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Technological forecasting of supercomputer development: The march to 

Exascale computing 
Dong-Joon Lim*, Timothy R. Anderson, Tom Shott 

Dept. of Engineering and Technology Management, Portland State University, USA  
Abstract- Advances in supercomputers have come at a steady pace over the past 20 years. The 

next milestone is to build an Exascale computer however this requires not only speed 

improvement but also significant enhancements for energy efficiency and massive parallelism. 

This paper examines technological progress of supercomputer development to identify the 

innovative potential of three leading technology paths toward Exascale development: hybrid 

system, multicore system and manycore system. Performance measurement and rate of change 

calculation were made by Technology Forecasting using Data Envelopment Analysis (TFDEA.) 

The results indicate that the current level of technology and rate of progress can achieve 

Exascale performance between early 2021 and late 2022 as either hybrid systems or manycore 

systems. 

 

1. Introduction 

Supercomputers have played a critical role in various fields which require computationally 

intensive tasks such as pharmaceutical test, genomics research, climate simulation, energy 

exploration, molecular modeling, astrophysical recreation, etc. The unquenchable need for faster 

and higher precision analysis in those fields create the demand for even more powerful 

supercomputers. Furthermore, developing indigenous supercomputer has become a fierce 

international competition due to its role as a strategic asset for a nationwide scientific research 

and the prestige of being the maker of the fastest computers [1,2]. While the vast majority of 



2 
 

supercomputers have still been built using processors from Intel, Advanced Micro Devices 

(AMD), and NVidia, manufacturers are committed to developing their own customized systems, 

e.g. interconnect, operating system and resource management, as system optimization becomes a 

crucial factor in today’s massively parallel computing paradigm [3].  

Advances in supercomputers have come at a steady pace over the past 20 years in terms of 

speed, which has been enabled by the continual improvement in computer chip manufacturing 

[4]. The world’s fastest supercomputer today (March 2014) is the Tianhe-2 built by China’s 

National University of Defense Technology (NUDT) performing at over 33.86 Petaflops, i.e. 

33.86× 10�� floating point operations per second. This is about 273,000 times faster than the 

fastest machine 20 years ago, the Fujitsu Numerical Wind Tunnel. On average, progress went 

from being measured by Gigaflops in 1990 to Teraflops in about 10 years, and then to Petaflops 

in another 10 years [5]. In line with this, the next milestone to build an Exascale computer, a 

machine capable of doing a quintillion operations, i.e.	10��, per second had been projected to see 

light of day by 2018 [6]. However, there are significant industry concerns that this incremental 

improvement might not continue mainly due to several practical problems. 

The biggest challenge to build the Exascale computer is the power consumption [7]. Tianhe-

2, which is currently not only the fastest but also the largest supercomputer, uses about 18 

megawatts (MW) of power. If the current trend of power use continues, projections for the 

Exascale computing systems range from 60 to 130 MW which would cost up to $150 million 

annually [8]. Therefore, unlike past advancement mainly driven by performance improvement 

[9], energy efficiency has now gone from being a negligible factor to a fundamental design 

consideration. Practically, fewer sites in the U.S. will be able to host the Exascale computing 

systems due to limited availability of facilities with sufficient power and cooling capabilities [10]. 
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To cope with these issues, current efforts are targeting the Exascale machine that draws electrical 

power of 20 MW using 100 million processors in the 2020 timeframe [7,11]. 

Given the fact that the Exascale computing may require a vast amount of power and massive 

parallelism, it is crucial to incorporate the power efficiency and multicore characteristics into the 

measure of technology assessment to have a correct view of current trend [12]. This implies that 

the extrapolation relying on a single performance measure, i.e. computing speed, may overlook 

required features of future technology systems and could eventually result in an erroneous 

forecast. Specifically, the average power efficiency of today’s top 10 systems is about 2.2 

Petaflops per megawatt. This indicates that it is required to improve power efficiency by a factor 

of 23 to achieve the Exascale goal. The projection of performance development therefore may 

have to be adjusted to consider structural and functional challenges involved. This manifestly 

requires multifaceted approach to investigate the tradeoffs between system attributes, which can 

tackle the questions such as: how much performance improvement would be restricted by power 

and/or core reduction? What would be the maximum attainable computing performance with 

certain levels of power consumption and/or the number of cores? 

There are three leading technology paths representing today’s supercomputer development: 

hybrid systems, multicore systems, and manycore systems [13]. The hybrid systems use both 

central processing units (CPU) and graphics processing units (GPU) to efficiently leverage the 

performances [14]. The multicore systems maintain a number of complex cores whereas the 

manycore systems use a large number of less powerful but power efficient cores within the 

highly-parallel architecture [15]. Manufacturers and researchers are exploring these alternate 

paths to identify the most promising, namely energy efficient and performance effective, avenue 

to face challenges of deploying and managing Exascale systems [16–18]. The comparative 
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analysis on these technology paths can, therefore, give insights into the estimation of the future 

performance levels as well as the possible disruptive technology changes.  

This study employs Technology Forecasting using Data Envelopment Analysis (TFDEA) to 

measure the technological progress considering tradeoffs among power consumption, multicore 

processors, and maximum performance so that supercomputers are to be evaluated in terms of 

both energy efficiency and performance effectiveness. The resulting analysis then provides a 

forecast of Exascale computer deployment under three different development alternatives in 

consideration of current business environment as well as emerging technologies. 

  

2. Methodology 

Frontier analysis (or best practice) methods that model the frontier of data points rather than 

model the average possibilities have become popular in modern benchmarking studies [19–22]. 

As an example, TFDEA has shown its usefulness in a wide range of applications since the first 

introduction in PICMET ’01 [23–27]. This approach has a strong advantage in capturing 

technological advancement from the State of the Arts (SOAs) rather than being influenced by the 

inclusion of mediocre technologies that is frequently observed in the central tendency model [28].  

One of the favorable characteristics of TFDEA is its flexibility that can incorporate practical 

views in the assessment. For example, DEA, which underlies TFDEA, allows dynamic weighting 

scheme that the model gives freedom to each data point to select its own weights, and as such, 

the efficiency measure will show it in the best possible light [29,30]. This approach has an 

advantage to prevent the model from underestimating various types of technologies based on a 

priori fixed weighing scheme. Furthermore, DEA generates a reference set that can be used as 

reasonable benchmarks for each data point to improve its performance [31]. This allows TFDEA 



5 
 

to capture the technological advancement with consideration of various tradeoffs from different 

model parameters: orientation, returns to scale, weight restrictions along with variable selections 

[32]. 

In addition, TFDEA can deal with multiple variables, i.e. system attributes, thereby tracking 

efficiency changes over time. Specifically, TFDEA first measures the efficiency of each 

technology and then analyzes time series efficiency changes to explain the expansion of SOA 

frontier. This approach has a strong advantage by taking various tradeoffs into account whereas 

most extrapolation methods can only explain the variance of single dependent variable at a time 

by directly relating it to independent variables [33,34]. 

Although time series application of benchmarking practice can shed light on the new 

product development planning phase, there remains a need to integrate the product positioning 

with the assessment of technological progress so that analysts can investigate different product 

segments with the purpose of market research. In particular, the High Performance Computing 

(HPC) industry has important niches with segmented levels of competition from small-scale 

multiprocessing computers to the mainframe computers. This necessarily requires an 

identification of technological advancement suitable for the design target of Exascale computer 

from corresponding product segments. For this reason, this study presents a new approach which 

is capable of considering the variable rates of technological advancement from different product 

segments. 

The whole process of the proposed model can be divided into three computational stages. In 

the first stage, (1)-(7), the notation �	
 represents the ith input and ��
 represents the rth output of 

technology j and j=k identifies the technology being evaluated. The variables for the linear 

program underlying DEA are 

��∈{�,�}  and 	���∈{�,�} . The variable ���∈{�,�}  represents the 
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proportion of output that should be generated to become an SOA at time period R (release time) 

or at time period C (current frontier) to actual output that technology k produced. Since each 

reference set,	

�� , only includes technologies that had been released up to	�� by constraint (4), ��� 

indicates how superior the technology � is at the time of release. Similarly, constraint (5) restrict 

each reference set, 

�� , to include technologies that had been released up to current frontier time 

T, therefore, ��� measures the amount by which technology k is surpassed by the current SOA 

frontier. The objective function (1) also incorporates effective date minimization to ensure 

reproducible results from possible alternate optimal solutions [35]. The variable returns to scale 

(VRS) are enforced by constraint (6). 
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Once efficiency measurements both at time of release (R) and at time of current frontier (C) 

are completed, the rate of change (RoC), 	>�? , may then be calculated in (8) by taking all 
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technologies that were efficient at time of release, ���∗ = 1, but were superseded by technology 

at current frontier, 	���∗ > 1. The local RoCs,	A
�, can be obtained in (9) by taking the weighted 

average of RoCs for each technology on the current frontier. Each local RoC therefore represents 

a growth potential of adjacent frontier facets based on the technological advancement observed 

from related past products. Consequently, the local RoC enables the model to identify an 

individualized RoC under which each forecasting target is expected to arrive [36,37]. Note that 

the traditional TFDEA model makes a forecast based on a single aggregated RoC, i.e. average of 

>�?, without consideration of the unique growth patterns of different product segments.  

 

>�� = B���∗C
�

∑ DE,FG∗HEIJ ∙KE
∑ DE,FG∗HEIJ
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A
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The forecasting process is denoted in (10) where ���∗ indicates super-efficiency measuring 

how much the future technology k outperforms SOA technologies on the current frontier. The 

individualized RoC for each forecasting target k can be computed by combining the local RoCs 

of SOA technology j that constitutes the frontier facet onto which technology k is being projected. 

The forecasted time ��RS�TUVWK is, therefore, obtained by the sum of estimated elapsed time and the 

effective date for the projection. 
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3. Analysis 

3.1. Dataset 

The TOP500 list was first created in 1993 to assemble and maintain a list of the 500 most 

powerful computer systems [38]. Since the list has been compiled twice a year, datasets from 

1993 to 2013 have been combined and cleaned up so that each machine appears once in the final 

dataset. The purpose of this study is to consider both energy efficiency and performance 

effectiveness, therefore lists up to 2007 were excluded due to the lack of information on the 

power consumption (see table 1.) Variables selected for this study are as follows: 

• Name (text): name of machine 

• Year (year): year of installation/last major update 

• Total Cores (number): number of processors 

• Rmax (Gigaflops): maximal LINPACK performance achieved 

• Power (Kilowatts): power consumption 

• Interconnect family (text): interconnect being used 

• Processor technology/family (text): processor architecture being used  

 

In the final dataset, there were total 1,199 machines, with number of cores ranging from 960 

to 3.12 million, power ranging from 19KW to 17.81MW, Rmax ranging from 9 Teraflops to 

33.86 Petaflops from 2002 to 2013. Note that logarithmic transformation was applied to three 

variables prior to the analysis due to their exponentially increasing trends. 
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Table 1 TOP500 dataset from 1993 to 2013 

Data column 
1993 

~2007 
2008 

~2009 
2010-1 2010-2 2011-1 

2011-2 
~2013 

Rank Ο Ο O O O O 

Site O O O O O O 

Manufacturer O O O O O O 

Name × × × × × O 

Computer O O O O O O 

Country O O O O O O 

Year O O O O O O 

Total Cores O O O O O O 

Accelerator/Co-Processor Cores × × × × × O 

Rmax O O O O O O 

Rpeak O O O O O O 

Efficiency (%) × × × × × O 

Nmax O O O O O O 

Nhalf O O O O O O 

Power × O O O O O 

Mflops/Watt × × × × × O 

Measured Size × × O × × × 

Processor Technology O O O O O O 

Processor Generation × × × × × O 

Processor O O O O O O 

Proc. Frequency O O O O O × 

Processor Cores × × O O O × 

Processor Speed (MHz) × × × × × O 

System Family O O O O O O 

System Model × O O O O O 

Operating System O O O O O O 

OS Family × × × × × O 

Cores per Socket × × × × × O 

Architecture O O O O O O 

Accelerator/Co-Processor × × × × O O 

Segment O O O O O O 

Application Area O O O O O × 

Interconnect Family O O O O O O 

Interconnect O O O O O O 

Region O O O O O O 

Continent O O O O O O 

O: Available, ×: Unavailable 

 

3.2. Model building 

The TFDEA model has been implemented using the software developed by Lim and 

Anderson [39]. As discussed earlier, power consumption and the number of cores were used as 

input variables and the maximum LINPACK performance (Rmax) was used as the output 
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variable. This allows the model to identify ‘the better performing’ supercomputer which has 

lower power, fewer cores, and higher performance. Orientation can be either input-oriented or 

output-oriented and can be best thought of as whether the technological progress is better 

characterized as “input reduction” or “output augmentation [40].” While power consumption will 

be a key concern in the Exascale computing, the advancement of this industry has been driven 

primarily by computing performance, i.e. flops, improvement. Besides, the Exascale computing 

is a clearly defined development goal therefore an output orientation was selected for this 

application. It should be noted here that either orientation can deal with tradeoffs among input 

and output variables. As with many DEA applications, variable returns to scale (VRS) was 

selected for appropriate returns to scale assumption since doubling the input(s) doesn’t 

correspond to doubling the output(s) here as well. The main purpose of this study is to make a 

forecast of the Exascale computer deployment by examining past rate of progress, thus the 

frontier year of 2013 was used so as to cover the whole dataset. Lastly, minimizing the sum of 

effective dates was added as a secondary goal into the model to handle the potential issue of 

multiple optima from the dynamic frontier year [41]. Table 2 summarizes the model parameters 

used in this study. 

 

Table 2 TFDEA model parameters 

Inputs Output Orientation RTS Frontier year Frontier type Second goal 

Power, Cores Rmax Output VRS 2013 Dynamic Min 

 

Figure 1 shows thirteen supercomputers identified as SOAs from the analysis. Intel provided 

the processors for the largest share (62%) and, inter alia, GPU/Accelerator based systems 

dominated both energy and core efficient systems, while IBM’s Blue Gene, NNSA/SC and Blue 



 

Gene/Q, showed comparable energy efficiency

specifications of these supercomputers

competitive in consideration of tradeoffs

construct technology frontiers from which

characteristic, in fact, differentiates the TFDEA process from a single dimensional measure such 

as the TOP500 list in which technological efforts to become energy 

are not taken into account. 

 

Figure 1 13 State of the art supercomputers
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energy efficiency as manycore based systems. As also seen from 

of these supercomputers in Table 3, supercomputers are characterized as being 

tradeoffs within different scale sizes. This enables the model 

from which various production possibilities can be identified.

characteristic, in fact, differentiates the TFDEA process from a single dimensional measure such 

technological efforts to become energy efficient and/

State of the art supercomputers considering system tradeoffs

As also seen from 

supercomputers are characterized as being 

enables the model to 

production possibilities can be identified. This 

characteristic, in fact, differentiates the TFDEA process from a single dimensional measure such 

ficient and/or core efficient 

 

considering system tradeoffs 
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Table 3 Specifications of 13 state of the art supercomputers considering system tradeoffs 

Name Date Cores Power Rmax Interconnect Processor Family 

Eurora Eurotech Aurora 
HPC 10-20 

2013 2,688 46.00 100,900 InfiniBand Intel 

Tianhe-2 TH-IVB-FEP 2013 3,120,000 17,808.00 33,862,700 Custom Intel 

HPCC 2013 10,920 237.00 531,600 InfiniBand Intel 

Titan Cray XK7 2012 560,640 8,209.00 17,590,000 Cray AMD 

Beacon Appro GreenBlade 
GB824M 

2012 9,216 45.11 110,500 InfiniBand Intel 

BlueGene/Q, Power BQC 
16C 1.60GHz 

2012 8,192 41.09 86,346 Custom IBM Power 

iDataPlex DX360M3 2011 3,072 160.00 142,700 InfiniBand Intel 

NNSA/SC Blue Gene/Q 
Prototype 2 

2011 8,192 40.95 85,880 Custom IBM Power 

DEGIMA Cluster 2011 7,920 31.13 42,830 InfiniBand Intel 

BladeCenter QS22 Cluster 2008 1,260 18.97 9,259 InfiniBand IBM Power 

Cluster Platform 3000 
BL2x220 

2008 1,024 42.60 9,669 InfiniBand Intel 

Power 575, p6 4.7 GHz, 
Infiniband 

2008 960 153.43 14,669 InfiniBand IBM Power 

BladeCenter HS21 Cluster 2007 960 91.55 9,058 InfiniBand Intel 

 

 

Figure 2 illustrates performance trajectories based on 1,199 supercomputers from three 

dominant processor families: AMD X86, IBM Power, and Intel (IA-32/64, Core, Nehalem, 

Westmere, and Sandy Bridge.) Since the Japanese supercomputer, Earth-Simulator, in 2002 was 

built using a Nippon Electric Company (NEC) chip which was not adopted by other 

supercomputer manufacturers thereafter, Fig. 2 is drawn from 2005 to focus on main vendors of 

processor for today’s systems. The ordinate is the overall performance score from the DEA 

model. As such, each line indicates performance trajectory of the top performing supercomputers 

from each year against the frontier year of 2013. That is, a performance score of 100% indicates 

that the supercomputer has a superior performance enough to be on the SOA frontier in 2013. A 



 

performance score higher than 100% denotes super

show how much the supercomputer

 

Figure 2 Performance t

 

The trajectory of Many/Multicore 

machines are outperforming AMD X86 processor based machines.

machines however showed surpassing

when they were adopted by Cray to buil

successful development of Titan Cray XK7 using AMD

coprocessors has made Cray Inc. 

this is also consistent with the fact that Cray Inc. was awarded the $188M U.S. Blue Waters 

13 

higher than 100% denotes super-efficiency from the DEA model which can 

supercomputer is outperforming other SOA supercomputers

Performance trajectories of different processor families

of Many/Multicore systems shows that IBM Power (PC) 

machines are outperforming AMD X86 processor based machines. AMD X86 processor based 

surpassing performances over IBM Power (PC) based machines 

when they were adopted by Cray to build hybrid systems in 2011 and 2012.

of Titan Cray XK7 using AMD Opteron CPUs coupled with 

has made Cray Inc. one of the leading supercomputer vendors to date. Interestingly, 

the fact that Cray Inc. was awarded the $188M U.S. Blue Waters 

efficiency from the DEA model which can 

supercomputers.  

 

different processor families 

 processor based 

AMD X86 processor based 

IBM Power (PC) based machines 

d hybrid systems in 2011 and 2012. In fact, the 

coupled with NVidia 

to date. Interestingly, 

the fact that Cray Inc. was awarded the $188M U.S. Blue Waters 
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contract, which is a project funded by National Science Foundation (NSF), replacing IBM which 

had pulled out of the project prior to completion in 2011 [42]. 

It is also interesting to point out that the performance gap between Many/Multicore based 

machines and GPU/Accelerator based machines is larger in supercomputers using AMD X86 

processors than Intel processors. This can be attributed to the partnership between Cray and 

AMD. In fact, Cray has been a staunch supporter of AMD processors since 2007 and their 

collaboration has delivered continued advancement in HPC [43]. In particular, Cray’s recent 

interconnect technology, Gemini, was customized for the AMD Opteron CPUs Hyper-Transport 

links to optimize internal bandwidth [44]. Since modern supercomputers are deployed as 

massively centralized parallel systems, the speed and flexibility of interconnect becomes 

important for the overall performance of supercomputer. Given that hybrid machines using AMD 

X86 processors all use Cray’s interconnect system, one may notice that AMD X86 based 

supercomputers had a significant performance contribution from Cray interconnect as well as 

NVidia coprocessors.  

One may notice that top supercomputers based on Intel processors have switched to hybrid 

systems since 2010. This is because combining CPUs and GPUs is advantageous in data 

parallelism which makes it possible to balance the workload distribution as efficient use of 

computing resources becomes more important in today’s HPC structure [45]. Hybrid machines 

using Intel processors have all adopted InfiniBand interconnect for their cluster architectures 

regardless of GPUs/Accelerators; NVidia, ATI Radeon, Xeon Phi, PowerXCell, etc. InfiniBand, 

manufactured by Mellanox and Intel, enables low processing overhead and is ideal to carry 

multiple traffic types such as clustering, communications, and storage over a single connection 

[46]. Especially, its GPU-Direct technology facilitates faster communication and lower latency 

of GPU/Accelerator based systems that can maximize computing and accelerator resources, as 
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well as improves productivity and scalable performance [47]. Intel acquired the InfiniBand 

business from Qlogic in 2012 to support innovating on fabric architectures not only for the HPC 

but data centers, cloud, and Web 2.0 market [48]. 

Recent attention is focusing on Intel’s next generation supercomputer which will adopt 

Cray’s Aries interconnect with Intel Xeon Phi accelerator as their first non-InfiniBand based 

hybrid system after their acquisition of interconnect business of Cray [49]. This transition 

reflects the strategic decision of Cray to use an independent interconnect architecture rather than 

a processor specific one as AMD’s performance and supply stability fell behind competitors’ 

[44,50]. 

Unlike AMD X86 or Intel processor based systems, the top performing supercomputers 

using IBM Power (PC) processor were Many/Multicore systems. IBM initially developed the 

multicore architecture, later evolved to manycore systems, known as ‘Blue Gene’ technology. 

The Blue Gene approach is to use a large number of simple processing cores and to connect them 

via a low latency, highly-scalable custom interconnect [51]. This has the advantage of achieving 

a high aggregate memory bandwidth, whereas GPU clusters require messages to be copied from 

the GPU to the main memory and then from main memory to the remote node, whilst 

maintaining low power consumption as well as cost and floor space efficiency [52]. Currently, 

GPU/Accelerator based systems suggest smaller cluster solutions for the next generation HPC 

with its promising performance potential, however the Blue Gene architecture demonstrates an 

alternate direction of massively parallel quantities of independently operating cores with fewer 

programming challenges [53].  

 

 

 



16 
 

3.3. Model validation 

To validate a predictive performance of the constructed model, we conducted hold-out 

sample tests. Specifically, a rolling origin was used to determine the forecast accuracy by 

collecting deviations from multiple forecasting origins so that the performance of the model can 

be tested both in near-term and far-term. This thus provides an objective measure of accuracy 

without being affected by occurrences unique to a certain fixed origin [54]. The comparative 

results with planar model and random walk are summarized in Table 4. 

Since the first hybrid system, Blade Center QS22, appeared in 2008 in our dataset, the hold-

out sample test was conducted from the origin of 2009 for hybrid systems. That is, the mean 

absolute deviation of 1.58 years was obtained from TFDEA when the model made a forecast on 

arrivals of post-2009 hybrid systems based on the rate of technological progress observed from 

2008 to 2009. The overall forecasting error across the forecasting origins was found to be 1.32 

years which is more accurate than planar model and random walk. 

Although multicore systems showed successive introductions from 2007 to 2012, 

technological progress, i.e. expansion of SOA frontier surface, hasn’t been observed until 2010. 

This rendered the model able to make a forecast only in 2011. The resulting forecast error of 

TFDEA was found to be about a year which is slightly bigger than that of planar model however 

care must be taken to interpret this error since this was obtained only from a year ahead forecast 

in 2011.  

Consecutive introductions of manycore systems with a steady technological progress made 

it possible to conduct hold-out sample tests from the origin of 2007 to 2012. Notwithstanding a 

bigger average forecasting error of 1.49 years due to the inclusion of errors from longer 

forecasting windows than other two systems, TFDEA showed outperforming forecast results 

compared to the planar model and random walk. 
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Overall, it is shown that TFDEA model provides a reasonable forecast for three types of 

supercomputer systems with the maximum possible deviation of 18 months. In addition, it is 

interesting to note that forecasts from TFDEA tended to be less sensitive to the forecasting 

window than the planar model or random walk. This implies that the current technological 

progress of supercomputer technologies exhibits multifaceted characteristics that can be better 

explained by various tradeoffs derived from the frontier analysis. In contrast, a single design 

tradeoff identified from the central tendency model was shown to be vulnerable especially to the 

long-term forecast. 

 

Table 4 Model validation using a rolling origin hold-out sample tests 

Forecast 
Origin 

Mean absolute deviation (unit: year) 

Hybrid systems Multicore systems Manycore systems 

TFDEA 
Planar 
model 

Random 
walk 

TFDEA 
Planar 
model 

Random 
walk 

TFDEA 
Planar 
model 

Random 
walk 

2007 N/A N/A N/A N/A N/A N/A 1.8075 2.8166 2.9127 

2008 N/A N/A N/A N/A N/A N/A 1.4470 2.5171 2.4949 

2009 1.5814 2.7531 2.1852 N/A N/A N/A 2.0060 2.3593 2.0509 

2010 1.1185 1.9956 1.5610 N/A N/A N/A 1.4996 2.0863 1.6016 

2011 1.8304 1.5411 1.2778 0.9899 0.7498 1.0000 1.2739 1.8687 1.3720 

2012 0.7564 1.2012 1.0000 N/A N/A N/A 0.8866 2.2269 1.0000 

Average 1.3217 1.8728 1.5060 0.9899 0.7498 1.0000 1.4867 2.3125 1.9053 

                                                                                                                                                    N/A: insufficient data 

 

3.4. Forecasting 

We now turn to the forecasting of the Exascale systems. As previously noted, the design 

goal of the Exascale supercomputer is expected to have the Exaflops (10�� flop / second) with 
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20MW power consumption and 100 million total cores (see Table 5) [7,11]. These specifications 

were set as a forecasting target to estimate when this level of systems could be reached 

considering the RoCs identified from the past advancements in a relevant segment. 

 

Table 5 Exascale computer as a forecasting target 

Cores Power Rmax 

100 million 20 MW 1 Exaflops 

 

Table 6 summarizes the forecasting results from three development possibilities. Exascale 

performance was forecasted to be achieved earliest by hybrid systems in 2021.13. Hybrid 

systems are expected to accomplish this with a relatively high individualized RoC of 2.22% and 

having the best current level of performance represented by Tianhe-2. Considering the possible 

deviations identified in the previous section, one could expect the arrival of hybrid Exascale 

system within the 2020 timeframe. In fact, many industry experts claim that GPU/Accelerator 

based systems will be more popular in TOP500 list for their outstanding energy efficiency, 

which may spur the Exascale development [13,16]. 

The forecasted arrival time of the first multicore based Exascale system is far beyond 2020 

due to the slow rate of technological advancement: 1.19% as well as relatively underperforming 

performances. Note that projection from the planar model also estimated the arrival of multicore 

based Exascale system farther beyond 2020 timeframe. This implies that innovative engineering 

efforts are required for multicore based architecture to be scaled up to the Exaflop performance. 

Even though the RIKEN embarked on the project to develop the Exascale system continuing the 

preceding success of K-computer, IBM’s cancellation of Blue Water contract and recent 

movement toward design house raise questions on the prospect of multicore based HPCs [55,56]. 
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The first manycore based system is expected to reach the Exascale target by 2022.28. This 

technology path has been mostly led by the progress of Blue Gene architecture and shown the 

individualized RoC of 2.34%. Nonetheless, this fast advancement couldn’t overcome the current 

performance gap with hybrid systems in the Exascale race. 

 

Table 6 Forecast results of Exascale supercomputer 

 Hybrid system Multicore system Manycore system 

Individualized 
Rate of change (RoC) 

1.022183 1.011872 1.023437 

Forecasted arrival of 
Exascale supercomputer 

2021.13 2031.74 2022.28 

 

 

5. Discussion 

The analysis of technologies’ RoCs makes it possible to forecast a date for achieving 

Exascale performance from three different approaches; however it is worthwhile to examine 

these forecasts with consideration for the business environment and emerging technologies to 

anticipate the actual deployment possibilities of the Exascale systems. 

The optimistic forecast is that, as seen from the high performing Tianhe-2 and Titan Cray 

XK7 system, there would be an Intel or AMD based system with a Xeon Phi or NVidia 

coprocessor and a custom Cray interconnect system. However, given business realities it’s 

unlikely that the first Exascale system will use AMD processors. Intel purchased the Cray 

interconnect division and is expected to design the next generation Cray interconnect optimized 

for Intel processors and Xeon Phi coprocessors [57]. Existing technology trends and the 
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changing business environment would make a forecast a hybrid Exascale system with a Cray 

interconnect, Intel Processors and Xeon Phi coprocessors. 

The 2.22% year improvement for hybrid systems has come mostly from a combination of 

advances in Cray systems, such as their transverse cooling system, Cray interconnects, AMD 

processors and NVidia coprocessors. It is difficult to determine the contribution of each 

component however it is worth noting that only Cray systems using AMD processors were SOAs. 

This implies that Cray’s improvements are the highest contributor to the RoC for AMD based 

systems. Intel moving production of Cray interconnect chips from TSMC to Intel’s more 

advanced processes will likely result in additional performance improvement. Thus, we can 

expect that Cray / Intel collaboration will result in RoC greater than the 2.22% and might reach 

the Exascale goal earlier. 

As another possibility of achieving Exascale systems, IBM’s Blue Gene architecture using 

IBM Power (PC) processor with custom interconnects has shown a 2.34% yearly improvement 

building on the 3rd highest rated Sequoia system. The Blue Gene architecture, with a high 

bandwidth, low latency interconnects and no coprocessors to consume bandwidth or complicate 

programming, is an alternative to the coprocessor architectures being driven by Intel and AMD. 

Given their stable business environment they may be more effective moving forward while Intel 

/ Cray work out their new relationship. 

Who has the system experience to build an Exascale system? Cray, IBM and Appro have 

built the largest SOA OEM systems. In 2012, Cray purchased Appro leaving two major 

supercomputer manufactures [58]. Based upon the captured RoCs and the business changes we 

can expect that the first Exascale system will be built by either Cray or IBM. 

Data driven forecasting techniques, such as TFDEA, make a forecast on technical 

capabilities based upon released products, so emerging technologies that are not yet being 
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integrated into products are not considered. In the supercomputer academic literature, there is an 

ongoing debate about when the currently dominating large core processors (Intel, AMD) will be 

displaced by larger numbers power-efficient lower performance small cores such as ARM; much 

as what happened when microprocessors displaced vector machines in the 1990’s and ARM 

based mobile computing platforms are affecting both Intel and AMD X86 desktop and laptop 

sales [13,18]. Although there is no ARM based supercomputer in the TOP500 yet, the European 

Mont-Blanc project is targeting getting one on the list by 2017 and NVidia is developing an 

ARM based supercomputer processor for use with its coprocessor chips [59]. Small cores are a 

potentially disruptive technology as long as power efficiency is concerned, therefore the further 

analysis is needed to investigate when it will overcome the challenges of building interconnects 

to handle a larger number of smaller cores or when software developers will overcome the 

synchronization challenges of effectively using more cores. 

 

6. Conclusion 

The HPC industry is experiencing a radical transition which requires improvement of power 

efficiency by a factor of 23 to deploy and/or manage the Exascale systems. This has created an 

industry concern that the naïve forecast based on the past performance curve may have to be 

adjusted. TFDEA is highly relevant in this context especially to deal with multiple tradeoffs 

between systems attributes. This study examined comparative prospects of three competing 

technology alternatives with various design possibilities considering business environment to 

achieve the Exascale computing so that researchers and manufacturers can have an accurate view 

on their development targets. In sum, the results showed that current development target of 2020 

might entail technical risks considering the rate of change toward the energy efficiency observed 
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in the past. It is anticipated that either a Cray built hybrid systems using Intel processors or an 

IBM built Blue Gene architecture system using PowerPC processors will likely achieve the goal 

between early 2021 and late 2022. 

In addition, the results provided a systematical measure of technological change which can 

guide a decision on the new product target setting practice. Specifically, the rate of change 

contains information not only about how much performance improvement is expected to be 

competitive but also about how much technical capability should be relinquished to achieve a 

specific level of technical capabilities in other attributes. One can also utilize this information to 

anticipate the possible disruptions. As shown in the HPC industry, the rate of change of 

manycore system was found to be faster than that of hybrid system. Although the arrival of 

hybrid Exascale system is forecasted earlier because of its current surpassing level of 

performance, fast rate of change of manycore system implies that the performance gap could be 

overcome and Blue Gene architecture might accomplish the Exascale goal earlier if hybrid 

system development couldn’t keep up with the expected progress. Furthermore, the benchmark 

results can provide information about market segments relevant to the new technology 

alternatives. This makes it possible to identify competitors as well as dominant designs in a 

certain segment under which new product developers may be searching for market opportunities.  

A new approach presented in this study can take segmented rate of change into account. 

Unlike traditional TFDEA relying on a constant rate of change, presented model enables to 

obtain variable rates of change for each product segment thereby either estimating technical 

capabilities of products at a certain point in time or forecasting the time by which desired levels 

of products will be operational. 

Lastly, as an extension of this study, future research can consider: 

• imposing weight restrictions to assess technologies in line with practical views, 
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• elaborating disruption possibilities from small core systems, 

• incorporating external factors that can either stimulate or constrain the technological 

progress. 
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Highlights: 

� The challenges to deploy Exascale supercomputer are addressed. 

� The segmented rate of change calculation is presented in Technology Forecasting using 

DEA (TFDEA). 

� Technological progresses of hybrid, multicore, and manycore systems are compared. 

� The arrival of the Exascale supercomputer is forecasted based on identified rate of 

changes. 

� Innovative engineering efforts may be required to achieve Exascale goal within 2020 

timeframe. 
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