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ABSTRACT 

This paper presents statistical techniques for estimating vehicle fuel consumption in urban road 

networks based on vehicle and geographical factors. A routing algorithm utilizing mapping data 

from OpenStreetMap and elevation data from the Shuttle Radar Topography Mission is presented 

and used to generate paths that minimize vehicle fuel consumption. The concept of a fuel 

consumption estimating function is proposed as an extension of the well-known distance-

estimating functions that are widely used in logistics planning and research. 

Statistical models are developed that estimate fuel consumption in three tested urban areas with 

vehicle weight, elevation and regional travel speed characteristics being the independent variables. 

The models were tested on measures drawn from the underlying graph data used by the pathfinding 

engine as well as those derived from measurements on a digital elevation model using common 

geographical information system tools. The results provide promising techniques for the 

estimation of vehicle fuel consumption using only geographical data for long-range planning 

purposes. 
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1.0 INTRODUCTION 

1.1 Background 

Fuel-efficient pathfinding is a variant of the classic shortest path problem with widespread real-

world applications. Significant research has been directed towards improving the search 

algorithms, modeling fuel consumption and examining the relationship between fuel usage and 

environmental variables such as roadway elevation profile and traffic congestion. Because vehicle 

emissions are often directly proportional to fuel consumption, research on minimizing fuel 

consumption can provide cost-saving benefits to commercial operators as well as help public 

agencies seeking to draft policies aimed at reducing air pollution. 

The growth of research into fuel-efficient routing has also been matched by rapid growth of crowd-

sourced mapping sources such as OpenStreetMap (OSM) that provide up-to-date and readily 

available map data. Elevation data has been available from the United States Geological Survey 

(USGS) for several years covering the U.S. More recently, the Shuttle Radar Topography Mission 

(SRTM) datasets have been made publicly available by NASA via the USGS and provide elevation 

data for most of the world. 

1.2 Research Contribution 

Existing research shows that the elevation changes, travel time characteristics of the road network 

and vehicle weight have the largest impact on fuel consumption. Research investigating the 

statistical modeling of fuel consumption has focused mainly on the relationship between vehicle 

variables and consumption within the context of environmental conditions such as travel time and 

elevation change. Thus far, no research has attempted to generalize the impact of environmental 

variables, namely travel speed and elevation change, within the statistical models. 

The primary contribution of this paper is to introduce techniques for estimating vehicle fuel 

consumption using topographical characteristics of the road network and the urban area in general. 

Intuitive statistical models are developed as an extension of commonly used distance-estimating 

functions (DEFs) that see widespread use in logistical applications. The derived Fuel Consumption 

Estimating Functions (FCEF) are tested on fuel-efficient paths calculated in three urban areas with 
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different topographical and travel speed characteristics. Tests are also conducted on two different 

datasets: one derived from the road network data used by the pathfinding engine and another on 

the Digital Elevation Model (DEM) dataset. 

A secondary contribution covers the implementation of a pathfinding engine that utilizes open and 

crowd-sourced data from the OpenStreetMap project as well as SRTM elevation data. The 

overview demonstrates the ability to conduct additional research with data that is free, accurate 

and constantly improving. 
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2.0 LITERATURE REVIEW 

The literature review is broken up into two sections. Section 2.1 provides a cursory overview of 

research into DEFs that this research builds upon. Section 2.2 provides a review of research into 

fuel-efficient routing, fuel consumption simulation, and the application of DEMs. 

2.1 Circuity factors and distance estimating functions 

DEFs are commonly used in logistics applications such as facility location, fleet sizing and 

network design. Ballou et al. (Ballou, et al., 2002) provided a summary of research and calculated 

circuity factors for long-distance paths in various countries and provided good results with the 

following equation 

𝐷𝑎𝑏 ≈ 𝑏0 cos−1(sin(𝑦𝑎) sin(𝑦𝑏) + cos(𝑦𝑎) cos(𝑦𝑏) cos(|𝑦𝑏 − 𝑦𝑎|)) (1) 

where 𝑥 and 𝑦 are respectively the longitude and latitude coordinates of the origin and destination. 

Equation (1) represents the great-circle distance, which is often needed for long-distance 

calculations where Euclidean distance calculation will produce significant errors. 

Goncalvesa et al. (Gonçalvesa, et al., 2014) evaluated the estimation of circuity factors in Brazilian 

soy bean supply chains. The authors tested a non-zero intercept regression formula using the 

Euclidean distance: 

𝐷𝑎𝑏 ≈ 𝑏0 + 𝑏1√(𝑥𝑏 − 𝑥𝑎)2 + (𝑦𝑏 − 𝑦𝑎)2 (2) 

The authors also discussed limitations for shorter distance estimation and when the constant is less 

than zero. 

Shihad et al. (Shahid, et al., 2009) applied a DEF to estimating distances of patients to a hospital 

in the context of the classic facility location problem. The authors tested regression functions that 

included a Manhattan distance metric as well as the more generalized Minkowski formula 

𝐷𝑎𝑏 ≈ [(𝑥𝑏 − 𝑥𝑎)𝑝 + (𝑦𝑏 − 𝑦𝑎)𝑝]
1
𝑝, 𝑝 > 0 ∈ ℕ (3) 
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where the variable 𝑝 is estimated in the interval 1 ≤ 𝑝 ≤ 2; 𝑝 = 1 represents a pure Manhattan 

distance and 𝑝 = 2 the Euclidean distance. The authors found a value of 𝑝 = 1.52 to provide the 

best fit on their dataset for travel distance (roughly equal contribution of Manhattan and Euclidean 

distance) but found a lower value (1.23) best fits travel time calculations. 

To the best of this author’s knowledge, no generalized approach to fuel-consumption estimating 

functions has yet been proposed in the existing literature. 

2.2 Fuel-efficient routing and modeling 

Fuel-efficient pathfinding has been implemented in several commercial software applications. 

Schaper and Bruns (Schaper & Bruns, 2015) presented an implementation of a route calculation 

engine (RCE) for fuel-efficient routing of commercial vehicles with detailed discussion of data 

processing and algorithmic design. 

Simulation of vehicle fuel-consumption has also garnered much research. An important factor for 

simulations is the accuracy of the DEM. Wood et al. (Wood, et al., 2014) developed methods for 

processing the USGS 1/3 arc-second resolution elevation data and applied it to a road network. 

Their methods focused on filling gaps and correcting inaccuracies caused by bridges and tree 

canopies. The authors applied their dataset to a fuel simulation model (Wood, et al., 2014) and 

deduced that grade alone is responsible for about 1-3% of commercial vehicle fuel consumption 

for long-distance routes. 

Much of the existing literature on the estimation of vehicle fuel consumption has focused on 

measuring the relationship between vehicle-specific variables and traffic congestion. Barth et al. 

(Barth, et al., 2005) provided a comprehensive review of research into fuel consumption and 

emissions modeling for heavy duty diesel (HDD) vehicles. The authors also validated a commonly 

used empirical formula for fuel consumption based on travel speed that is used in this paper. 

Cappiello et al. (Cappiello, et al., 2002) developed statistical models to predict fuel-consumption 

and emissions based on vehicle characteristics and load. More recently Wyatt et al. (Wyatt, et al., 

2014) developed statistical models of fuel consumption and CO2 emissions as a function of grade. 

Lopp et al. (Lopp, et al., 2015) conducted similar research for commercial vehicles and develop 

percentage increase factors for fuel consumption. 
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To this author’s knowledge, no research has yet been done that generalizes calculations based on 

topographical properties or travel time characteristics of an urban area. 
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3.0 METHODOLOGY 

This section covers the data sources utilized, as well as an overview of the classic shortest path 

problem. Section 3.1 provides details of the OSM and SRTM data sources and their usage. Section 

3.2 covers the formulation of the shortest path problem with a brief discussion of optimization 

techniques. Section 3.3 concludes with an overview of the data processor and pathfinding engine. 

3.1 Data Sources 

 OpenStreetMap 

OSM provides raw data in three different formats: XML (OpenStreetMap Wiki contributors, 

2017); Protocol buffer Binary Format (PBF), a compressed format developed in part by Google 

(OpenStreetMap Wiki contributors, 2018); and O5M (OSM XML 5 times smaller) 

(OpenStreetMap Wiki contributors, 2018), which has a similar hierarchical structure to the XML 

format but with compressed data types. The XML format is chosen for simplicity of data 

manipulation and for  

An OSM dataset consists of the fundamental elements nodes, ways and relations. Each element is 

assigned a unique 64-bit signed integer identifier and contains a set of one or more key-value pairs 

of data describing various features. Subcategories are denoted with colons to denote more specific 

information (e.g. Relation: Restriction for turn restrictions). Figure 1, Figure 2, and Figure 3 

provide excerpts of the XML raw data for ways, nodes, and relations, respectively. 

 

Figure 1: XML for OpenStreetMap way 
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Figure 2: XML for a block of OpenStreetMap nodes 

 

Figure 3: XML for OpenStreetMap relation (type restriction) 

Within the processed dataset elements are referred to as edges, vertices and shape points (Figure 

4). Vertices represent decision points, edges represent connections between vertices (and their 

associated costs), and shape points provide rendering and elevation data for each edge. 

 

Figure 4: Key graph elements 

The OSM nodes and ways are processed to identify intersection points and generate the edges, 

vertices and initial set of shape points. Relations of type restriction are used to define allowed 

travel between adjacent edges in the graph. The data provided in the restriction type of a relation 

define either prohibited or allowed movements, and optionally by vehicle type. A summary of data 

usage is provided in Table 1. 
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Table 1: OSM data elements and usage. 

 

 Shuttle Radar Topography Mission 

The elevation data come from NASA’s SRTM dataset (USGS, 2018). The original world-wide 

dataset had a resolution of 3 arc seconds; however, in 2014 NASA released a new 1-arc second 

dataset with worldwide coverage. 

SRTM data files are organized into 1x1 degree grid sections with the file name referencing the 

lower left corner of the grid. The data are arranged in 3,601 rows of 3,601 samples represented as 

signed 16-bit integers indicating the elevation relative to sea level in meters. Values of -32768 

indicate no data for the coordinate location. Figure 5 provides a visual representation of a single 

SRTM .hgt file. The elevation coordinates are applied to the OSM dataset using a simple linear 

interpolation method to assign values to existing shape points and create additional ones.  



 

 

9 

 

Figure 5: SRTM file format. 

3.2 Shortest Path Problem Statement 

The shortest path problem is formulated on a directed graph 𝐺(𝑉, 𝐸) with a set of vertices 𝑉 

connected by a set of edges 𝐸. For every edge 𝑒𝑖𝑗 ∈ 𝐸 a cost 𝑐 exists such that 

𝑐(𝑒𝑖𝑗) = 𝑐(𝑣𝑖 , 𝑣𝑗) = {
ℝ0

+ Cost must be > 0
∞ Vertices 𝑣𝑖  and 𝑣𝑗  are not connected

 (4) 

Although 𝑐(𝑒𝑖𝑗) = 𝑐(𝑒𝑗𝑖) for shortest paths, this is not strictly the case for paths that minimize 

travel time, and generally not the case for fuel-efficient routes. 

A path 𝑃𝑠𝑡 from an origin 𝑣𝑠 to a destination 𝑣𝑡 is a sequence of vertices 𝑣𝑠 = 𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑝 =

𝑣𝑡. The total cost of a path from 𝑣𝑠 to 𝑣𝑡 can be expressed as 

𝑐(𝑃𝑠𝑡) = ∑ 𝑐(𝑣𝑖, 𝑣𝑖+1).

𝑝−1

𝑖=1

 (5) 

The objective is then to minimize the path cost such that 
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𝛿(𝑣𝑠, 𝑣𝑡) = {
min (𝑐(𝑅𝑠,𝑡)) 𝑖𝑓 𝑎 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑡 𝑒𝑥𝑖𝑠𝑡𝑠

∞ 𝑁𝑜 𝑝𝑎𝑡ℎ 𝑒𝑥𝑖𝑠𝑡𝑠
 (6) 

 

 Dijkstra’s Algorithm 

Although it is possible to formulate the shortest path problem as a linear or dynamic programming 

problem, it is much more efficient to solve using an iterative approach known as Dijkstra’s 

algorithm. The algorithm works as follows: 

1. Initialize the source vertex 𝑣𝑠 with cost 0 and all other vertices to ∞ 

2. While there are unvisited vertices, select the path (denoted 𝑃𝑖) with minimum cumulative 

cost. 

3. Mark the vertex (denoted 𝑣𝑖) as visited. 

4. Calculate the cost for all unvisited neighbor vertices 𝑣𝑗  reachable from 𝑣𝑖 by appending 

their cost 𝑐(𝑣𝑖, 𝑣𝑗) to the total cost of 𝑃𝑖 and store each path sorted by cumulative cost. 

5. Stop when the end vertex of the path selected in step 2 is 𝑣𝑡 or no more paths can be 

extracted (no solution). 

For a given input graph, the performance of Dijkstra’s algorithm is highly dependent on the data 

structures used to store visited nodes and the partial path trees sorted by their cumulative costs. 

Visited vertices are often stored in a closed set implemented as a hash table with amortized 𝑂(1) 

insert and search complexity. The partial paths are stored in a heap or priority queue with 𝑂(log 𝑛) 

insert and removal where 𝑛 is the number of partial paths. 

 A* Algorithm 

The A* algorithm is an extension of Dijkstra’s algorithm and adds a heuristic that estimates the 

cost to 𝑣𝑡 which is stored with each partial path. The result is a more directed search that selects 

the lowest cost partial path at each iteration based on an estimated total cost to 𝑣𝑡. The estimating 
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heuristic is considered admissible if it never overestimates the cost to reach 𝑣𝑡, which guarantees 

the algorithm will find the optimal path. For shortest path routing this is often calculated as the 

Euclidean distance from the end of each candidate path to 𝑣𝑡 since no path can ever be shorter than 

the Euclidean distance from 𝑣𝑠 to 𝑣𝑡. In general, the closer the heuristic is to estimating the actual 

remaining cost to reach 𝑣𝑡 without overestimating, the more efficient the algorithm will run with 

fewer iterations before reaching 𝑣𝑡. Figure 6 shows a shortest path calculation using Dijkstra’s 

algorithm and A* (implemented as bi-directional). Knowing only the cost from the source vertex, 

Dijkstra’s algorithm explores in a roughly circular pattern in all directions until the destination is 

reached; in comparison the A* search explores nodes in a more focused beam shape towards the 

destination. 

  

Figure 6: Shortest path calculations with bi-directional Dijskstra's algorithm (left) and A* (right) with a 

Euclidean distance heuristic. Green dots indicate vertices explored by the forward search; red dots indicate 

those explored by the backwards search. 

 Bi-directional algorithms 

Both Dijkstra’s algorithm and A* can be formulated as bi-directional algorithms, with alternating 

searches from 𝑣𝑠 to 𝑣𝑡 and vice versa. The search terminates when the minimum-cost partial path 

extracted by one search terminates at a vertex visited by the other search. The optimal path is then 

constructed from the minimum-cost partial paths generating by each search. Optimality is 

guaranteed if the algorithm alternates between the forward and reverse searches in a serial manner. 

In all cases performance is enhanced at the cost of slightly larger overhead to maintain two sets of 

open and closed lists. 
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 A* performance enhancements 

A great deal of research has been dedicated to improving the performance of A* in road networks. 

Although a simple Euclidean distance heuristic adds some performance improvement over 

Dijkstra’s algorithm, it is often insignificant in large continental-sized road networks. The lower 

bound established by the heuristic must often be scaled up substantially to obtain acceptable 

improvements in runtime (Goldberg & Harrelson, 2005). 

Most speed-up techniques involve some preprocessing of the graph inclusive of pre-determined 

edge costs. The hierarchical nature of road networks allows for several approaches for compressing 

or simplifying the graph. Long distance paths usually involve a small amount of navigation on 

local streets, then exclusively use higher-speed freeways and major highways. An approach 

proposed by Pfoser et al. (Pfoser, et al., 2009) uses the natural road hierarchy embedded in the map 

data to prune the search space without preprocessing. The algorithm does not guarantee optimality 

but is useful for illustrating the efficiency improvements of hierarchical techniques. At each 

iteration of the bi-directional search the allowed vertices from a candidate path must be accessible 

from edges that are of an equal or more important road category. The best category is stored with 

the path, so each successive candidate path progressively moves to a higher category and “sees” 

fewer available nodes to expand. The algorithm alternates between the forward and reverse 

searches such that both are maintained on the same road category until they meet. 

Table 2 shows results for a path run with 3 different levels of hierarchical pruning. A common 

benchmark that is hardware and software-independent is the ratio of vertices on the resultant 

shortest path divided by the total number explored (contained in the closed set). 

More recent techniques require preprocessing but guarantee optimality and reduce the storage 

space of the graph via recursive compression and the creation of shortcuts (Geisberger, et al., 

2008), a method known as contraction hierarchies. This approach requires techniques for 

efficiently updating the graph when edge costs change (i.e. dynamic travel times, road closures, 

etc.), which has also been an active area of research (Abraham, et al., 2010). Together these 

techniques are the predominant methods of calculating exact shortest paths with the least 

computation time.  
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Table 2: Comparison of hierarchical optimizations (HBA*) vs. regular bi-directional A* 

 Hierarchical Bi-directional A* (HBA*) algorithm A* Euclidean 

Explored vertices 10,034 11,996 14,892 117,611 

 

    

3.3 Pathfinding Engine Overview 

The pathfinding engine is comprised of a data processor that imports the OSM XML files and 

SRTM binary files. The OSM file is processed first to create the graph data structure and process 

the road attributes as covered in section 3.1. Figure 7 provides a summary of the data processing 

steps. 

After processing the OSM file, the SRTM data files are applied to produce a digital elevation 

model (DEM). Coordinates in the SRTM files with corresponding elevation values are linearly 

interpolated onto the graph edges. 

The pathfinding engine supports batched many-to-many routing calculations and stores the results 

in the SQL database for analysis. The raw SRTM data are also stored separate from the shape point 

data in a spatially indexed table for analysis covered in section 4.2.3. 
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Figure 7: Pathfinding engine data processing 
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4.0 ANALYSIS 

4.1 Experimental Setting 

 Fuel consumption calculation 

The fuel consumption cost 𝑓𝑖𝑗  of traversing each edge 𝑒𝑖𝑗 in the graph is  adapted from 

Franceschetti et al (Franceschetti, et al., 2013) and given by 

𝑓𝑖𝑗 = ∑
𝑑(𝑝𝑖𝑗,𝑘 , 𝑝𝑖𝑗,𝑘+1)

𝜅𝜓
max [

𝑘𝑁𝑒𝑉

𝑣𝑖𝑗

+

𝑛𝑖𝑗−1

𝑘=1

1
2

𝐶𝑑𝜌𝐴𝑣𝑖𝑗
2 + 𝜇𝑔(sin(tan−1 𝜎𝑖𝑗,𝑘,𝑘+1) + 𝐶𝑟 cos(tan−1 𝜎𝑖𝑗,𝑘,𝑘+1))

1000𝜀𝜛
, 0.001], 

(7) 

𝜎𝑖𝑗,𝑘,𝑘+1 ≡
𝑧𝑖𝑗,𝑘+1 − 𝑧𝑖𝑗,𝑘

𝑑(𝑝𝑖𝑗,𝑘, 𝑝𝑖𝑗,𝑘+1)
  

where 𝑝𝑖𝑗,𝑘 is the 𝑘th shape point on edge 𝑒𝑖𝑗; 𝑧𝑖𝑗,𝑘 is the elevation in meters of shape point 𝑝𝑖𝑗,𝑘; 

𝑛𝑖𝑗 is the total number of shape points on edge 𝑒𝑖𝑗; 𝑑(∙,∙) is the distance between adjacent shape 

points. The remaining constants in equation (7) are defined in Table 3. The original equation 

proposed by Franceschetti et al (2013) had to be adjusted to prevent negative fuel cost values when 

traveling on a sufficiently steep downgrade. To this author’s knowledge, there are no general 

guidelines for handling this situation and the amount of fuel consumed when the vehicle is 

essentially idling varies widely based on engine characteristics. Figure 8 shows fuel consumption 

as a function of travel speed for different road grades utilizing the parameters contained in Table 

3. 
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Figure 8: Fuel consumed as a function of travel speed at different road grades 

Table 3: Vehicle fuel consumption parameters and values 

Variable Definition Value 

𝜿 Heating value of typical diesel fuel (kj/g) 44 

𝝍 Conversion factor grams to liters 737 

𝒌 Engine friction factor (kJ/rev/l) 0.2 

𝑵𝒆 Engine speed (rev/s) 33 

𝑽 Engine displacement (l) 12.9 

𝝆 Air density (kg/m3) 1.2041 

𝑨 Frontal surface area (m2) 3.912 

𝝁 Vehicle weight (kg) Variable (6350-36400) 

𝒈 Gravitational constant (m/s2) 9.81 

𝑪𝒅 Coefficient of aerodynamic drag 0.7 

𝑪𝒓 Coefficient of rolling resistance 0.01 

𝜺 Vehicle drive train efficiency 0.4 

𝝕 Efficiency parameter of diesel engines 0.9 

Equation (7) is calculated with constant travel speed 𝑣𝑖𝑗 over each edge 𝑒𝑖𝑗. Using the OSM 

highway flag, speeds are calculated according to Table 4. While actual travel time data is much 

more desirable compared to statically calculated values, an enormous amount of data would have 

to be obtained for all edges in the graph to obtain consistent results from the pathfinding engine. 

Such an endeavor is outside the scope of this research, but certainly worthy of future investigation.  
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Table 4: Travel speeds calculated by OpenStreetMap category (highway tag) 

Category Description Travel Speed (km/hr.) 

Motorway Restricted access, high-speed 120 

Trunk Highest-level road class without restricted access; typically 

US routes in the United States 
95 

Primary Major highway linking large towns 75 

Secondary Major urban road and arterials 55 

Tertiary Arterial connectors and collectors 45 

Residential Neighborhood and local-access only 35 

 Characteristics of Fuel-efficient Paths 

It is worthwhile to assess the characteristics of shortest, fastest and fuel-efficient paths to determine 

tradeoffs between the different objectives. Table 5 compares the key characteristics of the three 

optimization strategies. It is notable that the fuel-efficient path only sacrifices a modest increase 

in distance and travel time compared to the potential savings in fuel over a shortest path. This is 

an expected result as both distance and travel speed impact fuel, with travel speed having a large 

impact on fuel-consumption as it approaches traffic congestion speeds. Therefore, it is intuitive 

that fuel-efficient paths strike a balance between shortest and fastest. 

It is evident that fuel-efficient paths compete most directly with fastest paths as both sacrifice about 

equal amounts of increased travel distance over a pure shortest path. Fuel-efficient paths give up 

slightly less travel time compared to the extra fuel of fastest paths. Thus, in cases where marginal 

costs of travel time and fuel are roughly equal, a fuel-efficient strategy would be the preferred 

choice for a commercial operator.  

Table 5: Comparison of key metrics for the three path optimization strategies 

Path 

Type 

Avg. Fuel 

Consumption 

(ltr.) 

Increase Path 

Type 

Avg. 

Distance 

(km) 

Increase Path 

Type 

Avg. Travel 

Time (min.) 

Increase 

Fuel-

efficient 

17.22 
- 

Shortest 18.41 
- 

Fastest 15.10 
- 

Fastest 18.59 7.38% Fuel-

efficient 

20.20 8.88% Fuel-

efficient 

15.99 5.61% 

Shortest 22.69 24.11% Fastest 20.33 9.47% Shortest 19.16 21.23% 

4.2 Fuel Consumption Estimation Models 

Regression models are formulated directly from equation (7) with the independent variables 

derived as described in the following sections. Section 4.2.1 provides an overview of the statistical 
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techniques utilized for the model development and well as justification for the FCEF approach 

compared to a simple DEF. Section 4.2.2 covers variables derived from the graph dataset used for 

routing. Section 4.2.3 concludes with models utilizing only the DEM dataset and GIS query 

techniques available in Microsoft SQL Server. 

 Initial Development 

Before developing the statistical models, the relationship between travel distance and fuel 

consumption is examined to determine the overall suitability of a DEF for predicting fuel 

consumption. Figure 9 shows the relationship between fuel consumption and actual route distance. 

The modest R-squared value and even distribution about the regression line suggest that additional 

independent variables need to be included to accurately predict fuel consumption. This is 

confirmed in Figure 10 with fuel consumption vs. Euclidean distance with a similar R-squared. 

These results suggest traditional DEFs are inadequate for estimating fuel consumption. 

 

Figure 9: Fuel consumption vs. actual travel distance 
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Figure 10: Fuel consumption vs. Euclidean distance 

Despite the relatively weak relationship between distance and fuel consumption, the travel distance 

of fuel-efficient routes still tracks closely with the Euclidean distance as shown in Figure 11. This 

suggests the Euclidean distance is still an important basis upon which to build the FCEF models 

upon. This also suggests that fuel-efficient paths follow similar trends as shortest distance and 

travel time from existing research with real-world applications (Figliozzi, 2008). 

 

Figure 11: Euclidean vs. Actual Travel Distance for fuel-efficient paths 
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The statistical models developed in sections 4.2.2 and 4.2.3 are derived directly from equation (7). 

It can first be observed that equation (7) consists of a speed term and an elevation term. The goal 

is to build up the models incrementally from a simple DEF to determine how effective the 

statistical predictors alone can account for parameters that are more difficult to measure, namely 

expected travel speed and elevation profile of a path for a given origin-destination pair. 

The estimation of travel speed is discussed first. Using speed values from Table 4, the average 

travel speeds are calculated for the aggregated data by urban test area and by path. First let 𝐺(𝑉, 𝐸) 

represent the graph for an urban area with subgraphs 𝐺𝑠𝑡(𝑉, 𝐸) ⊂ 𝐺(𝑉, 𝐸) for each origin-

destination pair 𝑣𝑠 and 𝑣𝑡. 𝐺𝑠𝑡(𝑉, 𝐸) is defined as the set of edges contained in a bounding box 

enclosing 𝑣𝑠 and 𝑣𝑡 (Figure 12). The practical implementation requires spatially indexing the edges 

to guarantee a fast calculation, a trivial task in most relational database systems. 

The average travel speed in these defined networks is calculated using the travel speed along all 

edges in 𝐺(𝑉, 𝐸) and 𝐺𝑠𝑡(𝑉, 𝐸) weighted by the edge distance such that 

𝑣̅ =

∑ 𝑑𝑖𝑗𝑣𝑖𝑗
∀𝑒𝑖𝑗∈𝐺(𝑉,𝐸)

∑ 𝑑𝑖𝑗
∀𝑒𝑖𝑗∈𝐺(𝑉,𝐸)

, (8) 

𝑣̅𝑠𝑡 =

∑ 𝑑𝑖𝑗𝑣𝑖𝑗
∀𝑒𝑖𝑗∈𝐺𝑠𝑡(𝑉,𝐸)

∑ 𝑑𝑖𝑗
∀𝑒𝑖𝑗∈𝐺𝑠𝑡(𝑉,𝐸)

 (9) 

Where 𝑑𝑖𝑗 and 𝑣𝑖𝑗 are the distance and travel time along an edge 𝑒𝑖𝑗, respectively.  
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Figure 12: Bounding box for a route with queried edges used to calculate vst and αst. 

Similar methodology is employed to capture the impact of elevation by introducing the concept of 

an average absolute elevation change. From the terminology provided in Figure 4, a given ordered 

shape point on an edge 𝑒𝑖𝑗 is denoted 𝑝𝑖𝑗,𝑘 𝑘 ∈ ℕ1[1 … 𝑛𝑖𝑗] with corresponding elevation 𝑧𝑖𝑗,𝑘 and 

𝑛𝑖𝑗 denoting the number of shape points on 𝑒𝑖𝑗. The average change in elevation is calculated as 

𝛼̅ =

∑  [∑
|𝑧𝑖𝑗,𝑘+1 − 𝑧𝑖𝑗,𝑘|

𝑑(𝑝𝑖𝑗,𝑘, 𝑝𝑖𝑗,𝑘+1)

𝑛𝑖𝑗−1

𝑘 ]∀𝑒𝑖𝑗∈𝐺(𝑉,𝐸)

∑ (𝑛𝑖𝑗 − 1)∀𝑒𝑖𝑗∈𝐺(𝑉,𝐸)
, 

(10) 

𝛼̅𝑠𝑡 =

∑ [∑
|𝑧𝑖𝑗,𝑘+1 − 𝑧𝑖𝑗,𝑘|

𝑑(𝑝𝑖𝑗,𝑘, 𝑝𝑖𝑗,𝑘+1)

𝑛𝑖𝑗−1

𝑘 ]∀𝑒𝑖𝑗∈𝐺𝑠𝑡(𝑉,𝐸)

∑ (𝑛𝑖𝑗 − 1)∀𝑒𝑖𝑗∈𝐺𝑠𝑡(𝑉,𝐸)
 

(11) 

where 𝑑(∙,∙) is the distance between adjacent shape points. As with equations (8) and (9), equations 

(10) and (11) calculate these measures for the urban test area and at the path level, respectively. 
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The absolute value of the elevation difference is utilized based on the conjecture that increasing 

changes in elevation will increase fuel consumption, and a net negative change in elevation will 

not produce any appreciable reduction in fuel consumption. This has the desirable property for 

paths on flat terrain in that the contribution to fuel consumption is zero. Table 6 provides a 

summary of the regression parameters and units. 

Table 6: Regression estimators and units 

Estimator Interpretation Units 

𝒃𝒗 Travel speed estimator Dimensionless 

𝒃𝒖 Vehicle mass estimator Dimensionless 

𝒃𝜶, 𝒃𝝀 Increase per unit elevation change Meters 

 Graph dataset models 

Using equations (8), (9), (10), and (11), regression models are derived and given in Table 7 with 

𝑟𝑠𝑡 the Euclidean distance between 𝑣𝑠 and 𝑣𝑡, 𝜇 the mass of the vehicle, and (𝑏𝑣, 𝑏𝜇, 𝑏𝛼) the set of 

parameters to estimate via linear regression. For brevity, values that are constant in the regressions 

are defined as follows: 

𝛾 ≡
𝑘𝑁𝑒𝑉

𝜅𝜓
,  

𝜉 ≡
𝐶𝑑𝜌𝐴

1000𝜅𝜓𝜀𝜛
,  

𝜂 ≡
𝑔

1000𝜅𝜓𝜀𝜛
.  

Table 7: Graph-based regression models 

Model 1 𝐹𝑠𝑡 ≈ 𝑏𝑣𝑟𝑠𝑡 (
𝛾

𝑣̅
+ 𝜉𝑣̅2) + 𝑏𝜇𝑟𝑠𝑡𝜇𝜂 

Model 2 𝐹𝑠𝑡 ≈ 𝑏𝑣𝑟𝑠𝑡 (
𝛾

𝑣̅𝑠𝑡
+ 𝜉𝑣̅𝑠𝑡

2 ) + 𝑏𝜇𝑟𝑠𝑡𝜇𝜂 

Model 3 𝐹𝑠𝑡 ≈ 𝑏𝑣𝑟𝑠𝑡 (
𝛾

𝑣̅
+ 𝜉𝑣̅2) + 𝑏𝜇𝑟𝑠𝑡𝜇𝜂 + 𝑏𝛼𝛼̅𝜇𝜂 

Model 4 𝐹𝑠𝑡 ≈ 𝑏𝑣𝑟𝑠𝑡 (
𝛾

𝑣̅𝑠𝑡
+ 𝜉𝑣̅𝑠𝑡

2 ) + 𝑏𝜇𝑟𝑠𝑡𝜇𝜂 + 𝑏𝛼𝛼̅𝜇𝜂 
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Model 1 and Model 2 are based only on attributes of the vehicle and the estimated average travel 

speed of the road network. The parameters 𝑏𝑣 and 𝑏𝜇 are both dimensionless, with the latter 

estimating the contribution of vehicle mass changes to the total fuel consumption.  

Model 3 and Model 4 introduce the average absolute grade dimensionless independent variables 

𝛼̅ and 𝛼̅𝑠𝑡 from equations (10) and (11) that attempt to capture the impact of elevation change by 

test area and path, respectively. The estimator 𝑏𝜇 remains dimensionless and independently 

estimates the effect of vehicle mass on the result. The added estimator 𝑏𝛼 has units of distance 

(meters) and can be interpreted as the increase in fuel consumption per unit change in elevation. 

The introduction of the straight-line (Euclidian) distance 𝑟𝑠𝑡 into the third term of these models 

produced poor statistical significance and suggested a collinearity between the second and third 

terms. The best results were obtained by separately accounting for the combinations of 

distance/vehicle mass and elevation change/vehicle mass. 

Figure 13 provides plots of predicted vs. residuals for the four models. The plots for Model 3 and 

Model 4 suggest that including the independent variables capturing elevation change may improve 

the quality of the regression results as residuals are more evenly distributed about the x-axis. 
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 Predicted vs. Residuals 
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Figure 13: Predicted vs. residual plots for Models 1-4 

 SRTM dataset models 

Two additional models are tested on the SRTM DEM dataset as alternatives to models 3 and 4. 

The assumption in a theoretical planning context is that a complete elevation dataset based on the 

pathfinding engine’s graph is unavailable. The goal is to substitute measures of elevation variance 

derived from the SRTM data as a proxy for the elevation profile along the expected path. 

The SRTM data are loaded into SQL Server for each of the urban areas tested and spatially indexed 

by coordinate. For each route tested a line string geography object is constructed between the 

origin and destination and saved in the database. The line string is then inflated by a factor equal 
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to the resolution of the SRTM data points (1/3600 degree) using STBuffer1 to create a polygonal 

geometry. Figure 14 shows images from SQL Server Management Studio’s spatial viewer, with 

the constructed line string on the left and intersecting SRTM coordinates on the right. 

 

Figure 14: Spatial view from SQL Server Management Studio showing line string object and intersecting 

SRTM coordinates. 

The SRTM data points are then joined to a route record using the STIntersects function, then 

ordered by distance from the route origin with STDistance function. These two functions leverage 

SQL Server’s R-tree indexing, and average query time is under one second for a dataset with over 

100 million SRTM records. Figure 15 shows an example query with representations of the data 

table structure. 

                                                 

 

1Microsoft official documentation of spatial functions can be found here. 

https://docs.microsoft.com/en-us/sql/t-sql/spatial-geography/stbuffer-geography-data-type?view=sql-server-2017
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Figure 15: Example query showing how routing and SRTM elevation are joined using SQL Server spatial 

functions. 

From the points obtained using the query in Figure 15, an elevation factor is calculated using each 

SRTM elevation point similar to equation (11). Because the SRTM points crisscross over the line 

string, a weighted distance is used to better scale the contribution of distance between them: 

𝑑′𝑠𝑡,𝑗,𝑗+1 =
𝑟𝑠𝑡

∑ 𝑑(𝑠𝑠𝑡,𝑗, 𝑠𝑠𝑡,𝑗+1)
𝑛𝑠𝑡

𝑗=0

𝑑(𝑠𝑠𝑡,𝑗, 𝑠𝑠𝑡,𝑗+1) (12) 

where 𝑛𝑠𝑡 is the total number of shape points obtained from the query in Figure 15. Substituting 

into equation (11), a new elevation factor is calculated as 

𝜆𝑠𝑡 = ∑
|𝑧𝑖𝑗,𝑗+1 − 𝑧𝑖𝑗,𝑗|

𝑑′𝑠𝑡,𝑗,𝑗+1

𝑛𝑠𝑡−1

𝑗=0

 (13) 

The final two models are provided in Table 8. Model 5 uses the average travel speed for the urban 

area as used in Model 1 and Model 3, whereas Model 6 uses the average travel speed calculated 

for each origin-destination pair as in Model 2 and Model 4. 
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Table 8: Models tested on SRTM spatial data 

Model 5 𝐹𝑠𝑡 ≈ 𝑏𝑣𝑟𝑠𝑡 (
𝛾

𝑣̅
+ 𝜉𝑣̅2) + 𝑏𝜇𝑟𝑠𝑡𝜇𝜂 + 𝑏𝜆𝜆̅𝑠𝑡𝜇𝜂 

Model 6 𝐹𝑠𝑡 ≈ 𝑏𝑣𝑟𝑠𝑡 (
𝛾

𝑣̅𝑠𝑡
+ 𝜉𝑣̅𝑠𝑡

2 ) + 𝑏𝜇𝑟𝑠𝑡𝜇𝜂 + 𝑏𝜆𝜆̅𝑠𝑡𝜇𝜂 

4.3 Experimental Results 

An OSM data extract for the state of Oregon was obtained from Geofabrik (Karch & Ramm, 2018) 

and processed with SRTM data obtained from the USGS website (USGS, 2018). The data for the 

pathfinding engine and subsequent analyses were stored in a SQL Server 2017 Enterprise2 database 

installed on a virtualized Windows Server 2016 with 32GB of RAM and 8 virtual CPUs clocked 

at 3.47GHz. SQL Server’s built-in spatial indexing was utilized for geometrically calculated 

independent variables and all spatial objects are stored as geography data types. 

The urban test areas were chosen with 20 hand-picked locations producing 380 path calculations 

(i.e. all-pairs calculations from each location to all others). Additionally, vehicle mass was varied 

between 6,350 kg and 36,350 kg in increments of 5,000 kg. Table 9 provides summary statistics 

for the urban areas tested.  

Table 10 provides summary statistics for the independent variables described in sections 4.2.2 and 

4.2.3. 

Table 9: Urban area statistics 

Urban 

Area 

Avg. Network Travel 

Speed 𝒗̅ (km/hr.) 

Avg. Elevation 

Change 𝜶 

Area 

(km2) 

Min. 

Elevation (m) 

Max. 

Elevation (m) 

Orig/Dest 

pairs 

Eugene 29.41 0.12 809.58 100 680 380 

Portland 35.30 0.107 1579.47 -18 432 380 

Salem 32.23 0.147 804.7 32 351 380 

 

                                                 

 

2 It is notable that free Developer edition of SQL Server 2017 also provides the same spatial functionality. 
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Table 10: Independent variable summary statistics 

Variable Units Min Max Mean Median Std. Dev 

𝝁 Kilograms 6350.00 36350.00 21350.00 21350.00 10000.63 

𝒓𝒔𝒕 Meters 2303.43 47202.70 14809.08 12761.78 8777.83 

𝒗𝒔𝒕 Meters/second 26.23 36.32 32.04 31.88 2.37 

𝜶𝒔𝒕 Dimensionless 0.0890 0.1717 0.1238 0.1187 0.0194 

𝝀𝒔𝒕 Dimensionless 0.0000 0.6073 0.0608 0.0462 0.0573 

To evaluate predictive accuracy of the FCEFs, the mean percentage error (MPE) and mean 

absolute percentage error (MAPE) are calculated as 

𝑀𝑃𝐸 =
1

𝑛
∑

𝐹𝑖 − 𝐹̂𝑖

𝐹𝑖
∗ 100%

𝑛

𝑖=1

,  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐹𝑖 − 𝐹̂𝑖

𝐹𝑖
| ∗ 100%

𝑛

𝑖=1

  

where 𝐹𝑖 is the actual fuel consumption of the fuel-efficient route and 𝐹̂𝑖 is the predicted value. 

MPE indicates whether the model on average underestimates or overestimates the actual value; 

MAPE provides the average deviation as a percentage of the actual value and is overall indicative 

of the predictive accuracy of the model. 

 Benchmarking 

To provide a reference for benchmarking the MAPE values of the developed FCEFs, simple 

circuity factors are calculated for the distance traveled along a shortest path, a fastest path and a 

fuel-efficient path for all origin-destination pairs. The regression formulas are the same as equation 

(2) in the literature review with the constant forced to zero: 

𝐷𝑠𝑡 ≈ 𝛽𝑟𝑠𝑡  (14) 

where 𝐷𝑠𝑡 is the estimated travel distance between an origin 𝑣𝑠 and destination 𝑣𝑠; 𝑟𝑠𝑡 is the 

Euclidean distance; and 𝛽 is the parameter to estimate. Table 11 provides regression results for 

equation (14). It’s notable that the distance of the fuel-efficient path can be estimated with similar 

accuracy as paths optimized for shortest distance and least travel time. 
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Table 11: Regression results for DEFs 

Path Optimization Type Aggregation 𝛽 t-stat 𝑅2 MPE MAPE 

Shortest 

Pooled 1.219 1025.57 0.9925 3.68% 8.10% 

Eugene 1.218 492.63 0.9892 4.95% 9.26% 

Portland 1.220 698.19 0.9946 1.68% 6.65% 

Salem 1.217 503.72 0.9896 4.57% 8.44% 

Fastest 

Pooled 1.345 705.72 0.9842 2.87% 10.80% 

Eugene 1.326 359.24 0.9798 5.04% 11.47% 

Portland 1.357 453.31 0.9872 1.67% 9.48% 

Salem 1.326 362.68 0.9802 3.65% 11.47% 

Fuel-efficient 

Pooled 1.327 696.45 0.9838 4.16% 10.74% 

Eugene 1.318 372.16 0.9812 5.50% 11.35% 

Portland 1.326 426.84 0.9856 2.74% 9.61% 

Salem 1.341 374.68 0.9814 4.05% 11.33% 

 

 Graph dataset results 

Table 12 summarizes results for each of the four models pooled as well as aggregated by each 

urban test area. It is encouraging that all estimated parameters are not only highly statistically 

significant but also make intuitive sense by being positively correlated with increasing distance, 

vehicle mass, and absolute elevation change. Although vehicle weight and straight-line distance 

appear to be reasonably good estimators of fuel consumption, the inclusion of variables for average 

absolute elevation change in models 3 and 4 (𝛼̅ and 𝛼̅𝑠𝑡, respectively) provides an improvement in 

the predictive accuracy as shown by the reduced MAPE. Furthermore, per-path queries of average 

travel speed (𝑣̅𝑠𝑡) and elevation change (𝛼̅𝑠𝑡) provide improvement for models 2 and 4 over 1 and 

3, respectively for the pooled dataset. 

It is notable that results improve when the coefficients are estimated by urban area and the MAPE 

values approach those of the DEFs in section 4.3.1. 
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Table 12: Regression results for FCEFs derived from the graph dataset 

Aggregation Model 𝑏𝑣 t-stat 𝑏𝜇 t-stat 𝑏𝛼 t-stat 𝑅2 MPE MAPE 

Pooled 

1 1.1553 39.45 0.0446 126.57 - - 0.9478 11.74% 21.70% 

2 1.1756 39.96 0.0445 126.36 - - 0.9480 11.71% 21.67% 

3 1.2380 48.70 0.0337 90.76 7.5143 51.49 0.9608 -1.60% 18.40% 

4 1.2577 49.17 0.0339 91.66 7.3805 51.17 0.9609 -1.38% 18.45% 

Eugene 

1 4.5616 48.78 0.0427 74.04 - - 0.9679 3.81% 16.62% 

2 4.4883 50.82 0.0427 76.75 - - 0.9691 4.36% 16.73% 

3 4.5616 51.26 0.0361 53.08 3.8995 16.69 0.9709 -2.62% 15.66% 

4 4.5129 54.20 0.0358 55.43 4.1474 18.26 0.9726 -2.45% 15.47% 

Portland 

1 1.3851 27.44 0.0422 94.12 - - 0.9676 5.00% 15.56% 

2 1.3425 25.89 0.0428 94.51 - - 0.9668 5.67% 15.84% 

3 1.3851 31.76 0.0309 57.36 11.9867 30.05 0.9758 -2.63% 14.25% 

4 1.3899 32.33 0.0308 60.42 12.3548 34.84 0.9772 -2.87% 14.04% 

Salem 

1 2.3090 26.87 0.0421 66.03 - - 0.9455 9.48% 19.66% 

2 2.3141 26.73 0.0422 66.48 - - 0.9454 9.79% 19.74% 

3 2.3090 33.24 0.0271 41.77 7.1504 37.57 0.9644 -4.37% 17.95% 

4 2.3609 33.55 0.0270 40.95 7.0557 36.99 0.9639 -4.11% 18.03% 

 

 SRTM dataset results 

Results for the SRTM dataset models are presented in Table 13. These models provide 

improvements over Models 1 and 2, however the substitution of 𝑣̅𝑠𝑡 for 𝑣̅ to better estimate per-

path travel offers no improvement. This suggests that further improvements in model accuracy are 

likely to be obtained through better estimations of the impact of elevation change. 

The high statistical significance and intuitive values of the estimated parameters along with a 

relatively low MAPE demonstrate the utility of the DEM approach that may be more straight-

forward to calculate in a real-life planning context. The approach is also arguably more 

parsimonious by measuring properties along the Euclidean line connecting the origin and 

destination similar to linear DEFs. 
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Table 13: Regression results from SRTM dataset 

Aggregation Model 𝑏𝑣 t-stat 𝑏𝜇 t-stat 𝑏𝜆 t-stat 𝑅2 MPE MAPE 

Pooled 
5 1.444 34.07 0.0443 120.45 4.063 23.77 0.9479 9.34% 20.99% 

6 1.504 35.12 0.0439 119.72 4.109 24.12 0.9483 9.25% 20.97% 

Eugene 
5 4.562 49.21 0.0410 65.90 1.797 6.97 0.9684 1.63% 16.31% 

6 4.502 51.60 0.0407 67.36 2.054 8.15 0.9699 1.84% 16.36% 

Portland 
5 1.385 30.49 0.0358 74.77 25.051 24.98 0.9738 0.56% 14.08% 

6 1.349 28.85 0.0362 74.72 25.208 24.79 0.9730 1.16% 14.30% 

Salem 
5 2.309 26.96 0.0410 60.89 0.839 4.47 0.9459 8.71% 19.35% 

6 2.327 26.99 0.0409 60.49 0.979 5.21 0.9459 8.84% 19.36% 
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5.0 CONCLUSIONS 

5.1 Challenges 

This research was challenging for several reasons. The use of a custom-developed pathfinding 

engine required a considerable amount of time to program and configure with the OSM and SRTM 

datasets. A reasonable effort was put forth to determine the feasibility of using existing software, 

either for the path calculations or processing the elevation model. However, the modeling of fuel 

consumption costs required some flexibility with the routing algorithm. Fuel-efficient routing 

software also tends to be commercial and closed source, limiting its research applications. 

The development of the regression models was also challenging because of the lack of theoretical 

research available. Fuel consumption is highly dependent on several vehicle-dependent and 

environmental variables, so any research must carefully isolate a handful of these to develop 

meaningful relationships and results. In that regard, the vehicle attributes were chosen somewhat 

arbitrarily but are based on those of a typical over-the-road commercial vehicle with gross vehicle 

weight (GVW) of 80,000 lbs. 

Working with raw SRTM data also presented some challenges over a more refined data source. 

The SRTM data are still relatively patchy in areas and are often augmented with other data sources 

to fill in gaps. While developing the experimental setting, some effort was put forth to identify 

data gaps and avoid them when choosing path origin-destination locations. However, large-scale 

refinement of the data was outside the scope of this research. 

5.2 Recommendations and future work 

There are several ways this research could be improved and expanded. The first and likely most 

important would be validation of the fuel consumption costs calculated using real consumption 

data or drive cycle simulations. Several improvements to the pathfinding engine can also be made 

to account for idling, acceleration and turning movements, all of which increase consumed fuel. 

The pathfinding engine is capable of calculating turn costs in the context of a fastest path 

calculation, however extending this to fuel consumption was outside the scope of this research. 
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As mentioned prior, there is much room for improvement with the elevation dataset used. The 

SRTM data were chosen for their availability and straight-forward format. However, the USGS 

maintained DEM dataset is more accurate and available in more detailed 1/3 and 1/9 arc-second 

resolution. For elevation modeling of the lower 48 U.S. states this is often the first choice. 

Nonetheless, the data may require some processing to remove anomalies and inaccuracies that are 

inevitably present in raw DEM datasets. 

Additional sensitivity analysis could be conducted to determine the response of the dependent 

variable to changes in vehicle attributes. For example, a commercial operator may be interested in 

determining the fuel cost savings of choosing a particular vehicle spec for a terminal location based 

on expected customer delivery locations. Such an analysis would best be conducted by first 

validating the models against a range of engine specifications (e.g. the displacement 𝑉 and engine 

nominal RPM 𝑁𝑒 from equation (7)) and perhaps different aerodynamic body designs (e.g. frontal 

area 𝐴 and coefficient of drag 𝐶𝑑) with actual or simulated consumption data. Although it is 

obvious that smaller engine displacement and more aerodynamic body designs will reduce fuel 

costs, the choice often involves significant trade-offs. A smaller engine spec may reduce a 

commercial operator’s ability to haul certain loads in a given urban area and aerodynamic body 

designs generally increase the cost of the vehicle or add components (e.g. trailer skirts) that are 

more easily damaged in day-to-day operations, thus increasing operating costs. Overall, reframing 

the analysis to assess fleet cost savings for carriers is entirely feasible and a worthwhile extension 

of this research. 

A final minor improvement would also be the establishment of benchmark distributions of 

locations to generate paths between. In this research locations were basically hand-picked while 

attempting to cover the urban area as evenly as possible. Establishing methodology for this would 

likely improve the quality of the FCEFs. 
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7.0 APPENDIX 

7.1 Glossary of Terms 

Term Notation Description 

DEF N/A Distance-estimating function; a formula estimated using linear 

regression for calculating distances between origin-destination 

pairs in lieu of pathfinding software.  

DEM N/A Digital Elevation Model; a 3-dimensional dataset consisting of 

geographic coordinates and associated elevation values (usually 

in reference to sea level). 

Edge 𝑒𝑖𝑗 Represents connections between vertices in a graph as well as the 

relative cost of traversing from one vertex to another reachable 

vertex. An edge 𝑒𝑖𝑗 connects vertices 𝑣𝑖 and 𝑣𝑗 . 

FCEF N/A Fuel-consumption estimating function, a proposed extension of 

the distance-estimating function. 

Shape point 𝑝𝑖𝑗,𝑘 A non-decision point geographic coordinate along an edge used 

for storing elevation data. A given shape point has an elevation 

value 𝑧𝑖𝑗,𝑘. In mapping applications shape points are used for 

rendering edges and storing alternate data. 

SRTM N/A Shuttle Radar Topography Mission; an international research 

effort that generated digital elevation models for most of the 

world using specialized radar imaging equipment flown on the 

space shuttle Endeavor. 

Vertex 𝑣𝑖 , 𝑣𝑗  A coordinate representing a decision point in a graph structure. 
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7.2 Urban Test Areas 

 

Figure 16: Portland, OR test area with path origin-destination locations. 
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Figure 17: Eugene, OR test area. 
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Figure 18: Salem, OR test area. 


	Methods for Estimating Vehicle Fuel Consumption in Urban Road Networks Using Geographical Attributes
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1534891468.pdf.9y46C

