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Under some conditions, spontaneous coherent pulsations are known to occur in the output beams of inhomo-
geneously broadened laser oscillators. These lasers typically operate with a Gaussian transverse field distri-
bution, while the corresponding theoretical models assume a uniform-plane-wave field. The effects of a Gauss-
ian field on the stability criteria of single-mode inhomogeneously broadened ring laser oscillators are
considered in this study. It is found that in comparison to a plane wave a Gaussian field variation still permits
low-threshold spontaneous pulsations but reduces the parameter space over which these pulsations can be
observed. © 2009 Optical Society of America

OCIS codes: 270.3430, 270.3100, 020.1670, 140.3460.

1. INTRODUCTION
Spontaneous pulsation instabilities have been observed
and studied in laser oscillators almost since the first laser
was operated [1]. Most of the early theoretical studies of
laser dynamics were based on rate equations that provide
a mathematical description of the time-dependent plane-
wave intensities and spatially uniform population densi-
ties, and such models were useful in interpreting many of
the experimentally documented laser behaviors. The sim-
plest rate equation laser models were, however, found to
be stable, so the interpretation of laser instabilities re-
quired additional considerations or more complicated de-
scriptions of the underlying physics. A familiar example is
the spiking behavior that is observed in pulsed and cw
ruby lasers and the difficulty in finding a satisfactory ex-
planation.

One of the more challenging theoretical generalizations
involves the abandonment of rate equations in favor of
semiclassical laser models that were also developed very
early. The simplest semiclassical model for a homoge-
neously broadened laser was shown by Haken [2] to be
equivalent to the Lorenz model, which was already popu-
lar because of its prediction of unstable and chaotic be-
havior. However, known instabilities in homogeneously
broadened lasers tend to differ in some characteristics
from those predicted by the Lorenz–Haken (L-H) equa-
tions and they also tend to occur at pumping levels below
the L-H instability thresholds. In an effort to make the
models more realistic, the possibility of Gaussian-beam
fields rather than plane waves was explored, but these
field variations were found to entirely eliminate the insta-
bilities in the simplest models [3–6]. However, it was
shown that some Lorenz-like pulsation behavior in far-
infrared (FIR) ammonia lasers could be modeled by gen-

eralizing the L-H model to include a three-level structure
and Doppler broadening [7,8]. In an alternate approach it
was found that experimental results could be represented
by generalizing the L-H model to include both a Gaussian
transverse field variation and a Gaussian pump distribu-
tion [9,10]. More recently the models with transverse field
and pump variations have been extended to homoge-
neously broadened lasers with multiple longitudinal
modes [11–13].

The above-mentioned theoretical studies all are exten-
sions from the L-H model for homogeneously broadened
lasers. On the other hand, instabilities also exist in
Lamb’s Maxwell–Schrödinger model for inhomogeneously
broadened gas lasers [14–20] and stability criteria for
these lasers have been developed that allow for arbitrary
values of the most important laser parameters [21]. For
practical operating conditions, these instabilities can oc-
cur with very low thresholds and good agreement be-
tween theory and experiment has been obtained. In con-
trast to homogeneously broadened lasers, where extra
physics must be added to obtain an approximation of ex-
perimental instability data, the theoretical interpreta-
tions for inhomogeneously broadened lasers have yielded
good agreement using the simplest possible plane-
traveling-wave electromagnetic fields. Instead of adding
physics to obtain agreement, however, one must be sure
with inhomogeneously broadened lasers that no essential
physics has been neglected that might undo the seem-
ingly good agreement.

With inhomogeneously broadened lasers, some degree
of spectral cross relaxation must occur due to velocity-
changing collisions. It has been shown that with experi-
mental values for the cross-relaxation rates, this effect is
unimportant [22]. With homogeneously broadened lasers,

P. Chenkosol and L. W. Casperson Vol. 26, No. 10 /October 2009 /J. Opt. Soc. Am. B 1837

0740-3224/09/101837-8/$15.00 © 2009 Optical Society of America



the inclusion of standing-wave fields, as is common in
practice, substantially raises the already high instability
thresholds [23], but with inhomogeneously broadened la-
sers the thresholds remain low, and standing-wave fields
were included in the first theoretical models [14]. The
purpose of the present study has been to consider the pos-
sible consequences for instabilities in inhomogeneously
broadened lasers when the field profile in the laser is
Gaussian rather than plane wave. A comparison of type 1
perturbation stability curves [24] for both the uniform-
plane-wave and the constant-spot-size Gaussian-beam
models shows that, at the same values of laser operating
parameters, the instability tends to occur at higher pump-
ing rates and for a narrower range of parameter values
for the Gaussian-beam case than with uniform plane
waves. While the increased instability thresholds and
narrowed pulsation regions are of interest, the main point
of these results is that in contrast to homogeneously
broadened lasers there remain conditions corresponding
to previous instability experiments under which sponta-
neous pulsations should be possible. This is reassuring,
since low-threshold spontaneous pulsations are readily
observed in laboratory experiments with these lasers un-
der the predicted conditions.

The basic theoretical model for a unidirectional Gauss-
ian beam in a uniformly pumped ring-laser oscillator is
established in Section 2. The steady-state solutions of this
model are also derived. A perturbation stability analysis
of the model is developed in Section 3. The results of this
analysis are shown graphically and compared with the
corresponding results for the uniform-plane-wave model.
Even with Gaussian fields, as with plane-wave fields, the
pulsation thresholds for these lasers can be very close to
the ordinary lasing thresholds.

2. MODEL
The starting point for this analysis is a set of Maxwell–
Schrodinger equations that has been the basis for several
previous studies of laser instabilities [22]. In its reduced
and normalized three-decay-rate form, this model has
been the basis for a plane-wave instability study of inho-
mogeneously broadened gas lasers [21]. The purpose of
the present study is to consider a modification of the same
model that replaces the plane-wave field with a Gaussian
transverse field distribution:

�Pr�V,r,t�

�t
= − ��Pr�V,r,t� − VPi�V,r,t��, �1�

�Pi�V,r,t�

�t
= − ��Pi�V,r,t� + VPr�V,r,t�

+ G�r�A�t��D0 + D�V,r,t���, �2�

�D�V,r,t�

�t
= − �d�D�V,r,t� − G�r�A�t�Pi�V,r,t��, �3�

dA�t�

dt
= − �c�A�t� +�

0

��
−�

�

G�r�Pi�V,r,t�dVrdr	 . �4�

The independent variables in Eqs. (1)–(4) include the
time t, the radius r, and the normalized atomic or molecu-

lar velocity V=kv /� (for Doppler inhomogeneous broaden-
ing) where k is the propagation constant, v is the actual
velocity, and � is the polarization decay rate. The depen-
dent variables in Eqs. (1)–(4) include the real and imagi-
nary parts of the complex polarization Pr�V ,r , t� and
Pi�V ,r , t�, the unsaturated population difference D0, the
saturation induced correction to the population difference
D�V ,r , t�, and the electric field amplitude A�t�. The func-
tion G�r� was not included in the uniform-plane-wave
model [21,22,24] and it represents the Gaussian radial
amplitude distribution. Thus the local amplitude distri-
bution is defined by A�r , t�=G�r�A�t� with G�r�
= �2/��1/2exp�−r2 /w2�. The decay rates include the polar-
ization decay rate �, the population difference decay rate
�d, and the electric field cavity decay rate �c. This formu-
lation for inclusion of Gaussian fields is analogous to that
employed previously for homogeneously broadened lasers
[3–6].

Instability criteria for lasers are generally expressed in
terms of the laser threshold parameter. This parameter
expresses the actual pumping rate of a laser in terms of
the minimum pumping required for the laser to reach the
laser oscillation threshold. In the following paragraphs
the threshold parameter is derived for the laser described
by Eqs. (1)–(4). Considering first the laser at steady state,
i.e., � /�t=0, Eqs. (1)–(4) reduce to

Prs�V,r� = VPis�V,r�, �5�

Pis�V,r� = − VPrs�V,r� − G�r�As�D0 + Ds�V,r��, �6�

Ds�V,r� = G�r�AsPis�V,r�, �7�

As = −�
0

��
−�

�

G�r�Pis�V,r�dVrdr. �8�

Equations (5)–(7) can be combined to obtain

Pis�V,r� = −
G�r�AsD0

1 + V2 + G2�r�As
2 . �9�

Equations (8) and (9) then yield

As = −�
0

��
−�

�

G�r��−
G�r�AsD0

1 + V2 + G2�r�As
2	dVrdr,

1 = D0�
0

�

G2�r��
−�

� dV

1 + V2 + G2�r�As
2rdr

= �D0�
0

� G2�r�rdr


1 + G2�r�As
2

= �D0�
0

� �2/��exp�− 2�r/w�2�rdr


1 + �2/��exp�− 2�r/w�2�As
2

=
w2D0

2 �
0

� exp�− 2�r/w�2�d�2�r/w�2�


1 + �2/��exp�− 2�r/w�2�As
2

=
w2D0

2

�

As
2�
1 +

2As
2

�
− 1	 . �10�
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Therefore, the unsaturated population difference D0 can
be written as

D0 =
2As

2

�w2�
1 +
2As

2

�
− 1	−1

. �11�

The value of the population difference at threshold when
lasing just commences is

D0,th = limAs→0

2As
2

�w2�
1 +
2As

2

�
− 1	−1

�
2As

2

�w2�1 + �1

22As
2

�
− 1	−1

=
2

w2 . �12�

The threshold parameter R can be defined as

R =
D0

D0,th
=

D0

2
w2. �13�

Equation (10) can be solved for As
2 in terms of this thresh-

old parameter as

1 = �R�

As
2 �
1 +

2As
2

�
− 1	 ,

� As
2

R�
+ 1	2

= 1 +
2As

2

�
,

As
4

�R��2 +
2As

2

R�
+ 1 = 1 +

2As
2

�
,

As
2

�R��2 +
2

R�
=

2

�
,

As
2 = 2R��R − 1�. �14�

An equivalent result has been given in a previous study of
power in steady-state Gaussian-beam lasers [25]. Equa-
tion (2) can now be rewritten in terms of the threshold pa-
rameter as

�Pi�V,r,t�

�t
= − ��Pi�V,r,t� + VPr�V,r,t�

+ G�r�A�t��2R

w2 + D�V,r,t�	 . �15�

3. STABILITY ANALYSIS
To analyze the stability behavior of the laser, we assume
solutions in the form

Pr�V,r,t� = Prs�V,r� + Pr��V,r,t�,

Pi�V,r,t� = Pis�V,r� + Pi��V,r,t�,

D�V,r,t� = Ds�V,r� + D��V,r,t�,

A�t� = As + A��t�, �16�

where the primed quantities are assumed to be small and
of the same approximate magnitudes relative to each
other. With these substitutions, Eqs. (1), (3), (4), and (15)
can be rewritten as

�Pr��V,r,t�

�t
= − ���Prs�V,r� + Pr��V,r,t�� − V�Pis�V,r�

+ Pi��V,r,t��� = − ��Pr��V,r,t� − VPi��V,r,t��,

�17�

�Pi��V,r,t�

�t
= − ���Pis�V,r� + Pi��V,r,t�� + V�Prs�V,r�

+ Pr��V,r,t�� + G�r��As + A��t���2R

w2 + Ds�V,r�

+ D��V,r,t�	
� − ��Pi��V,r,t� + VPr��V,r,t� + G�r�

��AsD��V,r,t� + A��t��2R

w2 + Ds�V,r�		 ,

�18�

�D��V,r,t�

�t
= − �d��Ds�V,r� + D��V,r,t�� − G�r��As + A��t��

��Pis�V,r� + Pi��V,r,t���

� − �d�D��V,r,t� − G�r��AsPi��V,r,t�

+ A��t�Pis�V,r���, �19�

dAs��t�

dt
= − �c��As + A��t�� +�

0

��
−�

�

G�r��Pis�V,r�

+ Pi��V,r,t��dVrdr	
= − �c�A��t� +�

0

��
−�

�

G�r�Pi��V,r,t�dVrdr	 ,

�20�

where some of the terms involving variables at steady
state cancel using Eqs. (5)–(8), and the “approximately
equals” signs indicate the dropping of second-order per-
turbation terms. It is now helpful to introduce the dimen-
sionless decay rate ratios �=� /�c and �=�d /� together
with a normalized time variable t�=�ct. With these defi-
nitions Eqs. (17)–(20) can be rewritten as

�Pr��V,r,t��

�t�
= − ��Pr��V,r,t�� − VPi��V,r,t���, �21�
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�Pi��V,r,t��

�t�
= − ��Pi��V,r,t�� + VPr��V,r,t�� + G�r�

��AsD��V,r,t�� + A��t���2R

w2 + Ds�V,r�		 ,

�22�

�D��V,r,t��

�t�
= − ���D��V,r,t�� − G�r��AsPi��V,r,t��

+ A��t��Pis�V,r���, �23�

dA��t��

dt�
= − �A��t�� +�

0

��
−�

�

G�r�Pi��V,r,t��dVrdr	 .

�24�

Due to the linear nature of Eqs. (21)–(24), we can as-
sume a set of solutions in the form

Pr��V,r,t�� = Pr��V,r�e�t�,

Pi��V,r,t�� = Pi��V,r�e�t�,

D��V,r,t�� = D��V,r�e�t�,

A��t�� = A�e�t�, �25�

where � is the complex rate constant. With the assumed
solutions in Eq. (25) substituted into Eqs. (21)–(24), one
obtains

�Pr��V,r� = − ��Pr��V,r� − VPi��V,r��,

�� + ��Pr��V,r� = �VPi��V,r�, �26�

�Pi��V,r� = − ��Pi��V,r� + VPr��V,r� + G�r��AsD��V,r�

+ A��2R

w2 + Ds�V,r�		 ,

�� + ��Pi��V,r� = − ��VPr��V,r� + G�r��AsD��V,r�

+ A��2R

w2 + Ds�V,r�		 , �27�

�D��V,r� = − ���D��V,r� − G�r��AsPi��V,r� + A�Pis�V,r���,

�� + ���D��V,r� = ��G�r��AsPi��V,r� + A�Pis�V,r��,

�28�

�A� = − �A� +�
0

��
−�

�

G�r�Pi��V,r�dVrdr	 ,

�� + 1�A� = −�
0

��
−�

�

G�r�Pi��V,r�dVrdr. �29�

Substituting Pr��V ,r� from Eq. (26) into Eq. (27) yields

�� + ��Pi��V,r� = − ��V� �V

� + �
Pi��V,r� + G�r��AsD��V,r�

+ A��2R

w2 + Ds�V,r�		 ,

�� + � +
�2V2

� + �
Pi��V,r� = − �G�r��AsD��V,r�

+ A��2R

w2 + Ds�V,r�	 . �30�

Combining Eqs. (28) and (30) using Eqs. (7), (9), and (13)
leads to

�� + � +
�2V2

� + �
Pi��V,r� = − �G�r��As� ��G�r�

�� + ���
�AsPi��V,r� + A�Pis�V,r��	 + A��2R

w2 + Ds�V,r�	 ,

�� + � +
�2V2

� + �
+

�2�G2�r�As
2

� + ��
Pi��V,r� = −

�2�G2�r�As

�� + ��� �−
G�r�As�2R/w2�

1 + V2 + G2�r�As
2A� − �G�r��2R

w2 −
G2�r�As

2�2R/w2�

1 + V2 + G2�r�As
2	A�

= −
�G�r��2R/w2�A�

1 + V2 + G2�r�As
2 �1 + V2� + � �G�r��2R/w2�A�

1 + V2 + G2�r�As
2���G2�r�As

2

�� + ��� 
= − � �G�r��2R/w2�A�

1 + V2 + G2�r�As
2�1 + V2 −

��G2�r�As
2

�� + ���  ,
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Pi��V,r� = −

� �G�r��2R/w2�A�

1 + V2 + G2�r�As
2�1 + V2 −

��G2�r�As
2

�� + ��� 
�� + � +

�2V2

�� + ��
+

�2�G2�r�As
2

�� + ���  . �31�

Substituting Pi��V ,r� from Eq. (31) into Eq. (29) yields

� + 1 =�
0

��
−�

� ��
�G2�r��2R/w2�

1 + V2 + G2�r�As
2�1 + V2 −

��G2�r�As
2

� + ��


�� + � +
�2V2

�� + ��
+

�2�G2�r�As
2

�� + ���  �dVrdr

= �2�R

w2 �
0

��
−�

� �� + ��G2�r�

1 + V2 + G2�r�As
2

��� + ����1 + V2� − ��G2�r�As
2�

��� + ������ + ��2 + �2V2� + �� + ����2�G2�r�As
2��

dVrdr

= �2�R

As
2 �−

1

4��2/��As
2

0 �
−�

� �� + ��

1 + V2 + G2�r�As
2

��� + ����1 + V2� − ��G2�r�As
2�dVd�G2�r�As

2�

��� + ������ + ��2 + �2V2� + �� + ����2�G2�r�As
2��

= � �R

2As
2�

0

�2/��As
2�

−�

� �� + ��

1 + V2 + G2�r�As
2

��� + ����1 + V2� − ��G2�r�As
2�dVd�G2�r�As

2�

��� + ������ + ��2 + �2V2� + �� + ����2�G2�r�As
2��

= � �R

2As
2�

0

�2/��As
2�

−�

� �� + ��

1 + V2 + K

��� + ����1 + V2� − ��K�dVdK

��� + ������ + ��2 + �2V2� + �� + ����2�K��
, �32�

where

K = G2�r�As
2, �33�

G2�r� = � 2

�
exp�− 2r2

w2  , �34�

dG2�r�

dr
= − � 4r

w2G2�r� �35�

have been used. Due to the even-function nature of the integrand in Eq. (32) with respect to V, one can rewrite Eq. (32)
as

� + 1 = ��R�� + ��

As
2 �

0

�2/��As
2�

0

� 1

1 + V2 + K

��� + ����1 + V2� − ��K�dVdK

��� + ������ + ��2 + �2V2� + �� + ����2�K��

= ��R�� + ��

As
2 �

0

�2/��As
2�

0

� 1

1 + V2 + K

��� + �� − ��K� + �� + ���V2�dVdK

��� + ����� + ��2 + �� + ���2�K + �� + ����2V2�
. �36�

At this point it is optional whether to perform the K integration or the V integration first. To be specific we start with
V and introduce the following variable changes:

A1 = � + �� − ��K,

B1 = � + ��,

C1 = 1 + K,

D1 = �� + ����� + ��2 + �� + ���2�K,

E1 = �� + ����2. �37�

The V integral in Eq. (36) can then be performed as follows:
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�
0

� �A1 + B1V2�dV

�C1 + V2��D1 + E1V2�
= A1�

0

� dV

�C1 + V2��D1 + E1V2�
+ B1�

0

� V2dV

�C1 + V2��D1 + E1V2�

= A1� 1

�C1E1 − D1��−�
0

� dV

C1 + V2 + E1�
0

� dV

�D1 + E1V2��	 + B1� 1

�C1E1 − D1��C1�
0

� dV

C1 + V2

− D1�
0

� dV

D1 + E1V2�	 ,

=A1� 1

�C1E1 − D1��−
�

2
C1

+
�

2
D1/E1
�	 + B1� 1

�C1E1 − D1��C1

�

2
C1

− �D1

E1
 �

2
D1/E1
�	

=
�

2�C1E1 − D1��A1�
E1

D1
−

1


C1
 + B1�
C1 −
D1

E1
	 . �38�

Equations (14), (36), and (38) may be combined to obtain

� + 1 = ��R�� + ��

As
2 �

0

�2/��As
2 �

2�C1E1 − D1��A1�
E1

D1
−

1


C1
 + B1�
C1 −
D1

E1
	dK

= � �R�� + ��

2R��R − 1���

2�0

4R�R−1� 1

�C1E1 − D1��A1�
E1

D1
−

1


C1
 + B1�
C1 −
D1

E1
	dK

= � ��� + ��

4�R − 1��0

4R�R−1� 1

�C1E1 − D1��A1�
E1

D1
−

1


C1
 + B1�
C1 −
D1

E1
	dK. �39�

Using again the definitions in Eq. (37), Eq. (39) becomes the result

0 = � + 1 − � ��� + ��

4�R − 1��0

4R�R−1� � 1

�1 + K��� + ����2 − ��� + ����� + ��2 + �� + ���2�K�

���� + �� − ��K��� �� + ����2

�� + ����� + ��2 + �� + ���2�K
1/2

−
1


1 + K	
+ �� + ����
1 + K − � �� + ����� + ��2 + �� + ���2�K

�� + ����2 1/2	�	dK. �40�

The next step in this analysis could be to carry out the
remaining integration over the parameter K. This process
is possible in closed form and leads to an implicit analytic
equation for the rate constant �. However, the integration
is tedious, and with a computer it is simpler to analyze
Eq. (40) directly. In general, the complex rate constant �
in Eq. (40) consists of a real and an imaginary part. A
negative value of the real part of � means that a small
perturbation of the steady-state solution will decay with
time. This indicates that the laser system is in a stable
mode of operation. On the other hand, a positive value of
the real part of � means that a small perturbation of the
steady-state solution will increase with time indicating
that the system is unstable. Exactly at the instability
threshold, the real part of � is zero. Equation (40) has
been programmed and solved for the instability threshold
using a two-dimensional secant method in the complex
plane.

The results of the calculations of Eq. (40) for a
Gaussian-beam electromagnetic field are the stability
curves shown in Fig. 1. Each curve in the figure repre-
sents the stability boundary below which the laser pro-

Fig. 1. Type 1 stability boundaries for inhomogeneously broad-
ened unidirectional ring-laser oscillators with Gaussian-beam
electromagnetic fields.
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duces a cw output field. Above each curve small perturba-
tions of the cw solution increase with time indicating that
the laser is unstable with respect to spontaneous pulsa-
tions. The instability boundaries for the corresponding
plane-wave electromagnetic field are shown in Fig. 2 [21].
A comparison of these results shows that, for the same
values of � and �, a laser with a constant spot-size Gauss-
ian field requires higher values of the threshold param-
eter to reach the instability threshold compared to a laser
with a plane-wave field. This indicates that the Gaussian
field envelope, in effect, helps stabilize the laser system.
It should be noted, however, that for values of the param-
eter � below about 0.3 the instability thresholds for both
the plane-wave and Gaussian-beam field models are close
to unity. As reviewed in [21], the value of � for a typical
3.51 �m xenon laser is about 0.033, and from the data re-
viewed in [26] the value of � for a 3.39 �m helium–neon
laser is about 0.22. Thus, even with the inclusion of a
Gaussian field distribution, the stability thresholds for
these well-known spontaneously pulsing systems are
close to the ordinary lasing thresholds.

4. CONCLUSION
We have investigated the stability of a semiclassical laser
model for inhomogeneously broadened unidirectional
ring-laser oscillators with constant-spot-size TEM00
Gaussian fields. Type 1 stability boundaries were ob-
tained by applying a linear stability analysis to this
model. A comparison of the stability boundaries from the
present study with those for lasers with uniform-plane-
wave fields shows that, for the same values of laser pa-
rameters, the Gaussian field distribution helps in stabi-
lizing the lasers against small perturbations by raising
the type 1 instability threshold and by narrowing the
range of parameter values for which instabilities can be
observed. These effects are, however, much less signifi-
cant than for other laser types. Low-threshold spontane-
ous pulsations are readily observed experimentally in in-
homogeneously broadened lasers that simultaneously
include the stabilizing effects of Gaussian-mode trans-
verse fields, standing-wave longitudinal fields, and some
degree of intracavity field focusing.
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