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SYMMETRIC NON-CONFORMING MIXED FINITE ELEMENTS
FOR LINEAR ELASTICITY

J. GOPALAKRISHNAN AND J. GUZMÁN

Abstract. We present a family of mixed methods for linear elasticity, that yield
exactly symmetric, but only weakly conforming, stress approximations. The method
is presented in both two and three dimensions (on triangular and tetrahedral meshes).
The method is efficiently implementable by hybridization. The degrees of freedom of
the Lagrange multipliers, which approximate the displacements at the faces, solve
a symmetric positive-definite system. The design and analysis of this method is
motivated by a new set of unisolvent degrees of freedom for symmetric polynomial
matrices. These new degrees of freedom are also used to give a new simple cal-
culation of the dimension of the space of polynomial symmetric matrix fields with
vanishing normal traces and zero divergence on a tetrahedron. Such a dimen-
sion count was important in the development of the symmetric H(div) conforming
methods found in [Finite elements for symmetric tensors in three dimensions, Math.
Comp. 77 (2008), no. 263, 1229–1251].

1. Introduction

Mixed finite element methods are popular methods in solid mechanics since they
avoid locking and provide direct approximations to stresses. However, stress finite
elements needed for mixed methods are difficult to design due to two requirements.
First, due to the conservation of angular momentum, the stress tensor is required to
be symmetric. Second, the forces on a mesh face shared by two mesh elements must
be in equilibrium, i.e., the stress approximation must lie in H(div).

Stress finite elements satisfying both these requirements have been designed in [1,
3, 4, 8]. But the main drawback of these methods is that they cannot be implemented
as efficiently as other mixed methods. Their stress elements have too many degrees of
freedom and techniques like hybridization usually available for mixed methods are not
available for these methods. A related family of methods use composite elements and
yield symmetric approximations to the stresses [6, 24]. However, they use piecewise
discontinuous polynomials within each element.

Recognizing the difficulties caused by imposing both the above mentioned re-
quirements, researchers have pursued design of methods that relax one of the above
two requirements. The first category of such methods weakly impose stress symme-
try, while maintaing exact H(div)-conformity. These methods introduce a Lagrange
multiplier approximating the non-symmetric part of the displacement gradient while
enforcing stress symmetry weakly [2, 7, 5, 13, 17, 19, 20, 21, 25, 26, 28].
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2 GOPALAKRISHNAN AND GUZMÁN

One can equally well consider methods that relax the other requirement, namely
the H(div)-conformity of stress, yielding a second category of methods. The contri-
butions of [9, 10, 22, 23, 29, 30] fit into this category, and so does the contribution of
this paper. These methods yield non-conforming, but symmetric, stress approxima-
tions. It is not clear if the relaxation of the first or the second requirements is better,
and research into both avenues are actively pursued in the mathematical literature.
The methods with either relaxations, either in the first or the second category, can be
more efficiently implemented compared to the above mentioned strongly symmetric
conforming methods.

To describe our contribution, let us introduce the linear elasticity problem

div σ = f in Ω, (1.1a)

Aσ − ε(u) = 0 in Ω, (1.1b)

u = 0 on ∂Ω, (1.1c)

where Ω ⊂ Rd (for d = 2, 3). Here, displacement is represented by the function
u : Ω 7→ Rd. The stress is denoted by σ : Ω 7→ S, where S denotes the set of
real symmetric d × d matrices. The compliance tensor is denoted by A(x), and is
assumed to be a bounded, symmetric, positive definite tensor over S. The given
load is denoted by the vector function f : Ω 7→ Rd. The linearized strain tensor is
ε(u) = (gradu+ (gradu)′)/2. Here and throughout, transposes are denoted by ′, and
differential operators are applied row-wise.

Our finite element spaces for the stresses and displacements are very simple.
Let Ωh be a simplicial mesh of Ω (satisfying the standard finite element conformity
assumptions). Our spaces, for k ≥ 1, are given by

V h := {τ : τ |K ∈ Pk+1(K, S), for all K ∈ Ωh, and the moments of τn

up to degree k are continuous across element interfaces }, (1.2a)

W h := {w : w|K ∈ Pk(K,Rd), for all K ∈ Ωh}. (1.2b)

Here Pk(D,Rd) (or Pk(D, S)) denotes the space of functions from D 7→ Rd (or D 7→
S, resp.) whose scalar components are polynomials of degree at most k. Above,
n denotes a normal vector on the interelement boundaries. If τn were continuous
across element interfaces, then τ would be in H(div,Ω,S) := {η ∈ L2(Ω,S) : div η ∈
L2(Ω,Rd)}, the space where the exact stresses lie. Clearly, functions τ in V h are, in
general, not in H(div,Ω,S), so our method is non-conforming.

Our method finds (σh, uh) ∈ V h ×W h by satisfying

(Aσh, τ)Ω + (uh, divh τ)Ω =0 (1.3a)

(divh σ
h, ω)Ω =(f, ω)Ω (1.3b)

for all (τ, ω) ∈ V h ×W h. Note that above σh /∈ H(div,Ω,S) in general, and divh (·)
denotes the element-wise divergence. Here and throughout, for vector functions ζ, θ :
D 7→ Rd, the notation (ζ, θ)D denotes the integral over D of their dot product,
while for matrix functions ζ and θ : D 7→ S, the same notation (ζ, θ)D denotes the
integral over D of their Frobenius inner product ζ : θ ≡ tr(ζ ′θ). Our new mixed
nonconforming method is recommended by the simplicity of its elements, and the



SYMMETRIC NON-CONFORMING STRESS ELEMENTS 3

possibility of hybridization for efficient implementations. The main drawback is that
we are only able to prove suboptimal convergence rates.

The key to our analysis is a new set of unisolvent degrees of freedom for the
local space Pk+1(K, S) for any k ≥ 1 and space dimensions d = 2, 3. The degrees of
freedom of the space Pk+1(K, S) use edge moments in three dimensions and vertex
values in two-dimensions. However, let us emphasize at the outset that these edge
or vertex degrees of freedom, unlike the strongly symmetric conforming methods for
simplicial meshes, will not make our method inefficient. In fact, we will present the
hybrid form of the method in Section 4, where we introduce Lagrange multipliers of
degree k that approximate the displacements on mesh faces. We will show that the
other variables can be eliminated locally to obtain a final symmetric-positive definite
system for only the degrees of freedom associated with the Lagrange multipliers.

Nevertheless, we also investigate if one can construct a reduced space V h which
does not contain edge moments in three dimensions (or vertex values in two-dimensions)
as degrees of freedom. This is indeed possible as shown in Section 5. The reduced
space replaces Pk+1(K, S) in (1.2a) with a space V (K) satisfying Pk(K, S) ⊂ V (K) ⊂
Pk+1(K, S). The method using the reduced space has the same convergence rates as
the corresponding full space. Although the dimension of V (K) is smaller than the
dimension of Pk+1(K, S), the simplicity of the full polynomial space Pk+1(K, S) might
be more attractive.

As far as we know, all the other non-conforming mixed elements to date [9, 10,
22, 23, 29, 30] are low-order elements. In contrast, we develop a family of simplicial
elements (one for each k ≥ 1) in both two and three dimensions. All but the elements
in [9] are rectangular elements. Arnold and Winther in [9], define two simplicial
elements in two dimensions only. Their first element uses the displacement space
W h above with k = 1 and their stress space has exactly the same dimension as
our reduced stress space for k = 1. In fact, the degrees of freedom of our reduced
space corresponding to k = 1 is the same as their first stress space. Their second
element [9] uses piecewise rigid displacements as the space of displacements and hence
the displacement error can be at most first-order accurate.

The new degrees of freedom for Pk+1(K, S), while playing a key role in the design
and analysis of our non-conforming mixed method, also find other applications. As
an interesting application unrelated to our method, we give an alternative proof of
the dimension count of the space

Mk := {τ ∈ Pk(K, S) : div τ = 0 and τn|∂K = 0}. (1.4)

This space is essential in the development of conforming mixed methods [4, 8]. Its
dimension count in particular is important in proving the unisolvency of the degrees
of freedom. The proof of the dimension count of the space Mk in three dimensions
given in [4] is substantially more involved than the two-dimensional proof [8]. The
alternative proof we give here is much simpler.

The paper is organized as follows. In the next section we give the new unisolvent
degrees of freedom for the space Pk+1(K, S). As corollaries, we prove the dimension
count of Mk and the well-posedness of the mixed method (1.3) with spaces (1.2b),
(1.2a). In Section 3 we provide the error analysis of the mixed method. In Section 4
we present the hybrid form of the mixed method. Finally, in Section (5) we present
the reduced element.
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2. A set of degrees of freedom for symmetric polynomial matrices

In this section we give a unisolvent set of degrees of freedom (d.o.f) for Pk+1(K, S).
Here K is a tetrahedra in three dimensions (d = 3), or a triangle in two dimensions
(d = 2).

The unisolvent set of d.o.f, in the three-dimensional (d = 3) case, is the following
set of linear functionals:

`ρ(σ) = (σ, ρ)K , for all ρ ∈ Pk−1(K, S), (2.5a)

`µ(σ) = 〈σn, µ〉F , for all µ ∈ Pk(F,Rd), for all faces F of K, (2.5b)

`s(σ) = 〈σn− · n+, s〉e, for all s ∈ Pk+1(e,R), for all edges e of K. (2.5c)

Here, for each edge e, n+ and n− are the normal vectors of the two faces that intersect
at the edge e. Note that σn− ·n+ = σn+ ·n− since σ is symmetric. The notation 〈a, b〉S
denotes integration of the (scalar) product of a and b over (lower dimensional) S. In
the case of two dimensions (d = 2), the degrees of freedom are given by

`ρ(σ) = (σ, ρ)K , for all ρ ∈ Pk−1(K, S), (2.5a′)

`µ(σ) = 〈σn, µ〉F , for all µ ∈ Pk(F,Rd), for all edges F of K, (2.5b′)

`x(σ) = σ(x)n− · n+, for all vertices x of K. (2.5c′)

For each vertex x of K the vectors n+ and n− are the normal vectors of the two edges
that intersect at x. The main result of this section is the following theorem. In the
k = 0 case, we omit (2.5a) and (2.5a′) from the set of d.o.f.

Theorem 2.1 (Unisolvency): Assume k ≥ 0. Let K be a triangle (d = 2) or a
tetrahedra (d = 3). Any σ in Pk+1(K, S) is uniquely determined by the degrees of
freedom given by (2.5) for d = 3 or (2.5′) for d = 2.

Proof. We prove the result in two steps. First, we show that the number of d.o.f equal

dim(Pk+1(K, S)) =
d (d+ 1)

2

(k + 1 + d)!

(k + 1)!d!
.

Consider d = 3 case. The number of functionals in (2.5a), (2.5b), and (2.5c) are

6
k(k + 1)(k + 2)

6
, 4

3(k + 1)(k + 2)

2
, and 6(k + 2),

respectively. These add up to 6(k + 2)(k + 3)(k + 4) = dim(Pk+1(K, S)). The d = 2
case is similar.

The second step is to show that if all the d.o.f applied to σ ∈ Pk+1(K, S) vanish,
then σ vanishes. We only consider the d = 3 case as the d = 2 case is similar.
Accordingly, let Fi and Fj be any two distinct faces of a tetrahedron K. We denote
by λi the barycentric coordinate of K that vanishes on Fi, and by ni a normal on Fi.

We first claim that σni ·nj vanishes on Fi and Fj. Clearly, by (2.5c), it vanishes on
the edge shared by Fi and Fj. Hence, on Fi, σni ·nj|Fi

= λj|Fi
v for some v in Pk(Fi,R).

But by (2.5a), 〈σni, njv〉Fi
= 〈λjv, v〉Fi

= 0, so v ≡ 0. Thus σni · nj vanishes on Fi.
A similar argument on Fj shows that it vanishes there as well. Consequently,

σni · nj = λiλjw (2.6)



SYMMETRIC NON-CONFORMING STRESS ELEMENTS 5

for some w in Pk−1(K,R). But, by (2.5a), we have (σ, nin
′
jw)K = (λiλjw,w)K = 0,

which implies w ≡ 0. Thus σni · nj ≡ 0 on K.
Any vector in R3 can be expressed in terms of any three of the normals {ni} since

they form a basis of R3 (the fourth normal can be written as a linear combination of
the other three). Since σni · nj vanishes for any distinct i and j, we find that σ(x) is
a symmetric matrix whose quadratic form vanishes (at every point x in K). Hence σ
vanishes on K.

Note that in the k = 0 case, the argument leading to (2.6) already shows that σ
vanishes and there is no need to use (2.5a). �

We conclude this section with two corollaries. The first provides a considerable
simplification of the proof of a previously known result [4, Theorem 7.2] concerning
Mk, a space fundamental in the analysis of known stress elements for conforming
mixed methods in linear elasticity [4, 8] (see (1.4) for its definition).

Corollary 2.2: For any non-negative integer k,

dim(Mk) =


0 if k ≤ 3

(k − 2)(k − 3)/2 if d = 2 and k ≥ 4,

(k + 2)(k − 2)(k − 3)/2 if d = 3 and k ≥ 4.

Proof. We only prove the d = 3 case, as the d = 2 case is similar. Let R1 denote
the space of rigid displacements of the form a + b × x for some a, b ∈ R3. Let Rk

⊥
denote the orthogonal complement of R1 in Pk(K,Rd). Let k ≥ 1. Then we have the
decomposition

Pk−1(K, S) = ε(Rk
⊥)⊕ Sk−1 (2.7)

where Sk−1 is the orthogonal complement of ε(Rk
⊥) in Pk−1(K, S). Decomposing ρ

in (2.5a) as ρ = ε(r) + η, we find that we may split all the interior d.o.f in (2.5a) into
two subcategories:

`ε(r)(σ) = (σ, ε(r))K , for all r ∈ Rk
⊥, and (2.5aε)

`η = (σ, η)K , for all η ∈ Sk−1. (2.5aη)

Now, we claim that

Mk+1 = {σ ∈ Pk+1(K, S): the d.o.f in (2.5aε), (2.5b), and (2.5c),

applied to σ vanish}. (2.8)

Since the ⊆–containment is easy, we only show the reverse. Let Fi be an arbitrary
face. Then, the zero face and edge d.o.f ((2.5b) and (2.5c)) imply, by the same
argument that led to (2.6), that σni · nm|Fi

= 0 for all three indices m 6= i. Thus
σni|Fi

= 0, so σn vanishes on ∂K. That div σ also vanishes follows from (2.5aε) and
integration by parts. Hence σ is in Mk+1.

Next, the d.o.f in (2.8) are linearly independent functionals as they form a subset
of a unisolvent set of d.o.f (by Theorem 2.1). Hence dim(Mk+1) can be obtained by
simply subtracting their number from dim(Pk+1(K, S))

dim(Mk+1) = dim(Pk+1(K, S))− dim(Rk
⊥)− 4

3(k + 1)(k + 2)

2
− 6(k + 2). (2.9)
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Since dim(Rk
⊥) = 3 dim(Pk(K,R)) − 6, upon simplifying, we find this equals (k +

3)(k − 1)(k − 2)/2 for k + 1 ≥ 4. The right hand side of (2.9) is zero for k + 1 = 3,
showing that M3 is trivial. Since Mk ⊆ M3 for k < 3, the spaces M0, M1, and M2

are also trivial. �

Remark 2.3. The proof of the corollary also reveals the following procedure for con-
structing a basis for Mk+1: First, by the Gram-Schmidt process, find an orthonormal
bases for the two subspaces in (2.7). Using these bases, split the d.o.fs in (2.5a) into
the d.o.fs in (2.5aε) and (2.5aη). Having done this split, consider the shape functions
that form a dual basis to all the d.o.fs in (2.5). From this collection, if we omit the
shape functions associated to the d.o.fs in (2.5aε), (2.5b), and (2.5c), then we obtain
a basis for Mk+1. This is because of the characterization (2.8) that we just proved.

In the next corollary, we prove that the mixed method (1.3) is well defined.

Corollary 2.4: The mixed method (1.3) using the spaces V h and W h from (1.2)
has a unique solution.

Proof. Since (1.3) is a square linear system it is enough to prove uniqueness. To this
end, we set f = 0. Then, by (1.3b), divh σ

h = 0. So, putting τ = σh in (1.3a) we find
(Aσh, σh)Ω = 0. Thus σh = 0.

In order to show that uh also vanishes, we use integration by parts in (1.3a) to
get ∑

K∈Ωh

−(ε(uh), τ)K + 〈uh, τn〉∂K = 0 for all τ ∈ V h. (2.10)

On each K we define τ |K ∈ Pk+1(K, S) by setting the d.o.f (in (2.5) or (2.5′)) as
follows: Set `ρ(τ) ≡ (τ, ρ)K = −(ε(uh), ρ)K , for all ρ ∈ Pk−1(K, S), and let all other
degrees of freedom vanish. It is easy to see that this τ is in V h. Using it in (2.10),∑

K∈Ωh

(ε(uh), ε(uh))K = 0.

Thus, ε(uh|K) = 0 on each K ∈ Ωh.
Next, we show that uh is continuous and vanishes on ∂Ω. For this, on any interior

face F shared by two mesh elements K+ and K−, we let uh± denote the trace of uh on
F from K±. Also denote the unit outward normals on K± by n±. Then the jump of
uh is denoted by [[uhn′]] = uh+n

′
+ + uh−n

′
−. On faces F ⊆ ∂Ω, [[uhn′]] = uhn′. Now, for

any K ∈ Ωh, define τ |K ∈ Pk+1(K, S) by setting `µ(τ) ≡ 〈τn, µ〉F = 〈[[uhn′]]n, µ〉F for
all F ⊆ ∂K and letting all the remaining degrees of freedom vanish. The composite
function τ is then clearly in V h. Using this τ in (2.10), and recalling that ε(uh|K) = 0,
we find that 〈[[uhn′]], [[uhn′]]〉F = 0 for all mesh faces F (or all mesh edges in the d = 2
case). Thus uh is continuous and vanishes on the boundary. Combined with the fact
that ε(uh) = 0, this implies that uh vanishes on Ω. �

Remark 2.5. The local element d.o.fs in (2.5)′ furnish a set of global d.o.fs, given a
triangulation (considering, say the d = 2 case). On an edge shared by two elements,
the edge d.o.fs in (2.5b)′ coalesce into one global d.o.f suitable for enforcing the weak
continuity. But note that the vertex d.o.fs in (2.5c)′ do not coalesce, i.e., to each mesh
vertex, we must associate as many global d.o.fs as the number of edges connected to
that vertex.
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3. Error Estimates

In this section we prove the following error estimates for the mixed method (1.3).
We assume throughout that the mesh is shape regular and use h to denote the max-
imum of the diameters of all mesh elements.

Theorem 3.1: Suppose k ≥ 1 and σ ∈ H1(Ω,S). Then, for any 1 ≤ r ≤ k,

‖σ − σh‖L2(Ω) + ‖u− uh‖L2(Ω) ≤ Chr‖u‖Hr+1(Ω), (3.11)

Moreover, if full elliptic regularity holds (see (3.29)), then

‖u− uh‖L2(Ω) ≤ Chr+1‖u‖Hr+1(Ω). (3.12)

In the remainder of this section, we prove Theorem 3.1 in several steps. Above
and throughout, we have adopted the usual convention of denoting by C a positive
constant independent of h, whose specific value at different occurrences may vary.

3.1. Error estimate for the stress variable. Error estimation of the stress begins
with the error equations, obtained by subtracting the discrete equations from the
exact ones:

(A(σ − σh), τ)Ω + (u− uh, divh τ)Ω = 〈u, τn〉∂Ωh
(3.13a)

(divh (σ − σh), ω)Ω = 0 (3.13b)

for all (τ, ω) ∈ V h ×W h, where

〈u, τn〉∂Ωh
=
∑
K∈Ωh

〈u, τn〉∂K . (3.14)

This last term in (3.13a) term measures the consistency error. It is in general non-zero
because V h is not H(div)-conforming.

We need a projector into the finite element space with a commutativity property.
To reveal the main idea, we proceed by assuming the existence of such a projector
and verify the assumption later (in § 3.2).

Assumption 3.2. There is a subspace DΠ ⊆ H(div,Ω,S) and a continuous projector
Π : DΠ 7→ V h such that

divh (Πσ) = Pdivh σ for all σ ∈ DΠ , (3.15)

where P : L2(Ω,Rd) 7→ W h is the L2-orthogonal projection.

Theorem 3.3: If Π is as in Assumption 3.2 and k ≥ 1, then whenever σ ∈ DΠ ,

C‖σ − σh‖L2(Ω) ≤ ‖σ −Πσ‖L2(Ω) + inf
wh∈Wh

‖ε(u− wh)‖L2(Ω), (3.16)

where Wh is the set of all continuous functions in W h that vanish on ∂Ω.

Proof. We first note that using (3.15) and using (3.13b) we have that

divh (Πσ − σh) = 0. (3.17)

Hence, setting τ = Πσ − σh in (3.13a) and rearranging, we find that

(A(Πσ − σh), Πσ − σh)Ω =(A(Πσ − σ), Πσ − σh)Ω + 〈u, (Πσ − σh)n〉∂Ωh
.
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Now, since Πσ − σh is in V h, we can replace u by u − wh in the last term, for any
wh in Wh. Furthermore, integrating by parts on each element K, and using (3.17),
we find 〈u− wh, (Πσ − σh)n〉∂K = (ε(u−wh), Πσ−σh)K . Thus, by Cauchy-Schwarz
inequality,

C‖Πσ − σh‖L2(Ω) ≤ ‖Πσ − σ‖L2(Ω) + ‖ε(u− wh)‖L2(Ω) (3.18)

where we have also used that A is positive definite. The theorem now follows from
triangle inequality. �

Remark 3.4. To measure errors in the momentum balance one may additionally con-
sider the error terms e1, e2 defined by

e2
1 =

∑
K∈Ωh

hK‖[[(σ − σh)n]]‖2
L2(∂K), e2 = divh (σ − σh).

Estimate (3.18) implies a bound on e1 via an inverse estimate:

e1 ≤
( ∑
K∈Ωh

hK‖[[(σ −Πσ)n]]‖2
L2(∂K)

)1/2

+ C‖σ −Πσ‖L2(Ω) + C inf
wh∈Wh

‖ε(u− wh)‖L2(Ω).

Of course, the divergence error is just e2 = f − P f .

3.2. The projector. The natural interpolant of σ into our finite element, denoted
by ΠKσ is defined by `(ΠKσ) = `(σ) for all the degrees of freedom ` ∈ {`ρ, `µ, `s}
in (2.5) or (2.5′). It is easy to see that this projector satisfies Assumption 3.2. The
only difficulty is that the domain DΠ for this projector consists of functions with high
smoothness requirements (to make the functionals `s continuous). Then requiring that
the exact stress lies in DΠ (e.g., as in Theorem 3.3), is rather restrictive. Therefore we
now define a different Π with an enlarged domain DΠ , closely following a construction
in [4, 8].

We will first need to define an auxiliary projection following [4, 8] by zeroing
out the edge degrees of freedom in three dimensions (and the vertex ones in the two
dimensions). I.e., in the d = 3 case, define the function Π0σ|K ∈ Pk+1(K, S) for each
K by

`ρ(Π
0σ) = `ρ(σ), for all ρ ∈ Pk−1(K, S), (3.19a)

`µ(Π0σ) = `µ(σ), for all µ ∈ Pk(F,Rd), for all faces F of K, (3.19b)

`s(Π
0σ) = 0 for all s ∈ Pk+1(e,R), for all edges e of K. (3.19c)

In the d = 2 case the definition is similar except that (3.19c) is replaced by

(Π0σ(x))n− · n+ = 0 for all vertices x of K, (3.19c′)

and F in (3.19b) denotes edges of the triangular element.

Lemma 3.5: The projection Π0 satisfies Assumption 3.2 with DΠ = H(div,Ω,S) ∩
Lp(Ω;S) for any p > 2. Moreover, if σ is in H1(K, S), then

‖Π0σ‖L2(K) ≤ C(‖σ‖L2(K) + hK |σ|H1(K)), (3.20)

for all K ∈ Ωh. Here C only depends on the shape regularity of Ωh.
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Proof. By Theorem 2.1 we know that Π0σ is well-defined for smooth σ. The fact that
Π0 is continuous on H(div,Ω,S) ∩ Lp(Ω;S) for any p > 2 follows from the fact that
we only use interior and face degrees of freedom (see e.g., [12]).

To prove the commutativity (3.15), let w ∈ Pk(K,Rd). Then, integrating by
parts,

(divhΠ
0σ,w)K =− (Π0σ, ε(w))K + 〈(Π0σ)n,w〉∂K

=− (σ, ε(w))K + 〈σn,w〉∂K
=(divh σ,w)K = (Pdivh σ,w)K .

In the second equality we used (3.19b) with µ = w and (3.19a) with ρ = ε(w).
It only remains to prove (3.20). We only consider the d = 3 case as the other is

similar. Because of Theorem 2.1, it is easy to see by a scaling argument, using the
same mappings as in [17, § 2.2], that

C‖τ‖L2(K) ≤ sup
ρ∈Pk−1(K,S)

`ρ(τ)

‖ρ‖L2(K)

+ sup
F,µ∈Pk(F,Rd)

h
1/2
K `µ(τ)

‖µ‖L2(F )

+ sup
e, s∈Pk+1(e,R)

hK`s(τ)

‖s‖L2(e)

holds for all τ in Pk+1(K, S). We apply this with τ = Π0σ. The last term then
vanishes due (3.19c). The first term on the right hand side is bounded by ‖σ‖L2(Ω)

due to (3.19a). Using a trace inequality for the remaining term, `µ(Π0σ) = `µ(σ) ≤
‖µ‖F (‖σ‖L2(K) + hK |σ|H1(K)). This proves the lemma. �

The operator Π0, although continuous on H(div,Ω,S) ∩ Lp(Ω;S) for p > 2, does
not have good approximation properties. Therefore, following [8] we modify it further.
Consider the Clement interpolant [14, 18] of order k. Let Rk denote its matrix version
in which the Clement interpolant acts component wise. For any 0 ≤ r ≤ k, we have
the following local approximation result for the Clement interpolant (see [18])

‖Rkσ − σ‖L2(K) + hK |Rkσ − σ|H1(K) ≤ C hr+1
K ‖σ‖Hr+1(4K) (3.21)

where4K is the union of simplices that share a vertex with K. The global interpolant
is then defined by

Π = Π0(I −Rk+1) +Rk+1. (3.22)

Theorem 3.6: The projector Π defined above satisfies Assumption 3.2 with H(div,Ω,S)∩
Lp(Ω,S) ⊂ DΠ for any p > 2. Moreover, for 0 ≤ r ≤ k + 1 we have

‖Πσ − σ‖L2(K) ≤ Chr+1
K ‖σ‖Hr+1(4K) (3.23)

for all K ∈ Ωh where C only depends on the shape regularity of Ωh.

Proof. To prove the commutativity property (3.15) of Assumption 3.2, we first inte-
grate by parts on each K ∈ Ωh and observe that

(divh (Πσ−Π0σ), w)K = −(Rk+1σ−Π0Rk+1σ, ε(w))K+〈(Rk+1σ −Π0Rk+1σ)n,w〉∂K
Using (3.19), this implies

(divh (Πσ −Π0σ), w)K = 0, for all w ∈ Pk(K,Rd).

Hence, divhΠσ = divhΠ
0σ = Pdivh σ where we used Lemma 3.5. This proves (3.15).
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In order to prove (3.23),

‖Πσ − σ‖L2(K) = ‖(Π0 − I)(Rk+1 − I)σ‖L2(K)

≤ C(‖Rk+1σ − σ‖L2(K) + hK |Rk+1σ − σ|H1(K)).

where we used (3.20) of Lemma 3.5. The result now follows from (3.21). �

3.3. Displacement Error. In this section we prove an error estimate for ‖Pu −
uh‖L2(Ω).

Theorem 3.7: If Π is given by (3.22) for k ≥ 1, then whenever σ ∈ DΠ ,

C‖Pu− uh‖L2(Ω) ≤ ‖σ −Πσ‖L2(Ω) + inf
wh∈Wh

(‖u− wh‖L2(Ω) + ‖ε(u− wh)‖L2(Ω)).

(3.24)

Proof. There exists ψ ∈ H1(Ω,S) satifying

divψ = Pu− uh in Ω (3.25)

with
‖ψ‖H1(Ω) ≤ C‖Pu− uh‖L2(Ω). (3.26)

‖Pu− uh‖2
L2(Ω) =(Pu− uh, divh ψ)Ω by (3.25)

=(Pu− uh, divhΠψ)Ω by (3.15)

=(u− uh, divhΠψ)Ω by definition of P

=− (A(σ − σh), Πψ)Ω + 〈u,Πψn〉∂Ωh
by (3.13a).

The first term can easily be estimated as follows

−(A(σ − σh), Πψ)Ω ≤C ‖σ − σh‖L2(Ω) ‖Πψ‖L2(Ω)

≤C ‖σ − σh‖L2(Ω) ‖ψ‖H1(Ω)

≤C ‖σ − σh‖L2(Ω) ‖Pu− uh‖L2(Ω),

where we used (3.23) and (3.26).
To bound the second term we note that 〈wh, Πψn〉∂Ωh

= 0 for any wh ∈Wh since
Πψ ∈ V h. Hence,

〈u,Πψn〉∂Ωh
=〈u− wh, Πψn〉∂Ωh

=(ε(u− wh), Πψ)Ω + (u− wh, divh (Πψ))Ω

=(ε(u− wh), Πψ)Ω + (u− wh, Pu− uh)Ω,

where we used integration by parts, (3.15) and (3.25).
Therefore, we see that

〈u,Πψn〉∂Ωh
≤ C (‖u− wh‖L2(Ω) + ‖ε(u− wh)‖L2(Ω)) ‖Pu− uh‖L2(Ω),

where we used (3.23) and (3.26).
Hence, we obtain

C‖Pu− uh‖L2(Ω) ≤ ‖σ − σh‖L2(Ω) + inf
wh∈Wh

(‖u− wh‖L2(Ω) + ‖ε(u− wh)‖L2(Ω)).

(3.27)
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To complete the proof we use Theorem 3.3. �

3.4. Duality argument. In this section we prove an inequality that leads to the
second part, namely (3.12), of Theorem 3.1. But first, let us clarify what we meant
by full regularity there. Consider the dual problem of finding ψ in H(div,Ω,S) and
φ in H1(Ω,Rd) satisfying

divψ =θ in Ω, (3.28a)

Aψ − ε(φ) =0 in Ω, (3.28b)

φ =0 on ∂Ω, (3.28c)

for any given θ in L2(Ω,Rd). We have “full elliptic regularity” if the solution of the
dual problem satisfies

‖ψ‖H1(Ω) + ‖φ‖H2(Ω) ≤ C‖θ‖L2(Ω). (3.29)

for all θ ∈ L2(Ω,Rd). This is known to hold in many instances, e.g., see [11] for
convex polygons.

Theorem 3.8: Assuming full elliptic regularity (3.29) we have for any k ≥ 1,

C‖Pu− uh‖L2(Ω) ≤ h‖σ − σh‖L2(Ω) + h inf
wh∈Wh

‖ε(u− wh)‖L2(Ω).

Proof. Let θ = Pu− uh in (3.28). Then,

‖Pu− uh‖2
L2(Ω) =(Pu− uh, divh ψ)Ω by (3.28a)

=(Pu− uh, divhΠψ)Ω by (3.15)

=(u− uh, divhΠψ)Ω by definition of P

=− (A(σ − σh), Πψ)Ω + 〈u,Πψn〉∂Ωh
by (3.13a)

=− (A(σ − σh), Πψ − ψ)Ω + 〈u,Πψn〉∂Ωh

− (A(σ − σh), ψ)Ω.

We rewrite the last term as follows.

(A(σ − σh), ψ)Ω = (σ − σh, ε(φ))Ω by (3.28b)

= (σ − σh, ε(φ− φh))Ω

for any φh in Wh. The last equality holds because by integration by parts

(σ − σh, ε(φh))Ω = 〈(σ − σh)n, φh〉∂Ωh
− (divh (σ − σh), φh)Ω,

and both terms on the right hand side are zero. We see that the first is zero by the
continuity and weak continuity of σn and σhn, resp., across mesh faces (and noting
that φh is single-valued there). The second vanishes by (3.13b). Hence,

‖Pu− uh‖2
L2(Ω) =− (A(σ − σh), Πψ − ψ)Ω + 〈u,Πψn〉∂Ωh

− (σ − σh, ε(φ− φh))Ω

Let us name the terms on the right hand side consecutively as T1, T2, and T3.
We now estimate these three terms individually. Using the Cauchy-Schwarz in-

equality, (3.23), and (3.29) we obtain

T1 ≤ C h ‖σ − σh‖L2(Ω)‖ψ‖H1(Ω) ≤ C h ‖σ − σh‖L2(Ω) ‖Pu− uh‖L2(Ω).
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For T2, we note that for any wh in Wh 〈wh, Πψn〉∂Ωh
= 0 since Πψ ∈ V h. Hence,

T2 = 〈u− wh, Πψn〉∂Ωh
.

Furthermore,

T2 = 〈u− wh, Πψn− ψn〉∂Ωh
,

which follows since both u− wh and ψn are single-valued on mesh faces and u− wh
vanishes on ∂Ω. Integrating by parts and using (3.15),

T2 = (ε(u− wh), Πψ − ψ)Ω ≤ ‖ε(u− wh)‖L2(Ω)‖Πψ − ψ‖L2(Ω).

Here we have used that divh (Πψ−ψ) = Pθ− θ = 0 since θ ∈ Wh. Combining (3.23)
with (3.29) we get

T2 ≤ C h‖ε(u− wh)‖L2(Ω)‖Pu− uh‖L2(Ω).

For T3, we select a φh in Wh with good approximation properties, e.g., the one
provided by the Scott-Zhang interpolation operator [27]. Let Zk : H1(Ω,Rd) → Wh

denote this interpolation of degree k, applied component by component to vector
functions. Then by the results in [27],

‖φ− Zkφ‖2
L2(K) + hK‖grad (φ− Zkφ)‖2

L2(K) ≤ C hr+1‖φ‖Hr+1(4K), (3.30)

where 4K is the union of simplices that share a vertex with K. Set φh = Zkφ in T3.
Using (3.30) and (3.29), we then have

T3 ≤ C h ‖σ − σh‖L2(Ω)‖Pu− uh‖L2(Ω).

Combining the bounds for T1, T2, T3, the proof is finished. �

We conclude with the proof of the previously stated main result of this section.

Proof of Theorem 3.1. To prove the first estimate (3.11), we apply Theorem 3.3 and
Theorem 3.7 and use the triangle inequality. The assumption in Theorem 3.3 on the
projector has been verified by Theorem 3.6. The infimum in (3.27) and (3.24) can be
bounded by setting wh = Zku and using (3.30).

The second estimate (3.12) of the theorem follows from Theorem 3.8, the triangle
inequality and using the same choice of wh. �

4. Hybrid Form

We give an alternative formulation of the method (1.3) which results in a sym-
metric positive definite system for a single new variable. All the original variables can
be locally recovered after solving for this new variable. The alternative formulation
is obtained by hybridization, which removes the interelement continuity requirements
from the space V h, and places them as an additional equation of the method. Ac-
cordingly, we need the space

Ṽ h = {τ : τ |K ∈ Pk+1(K, S) for all mesh elements K ∈ Ωh}

without any interelement continuity constraints, as well as a space of Lagrange mul-
tipliers

Λh = {µ : µ|F ∈ Pk(F,Rd) for all mesh faces F of Ωh, and µ|∂Ω = 0}.
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The approximate solution given by the hybridized method is (σh, uh, λh) ∈ Ṽ h×W h×
Λh, satisfying

(Aσh, τ)Ω + (uh, divh τ)Ω + 〈λh, τn〉∂Ωh
= 0, (4.31a)

(divh σ
h, ω)Ω = (f, ω)Ω, (4.31b)

〈σhn, µ〉∂Ωh
= 0, (4.31c)

for all (τ, ω, µ) ∈ Ṽ h ×W h × Λh. Here, the notation 〈·, ·〉∂Ωh
is as in (??).

Proposition 4.1: There is a unique (σh, uh, λh) ∈ Ṽ h ×W h × Λh satisfying (4.31).
Moreover, the first two components of the solution coincide with that of the mixed
method (1.3).

Proof. If (σh, uh, λh) satisfies (4.31), then (4.31c) give us that σh ∈ V h. Moreover,
since V h ⊂ Ṽ h, choosing test functions τ ∈ V h, we see that the equations (4.31a)–
(4.31b) are identical to the equations of the mixed method (1.3). Therefore, (σh, uh)
solves (1.3).

Next we prove that (4.31) has a unique solution. Since the system (4.31) is square,
it is enough to prove uniqueness. If f is identically zero, the argument of the previous
paragraph and Corollary 2.4 shows that (σh, uh) vanishes. The equation (4.31a) then
becomes

〈λh, τn〉∂Ωh
= 0 for all τ ∈ Ṽ h.

We then use the face degrees of freedom in (2.5b) (or the edge degrees in the two-
dimensional case (2.5b′)) to show that λh also vanishes. �

We next show that it is possible to eliminate the variables σh and uh, and obtain
a global linear system solely for λh. Let A : Ṽ h 7→ Ṽ h and B : Ṽ h 7→ W h and
C : Ṽ h 7→ Λh be defined by

(Aσ, τ)Ωh
= (Aσ, τ)Ωh

, (Bσ,w)Ωh
= (w, divh σ)Ωh

, 〈Cσ, µ〉∂Ωh
= 〈µ, σn〉∂Ωh

,

for all σ, τ ∈ Ṽ h, w ∈ W h, and µ ∈ Λh. Denoting their adjoints by superscript ′, the
hybridized system (4.31) can be rewritten asA B′ C ′

B 0 0
C 0 0

σhuh
λh

 =

 0
F h

0

 (4.32)

where F h is the L2-orthogonal projection of f into W h. Such systems were considered
for hybridization abstractly in [16, Appendix A] (see also [15]) under the assumption
that B is surjective. To see that this assumption holds for our B, given any wh in
W h, we put f = wh and solve the mixed method (1.3). There is a unique solution by
Corollary 2.4. The resulting σh satisfies Bσh = wh, so B is surjective.

A consequence of this surjectivity is that there is a unique (σF,G, uF,G) ∈ Ṽ h×W h

solving (
A B′

B 0

)(
σF,G
uF,G

)
=

(
G
F

)
. (4.33)

Note that (σF,G, uF,G) can be computed locally, element by element, as Ṽ h has no
interelement continuity. Let (σµ, uµ) denote the (σF,G, uF,G) obtained by setting G =
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−C ′µ and F = 0, and let (σf , uf ) denote the (σF,G, uF,G) obtained when G = 0 and
F = F h.

Theorem 4.2: The function (σh, uh, λh) ∈ Ṽ h×W h×Λh satisfies (4.31) if and only
if λh is the unique solution of

ah(λ
h, µ) = bh(µ), for all µ ∈ Λh, (4.34)

where the forms are defined by ah(µ, γ) := (Aσµ, σγ)Ωh
, bh(µ) := (f, uµ)Ωh

. Further-
more,

σh =σλh + σf , (4.35a)

uh =uλh + uf . (4.35b)

Proof. Since B is surjective, we can apply [16, Theorem A.1]. �

Equation (4.34) gives a symmetric positive definite system for λh. In practical
implementations, this may be preferable over a direct assembly of (1.3). The latter
will result in a larger indefinite system. Moreover, due to the (already mentioned)
local nature of (4.33), the right hand sides of (4.35) are locally computable from λh

and f , so once the (global) positive definite system for λh is solved, the approximate
stress and displacement can be recovered locally.

5. A reduced element

This section provides an answer to the following natural question: Is it possible to
reduce the stress space Pk+1(K, S) and yet maintain the same order of convergence?

We first consider the three dimensional case. For any edge e of a tetrahedron K,
let e∗ denote the “opposite” edge, i.e., none of the two faces that share e∗ have e as
one of their edges. Let F (e∗) denote any one of the two faces that share e∗. Define
the reduced space of stresses by

V (K) =

{
σ ≡

∑
e

pe tet
′
e

∣∣∣∣ pe ∈ Pe

}
(5.36)

where the sum runs over all six edges e of K, te denotes a tangent vector along an edge
e, and Pe = {p ∈ Pk+1(K,R) : p|F (e∗) ∈ Pk(F (e∗),R)}. A unisolvent set of degrees of
freedom for this space is furnished by (2.5) after we omit the edge degrees of freedom
there, as the next theorem states.

Theorem 5.1: The set of linear functionals consisting of

`ρ defined in (2.5a), for all ρ ∈ Pk−1(K, S),

`µ defined in (2.5b), for all µ ∈ Pk(F,Rd), for all faces F of K,

form a set of unisolvent degrees of freedom for V (K).

We prove this theorem using two lemmas. Let Pk⊥ = {p ∈ Pk(K,R) : (p, qk−1)K =
0 for all qk−1 in Pk−1(K,R)} and Qk+1

e,⊥ = {λe∗rk : rk ∈ Pk⊥}, where λe∗ denotes the
barycentric coordinate which vanishes on F (e∗).

Lemma 5.2: Pe = Pk(K,R) ⊕ Qk+1
e,⊥ .
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Proof. Clearly, Pk(K,R) ⊕ Qk+1
e,⊥ ⊆ Pe, so we only need to prove the reverse inclusion.

Since, any p ∈ Pe when restricted to F (e∗), is of degree at most k, there exists a qk
in Pk(K,R) such that

p− qk = 0, on F (e∗).

Thus, p − qk = λe∗wk for some wk in Pk(K,R). Decomposing wk = wk−1 + w⊥ with
wk−1 ∈ Pk−1(K,R) and w⊥ ∈ Pk⊥, we find that

p = q̃k + λe∗w⊥,

with q̃k = qk + λe∗wk−1 ∈ Pk(K,R). Thus Pe = Pk(K,R) + Qk+1
e,⊥ .

The decomposition is direct, because if λe∗q⊥ = pk for some q⊥ in Pk⊥ and pk ∈
Pk(K,R), then pk vanishes on F (e∗), so pk = λe∗rk−1 for some rk−1 in Pk−1(K,R).
Thus,

(q⊥, q⊥)K = (λ−1
e∗ λe∗q⊥, q⊥)K = (λ−1

e∗ pk, q⊥)K = (rk−1, q⊥)K = 0,

so q⊥ and pk vanish. �

The next observation is a simple identity. We use the same notations introduced
in the proof of Theorem 2.1 such as λi, ni, Fi, etc., for i = 1, 2, 3, 4. Additionally, now
we let eij denote the edge connecting the vertices where λi and λj equal one. We
assume that the index set {i, j, l,m} is a permutation of {1, 2, 3, 4}.

Lemma 5.3: For any σ ∈ V (K) as in (5.36), and i 6= j, the following identity holds
on all points in K.

σni · nj = peij(teij · ni)(teij · nj)

Proof. Clearly, ni is orthogonal to the three tangent vectors telm , temj
, tejl on Fi. Sim-

ilarly nj is orthogonal to telm , temi
, teil . Hence in the sum

σni · nj =
∑
e

pe(te · ni)(te · nj)

only one summand is nonzero, and this is precisely the term stated in the lemma. �

Proof of Theorem 5.1. First we must count dim(V (K)). To this end we first note
that (5.36) can rewritten as

V (K) = ⊕
e

(tet
′
e) Pe (5.37)

To see that the above sum is direct, suppose σ =
∑

e petet
′
e ≡ 0. Then using

Lemma 5.3 with all combinations of distinct i and j, we find that pe ≡ 0 for all
edges e. Hence

dim(V (K)) = 6 dim(Pe).

By Lemma 5.2, dim(Pe) = dim(Pk(K,R)) + dim(Pk⊥). Simplifying, we obtain

dim(V (K)) = (k + 2)(k + 3)(k + 4)− 6(k + 2),

which matches the number of degrees of freedom given in the theorem.
Next, suppose σ ∈ V (K) satisfies `µ(σ) = `ρ(σ) = 0. We will show that σ

vanishes. Pick any two faces Fi and Fj. They share the edge elm. Obviously, elm = e∗ij.
Hence the restriction of peij to one of the faces Fi or Fj is of degree at most k. Without
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loss of generality, let that face be Fi. Then, µ = njpeij |Fi
∈ Pk(Fi,R3). Applying

Lemma 5.3,

0 = 〈σni, µ〉Fi
= (teij · ni)(teij · nj)

∫
Fi

p2
eij
.

Hence peij vanishes on Fi. Consequently, there exists a qk ∈ Pk(K,R) such that
peij = λiqk. Now, considering the remaining face Fj, setting µ = niqk|Fj

, and applying
Lemma 5.3, we find that

0 = 〈σnj, µ〉Fj
= (teij · ni)(teij · nj)

∫
Fj

λiq
2
k.

Hence qk must vanish on Fj and consequently there exists a w in Pk−1(K,R) such
that

peij = λiλjw.

Now, using the interior degrees of freedom (cf. (2.6)) we find that peij ≡ 0. Since i
and j were two arbitrary distinct indices, σ vanishes. �

We would like to note that using Lemma 5.2 the space V (K) given in (5.36) can
be written as

V (K) = Pk(K, S) +

{
σ ≡

∑
e

qe tet
′
e

∣∣∣∣ qe ∈ Qk+1
e,⊥

}
. (5.38)

The two dimensional case is similar to the three dimensional case. For each edge
e of the triangle K we let te denote the tangent vector to e. We let e∗ be any one of
the two edges of K that is not equal to e. Similarly, Qk+1

e,⊥ = {λe∗rk : rk ∈ Pk⊥}, where
λe∗ denotes the barycentric coordinate which vanishes on e∗. We define V (K) in two
dimensions by (5.38) where the sum is taken over the three edges of the triangle K.
The degrees of freedom (2.5a′) and (2.5b′) form a unisolvent set of degrees of freedom
for the space V (K). The proof is similar to the three dimensional case, so we leave
the details to the reader.

Finally, consider the mixed method (1.3) with the new stress space, i.e., now V h

is as in (1.2a), except Pk+1(K, S) is now replaced with V (K). The displacement space
W h remains the same. This method can be analyzed as in § 3. Since Pk(K, S) ⊆
V (K), the stress space has the required approximation properties for the analysis. So
as not to repeat the details of previous sections, we simply summarize the results:

(1) The statements of Theorem 3.1 hold for the solution of the mixed noncon-
forming method using the above reduced space.

(2) The new method can also be hybridized as in § 4.
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