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COMMUTING SMOOTHED PROJECTORS IN WEIGHTED NORMS
WITH AN APPLICATION TO AXISYMMETRIC MAXWELL

EQUATIONS

J. GOPALAKRISHNAN AND M. OH

Abstract. We construct finite element projectors that can be applied to functions
with low regularity. These projectors are continuous in a weighted norm arising nat-
urally when modeling devices with axial symmetry. They have important commuting
diagram properties needed for finite element analysis. As an application, we use the
projectors to prove quasioptimal convergence for the edge finite element approximation
of the axisymmetric time-harmonic Maxwell equations on nonsmooth domains. Supple-
mentary numerical investigations on convergence deterioration at high wavenumbers and
near Maxwell eigenvalues and are also reported.

1. Introduction

Projectors (or interpolation operators) into finite element subspaces of Sobolev spaces
are a fundamental ingredient in finite element error analyses. Every finite element has a
canonical projector defined by its degrees of freedom. Often however, a technical problem
arises, namely the unboundedness of the canonical projection in the Sobolev space where
the solution is sought. To overcome this, many early analyses assumed that the solution
is regular enough to be contained in the domain of the canonical projection. Clément [10]
offered an alternative, at least for variational problems set in the Sobolev space H1. The
Clément interpolant is uniformly bounded in the L2-norm and gives optimal approxima-
tion estimates. However, in the analysis of mixed methods, one needs projectors with
further commutativity properties the Clément interpolant does not have. The impor-
tance of such commuting projectors has been evident early on [7, 23, 24] and has only
been enhanced in more recent works [2]. The basic idea of Clément was generalized by
Schöberl in [26, 27, 28] to obtain similar projectors with the additional commutativity
properties. His generalization was substantial, requiring several new ideas. In this paper,
we will refer to operators obtained by his method as Schöberl projectors. Further refine-
ments of Schöberl’s ideas have been recently made in [8] (where the operators were called
“smoothed projectors”) and in [2] (where they were called “bounded cochain projectors”),
but they do not extend to the case we intend to study here.

Key words and phrases. interpolation, finite element, Clement, Schöberl projector, smoothed projector,
bounded cochain projector, axisymmetric, Maxwell, weighted Sobolev, axisymmetry, quasioptimality,
pollution.
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2 J. GOPALAKRISHNAN AND M. OH

Our aim in this paper is to construct Schöberl projectors in the weighted norms aris-
ing in the study of axisymmetric Maxwell equations. Under axial symmetry, the time
harmonic Maxwell equations in cylindrical coordinates pr, θ, zq decouple [3, 12] into two
systems in the rz-halfplane. Due to the Jacobian arising from the change of variables
however, we must work in weighted Sobolev spaces, where the (degenerate) weight func-
tion is the radial coordinate r. Let L2

r and Hrpcurlq denote the r-weighted analogues
of the L2 and Hpcurlq-spaces (see their definitions in Section 2). To adapt the stan-
dard finite element techniques to these weighted spaces, we need commuting projectors
in the weighted norms, in particular, the Hrpcurlq-norm for treating axisymmetric elec-
tromagnetics. A commuting projector bounded in a more regular subspace of Hrpcurlq
is already known [12]. A weighted Clément operator has been constructed in [4] for ap-
plication to the axisymmetric Stokes problem. Even a commuting projector bounded in
Hrpcurlq is also already known [11]. But, all these projectors are insufficient for various
axisymmetric electromagnetic applications requiring low-regularity estimates, including
the development of adaptive and multigrid algorithms. Hence we take up the task of con-
structing Schöberl projectors in Hrpcurlq. In fact, anticipating other applications, we will
do so for all the spaces in an exact sequence of weighted Sobolev spaces. As an example
of how to apply the projector to obtain new results, we include a simple error analysis in
weighted norms, under minimal regularity assumptions, for the axisymmetric indefinite
time-harmonic Maxwell approximation following [22].

The outline of this paper follows the main steps in the construction of Schöberl projec-
tors, as laid out in [26, 27, 28].

(1) First, we recall existing nodal interpolation operators which are well defined for
sufficiently regular functions in the weighted spaces (in Section 2) and summarize
results of [11, 12, 16] in this direction.

(2) Second, we introduce mesh dependent smoothing operators that are bounded in
the weighted spaces (in Section 3) adapting the techniques in [28] to weighted
spaces.

(3) Third, we compose the above two operations to form quasi-interpolation operators
bounded in L2

r (in Section 4) as in [26, 28].
(4) The quasi-interpolation operators are not projectors. So in a final step, we compose

with a finite dimensional inverse to obtain a projector, as in [27]. This construction
is given in Section 5, where the main result (Theorem 5.1) appears.

In Section 6, as an application, we use the projectors to prove an error estimate for the
finite element method applied to the axisymmetric Maxwell equations under minimal
regularity assumptions.

2. Preliminaries

In this section, we recall the definitions of the weighted Sobolev spaces and the nodal
interpolants of their corresponding finite element spaces.

Let R2
� denote the rz-halfplane and D � R2

� be a domain with Lipschitz boundary.
Due to the axisymmetric applications we have in mind, we will further assume that the
revolution of D about the z-axis, namely Ω, also has Lipschitz boundary. The weighted
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L2-space is defined by

L2
rpDq �

"
u :

»
D

|u|2rdrdz   8
*
.

This is a Hilbert space with the inner product pu1, u2qr �
³
D
u1u2rdrdz. For a general

domain G we denote the L2
r-inner product on G by p�, �qr,G. Let H1

r pDq be the space of
all functions in L2

rpDq whose first order distributional derivatives are also in L2
rpDq. The

norm and the seminorm on H1
r pDq are defined by

}u}H1
r pDq �

�»
D

p|u|2 � |gradrzu|2q r drdz

1{2

,

|u|H1
r pDq �

�»
D

|gradrzu|2 r drdz

1{2

,

where gradrzu � pBru, Bzuq. Furthermore, for any real number 0   s   1, Hs
r pDq is

defined as the Hilbert interpolation space rH1
r pDq, L2

rpDqs1�s of index 1 � s between the
spaces H1

r pDq and L2
rpDq [6]. In general, we will denote }�}X and | � |X to indicate the

norm and the semi-norm respectively in a Sobolev space X.
Define the two-dimensional curl operator by

(2.1) curlrzpvr, vzq � Bzvr � Brvz,
and set

Hrpcurl;Dq �  
v P L2

rpDq2 : curlrzv P L2
rpDq

(
.

Hrpcurl;Dq is a Hilbert space with the inner product

Λpv1,v2q � pv1,v2qr � pcurlrzv1, curlrzv2qr.
The induced norm is denoted by }�}Λ.

Now, let BD � Γ0 YΓ1 where Γ0 is the open segment forming the part of the boundary
of D on the axis of symmetry (z-axis), and Γ1� BDzΓ0 denotes the remainder of the
boundary. (These notations are also marked in a later illustration – see Figure 2.) Then,
it is well-known that functions in H1

r pDq have traces in L2
rpΓ1q, i.e., for u in H1

r pDq, the
trace u|Γ1 makes sense as a function in L2

rpΓ1q, but trace on Γ0 is not defined in general [19].
Additionally, since BD is Lipschitz, the tangential trace operator on Hrpcurl;Dq, which
we will denote by v � t|Γ1 , is proved in [12, Proposition 2.2] to be well-defined. Therefore,
we can define the following closed subspaces of H1

r pDq and Hrpcurl;Dq:
H1
r,�pDq �

 
u P H1

r pDq : u|Γ1 � 0
(
,

Hr,�pcurl;Dq � tv PHrpcurl;Dq : v � t|Γ1 � 0u ,
where t denotes the unit tangent vector oriented counter-clockwise.

We are interested in constructing commuting projectors on H1
r,�pDq, Hr,�pcurl;Dq, and

L2
rpDq that require lower-order regularity. Assume that D is meshed by a finite element

triangulation Th satisfying the usual geometrical conformity conditions [9]. We assume
that Th is quasiuniform with a representative mesh size h. The corresponding lowest order
finite element subspace of H1

r,�pDq is the space of continuous functions that are linear on
each mesh element, denoted by Vh,�. It has one nodal basis function φv for every mesh
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vertex v not on Γ1. The lowest order Nédélec subspace [23] of Hr,�pcurl;Dq, on the same
mesh is denoted by Wh,�, with its corresponding edge basis functions tφeu. And finally,
let Sh denote the L2

rpDq-subspace with basis functions tφKu that are indicator functions
of each mesh element K. That the sequence

(2.2) 0 ÝÝÝÑ Vh,�
gradrzÝÝÝÝÑ W h,�

curlrzÝÝÝÑ Sh ÝÝÝÑ 0

is exact is proved in [11, Appendix A] under the further assumptions that Γ1 is connected
and D is simply connected. We also make the same assumptions throughout this paper.

We will need the following inequalities on polynomial spaces obtained by local homo-
geneity arguments. Let K denote a triangle, rpyq denote the value of the radial coordinate
at a point y P R2

�,
hK � diampKq, rK � max

xPK
rpxq,

ρK denote the diameter of the largest circle inscribed in K. Finally, let P` denote the
space of polynomials of degree at most ` (for some ` ¥ 0). Throughout this paper, we use
C to denote a generic positive constant that is independent of thKu. Its value may differ
at different occurrences and can depend on shape regularity ratio hK{ρK , but not on hK
by itself. A proof of the following proposition is indicated in Appendix A.

Proposition 2.1. For all v P P`,
}gradrzv}2

L2
rpKq ¤ Ch�2

K }v}2
L2
rpKq, }gradrzv}2

L8pKq ¤ Ch�2
K }v}2

L8pKq,

rKh
2
K}v}2

L8pKq ¤ C}v}2
L2
rpKq,

on any K P Th.

For smooth functions, the canonical interpolation operators of the finite element spaces
Vh,�,W h,�, and Sh, namely, Igh, Ich, and Ioh, resp., are such that the following diagram
commutes:

(2.3)

H1
r,�pDq X C8pDq gradrzÝÝÝÝÑ Hr,�pcurl, Dq X C8pDq curlrzÝÝÝÑ L2

rpDq X C8pDq���Igh ���Ich ���Ioh
Vh,�

gradrzÝÝÝÝÑ W h,�
curlrzÝÝÝÑ Sh.

The projectors Igh, Ich, and Ioh are defined by the natural degrees of freedom (see [16, 12]
for the modifications required in the degrees of freedom in weighted spaces), namely

pIghωqpxq �
¸
vPV

ωpvqφvpxq,(2.4)

pIchzqpxq �
¸
ePE

�»
e

z � t ds


φepxq,(2.5)

pIohsqpxq �
¸
KPTh

�
1

|K|
»
K

s dx



φK ,(2.6)

where V denotes the set of vertices in Th not on Γ1, E denotes the set of edges in Th

not on Γ1, |K| denotes the measure of K, and K P Th denotes all triangles in Th. Note
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z

r0

a

Da

ρ

Case 1

z

r0

a
Daρ

Case 2

z

r0

a

ã Da

ρ

θ

Case 3

Figure 1. Domains Da corresponding to point a.

that Igh and Ich cannot be applied, however, to all functions in H1
r,�pDq and Hr,�pcurl, Dq,

resp. They can at best be extended to more regular function spaces where the degrees of
freedom make sense.

Our goal is to construct projectors, analogous to Igh and Ich, satisfying the same com-
mutativity properties in (2.3), but bounded in L2

rpDq or L2
rpDq2. Therefore, in the next

section, we define mesh dependent smoothers for functions in L2
rpR2

�q so that we can apply
the classical nodal interpolation operators after we apply these smoothers to L2

r-functions.

3. Smoothing operators

The purpose of this section is to define smoothing operators Sgu, Scv and Sow, which
we will use later. We introduce the notations and an intermediate result that will lead to
Definition 3.1.

Let a � par, azq be a point in R2
� and let Da be a closed disk of radius ρ, or its half,

centered around a or ã, as shown in each of the three cases delineated in Figure 1. We
need functions supported within these disks that will act as kernels within the integral
smoothing operations to be defined. This will be obtained using the next proposition.

Proposition 3.1. Let ` ¥ 0. In all the three cases in Figure 1, there exists a function
ηapr, zq P P` such that

pηa, pqr,Da � ppaq, @p P P`,(3.1)

}ηa}2
L2
rpDaq

¤ C

ρ2ra
, where ra �

#
ρ, in Case 1,
min
yPDa

rpyq, in Cases 2 and 3,(3.2)

}ηa}2
L1
rpDaq

¤ C
ra � ρ

ra
, where }ηa}L1

rpDaq
�
»
Da

|ηa| rpyq dy.(3.3)

A proof of Proposition 3.1 is included in Appendix A.
Next, let us define the “smoothing domains” Dh

a for each mesh vertex a P Th. Let
δ ¡ 0 be a global parameter. (We will need to choose it sufficiently small shortly.)

(1) If a is in (open) Γ0, then Dh
a is set to the Da in Case 1 of Figure 1 with ρ � hδ.

(2) If a is in the interior of D, then Dh
a is set to Da of Case 2 in Figure 1 with ρ � hδ.
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z

r

a

a Dh
a a Dh

a ã
Dh

a

0

Γ0

D

Γ1

Figure 2. A domain, a few vertex patches, and associated smoothing domains

(3) If a is on Γ1, then Dh
a is set to Da of Case 3 in Figure 1 with ρ � hδ and

ã � a� c hδpcos θ, sin θq.
These smoothing domains are illustrated in Figure 2. We have to choose δ, c, and θ,
noting that δ and c are global constants, while θ � θa can vary depending on a. Let Da

denote the “vertex patch” of a, i.e., the domain formed by the union of all triangles in Th

connected to the mesh vertex a (see Figure 2). For a not on Γ1, due to quasiuniformity,
there exists 0   δ0   1 such that Dh

a � Da for all a and the smoothing domains of the
distinct mesh vertices do not intersect. We choose the parameters such that the following
holds: (i) For all a not on Γ1, we have Dh

a � Da and ra ¥ δh. (This can be ensured by
choosing a δ ¤ δ0 and making δ even smaller if necessary.) (ii) For all a on Γ1, we have
Dh

a � R2
�zD and ra ¥ δh. (This can be ensured by choosing θ and c appropriately, due

to the uniform cone property [18] implied by the Lipschitz regularity of the boundary.)
Note that with these settings, we have

(3.4) ra ¥ δh

for all mesh vertices in Th, including vertices falling into Case 1.
We need some more notations to define the smoothing operators. We use r. . .s to denote

the convex hull of its arguments. Accordingly, a triangle K with vertices a1, a2, and a3

is K � ra1,a2,a3s. Its three edges are e1 � ra2,a3s, e2 � ra3,a1s, and e3 � ra1,a2s. Let
Dh

ai
be the smoothing domains introduced above for the vertices ai pi � 1, 2, 3), and let

yi P Dh
ai

. Set

(3.5) κipyiq � rpyiqηaipyiq,
where ηai is the function given by Proposition 3.1. We write κ123 � κ1κ2κ3 and κ12 � κ1κ2,
etc. For each x P K, let λipxq denote its barycentric coordinates in K so that

x �
3̧

i�1

λipxqai.
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Following [27], we now define x̃y by

(3.6) x̃ypx,y1,y2,y3q �
3̧

i�1

λipxqyi

and introduce these mesh dependent smoothers:

Definition 3.1. For all u,w P L2
rpR2

�q and v P L2
rpR2

�q2, define

Sgupxq �
»
Dha1

»
Dha2

»
Dha3

κ123 upx̃yq dy3dy2dy1,

Scvpxq �
»
Dha1

»
Dha2

»
Dha3

κ123

�
dx̃y

dx


T

vpx̃yq dy3dy2dy1,

Sowpxq �
»
Dha1

»
Dha2

»
Dha3

κ123 det

�
dx̃y

dx



wpx̃yq dy3dy2dy1,

for all x P K and for each K P Th.

It is easy to see that an equivalent way to write the last two operators is

Scvpxq �
»
Dha1

»
Dha2

»
Dha3

κ123

�
3̧

i�1

yi � vpx̃yqgradrzλipxq
�
dy3dy2dy1,(3.7)

Sowpxq �
»
Dha1

»
Dha2

»
Dha3

κ123

�
3̧

m�1

pBrλmqym
�
�
�

3̧

n�1

pBzλnqyn
�
wpx̃yq dy3dy2dy1,(3.8)

where for two dimensional vectors c � pcr, czq and d � pdr, dzq, the (wedge) cross product
yields the scalar c�d � crdz� czdr. We will need to use the following properties of these
smoothing operators.

Proposition 3.2. Let u P H1pR2
�q, v P Hrpcurl,R2

�q and w P L2
rpR2

�q. Then the
commutativity properties

Scpgradrzuq � gradrzpSguq(3.9)

Sopcurlrzvq � curlrzpScvq(3.10)

hold. Moreover, if pi, j, kq is a permutation of p1, 2, 3q, the following identities hold:

Sgupaiq �
»
Dhai

κi upyiq dyi,(3.11)

»
ek

Scv � t ds �
»
Dhaj

»
Dhak

κij

»
ryj ,yks

v � t dsdykdyj,(3.12)

»
K

Sow dx �
»
Dha1

»
Dha2

»
Dha3

κ123

»
ry1,y2,y3s

wpzq dzdy3dy2dy1.(3.13)
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Proof. The commutativity properties (3.9) and (3.10) hold by construction. It is easy to
see this from Definition 3.1 and the Piola transformation.

To prove (3.11), we use (3.1) of Proposition 3.1, which implies that pηa2 , 1qr,Dha2
�

pηa3 , 1qr,Dha3
� 1. Since x̃y � y1 whenever x � a1 (see (3.6)) we have

Sgupa1q �
»
Dha1

»
Dha2

»
Dha3

κ123upy1qdy3dy2dy1 � pηa2 , 1qr,Dha2
pηa3 , 1qr,Dha3

»
Dha1

κ1upy1qdy1.

This proves (3.11) (since similar identities obviously hold for i � 2, 3 as well).
To prove (3.12), let qpsq � p1� sqa2� sa3, 0 ¤ s ¤ 1, and e1 � ra2,a3s. Then, we have

that»
e1

Scv � tds �
» 1

0

Scvpqpsqqq1psqds,

�
» 1

0

»
Dha1

»
Dha2

»
Dha3

κ123

�
3̧

i�1

yi � vpp1 � sqy2 � sy3qgradrzλi
�
� pa3 � a2q dy3dy2dy1ds,

�
» 1

0

»
Dha1

»
Dha2

»
Dha3

κ123py3 � y2q � vpp1 � sqy2 � sy3q dy3dy2dy1ds,

�
»
Dha1

»
Dha2

»
Dha3

κ123

»
ry2,y3s

v � t ds dy3dy2dy1,

�
»
Dha2

»
Dha3

κ23

»
ry2,y3s

v � t ds dy3dy2.

Here we have used the obvious identities gradrzλ1�pa3�a2q � 0, gradrzλ2�pa3�a2q � �1,
and gradrzλ3 � pa3 � a2q � 1. The identities on the other edges follow similarly.

Finally, to prove (3.13), we use similar manipulations, with the additional observation
that

1

p°3
m�1pBrλmpxqqymq � p°3

n�1pBzλnpxqqynq
is the Jacobian arising from change of variables from x to x̃y. �

4. Quasi-interpolation operators

The next step is to study the quasi-interpolation operators that are compositions of
the canonical interpolants and the smoothers of the previous section. From here on, let
u,w P L2

rpDq and v P L2
rpDq2. The trivial extension (by zero) of these functions to L2

rpR2
�q

and L2
rpR2

�q2 will be denoted by ũ, w̃, and ṽ, resp.

Definition 4.1. Define the quasi-interpolation operators Rg
h, R

c
h, and Ro

h, by

Rg
hu � IghS

gũ, pRg
h : L2

rpDq ÞÝÑ Vh,�q,
Rc
hv � IchS

cṽ, pRc
h : L2

rpDq2 ÞÝÑWh,�q,
Ro
hw � IohS

ow̃, pRo
h : L2

rpDq2 ÞÝÑ Shq.



PROJECTORS IN WEIGHTED NORMS 9

Note that these operators are not projectors as they do not preserve functions that are
already in the finite element spaces. In the remainder of this section, we will establish
two categories of properties of these operators. The first consist of commutativity iden-
tities, collected in Lemma 4.1. The second category, collected in Lemma 4.2, consists of
norm estimates. In particular, we will prove that these quasi-interpolation operators are
uniformly bounded in the weighted L2

r-norm.

Lemma 4.1. Rg
h, Rc

h, and Ro
h satisfy the following commutativity properties:

gradrzpRg
huq � Rc

hpgradrzuq, @ u P H1
r,�pDq,(4.1)

curlrzpRc
hvq � Ro

hpcurlrzvq, @ v PHr,�pcurl, Dq.(4.2)

Proof. This is obvious from the commutativity properties in Proposition 3.2 and (2.3). �

Lemma 4.2. There exists a constant C independent of h and δ such that

}Rg
hu}2

L2
rpDq ¤

C

δ3
}u}2

L2
rpDq , @ u P L2

rpDq,(4.3)

}Rg
huh � uh}2

L2
rpDq ¤ Cδ2 }uh}2

L2
rpDq , @ uh P Vh,�,(4.4)

}Rc
hv}2

L2
rpDq ¤

C

δ3
}v}2

L2
rpDq , @ v P L2

rpDq2,(4.5)

}Rc
hvh � vh}2

L2
rpDq ¤ Cδ2 }vh}2

L2
rpDq , @ vh PW h,�,(4.6)

}Ro
hw}2

L2
rpDq ¤

C

δ
}w}2

L2
rpDq , @ w P L2

rpDq,(4.7)

}Ro
hwh � wh}2

L2
rpDq ¤ Cδ2 }wh}2

L2
rpDq , @ wh P Sh.(4.8)

Proof. Let K � ra1,a2,a3s be a fixed triangle in Th, and let DK denote the union of Dh
a1

,
Dh

a2
, and Dh

a3
.

Proof of (4.3). Due to the shape regularity of Th and the fact that ũ is the extension
of u by zero, it suffices to prove local estimate

}Rg
hu}2

L2
rpKq ¤

C

δ3
}ũ}2

L2
rpDKq ,

The nodal values of Rg
hu on K equal Sgũpaiq, which can be estimated by

|Sgũpaiq| � |
»
Dhai

κiũpyiqdyi| by (3.11),

� |pηai , ũqr,Dhai | by (3.5),

¤ }ηai}L2
rpD

h
ai
q }ũ}L2

rpD
h
ai
q ,

¤ Caphδq2rai
}ũ}L2

rpD
h
ai
q by Proposition 3.1, (3.2).(4.9)
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Therefore,

}Rg
hu}2

L2
rpKq �

»
K

����
3̧

i�1

Sgũpaiqλipxq
����
2

rpxqdx

¤ C
3̧

i�1

|Sgũpaiq|2
»
K

|λipxq|2rpxqdx,

¤ C
3̧

i�1

1

phδq2rai
}ũ}2

L2
rpD

h
ai
q h

2rK by (4.9).

Since rK ¤ rai � Ch, the ratio rK{rai can be bounded by

(4.10)
rK
rai

¤ 1 � Ch

rai
¤ 1 � C

δ

where we have used (3.4). This proves (4.3).
Proof of (4.4). Again, we only need to prove the local estimate

(4.11) }Rg
huh � uh}L2

rpKq ¤ Cδ }ũh}L2
rpDKq ,

because ũh is the extension of uh by zero and Th is quasiuniform. First observe that

|pSgũhqpaiq � uhpaiq| �
»
Dhai

κipũhpyiq � uhpaiqqdyi,

¤ max
yiPD

h
ai

|ai � yi| }gradrzũh}L8pDhai q }ηai}L1
rpD

h
ai
q

¤ Chδ }gradrzũh}L8pDhai q
�
rai � hδ

rai


1{2

by (3.3),

¤ Chδ }gradrzũh}L8pDhai q by (3.4).

Hence,

}Rg
huh � uh}2

L2
rpKq ¤ C

3̧

i�1

|pSgũhqpaiq � uhpaiq|2
»
K

|λipxq|2rpxqdx,

¤ C
3̧

i�1

phδq2 }gradrzũh}2
L8pDhai q

h2rK

¤ Cphδq2 }gradrzũh}2
L2
rpDKq ¤ Cδ2 }ũh}2

L2
rpDKq ,

where we have used Proposition 2.1 in the last step. This proves (4.11).
Proof of (4.5). Let CK denote the convex hull of Dh

a1
, Dh

a2
, and Dh

a3
. For the same

reason as in the previous proofs, it suffices to prove the local estimate

(4.12) }Rc
hv}2

L2
rpKq ¤

C

δ3
}ṽ}2

L2
rpCKq .

Let ei denote the edge connecting aj and ak. Recall that throughout, pi, j, kq denotes a

permutation of p1, 2, 3q. Since Rc
hv|K � °3

i�1p
³
ei
Scṽ � tdsqφei , with φei � �pλjgradrzλk�
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akaj

yk

aj Zkj

yj

Figure 3. Illustration of the change of variable in the proof of (4.5).

λkgradrzλjq, and since }φei}2
L2
rpKq ¤ CrK , we have

}Rc
hv}2

L2
rpKq �

»
K

�����
3̧

i�1

φeipxq
»
ei

Scṽ � t ds
�����
2

rpxqdx,

¤ C
3̧

i�1

����
»
ei

Scṽ � t ds
����
2

}φei}2
L2
rpKq ¤ CrK

3̧

i�1

����
»
ei

Scṽ � t ds
����
2

.(4.13)

Let us now bound summands. By (3.12),����
»
ei

Scṽ � t ds
���� �

�����
»
Dhaj

»
Dhak

κjk

» 1

0

ṽpp1� sqyj � sykq � pyk � yjq ds dykdyj
�����

¤ Ch

»
Dhaj

»
Dhak

|κjk|
» 1

0

|ṽpp1 � sqyj � sykq| ds dykdyj

¤ Ch

»
Dhaj

»
Dhak

|κjk|
�» 1{2

0

�
» 1

1{2



|ṽpp1� sqyj � sykq| ds dykdyj � A�B

Here we have broken the integral with respect to s into two integrals, one over s P r0, 1{2s
(named A) and the other over s P r1{2, 1s (named B).

The first can be bounded as follows:

A :�
»
Dhak

h|κk|
» 1{2

0

»
Dhaj

|κj| |ṽpp1 � sqyj � sykq| dyj ds dyk

¤
»
Dhak

h|κk|
» 1{2

0

��ηaj��L2
rpD

h
aj
q

��ṽpp1 � sqyj � sykqq
��
L2
rpD

h
aj
q
ds dyk.(4.14)

Now, consider the change of variable z � p1� sqyj � syk. Whenever 0 ¤ s ¤ 1
2
, we have

rpyjq ¤ 2p1 � sqrpyjq ¤ 2pp1� sqrpyjq � srpykqq � 2rpzq.
Hence, by Cauchy-Schwarz inequality,» 1{2

0

��ṽpp1 � sqyj � sykqq
��
L2
rpD

h
aj
q
ds �

» 1{2

0

�»
Dhaj

rpyjq|ṽpp1 � sqyj � sykqq|2 dyj
�1{2

ds

¤ C

�» 1{2

0

»
Zkj

rpzq |ṽpzq|2 dz

p1 � sq2 ds
�1{2

,
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akaj

yk

yj Ljk

Figure 4. A domain of integration by parts in the proof of (4.6)

where Zkj is the transformed domain under the change of variable – see Figure 3. Clearly,
p1 � sq�2 ¤ 4 and Zkj � CK . Therefore, continuing from (4.14) and using (3.2),

A ¤ Chaphδq2raj
}ṽ}L2

rpCKq }ηak}L1
rpD

h
ak

q.

By (3.3),

(4.15) }ηak}L1
rpD

h
ak

q ¤ C

�
1 � hδ

rak



¤ C,

where we have also used (3.4). Hence

(4.16) A ¤ C

δ
?
raj

}ṽ}L2
rpCKq .

By a similar argument, we can bound the other integral B as well. Thus, returning
to (4.13), we have

}Rc
hv}2

L2
rpKq ¤

C

δ2

�
rK
raj

� rK
rak



}ṽ}2

L2
rpCKq .

Estimating the ratios as before – see (4.10) – we prove (4.12).
Proof of (4.6). To perform a similar argument leading to (4.6), we now need to bound

| ³
e1
pScṽh � vhq � t ds|. To this end, we will use an integration by parts over the area Ljk

enclosed by the line segments raj,aks, rak,yks, ryk,yjs and ryj,ajs (see Figure 4), namely����
»
L

curlrzṽhdx

���� �
�����
»
raj ,aks�rak,yks�ryk,yjs�ryj ,ajs

ṽh � tds
����� .

Beginning with (3.12) and using the above,����
»
ei

pScṽh � vhq � tds
���� �

�����
»
Dhaj

»
Dhak

κjk

�»
ryj ,yks

ṽh � t ds�
»
raj ,aks

vh � t ds
�
dykdyj

�����
¤
»
Dhaj

»
Dhak

|κjk|
� �����

»
Ljk

curlrzṽh dx

������
�����
»
raj ,yjs

ṽh � t ds
�����

�
����
»
rak,yks

ṽh � t ds
����


dykdyj

¤
»
Dhaj

»
Dhak

|κjk|Chδ
�
h }curlrzṽh}L8pLjkq � }ṽh}L8pCKq

	
dykdyj,
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ak

aj

ai

yk

yj

yi

K̃y

K

Figure 5. K is mapped to K̃y under the map x ÞÑ x̃y for each choice of ty`u.

where we have used that |Ljk| ¤ Chphδq, |raj,yjs| ¤ Chδ, and |rak,yks| ¤ Chδ. Thus,����
»
ei

pScṽh � vhq � tds
���� ¤ Chδ

�
h }curlrzṽh}L8pCKq � }ṽh}L8pCKq

	
}ηaj}L1

rpD
h
aj
q}ηak}L1

rpD
h
ak

q.

The L1
r-norms above are uniformly bounded – see (4.15). Hence, using Proposition 2.1

and proceeding as in (4.13), we reach

}Rc
hvh � vh}2

L2
rpKq ¤ CrKh

2δ2 }ṽh}2
L8pCKq ¤ Cδ2 }ṽh}2

L2
rpCKq ,

thus completing the proof of (4.6).
Proof of (4.7). Let

J � det

�
dx̃y

dx



�
�

3̧

m�1

pBrλmqym
�
�
�

3̧

n�1

pBzλnqyn
�

be the Jacobian appearing in the definition of So – see (3.8). Let K̃y denote the image of
K under the map x ÞÑ xy (see Figure 5). Obviously,

(4.17) |J | � |K̃y|
|K| ¤ C.

Then, by (2.6),

}Ro
hw}2

L2
rpKq � }IohSow̃}2

L2
rpKq �

»
K

rpyq
����φK 1

|K|
»
K

Sow̃ dx

����
2

dy

¤ C
rK
h2
K

����
»
K

Sow̃ dx

����
2

,(4.18)
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so now we proceed to estimate the last term. Let T` �
 
x P K : λ`pxq ¡ 1

3

(
, for 1 ¤ ` ¤ 3.

Then we may overestimate the integral by

(4.19)

»
K

Sow̃ dx ¤
3̧

`�1

����
»
T`

Sow̃ dx

���� .
We will now bound the first summand (and the others will be similarly bounded). By
Fubini’s theorem and Cauchy-Schwarz inequality,����
»
T1

Sow̃ dx

���� ¤
»
T1

»
Dha1

»
Dha2

»
Dha3

|κ123J | |wpx̃yq| dy3dy2dy1 dx

�
»
Dha2

»
Dha3

|κ23|
�»

T1

»
Dha1

rpy1q
��ηa1py1qwpx̃yq J

�� dy1 dx

�
dy3 dy2

¤ }ηa1}L2
rpD

h
a1
q

a
|T1| |J |

»
Dha2

»
Dha3

|κ23|
�»

T1

»
Dha1

rpy1q|wpx̃yq
��2|J | dy1dx

�1{2

dy3dy2(4.20)

To estimate the integral in parenthesis, we first observe that since 1{λ1pxq   3 for all
x P T1, the inequality

rpy1q �
1

λ1pxqλ1pxq rpy1q   3rpλ1pxqy1q
¤ 3 prpλ1pxqy1q � rpλ2pxqy2q � rpλ3pxqy3qq � 3rpx̃yq

holds, so »
T1

»
Dha1

rpy1q|wpx̃yq|2|J | dy1 dx ¤ C

»
T1

»
Dha1

rpx̃yq|wpx̃yq|2|J | dy1 dx

� C

»
Dha1

»
T̃1

rpzq|wpzq|2 dz dy1

¤ Cphδq2}w}2
L2
rpCKq,

where T̃1 is the image of T1 under the map x ÞÑ x̃y and we have used the bound for
its Jacobian in (4.17). Thus, returning to (4.20), using the above estimate together with
Proposition 3.1,����

»
T1

Sow̃ dx

���� ¤ Caphδq2ra1

hphδq}w}L2
rpCKq

»
Dha2

»
Dha3

|κ23| dy3 dy2.

Due to (4.15), this estimate simplifies to����
»
T1

Sow̃ dx

���� ¤ Ch?
ra1

}w}L2
rpCKq

A similar estimate holds for all the three integrals in (4.19).
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Therefore, returning to (4.18) we find that

}Ro
hw}2

L2
rpKq ¤ C

�
rK
ra1

� rK
ra2

� rK
ra3



}w}2

L2
rpCKq

and the proof is finished by the estimate (4.10).
Proof of (4.8). On the element K, by virtue of (3.1), we can write

pRo
hwh � whq

��
K
� 1

|K|
»
K

»
Dha1

»
Dha2

»
Dha3

κ123

�
J whpx̃yq � whpxq

�
dy3dy2dy1 dx.

� 1

|K|
»
Dha1

»
Dha2

»
Dha3

κ123

�»
K̃y

whpzq dz �
»
K

whpxq dx
�
dy3dy2dy1

by a change of variables. The difference of the integrals within the parenthesis can be
written as integrals over small domains. Indeed,»

K̃y

whpzq dz �
»
K

whpxq dx �
»
K̃yXK

pwhpzq � whpzqq dz

�
»
K̃yzK

whpzq dz �
»
KzK̃y

whpxq dx,

where the first integral on the right hand side vanishes, and the remaining can be bounded
using |pK̃yzKq Y pKzK̃yq| ¤ Chphδq – see Figure 5. Thus,

}Ro
hwh � wh}2

L2
rpKq ¤

Ch2rK
|K|2 h2phδq2}w̃h}2

L8pCKq

¤ Cδ2}w̃h}2
L2
rpKq

by Proposition 2.1. This proves the last estimate (4.8). �

5. The main result

In this section we state and prove our main theorem on the existence of the com-
muting projectors bounded in the weighted L2

r-norms. As already mentioned, the quasi-
interpolation operators obtained in the previous section are not projectors. So in this
section, we modify these operators to obtain projections. The definitions of the final
projections appear below in Definition 5.1 and the main result is Theorem 5.1.

The basic idea, again due to [27], stems from the observation that each of the op-
erators Rg

h, R
c
h and Ro

h, when restricted to their respective range finite element spaces
(Vh,�,Wh,�, Sh, resp.) are invertible for small δ.

Lemma 5.1. There are operators

Jgh : Vh,� Ñ Vh,�, J ch : Wh,� ÑWh,�, Joh : Sh Ñ Sh,

and a δ1 ¡ 0 such that for all 0   δ   δ1, the operators Rg
h|Vh,� , Rc

h|Wh,�
, and Ro

h|Sh are
invertible, their inverses are Jgh , J

c
h, and Joh, resp., and their operator norms satisfy

}Jgh}L2
rpDq ¤ 2, }J ch}L2

rpDq ¤ 2, }Joh}L2
rpDq ¤ 2.
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Proof. Considering any one of the three operators, say Rc
h|Wh,�

, we note that by (4.6),
there exists a δ1 such that the L2

r-operator norm of pI � Rc
hq|Wh,�

is less than 1{2 for all
δ   δ1. Consequently, by a standard Neumann series argument, the series

(5.1) J ch :� �
I � pI �Rc

hq|Wh,�

��1 �
8̧

m�0

pI �Rc
h|Wh,�

qm,

converges in L2
rpDq-norm, the inverse pRc

h|Wh,�
q�1 � �

I � pI �Rc
hq|Wh,�

��1
exists (which

we denote by J ch), and moreover the norm bound

}J ch}L2
rpDq ¤ 1

1� }pI �Rc
hq|Wh,�

}L2
rpDq

¤ 1

1 � p1{2q � 2,

holds. Similarly the other two inverses exist and the same bound holds. �

For the rest of the paper, we fix a δ P p0, δ1s, where δ1 is as given by Lemma 5.1. From
now on, we will let our generic constant C depend on (this fixed) δ. It will continue to
remain independent of the mesh size h and the functions being estimated. We can now
give the final definition of the smoothed projectors.

Definition 5.1. Define Πg
h : L2

rpDq Ñ Vh,�, Πc
h : L2

rpDq2 ÑWh,�, and Πo
h : L2

rpDq Ñ Sh by

Πg
h � JghR

g
h, Πc

h � J chR
c
h, Πo

h � JohR
o
h.

Theorem 5.1. The above operators are projectors and have the following properties:

(1) Continuity. There exists a C ¡ 0 such that

}Πg
hu}L2

rpDq ¤ C}u}L2
rpDq, @u P L2

rpDq,
}Πc

hv}L2
rpDq ¤ C}v}L2

rpDq, @v P L2
rpDq2,

}Πo
hw}L2

rpDq ¤ C}w}L2
rpDq, @w P L2

rpDq.
(2) Commutativity. The operators satisfy the following commuting diagram:

(5.2)

H1
r,�pDq

gradrzÝÝÝÝÑ Hr,�pcurl, Dq curlrzÝÝÝÑ L2
rpDq���Πgh

���Πch

���Πoh

Vh,�
gradrzÝÝÝÝÑ W h,�

curlrzÝÝÝÑ Sh.

(3) Approximation. For all 0 ¤ s ¤ 1,
(a) }u� Πg

hu}r ¤ Chs }u}Hs
r pDq for all u P Hs

r pDq.
(b) }v � Πc

hv}r ¤ Chs }v}Hs
r pDq for all v P Hs

r pDq2.

(c) }w � Πo
hw}r ¤ Chs }w}Hs

r pDq for all w P Hs
r pDq.

Proof. First, to verify that the operators are projectors, we observe that by Lemma 5.1,

pΠg
hq2u � JghR

g
hJ

g
hR

g
hu � JghpRg

h|Vh,�JghqRg
hu � JghR

g
hu � Πg

hu,

so Πg
h is a projector. Similarly, the other two operators are also projectors.

The continuity estimates follow from the estimates of Lemma 4.2 and Lemma 5.1. For
instance, }Πc

h}L2
rpDq ¤ }J ch}L2

rpDq}Rc
h}L2

rpDq ¤ 2Cδ�3{2.
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The commutativity identities follow from the commutativity properties of the Rh-
operators stated in Lemma 4.1 and those of the Jh-operators. The latter follows from
the former. For example, let J chvh � wh for vh,wh P Wh,�. Then, Rc

hwh � vh and
curlrzvh � curlrzpRc

hwhq � Ro
hcurlrzwh. Thus,

(5.3) Johpcurlrzvhq � JohpRo
hcurlrzwhq � curlrzwh � curlrzpJ chvhq,

for all vh PWh,�. Hence,

curlrzpΠc
hvq � curlrzpJ chRc

hvq � JohcurlrzpRc
hvhq by (5.3)

� JohR
o
hcurlrzvh by Lemma 4.1.

� Πo
hcurlrzvh.

This proves the commutativity property in the right end of the diagram (5.2). The
remaining identities are proved similarly.

To prove the approximation estimates, consider a general vh P Wh,�. Since Πc
h is a

projection Πc
hvh � vh. Hence,

}v � Πc
hv}L2

rpDq � }pv � vhq � Πc
hpv � vhq}L2

rpDq

¤ p1 � Cq}v � vh}L2
rpDq

for any vh PWh,�. Hence taking the infimum over vh,

}v � Πc
hv}L2

rpDq ¤ C inf
vhPWh,�

}v � vh}L2
rpDq.

Similar inequalities hold for the other two projectors as well.
It remains to bound the best approximation error using approximants with known

convergence rates in the weighted norms. In the case of Sh, this is standard (see e.g., [4,
Lemma 5]). In the case of Wh,� and Vh,�, this follows from [12]. Namely, the interpolants
constructed in [12, Lemma 5.3] show that for all v P H1

r pDq2 and u P H1
r pDq, there are

vh PWh,� and uh P Vh,� such that

}v � vh}L2
rpDq ¤ Ch|v|H1

r pDq,

}u� uh}L2
rpDq ¤ Ch|u|H1

r pDq.

Thus the estimates of item (3) are proved for the case s � 1. The same estimates in the
case s � 0 trivially follow item (1). For all intermediate values of s, the estimates follow
by the standard theory of interpolation of operators [5]. �

Remark 5.1. We considered the weight function r because of its many applications in
axisymmetric problems. But the techniques are generalizable to handle other weight
functions. The crucial estimates are those of Lemma 4.2. One would need to generalize
them to the case of the particular weight function of interest.

Remark 5.2. The quasi-interpolants of the previous section themselves have approxima-
tion properties (even though they are not projectors). It may be possible to quantify
these properties in the higher order case by varying ` in Proposition 3.1. But note that
in our analysis we have only used the ` � 0 case of the proposition.
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6. Application to axisymmetric Maxwell equations

In this section, we will use the commuting projectors of Section 5 to prove a convergence
result for the edge finite element approximation of the so-called “meridian” subproblem of
the axisymmetric Maxwell system. The three-dimensional (3D) time harmonic Maxwell
equations decouples into two two-dimensional (2D) problems: one called the azimuthal
problem and the other the meridian problem [3, 12]. The meridian problem is posed on
the right half of the rz-plane (sometimes called the meridian half-plane). It finds the r
and z components of the electric field, i.e., Erz � Erer � Ezez. The components Er and
Ez are functions of r and z alone (as there is no θ dependence due to axial symmetry).

The meridian problem is to find Erz satisfying

(6.1) curlrz

�
1

µ
curlrzErz



� κ2εErz � F ,

where the scalar-valued curlrz is as defined in (2.1), the vector-valued curl is defined by

curlrzψ � p�Bzψ, r�1Brprψqq,
the material coefficient µ represents magnetic permeability, ε is the dielectric constant,
F represents given sources, all of which are axisymmetric, and κ is the wavenumber.
Recall that D � R2

� denotes the restriction of the original axisymmetric 3D domain,
which we will call Ω � R3, to the meridian half-plane, i.e., Ω is obtained by rotating
D about the z-axis. Recall that we have assumed that D has Lipschitz boundary, Γ1

is connected, and D is simply connected. This implies that BΩ is Lipschitz. We are
able to perform the analysis with this minimal regularity on BΩ due to the low-regularity
projectors constructed earlier.

Perfect electric boundary conditions on BΩ translates to the boundary conditionErz�t �
0 on Γ1, where t denotes the unit tangent vector. For error analysis, we consider a
model problem for real-valued functions with this boundary condition, together with unit
material properties. Its weak formulation is to find u PHr,�pcurl, Dq such that

(6.2) Apu,vq � pF ,vqr, @ v PHr,�pcurl, Dq,
where A : Hr,�pcurl, Dq �Hr,�pcurl, Dq ÞÑ R is the bilinear form defined by

Apu,vq � pcurlrzu, curlrzvqr � κ2pu,vqr.
There is a countable set of real values κ for which (6.2) does not have a unique solution [21].
Throughout this paper, we will assume that κ is chosen so that κ2 is not a Maxwell
eigenvalue. Then (6.2) is uniquely solvable.

The corresponding discrete problem is to find uh PWh,� such that

(6.3) Apuh,vhq � pF ,vhqr,
for all vh PWh,�. For brevity, let us denote the Hrpcurl, Dq-inner product by

pu,vqΛ � pcurlrzu, curlrzvqr � pu,vqr,
and the corresponding norm by }v}Λ � pv,vq1{2Λ . The following error estimate is the main
new result we will prove in this section. Note that an error estimate for the positive
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definite problem (obtained by replacing Ap�, �q by p�, �qΛ in (6.3)) follows from the analysis
in [12, Theorem 6.1]. However, the analysis of our indefinite problem is more involved.

Theorem 6.1 (Quasioptimality). Suppose (6.2) has a unique solution u PHr,�pcurl, Dq.
Then, there are constants h0 and C such that, for all 0   h   h0, (6.3) also has a unique
solution uh, and

(6.4) }u� uh}Λ ¤ C inf
whPWh,�

}u�wh}Λ .

The constants h0 and C depend on κ but are independent of u,uh, and h.

Similar results are well known for the standard (unweighted) Maxwell system. One
of the first such results for the time-harmonic 3D system was proved by Monk in [20]
using a variation of the Schatz [25] duality argument. These techniques were refined
and used in [15, 17] for preconditioning purposes using the new tools introduced in [1].
These works in turn prompted the development of a cleaner error analysis for the 3D
Maxwell equations [22]. All these developments are summarized in the book [21, § 7.2]
which also details what is now considered the standard proof of quasioptimality of edge
element approximations of the 3D Maxwell system. The technique we will employ to
prove Theorem 6.1 follows along the lines of this standard proof. We make a few further
simplifications, possible due to the availability of the Schöberl projectors (constructed in
the previous section). However, we need a few new ingredients to handle the additional
complications resulting from our degenerate weight function. We begin with a regularity
result for the meridian problem (6.2).

Lemma 6.1. Suppose F P L2
rpDq2 satisfies

(6.5) pF ,gradrzφqr � 0 @ φ P H1
r,�pDq,

and suppose u solves (6.2). Then

}u}
H

1
2
r pDq

� }curlrzu}
H

1
2
r pDq

¤ C }F }r .

Proof. We use the available 3D regularity results. For any Sobolev space XpΩq, we will
use X̆pΩq to indicate its subspace of axisymmetric (scalar or vector) functions. Given a
2D vector field vpr, zq � pvrpr, zq, vzpr, zqq on D, we define its revolution as a 3D vector
field vΩpxq on Ω by vΩpr, θ, zq � vrpr, zqer � 0eθ � vzpr, zqez.

By the isomorphisms of axisymmetry in [3] (such as between L̆2pΩq and L2
rpDq), we

know that uΩ P H̆0pcurl,Ωq and F Ω P L̆2pΩq2. Moreover, it was shown in [12] that
condition (6.5) implies that pF Ω,grad ζqr � 0 for all ζ P H1

0 pΩq. Therefore, by taking
derivative in the sense of distributions, pdivF Ω, ζq � 0 for all ζ P DpΩq, and so divF Ω � 0
in L2pΩq. Similarly a direct calculation from (6.2) shows that curl curluΩ�κ2uΩ � F Ω.
All together, we have that uΩ P H̆0pcurl,ΩqXH̆pdiv,Ωq. Therefore, since BΩ is Lipschitz,
applying the 3D result of [13, Theorem 2], we obtain

||uΩ||
H

1
2 pΩq

� || curluΩ||
H

1
2 pΩq

¤ ||F Ω||L2pΩq.

Now, it is known that [3] the spaces H̆
1
2 pΩq and H

1
2
r pDq �H

1
2
r pDq �H

1
2
r pDq are isomor-

phic. Since the θ-component of curluΩ is curlrzu, this implies the stated result. �
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The next lemma concerns a “solenoidal” projection operator S. For any wh P Wh,�

define Swh P Hr,�pcurl, Dq, together with Pwh P L2
rpDq, as the unique solution of the

dual mixed variational equations

pSwh,vqr � pPwh, curlrzvqr � 0, @ v in Hr,�pcurl, Dq,(6.6)

ps, curlrzSwhqr � ps, curlrzwhqr, @ s in L2
rpDq.(6.7)

(Note that setting v to gradients, we can conclude that Swh is solenoidal.)

Lemma 6.2. Let wh PWh,� satisfy pwh,gradrzφhqr � 0 for all φh P Vh,�. Then

}Swh �wh}r ¤ Ch
1
2 }curlrzwh}r .

Proof. By the exactness of the sequence (2.2), we know that wh � curl1rzph, for some
ph P Sh, where curl1rz : Sh ÑWh,� denotes the L2

r-adjoint of curlrz : Wh,� Ñ Sh, i.e.,

pwh,vhqr � pph, curlrzvhqr � 0, @ vh PWh,�.

Subtracting this from (6.6), we obtain

(6.8) pSwh �wh,vhqr � pPwh � ph, curlrzvhqr � 0, @ vh PWh,�.

Now let vh � Πc
hSwh�wh. Then curlrzvh � Πo

hcurlrzpSwhq� curlrzwh by Theorem 5.1.
Moreover, by (6.7), curlrzpSwhq � curlrzwh. Since Πo

h is a projector, this implies that
curlrzvh � 0. Thus (6.8) implies

}Swh �wh}r ¤ }Swh � Πc
hSwh}r ¤ Ch

1
2 }Swh}

H
1
2
r pDq

.

Now, by a minor modification of [11, Theorem 3.2] to domains with Lipschitz boundary
(using [13]) we obtain }Swh}

H
1
2
r pDq

¤ C}curlrzwh}r. This completes the proof. �

Proof of Theorem 6.1. If the result holds, then the wellposedness of problem (6.3)
follows, so we only need to prove the error estimate for small enough h. Let e � u� uh,
and let wh PWh,� be arbitrary. Then Ape,whq � 0, so

}e}2
Λ � Λpe,u�whq � Λpe,wh � uhq,
¤ }e}Λ }u�wh}Λ � Ape,wh � uhq � p1 � κ2qpe,wh � uhqr,
� }e}Λ }u�wh}Λ � p1� κ2qpe,wh � uhqr.(6.9)

Next, we approximate pe,wh � uhqr in two parts. Let e � gradrzψ � β be the unique
Helmholtz decomposition in the weighted spaces, i.e., ψ P H1

r,�pDq and β PHr,�pcurl, Dq.
A discrete Helmholtz decomposition in weighted spaces is also available from [11], which
we use to decompose wh � uh � gradrzξh � curl1rzsh with ξh P Vh,� and sh P Sh. Then
pgradrzψ,gradrzξhqr � pe,gradrzξhqr � �κ�2Ape,gradrzξhq � 0. Hence,

pgradrzψ,wh � uhqr � pgradrzψ, curl1rzshqr � pgradrzψ, curl1rzsh � Spcurl1rzshqqr,
¤ }e}r }curl1rzsh � Spcurl1rzshq}r ,
¤ Ch

1
2 }e}r }curlrzpcurl1rzshq}r
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by Lemma 6.2. Thus, we have

(6.10) pgradrzψ,wh � uhqr ¤ Ch
1
2 }e}r }curlrzpwh � uhq}r

which bounds a part of pe,wh � uhqr.
To bound the β-component, let z PHr,�pcurl, Dq be the solution of

Apz,vq � pβ,vqr @ v PHr,�pcurl, Dq.
Then,

}β}2
r � pβ, eqr � Apz, eq � Apz � Πc

hz, eq ¤ C }z � Πc
hz}Λ }e}Λ .

By Theorem 5.1, }z � Πc
hz}r ¤ Ch1{2}z}

H
1
2
r pDq

. Moreover, by the commutativity,

}curlrzpz � Πc
hzq}r � }pI � Πo

hqcurlrzz}r ¤ Ch1{2}curlrzz}
H

1
2
r pDq

.

Hence,

}β}2
r ¤ Ch

1
2

�
}z}

H
1
2
r pDq

� }curlrzz}
H

1
2
r pDq



}e}Λ

¤ Ch
1
2 }β}r }e}Λ

by Lemma 6.1. This together with (6.10) implies that

(6.11) pe,wh � uhqr ¤ Ch
1
2 }e}Λ }wh � uh}Λ.

Therefore, returning to (6.9),

}e}2
Λ ¤ }e}Λ }u�wh}Λ � Ch

1
2 }e}Λ }wh � uh}Λ

¤ }e}Λ }u�wh}Λ � Ch
1
2 }e}Λ }wh � u}Λ � Ch

1
2 }e}2

Λ .

Thus, we have proved that for any wh PWh,�,

||u� uh||Λ ¤ 1 � Ch
1
2

1 � Ch
1
2

||u�wh||Λ,

whenever 1�Ch 1
2 ¡ 0, a condition satisfied for all 0   h   h0 if we choose h0   1{C2. �

To conclude the discussion of this application, we present results from a numerical
experiment. The above theory does not tell us the value of the quasioptimality constant C
in Theorem 6.1. To get some indication of how large this constant is in a typical example,
we let D be the unit square on the meridian half-plane, split by a uniform mesh of triangles
(with positively sloped diagonals) of mesh size h � 1{128. We compute the approximate
solution by solving (6.3), but with the non-homogeneous boundary condition u�t � g. We
set F � p0, 0q and choose g so that the exact solution is u � κJ0pκrqez � curlrzpJ1pκrqq.
Let DE denote the discretization error }u� uh}Λ. We are interested in comparing this
to the error in best approximation, namely the infimum appearing on the right hand side
of (6.4), which we denote by BAE. Theorem 6.1 asserts that DE/BAE is bounded by C.
To see the practical manifestation of this result, we plot DE/BAE as a function of κ in
Figure 6(a). Note that here, as we increase the wavenumber κ, we adjust the mesh size h
so that κh � 0.78, resulting in approximately 8 points per wavelength. When κh is held
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Figure 6. The ratio of discretization and best approximation errors vs. wavenumber

fixed, the relative best approximation error (BAE{}u}Λ) remains approximately constant
(about 18%) independent of κ, as seen from the second curve in Figure 6(a). However,
the first curve shows that the ratio DE/BAE increases from the optimal value of 1 as κ
is increased. We therefore expect the quasioptimality constant C to also increase with κ.
This is evidence of the well-known pollution effect.

For cavity problems like (6.2), we also expect C to grow as we approach a cavity
resonance. To see this, we study the dependence with κ, in finer resolution, in the smaller
interval r0.2, 6s, for the same problem. This time, we fix h � 1{128, so there are mesh
points aplenty per wavelength. The relative BAE (shown in Figure 6(b)) ranges from
0.1% to 1% for κ in r0.2, 6s. In this interval, there are 6 cavity resonances – see e.g., [14,
Appendix] for the TM Maxwell eigenvalues on a cylinder. As seen from the two spikes
in Figure 6(b), our data seems to excite two of these modes more than the others. The
spikes are near two of the eigenvalues.

Appendix A. Proof of Propositions 2.1 and 3.1

Both proofs involve scaling arguments where the weight function must be explicitly
mapped. Due to the degeneracy of the weight function we must work with more than one
reference domain, as we will see.

Proof of Proposition 2.1. If K is an element that has no vertex on Γ0, all the stated
inequalities follow easily from their standard (unweighted) analogues, so we only need
to prove that they hold also on the remaining K P Th. These remaining elements can
be classified in two types: For n � 1 or 2, we say that a triangle K is of type n if K
has exactly n vertices on Γ0. We define two reference triangles in the r̂ẑ-plane, namely,
K̂1 � rp0, 0q, p1, 1q, p1,�1qs and K̂2 � rp0,�1q, p1, 0q, p0, 1qs (see e.g., [12, Figure 1]).

Clearly, type n triangles are in affine homeomorphism with K̂n.
We will prove only the last inequality as the others are similar. Let K be of type 1

with vertices ai such that a1 is on the z-axis. Let F be the affine map that maps K̂1
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one-one onto K such that a1 is mapped to p0, 0q. Let v P P` be mapped to v̂ on K̂1 by
v̂pr̂, ẑq � vpr, zq. Clearly, by the equivalence of norms on finite dimensional spaces, there

exists a Ĉ depending only on ` such that

(A.1) }v̂}L8pK̂1q
¤ Ĉ}v̂}L2

r̂pK̂1q
.

Setting ri � rpaiq, let us note that r � r2λ2 � r3λ3 is mapped under F to r̂. Hence, the
right hand side can be bounded by»

K̂1

r̂|v̂|2 dx̂ �
»
K

pλ2 � λ3q|v|2 |K̂1|
|K| dx ¤ maxpr�1

2 , r�1
3 q

»
K

r|v|2 |K̂1|
|K| dx.

Since the L8-norm is unchanged under the F -mapping, (A.1) implies

(A.2) rKh
2
K}v}2

L8pKq ¤ Ĉ2 max

�
rK
r2

,
rK
r3



h2
K |K̂1|
|K| }v}2

L2
rpKq.

By the shape regularity of Th, neither r2 nor r3 can be smaller than Ch. Since K has a
vertex on the z-axis, we also know that rK ¤ Ch. Hence (A.2) implies rKh

2
K}v}2

L8pKq ¤
C}v}2

L2
rpKq and the proof is complete for type 1 triangles.

For type 2 triangles, the proof uses similar arguments using a map F that maps the
edge of K̂2 on the z-axis to the edge of K on the z-axis. We omit the details. �

Proof of Proposition 3.1. We prove the result in each of the three cases of Figure 1.
In each case, we have a different “reference” domain.

Case 1. In this case, a � p0, azq and Da � tpr, zq : r2 � pz� azq2 ¤ ρ2 and r ¥ 0u. The
reference domain in this case is

D̂1 � tpr̂, ẑq : r̂2 � ẑ2 ¤ 1, and r̂ ¥ 0u.
Consider the mapping

r̂ � r

ρ
, ẑ � z � az

ρ
, por r � r̂ρ, z � ρẑ � azq.

This map takes D̂1 one-one onto to Da and the Jacobian is ρ�2.
On the reference domain, define η̂1 P P̂` by

(A.3)

»
D̂1

r̂ η̂1p̂ dr̂dẑ � p̂p0q @ p̂ P P̂`,

where P̂` denotes the space of polynomials in r̂ and ẑ of degree at most `. Set

(A.4) ηapr, zq � 1

ρ3
η̂1pr̂, ẑq.

We will prove that this ηa satisfies all the stated properties.
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To prove (3.1), we observe that by change of variables p̂pr̂, ẑq � ppr, zq,»
Da

r ηapr, zqppr, zq drdz �
»
D̂1

pr̂ρq 1

ρ3
η̂1pr̂, ẑqp̂pr̂, ẑqρ2 dr̂dẑ by (A.4),

�
»
D̂1

r̂ η̂1p̂ dr̂dẑ,

� p̂p0q � ppaq, by (A.3),

for all p P P`.
The estimate (3.2) follows from (3.1). Indeed, since ηa P P`,

}ηa}2
r,Da

�
»
Da

ηapr, zq2r drdz � ηapaq � η̂1p0q
ρ3

¤ C

ρ2ra
.

Here we have used (A.4) and the fact that η̂1 is a fixed function on the reference domain
and ra � ρ in Case 1.

The last estimate (3.3) follows from (3.2) and Cauchy-Schwarz inequality:

}ηa}2
L1
rpDaq

¤
�»

Da

r dx



}ηa}2

L2
rpDaq

¤ max
xPDa

rpxq|Da| C
ρ2ra

¤ C
pra � ρq
ra

(A.5)

since |Da| � πρ2 and ra � ρ.

Case 2. Now a is a point in R2
� not on the z-axis, andDa � tpr, zq : pr�arq2�pz�azq2 ¤

ρ2u. The transformation

(A.6) r̂ � r � ar
ρ

and ẑ � z � az
ρ

, por r � ar � ρr̂, and z � az � ρẑq

maps Da one-one onto the “reference” domain D̂2 � tpr̂, ẑq : r̂2 � ẑ2 ¤ 1u. Define

η̂2pr̂, ẑq P P̂` and η̂2,αpr̂, ẑq P P̂` by»
D̂2

α η̂2,αp̂ dr̂dẑ � p̂p0q for all p̂ P P̂`,(A.7)

for any positive function αpr̂, ẑq bounded above and below on D̂2. Define ηa P P` by

(A.8) ηapr, zq � 1

ρ2
η̂2,αpr̂, ẑq, with α � ar � ρr̂.

Note that when the linear function r in the rz-plane is mapped over to the r̂ẑ-plane
by (A.6), we obtain the above αpr̂, ẑq. Hence, for any polynomial p̂pr̂, ẑq � ppr, zq,»

Da

rηapr, zqppr, zqdrdz �
»
D̂2

par � ρr̂q 1

ρ2
η̂2,αpr̂, ẑqp̂pr̂, ẑqρ2 dr̂dẑ �

»
D̂2

α η̂2,αp̂ dr̂dẑ

� p̂p0q � ppaq,
for all p P P`. This proves (3.1).

Next, to prove (3.2), we will first show that

(A.9) η̂2,αp0q ¤ C

min
ŷPD̂2

αpŷq .
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Let η̂2 � η̂2,1, i.e., η̂2 equals η̂2,α defined by (A.7) with α set to 1. Then, since η̂2α P P̂`,

}η̂2,α}2
L2
αpD̂2q

� η̂2,αp0q �
»
D̂2

η̂2η̂2,αdr̂dẑ

¤ }η̂2}L2pD̂2q

�
min
ŷPD̂2

pαpŷqq

�1{2

}η̂2,α}L2
αpD̂2q

.

Thus,

η̂2,αp0q � }η̂2,α}2
L2
αpD̂2q

¤ C

minŷPD̂2
pαpŷqq ,

where C � }η̂2}2
L2pD̂2q

depends only on the fixed reference domain. This proves (A.9).
Hence,

}ηa}2
L2
rpDaq

� ηapaq by (3.1), since ηa P P`,
� 1

ρ2
η̂2,αp0q by (A.8),

¤ C

ρ2 min
ŷPD̂2

pαpŷqq by (A.9),

� C

ρ2 min
yPDa

prpyqq .

The last equality holds, since αpr̂, ẑq � r at any point pr̂, ẑq mapped to pr, zq. This
completes the proof of (3.2) for Case 2.

The proof of (3.3) proceeds as in Case 1 – see (A.5) – using (3.2).

Case 3. Now Da is the closed disk with center ã and radius ρ, where ã � pãr, ãzq is
obtained by �

ãr
ãz



�
�
ar
az



� c

�
cos θ � sin θ
sin θ cos θ


�
ρ
0



,

for some fixed angle θ ¥ 0. Consider the mapping�
r̂
ẑ



� 1

ρ

�
cos θ sin θ

� sin θ cos θ


�
r � ar
z � az



,

or, equivalently,

(A.10)

�
r
z



�
�
ar
az



� ρ

�
cos θ � sin θ
sin θ cos θ


�
r̂
ẑ



.

It is straightforward to show that this map sends the disk Da in the rz-plane one-one
onto the disk

D̂3 � tpr̂, ẑq : pr̂ � cq2 � ẑ2 ¤ 1u
in the r̂ẑ-plane. Since c is fixed, D̂3 forms our third fixed “reference” domain. Note that
the Jacobian of the change of variables from pr, zq to pr̂, ẑq is again ρ2.
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As in the previous case, we now define η̂3,α P P̂` by»
D̂3

α η̂3,αp̂ dr̂dẑ � p̂pc, 0q for all p̂ P P̂`,(A.11)

for any positive bounded function αpr̂, ẑq on D̂3. Next, we define ηa P P` by

(A.12) ηapr, zq � 1

ρ2
η̂3,αpr̂, ẑq,

after setting
αpr̂, ẑq � ar � ρr̂ cos θ � ρẑ sin θ.

It is obvious from (A.10) that this choice of αpr̂, ẑq is obtained by mapping the linear
function r to the r̂ẑ-plane. Therefore,»

Da

rηapr, zqppr, zq drdz �
»
D̂3

αpr̂, ẑq 1

ρ2
η̂3,αpr̂, ẑqp̂pr̂, ẑqρ2 dr̂dẑ � p̂pc, 0q � ppaq.

This proves (3.1).
The proofs of (3.2) and (3.3) proceed similarly as in the previous cases, after one proves

that

(A.13) η̂3,αpc, 0q ¤ C

min
ŷPD̂3

αpŷq ,

which is the analogue of (A.9) of Case 2. �
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