), , satisfy (wy, grad, ¢n), = 0 for all ¢, € Vi, .. Then
|Swy, — wy|, < Ch? |eurl,.wy], .

Proof. By the exactness of the sequence (2.2), we know that wj;, = curll_p;,, for some
pn € Sy, where curll, : S, — W, denotes the L%adjoint of curl,, : W, . — Sy, i.e.,

(wh, vy)r — (pr, curl,,vp), =0, Vou,eW,,.
Subtracting this from (6.6), we obtain
(6.8) (Swy, — wp,vy), — (Pwy, — pp, curl,,vp), =0, Vv, € W,

Now let vy, = II§ Sw;, — wy,. Then curl,, vy, = II9curl,,(Swy,) — curl,,wy, by Theorem 5.1.
Moreover, by (6.7), curl,.(Sw;,) = curl,,wy. Since II9 is a projector, this implies that
curl,, vy = 0. Thus (6.8) implies

|Sw), — wy, < ||Swy, — 8wy, < Ch? |Swy| ;.
r h r HT2(D)

Now, by a minor modification of [11, Theorem 3.2] to domains with Lipschitz boundary
(using [13]) we obtain ”SwhHH%(D) < C|eurl,,wp|,. This completes the proof. O

Proof of Theorem 6.1. If the result holds, then the wellposedness of problem (6.3)
follows, so we only need to prove the error estimate for small enough h. Let e = u — uy,
and let wy, € W}, , be arbitrary. Then A(e,wy) =0, so

lel} = Ale,u —wy) + Ae, wy, — ),
< lefy lu—wily + Ale,wy —un) + (1 + &%) (e, wy, — up)y,
(6.9) = lefy [u —wal, + (1 + %) (e, wn — un),.

Next, we approximate (e, wy, — uy,), in two parts. Let e = grad, 1) + B be the unique
Helmholtz decomposition in the weighted spaces, i.e., 1) € H} (D) and 8 € H, ,(curl, D).
A discrete Helmholtz decomposition in weighted spaces is also available from [11], which
we use to decompose w;, — u;, = grad, &, + curll_s, with &, € Vh» and s, € Sp,. Then
(gradrzwv grad'rzgh)T = (67 gradrzéh)T = —H_QA(B, gradrzéh) = 0. Hence,

(grad, v, w;, — uy,), = (grad, v, curl,_s;), = (grad, v, curl_s, — S(curl’_sp)),,
< |lel, [eurl s, — S(curlsi)l, .

< Ch? e, Jeurl,.(curl] s,)],
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by Lemma 6.2. Thus, we have
(6.10) (grad,. ¢, wy — wy), < Ch? |e], |curl,.(wy, — up)

which bounds a part of (e, wy, — up,),.
To bound the B-component, let z € H, ,(curl, D) be the solution of

A(z,v) = (B,v), VveH,.(curl, D).

.

Then,
18l = (B.e), = A(z,e) = A(z —IIjz,e) < Oz — Tz, ], -

By Theorem 5.1, |z — II§ 2|, < Ch'/?| . Moreover, by the commutativity,

2],y
7 (D)

_TTC _ I 1/2
|curl,.,(z 22 = (I —107)curl,,z||, < Ch chrlmzHHT%(D)

Hence,
2 1
<
ol < ont (121, + leutzl g Y lel

1
< Ch2 ||B], e[,

by Lemma 6.1. This together with (6.10) implies that

1
(6.11) (e,wy, —up), < Ch2 |e|, |wnp —up|a.

Therefore, returning to (6.9),
2 1
lely < llefalu—wnly + Chz [e], [wn —unl,
1 12
< llell; w —wnl, + Ch2 e, Jwn —uf, + Ch> ef .

Thus, we have proved that for any w;, € W, ,,

1+ Ch?
| — up|[a < ——=||u —wp||a,

whenever 1 —Ch3 > 0, a condition satisfied for all 0 < h < hy if we choose hy < 1/C?. O

To conclude the discussion of this application, we present results from a numerical
experiment. The above theory does not tell us the value of the quasioptimality constant C'
in Theorem 6.1. To get some indication of how large this constant is in a typical example,
we let D be the unit square on the meridian half-plane,; split by a uniform mesh of triangles
(with positively sloped diagonals) of mesh size h = 1/128. We compute the approximate
solution by solving (6.3), but with the non-homogeneous boundary condition u-t = g. We
set F' = (0,0) and choose g so that the exact solution is u = kJy(kr)e, = curl,,(J;(kr)).
Let DE denote the discretization error |u — uy|,. We are interested in comparing this
to the error in best approximation, namely the infimum appearing on the right hand side
of (6.4), which we denote by BAE. Theorem 6.1 asserts that DE/BAE is bounded by C.
To see the practical manifestation of this result, we plot DE/BAE as a function of x in
Figure 6(a). Note that here, as we increase the wavenumber x, we adjust the mesh size h
so that kh = 0.78, resulting in approximately 8 points per wavelength. When xh is held
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Ratio of discretization error to approximation error when k h=0.78 Ratio of discretization error to approximation error when h=1/128
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FIGURE 6. The ratio of discretization and best approximation errors vs. wavenumber

fixed, the relative best approximation error (BAE/|u/s) remains approximately constant
(about 18%) independent of k, as seen from the second curve in Figure 6(a). However,
the first curve shows that the ratio DE/BAE increases from the optimal value of 1 as x
is increased. We therefore expect the quasioptimality constant C' to also increase with k.
This is evidence of the well-known pollution effect.

For cavity problems like (6.2), we also expect C' to grow as we approach a cavity
resonance. To see this, we study the dependence with &, in finer resolution, in the smaller
interval [0.2, 6], for the same problem. This time, we fix h = 1/128, so there are mesh
points aplenty per wavelength. The relative BAE (shown in Figure 6(b)) ranges from
0.1% to 1% for k in [0.2,6]. In this interval, there are 6 cavity resonances — see e.g., [14,
Appendix] for the TM Maxwell eigenvalues on a cylinder. As seen from the two spikes
in Figure 6(b), our data seems to excite two of these modes more than the others. The
spikes are near two of the eigenvalues.

APPENDIX A. PROOF OF PROPOSITIONS 2.1 AND 3.1

Both proofs involve scaling arguments where the weight function must be explicitly
mapped. Due to the degeneracy of the weight function we must work with more than one
reference domain, as we will see.

Proof of Proposition 2.1. If K is an element that has no vertex on I'y, all the stated
inequalities follow easily from their standard (unweighted) analogues, so we only need
to prove that they hold also on the remaining K € .7,. These remaining elements can
be classified in two types: For n = 1 or 2, we say that a triangle K is of type n if K
has exactly n vertices on I'g. We define two reference triangles in the 72-plane, namely,
K, = [(0,0),(1,1),(1,—1)] and K, = [(0,-1),(1,0),(0,1)] (see e.g., [12, Figure 1]).
Clearly, type n triangles are in affine homeomorphism with K,.

We will prove only the last inequality as the others are similar. Let K be of type 1

with vertices a; such that a; is on the z-axis. Let F' be the affine map that maps K;
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one-one onto K such that a; is mapped to (0,0). Let v € P, be mapped to v on K, by
0(7, 2) = v(r, z). Clearly, by the equivalence of norms on finite dimensional spaces, there

exists a C depending only on ¢ such that
(A.1) 100 e 1) < ClOl L2y

Setting r; = r(a;), let us note that r = roAy + r3A3 is mapped under F' to 7. Hence, the
right hand side can be bounded by

K i
f Plof* d = J (A2 + A3)|v[? 4 de < max(r21,7"31)f rlv|? LSt de.
K K| K K]

K

Since the L®-norm is unchanged under the F-mapping, (A.1) implies

A h3 | K|
A2 B2 )2 0 < C2max 5, TK ) D 2, -
(A.2) K K||U||L~(K) ax ' T3 K] HU”LE,(K)

By the shape regularity of .7,, neither ry nor r3 can be smaller than C'h. Since K has a
vertex on the z-axis, we also know that 7x < Ch. Hence (A.2) implies 7ichf[v]7. k) <

C ||v||%2( xy and the proof is complete for type 1 triangles.
For type 2 triangles, the proof uses similar arguments using a map F' that maps the
edge of K, on the z-axis to the edge of K on the z-axis. We omit the details. U

Proof of Proposition 3.1. We prove the result in each of the three cases of Figure 1.
In each case, we have a different “reference” domain.

Case 1. In this case, a = (0,a.) and D, = {(r,2) : r* + (2 —a,)? < p* and r = 0}. The
reference domain in this case is

Dy ={(#,2): P +22<1, and 7> 0}.

Consider the mapping

T . z—a, . .
F= -, 3= , (or r=rp, z=pita,).
p p

This map takes 151 one-one onto to Dy and the Jacobian is p=2.
On the reference domain, define 7, € P, by

(A.3) f Finp did:z = p(0) Y pe P,

D

where P, denotes the space of polynomials in 7 and 2 of degree at most £. Set
Lo
(A.4) Na(r; 2) = Em(?“, 2).

We will prove that this 7, satisfies all the stated properties.
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To prove (3.1), we observe that by change of variables p(7, 2) = p(r, z),

1
J rne(r, z)p(r, z) drdz = f (7p) =M (7, 2)p(7, 2)p* didz by (A.4),
o D P
= f rip drdz,
Dy
= p(0) = p(a), by (A.3),

for all p e P,.
The estimate (3.2) follows from (3.1). Indeed, since n, € P,

2 2 m@©) _ C
ok, = | melr 2 drdz = mafa) = 22 < =
Here we have used (A.4) and the fact that 7; is a fixed function on the reference domain
and rq = p in Case 1.
The last estimate (3.3) follows from (3.2) and Cauchy-Schwarz inequality:

¢ (ra + p)
A5 ol < ([ rde) Intin, < @Dl < o0

<C
since |Dg| = mp* and 74 = p.

2 ~
P°Ta Ta

Case 2. Now a is a point in R? not on the z-axis, and D, = {(r, 2) : (r—a,)*+(z—a,)* <
p*}. The transformation
r—a z—a
“and 2 = z, (or r=ua,+pr, and z=a,+ p2)
p
maps Dg one-one onto the “reference” domain Dy = {(7,2) : #2 + 22 < 1}. Define
2(7, 2) € Py and 7p.o(7, 2) € Py by

(A.6) P =

(A7) J afy.ap didz = p(0) for all p e P,
Do
for any positive function a(r, 2) bounded above and below on D,. Define Na € Py by
1
(A.8) Na(r,2) = —5M2.a(7, 2), with « = a, + pr.
P

Note that when the linear function r in the rz-plane is mapped over to the 7Z-plane
by (A.6), we obtain the above a(7, 2). Hence, for any polynomial p(7, 2) = p(r, z),

J rna(r, 2)p(r, 2)drds — J A

a Do
= p(0) = p(a),
for all p € Pp. This proves (3.1).
Next, to prove (3.2), we will first show that

(A.9) 772,6%(0) <

1
(@0 + )l 25,2067 dids = | i dids
P Do

C
min o(y)
YyeD>
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Let 7jy = 21, i.e., 72 equals 7y, defined by (A.7) with a set to 1. Then, since 7y, € b,

sl = a(0) = | ot
2

—1/2
< il (10@))  Daliyo,
2

Thus,
C
. L2
72,0 0) = 72,0 S N )
( ) H ||L§(D2) mingp, (a(y))
where C' = H'f]gHiQ(Dz) depends only on the fixed reference domain. This proves (A.9).
Hence,
H%”ig(pa) = 1a(a) by (3.1), since 14 € P,
L
= ;772@(0) by (A.8),
C
p? min(a(y)) A9
YeD2
_ C
p* min (r(y))
Y€Dq

The last equality holds, since «(7,2) = r at any point (7, Z) mapped to (r,z). This
completes the proof of (3.2) for Case 2.
The proof of (3.3) proceeds as in Case 1 — see (A.5) — using (3.2).
Case 8. Now D, is the closed disk with center a and radius p, where a = (a,,a,) is
obtained by
(dr>_(ar>+c<6089 —sin@)(p)
a, ]\ a, sin 6 cos 0 0/’

for some fixed angle # > 0. Consider the mapping

Py _ 1 cos@ sin@\ (r—a,
~ p\—sinf cosf)\z—a,)’
or, equivalently,

r ar cosf) —siné 7
(A.10) (z) - (az) tp (sin& cos 9) (2) ’

It is straightforward to show that this map sends the disk D, in the rz-plane one-one
onto the disk

N>

Dy ={(7,2): (F—c)+22<1}

in the 72-plane. Since c is fixed, D3 forms our third fixed “reference” domain. Note that
the Jacobian of the change of variables from (r, z) to (7, 2) is again p?.
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As in the previous case, we now define 73, € P, by

(A.11) f a iz op didz = p(c, 0) for all p e Py,

D3

for any positive bounded function «(7, 2) on Dj. Next, we define 7, € P, by

(A12) 7]a(7’7 Z) = _2ﬁ3,a(727 2)7

after setting
a(r, 2) = a, + prcosf — pzsinb.
It is obvious from (A.10) that this choice of a(r, 2) is obtained by mapping the linear
function r to the 7z-plane. Therefore,
oL e
J e (T, 2)p(r, 2) drdz = J afr, z)ﬁng,a(r, Ap(F, 2)p? didz = p(c,0) = p(a).

a D

This proves (3.1).
The proofs of (3.2) and (3.3) proceed similarly as in the previous cases, after one proves
that

C
A13 N o ,0 < . AN
( ) 73, (C ) min Oé(y)
yeDs3
which is the analogue of (A.9) of Case 2. O
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