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Abstract  
 

The influence of stream temperature on the survival and reproductive success of anadromous salmonid 
populations has become an increasingly concerning issue in the Pacific Northwest. Enhancing the height, 
density and extent of riparian vegetation is widely accepted as one of the most effective strategies for 
reducing stream temperatures, while also providing numerous ancillary benefits. Effective shade is 
defined as the percentage of direct beam solar radiation attenuated and scattered by riparian 
vegetation before reaching the stream surface and is a commonly used criterion for choosing where to 
restore riparian vegetation. This project aims to prioritize sites for riparian restoration through effective 
shade modeling within the geographic extent of the Johnson Creek watershed.  Modeling inputs 
included a limited set of channel morphology and riparian vegetation attributes and were sampled from 
high spatial resolution LiDAR derived raster datasets (3 ft.) using Python script programming tools. A 
separate raster was created to depict restored conditions, in which the height of all restorable riparian 
vegetation is set equal to 27 meters. Using the stream temperature model, Heat Source, effective shade 
simulations were performed along the mainstem Johnson Creek and all tributary streams over the 
duration of a single day in August. Model outputs provided effective shade and daily solar flux 
attenuation estimates under current and restored conditions, the difference of which represented the 
net benefit, in terms of shade, that would result from restoration. Model outputs were used to evaluate 
the current level of effective shade in the watershed and to prioritize restoration efforts at the taxlot, 
subwatershed and jurisdictional scale. Currently, effective shade is 73% on average for all streams in 
watershed. Under a restoration scenario, 544.9 acres would be restored resulting in the additional solar 
flux reduction of 209,118.9 watts/m2/d. Restoring only 22% of all taxlots or 21% of all restorable acres 
would accomplish 50% of the cumulative solar flux reduction.  Restoring 38% of all taxlots or 55% of all 
restorable acres would accomplish 90% of the cumulative solar flux reduction. Prioritizing at the taxlot 
scale, as opposed to subwatersheds or jurisdictions, promotes a higher level of efficiency in the 
prioritization of restoration efforts. All taxlots should be further screened prior to final prioritization for 
opportunistic prospects such as landowner willingness, community support or proximity to existing 
restoration projects, and fundraising opportunities.

iv 



1.0 Introduction 

Salmon and Stream Temperature 

   Salmonid populations in the Pacific Northwest have dramatically declined since European settlement, 

primarily due to the degradation of coldwater habitat (Allen et al. 2007). Currently, six salmonid species 

are listed under the Endangered Species Act as threatened or endangered in Oregon alone (National 

Marine Fisheries Service (NMFS) 2013; US Fish and Wildlife Service (USFWS) 2013). Above all other 

water quality attributes, elevated water temperatures are particularly harmful to all life stages of 

salmonid species, causing weight loss, disease, competitive displacement or death (Beschta 1997; 

Oregon Department of Environmental Quality (ODEQ) 2006; Richter & Kolmes 2005). As water quality 

continues to degrade, the influence of stream temperature on the survival and reproductive success of 

anadromous salmonid populations has become an increasingly concerning issue in the Pacific Northwest 

(Allen et al. 2007; Chen et al. 1998; ODEQ 2006). As such, restoring thermal regimes is a major 

component of salmonid conservation and management (Richter & Kolmes 2005).  

    Every year, millions of dollars are spent on watershed restoration efforts aimed at increasing the 

abundance and resiliency of native salmonid populations in this region (OWEB 2007; Roni et al. 2010), 

yet many wild populations continue to decline causing policy makers, natural resource managers, and 

stakeholders to question the effectiveness of these efforts and continue their search for innovative and 

socio-economically feasible solutions (Beechie & Bolton 1999; Beschta 1997; Roni et al. 2002, 2008, 

2010; Watanabe et al. 2005). By nature, salmonid populations are highly adapted to unique local 

conditions composed of spatially and temporally variable ecological processes and are known to exhibit 

large inter-annual fluctuations in abundance (Beechie & Bolton 1999; Richter & Kolmes 2005; Roni et al. 

2002, 2010). When combined, these distinguishing features tend to confound management efforts and 

can impede attainment of restoration goals. The cumulative effects of human population growth, 
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competing societal priorities, and climate change are expected to further exacerbate the challenges 

associated with restoring salmon runs in the Pacific Northwest (Richter & Kolmes 2005). In sum, there is 

a growing need for cost-effective restoration strategies that will successfully promote and sustain 

salmonid populations in the Pacific Northwest.  

Stream Temperature Regulations 

   Water quality standards are established to protect the beneficial uses of state waters such as 

irrigation, recreation, hydropower or fish and aquatic life (CWA 40 CFR 131; Environmental Protection 

Agency (EPA) 1994; ODEQ 2011). In the Pacific Northwest, water quality policy is largely driven by the 

need to protect the beneficial use of fish and aquatic life from the effects of water quality degradation. 

Fish and aquatic life are typically the most sensitive beneficial use to water temperature, with 

anadromous salmonid species being particularly vulnerable to temperature changes (Boyd and 

Sturdevant 1997). The distribution, health, and survival of salmonid species, for example, is greatly 

influenced by stream temperature largely due to their cold-blooded, or ectothermic, nature (Bisson et 

al. 1992; Boyd and Sturdevant, 1997; Brungs and Jones, 1977; Fryer and Pilcher, 1974; ODEQ 1995). 

Temperature standards are designed to accommodate the temperature needs of all fish and aquatic life, 

including specific salmonid life stages (Nehlsen 1997; ODEQ 2008; Palmer 2009; Roni et al. 2010).  

   In Oregon, numeric stream temperature criteria, expressed as a 7-day moving average of daily 

maximum temperatures, are determined by ODEQ and approved by the EPA based on the upper optimal 

physiological temperature preferences known to support the biological processes required in salmonid 

spawning, rearing, and migration life stages (ODEQ 2008; Richter & Kolmes 2005). In general, stream 

temperatures between 18-25 °C that last anywhere from hours to months can cause thermal stress, 

leading to weight loss, disease or competitive displacement (Boyd and Sturdevant, 1997; Brungs and 

Jones, 1977; Fryer and Pilcher, 1974; ODEQ 1995). Given sufficient time, these same temperatures can 
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also cause thermally induced fish mortality for species that are poorly adapted to the prevailing 

conditions (Richter & Kolmes 2005). Streams that are found to violate water quality standards will be 

listed on the 303(d) list as water quality impaired and the formation of total maximum daily load (TMDL) 

allowances for pollutants of concern will be required (ODEQ 2008). TMDL's are developed by the Oregon 

Department of Environmental Quality (ODEQ) and submitted to the Environmental Protection Agency 

(EPA) for approval.  TMDL's generally serve to identify the pollutant of concern, develop a loading 

capacity, identify pollutant sources and determine waste load allocations (ODEQ 2011). ODEQ will then 

work with implicated local or state agencies such as the Oregon Department of Agriculture (ODA), 

Oregon Department of Forestry (ODF), Oregon Fish and Wildlife Service (FWS) or city and county 

jurisdictional representatives, to implement the TMDL and attain the objectives.  

Effective Shade Targets 

   With respect to water temperature, heat is the pollutant of concern which can enter the stream as 

direct solar radiation (non-point sources) or heated effluent from point sources. A temperature TMDL 

defines the amount of thermal energy that can be discharged or allowed to enter into a water body 

without exceeding water temperature standards, and distributes allocations to point and nonpoint 

sources (Niemi et al. 2006; ODEQ 2011).  For many streams, 100% of all heat loading originates from 

non-point sources due to a lack of adequate riparian vegetation and/or extensive channelization of the 

stream channel.  In these circumstances, compliance with waste load allocations is attained through 

riparian restoration efforts.  

   Riparian vegetation provides a physical barrier between the stream and the sun that can attenuate 

and deflect incoming solar radiation (Boyd and Kasper 2003; Boyd and Sturdevant 1997). Although solar 

radiation is just a part of the heat budget for any given stream, it is the most important source of 

radiation in terms of temperature regulation, particularly in mid latitude regions during the summer 
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months (Allen et al. 2007; Beschta 1997; Boyd and Sturdevant 1997; Johnson 2003; Li et al. 2012). As 

such, enhancing riparian vegetation (canopy height, density, and buffer extent) is widely accepted as 

one of the most effective strategies for reducing stream temperatures, while also providing numerous 

ancillary benefits including erosion control, flood mitigation, water purification, improved channel 

complexity, formation of in-stream and riparian habitat and general ecosystem resilience (Chen et al. 

1998; Gebhardt & Fischer 1999; Holmes et al. 2004; Johnson et al. 2007; Kentula 2007; Li et al. 2012; 

Niemi et al. 2006; ODEQ 2006; Teels et al. 2006). More specifically, riparian vegetation promotes the 

formation of habitat through large woody debris (LWD) recruitment, by creating narrower, more 

complex stream channels with reduced width to depth ratios, and by providing a microclimate along the 

streambank characterized by cooler air temperature, reduced wind speed, and higher relative humidity 

(Gergel et al. 2007; Opperman & Merenlender 2004).  

   Effective shade1 is defined as the percentage of direct beam solar radiation attenuated and scattered 

by riparian vegetation before reaching the ground or stream surface (ODEQ 2006). In simple terms, 

effective shade is a function of solar positioning, geographic location, riparian vegetation and stream 

channel morphology. For example, the height of riparian vegetation controls the shadow length cast 

across the stream surface, solar positioning controls the timing and direction of the shadow, and the 

channel width determines the length of shadow necessary to shade the stream surface (Boyd & Kasper 

2003). A strong predictive relationship has been observed between effective shade and stream 

temperature and, as such, it was selected by the Environmental Protection Agency (EPA) and ODEQ as a 

surrogate measure for stream temperature (Gebhardt & Fischer 1999; Li et al. 2012; ODEQ 2006). In 

general, surrogate measures are intended to provide managers with a cost-effective and workable tool 

for pollutant loading assessment and allocations (Gebhardt & Fischer 1999). When compared to stream 

temperature, effective shade is more stable over short periods of time, can be sampled and derived 

1 Note to reader: all text in bold is included in the Glossary at the end of this document.  
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from widely available remotely sensed data sources, is easily translated into quantifiable management 

objectives and is more sensitive and responsive to management changes (Chen et al. 1998; Gebhardt & 

Fischer 1999; ODEQ 2006). For streams that exceed water temperature standards due to a lack of 

adequate riparian vegetation, reach-specific effective shade targets 2may be developed during the 

TMDL process to identify the level of shade needed to attain compliance with water quality standards 

for stream temperature (Sturdevant 2008). Attainment of effective shade targets is equivalent to 

attainment of non-point source (NPS) load allocations (ODEQ 2006). Consequently, a common approach 

to prioritizing restoration efforts aimed at stream temperature reduction involves the use of riparian 

vegetation, valuated in terms of effective shade, as the site suitability criteria3.  

Johnson Creek Watershed 

   Johnson Creek and its tributaries experience annual warming beginning in late spring and lasting 

though the fall, largely due to anthropogenic non-point sources of heat loading. During this period, 

stream temperatures often exceed the criteria established to protect salmon and trout habitat during 

discrete life stages. Johnson Creek was 303(d) listed for temperature in 1998 due to observed 

exceedances of the biologically based numeric criteria for salmon and trout rearing (18° C) in the 

summertime of 1992. The Willamette Basin TMDL which was completed in 2006 further modified the 

listing for Johnson Creek. Two numeric criteria currently apply to Johnson Creek: salmon and trout 

rearing and migration (18° C) applies year round for most of the mainstem (river mile 0-23.7) while the 

criteria for salmon and steelhead spawning (13° C) applies October 15-May 15 from river mile 0.2-10.5.  

2 Effective shade targets define the level of effective shade required to attain desired stream temperatures and 
remain in compliance with water quality standards for temperature. In other words, they translate nonpoint source 
solar radiation loads into streamside vegetation objectives (ODEQ 2006). 
3 Site suitability criteria are ecological, socioeconomic, or physical attributes used to identify areas that are most 
deserving of restoration. 
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   During TMDL development, natural background radiation under the system potential condition was 

found to consume all assimilative capacity in Johnson Creek and, as such, received 100% of the waste 

load allocation. This meant that all anthropogenic sources of heat loading, including degraded stream 

channel and riparian vegetation conditions, would need to be attenuated. Site specific shade targets 

were determined during TMDL development to be 80% on average for the mainstem (ODEQ 2006). 

Additionally, the 2006 TMDL states that the stream temperature and effective shade targets apply to 

both the mainstem and all tributaries since tributaries are known to contribute heat loading to the 

mainstem.  

   In 2012 and 2013, the Johnson Creek Watershed Inter-Jurisdictional Committee (JCW-IJC) placed 

temperature loggers throughout the watershed to determine the location, magnitude, and duration of 

temperature standard exceedances still occurring. Results of these efforts reveal that the mainstem and 

many tributaries continue to exceed temperature standards for salmon and trout rearing and migration 

(18° C) with the exception of a few well-shaded tributaries. As of 2013, the duration of temperature 

exceedances at each logger ranged from 2-113 days per year, with maximum recorded temperatures 

between 20-19.7° C. Only two locations (out of 41) remained in compliance year round.  

     Existing riparian vegetation in the watershed generally consists of mixed forest with some coniferous 

forest and shrub areas (Johnson Creek Watershed Council (JCWC) 2002). Many areas are dominated by 

blackberry, or young native plants and large mature trees (City of Portland 2005; JCWC 2002). While 

some of the smaller headwater creeks have extensive riparian vegetation, all other riparian areas are 

either narrow, minimal, or lacking (JCWC 2002).   While numerous riparian restoration efforts have 

taken place in the watershed, temperatures continue to exceed the numeric criteria for salmon 

spawning and rearing. Additional riparian efforts are needed to achieve effective shade targets 

established in the TMDL and reduce stream temperatures. Confounding this issue is the fact that 
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financial resources are limited and effective shade data are lacking for the tributaries of Johnson Creek 

(ODEQ 2006). Combined, these factors make it difficult to prioritize areas for riparian restoration and 

allocate resources in a cost-effective manner.   

Purpose of Project 

    The purpose of this project is to assist the Johnson Creek Watershed Council (JCWC) in prioritizing 

areas for riparian restoration within the geographic extent of the Johnson Creek Watershed. Modeling 

effective shade along Johnson Creek and its tributaries, under current and restored conditions, will help 

to identify areas that produce the greatest benefit, in terms of shade, per unit restored. 

    There are two main objectives of the project: modeling effective shade under current and restored 

conditions and prioritizing areas for riparian restoration based on where the largest gains, in terms of 

shade, occur as a result of restoration. The first objective involves modeling effective shade for all 

Johnson Creek tributaries and mainstem using Heat Source, a data intensive heat transfer process 

model. The model will calculate solar flux at the stream surface and percent effective shade under both 

current and restored conditions, the latter of which will represent a theoretical restoration scenario 

characterized by user defined parameters. Effective shade estimates under current and restored 

conditions will be used to evaluate the current level of effective shade in the watershed, and to 

determine if restored conditions are sufficient to attain an average of 80% effective shade for all 

streams in the watershed. For the second objective, modeling results will be used to prioritize 

restoration efforts at the taxlot, subwatershed and jurisdictional scale, based on where the largest gains 

in solar flux attenuation4 occur under restored conditions. The spatial extent of this study includes both 

the mainstem and all tributaries of Johnson Creek while, temporally, restoration objectives project out 

approximately 55 years.  

4 Solar flux attenuation is defined in this study as the amount of incoming direct beam solar radiation that is 
attenuated by riparian vegetation before reaching the stream surface. 
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2.0 Methods  

2.1 Study Area 

Geography 

   The study area for this project includes all streams and near-stream vegetation within the Johnson 

Creek watershed, which encompasses two USGS 12-digit Hydrologic Units, Lower Johnson Creek 

(170900120103) and Upper Johnson Creek (170900120101). The Johnson Creek watershed occupies a 

relatively small but densely populated area of 54 square miles within the Willamette River Basin in 

Oregon. The watershed is home to 180,000 people and includes portions of the cities of Milwaukie, 

Portland, Gresham, Happy Valley and Damascus and Multnomah and Clackamas counties (see Figure 1). 

The creek itself travels 26 miles west from its headwaters at the foothills of the Cascade Range, near 

Boring, to its confluence with the Willamette River in Milwaukie. The creek is fed by numerous springs, 

surface runoff, and 50 inches of annual precipitation. Major tributaries include Badger, Kelley, Mitchell, 

Sunshine, Veterans and Crystal Spring creeks. A total of 40 subwatersheds, ranging from <1 to 7 mi2 are 

recognized by the Johnson Creek Watershed Council (see Figure 2).  

   The geology of the watershed traces back to the Missoula floods and the Columbia River basalt group, 

which collectively deposited a thick layer of sediment underlain by thick basalt lavas. Large, flat, 

floodplains dominate the northern part of the watershed as a result of these historic floods (BES 2001). 

Most of the watershed's tributaries are located in the southern part of the watershed, where the 

topography is steep and varied (BES 2001). Elevation varies between 26-1100 feet above sea level and 

slopes generally range between 1-25%, with a few localized exceptions such as Mt. Scott and Powell 

Butte (10-30% slope).  
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      Johnson Creek passes through heavily developed residential, commercial, and industrial areas before 

emptying into the Willamette River (Niemi et al. 2006). In general, the upper portion of the watershed is 

dominated by agricultural and rural residential land uses while the lower portion contains heavily 

developed urban areas (JCWC 2002).  
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Disturbance History/ Ecological Integrity 

      Gradual development of the watershed has adversely impacted the ecological integrity of the 

watershed. Before urbanization, the Johnson Creek watershed hosted a diverse array of habitats 

including forests, marshes and wetlands (BES 2001). As settlers arrived, the emergence of sawmills, 

agriculture, ranching and general industrial, commercial or residential development gradually began to 

diminish natural resources and degrade ecological functioning within the watershed (BES 2001). In the 

1930’s the Works Progress Administration (WPA) straightened, deepened, and lined the mainstem with 

rock in an effort to control flooding (BES 2001). Unfortunately, these and other flood control strategies 

have accomplished very little in terms of flood control, and have instead contributed to degraded 

streambank and wetland conditions (BES 2001). Native species of salmon and trout, once plentiful in 

Johnson Creek, were severely depleted by the 1980’s; many of these native populations were eventually 

listed as threatened under the Endangered Species Act (ESA) during the late 1990’s (BES 2001).   

   Beginning in the 1990’s, fish surveys have periodically been performed to determine the species and 

extent of fish presence in the watershed (JCWC 2002, 2012). While salmon and trout species still inhabit 

Johnson Creek, their abundance has been reduced to a fraction of historic levels (JCWC 2012). There are 

three salmonid species listed as threatened under the ESA that are known to occur within the Johnson 

creek watershed: the Lower Columbia River Chinook Salmon Evolutionarily Significant Unit (ESU), Lower 

Columbia River Coho Salmon ESU, and Lower Columbia River Steelhead Distinct Population Segment 

(DPS). In addition, coastal cutthroat occurs within the watershed but is not listed under the ESA within 

the extent of the watershed. Recent fish surveys (2011) found native salmonid species occurring in 

nearly every tributary surveyed, even in small intermittent streams (JCW-IJC). 

   There is a clear need for riparian restoration in the Johnson Creek Watershed to protect salmon 

populations and meet TMDL requirements for stream temperature. Disturbance or removal of riparian 
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vegetation, channel modification, and alteration of the hydrologic regime resulting from historical 

development has greatly compromised ecological functioning within the watershed. Overall water 

quality and habitat conditions in the Johnson creek watershed are generally rated as poor, with 

problems related to sediment, bacteria, water temperature, streamflow, flooding and chemical 

contamination currently present (BES 2001; ODEQ 2005).  Current in-stream and riparian conditions are 

characterized by extensive bank erosion, few pools, little to no LWD, homogenous channel bedform, 

substrate dominated by fine sediments and high levels of channel incision, all of which provide very little 

benefit to native salmonid populations in terms of habitat (BES 2001). Of particular relevance to this 

study, optimum salmon and trout habitat requires an average of 80% effective shade (JCWC 2012), yet 

as of 2002, effective shade on the mainstem of Johnson Creek averaged only 40% leaving ample room 

for improvement. 

2.2 Overview of Methods 

   Prioritizing riparian restoration efforts using effective shade as the site suitability criteria typically 

involves a determination of current and restored conditions in terms of effective shade (Harris & Olson 

1997; Landers 1997; Palmer et al. 2005; Tompkins & Kondolf 2000; USGS 2007). Restored conditions 

represent the condition of riparian vegetation at a climax life stage with buffer dimensions that will 

maximize solar flux attenuation (ODEQ 2006); this condition is achieved through riparian restoration 

efforts. Once restored conditions are determined, they are compared to current conditions to identify 

and prioritize areas performing below their ecological potential (Landers 1997; USGS 2007).   

   Current levels of effective shade can be estimated from aerial photos or remotely sensed vegetation 

data or directly measured using a solar pathfinder or gap light analyzer of hemispheric photos (ODEQ 

2006). While it is unreasonable to rely on direct measurements when dealing with large spatial extents, 

estimates derived from high resolution data sources are far more convenient, practical and accurate 
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(Gergel et al. 2007). Consequently, modeling effective shade using data derived from high resolution 

spatial data sources has become a popular tool for watershed management applications. In addition, 

simulating effective shade under theoretical restored conditions is accomplished through modeling as 

well.  In this study, effective shade modeling was performed under both current and restored conditions 

in order to compare the current level of effective shade provided by riparian vegetation to that provided 

under restored conditions and prioritize sites for restoration based on where the largest gains, in terms 

of shade, would occur as a result of restoration.    

   Various GIS based models have been developed over the past few decades to estimate effective 

shade, or some contingent parameter, as a function of the structure and orientation of riparian 

vegetation, channel width, directional flow of the stream, global position, time of day and time of year 

(Chen et al. 1998; Larson & Larson 1996; Li et al. 2012). The major difference between individual shade 

models is largely contained in the underlying set of algorithms used to calculate the heat energy 

balance. Shade models also vary in terms of their output and overall utility. Quigley (1981) developed 

the first algorithm to solve the temporally variable problem of shade cast by riparian vegetation as the 

sun travels along its daily arc (Li et al. 2012).  Today, various similar algorithms exist that build upon this 

basic concept ranging from very simple to very complex (Li et al. 2012). More complex models 

incorporate additional variables, the data for which can be difficult and time consuming to collect, such 

as tree overhang, channel insulation and localized meteorological conditions (Johnson 2003; Li et al. 

2012). In this study, effective shade was estimated as a function of one or more attributes concerning 

solar position (solar altitude and azimuth), riparian vegetation (height, width and density), geographic 

location (geographic coordinates, topography) and stream morphology (elevation and gradient) using 

the stream temperature model Heat Source (version 8.0). 
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2.3 Data Derivation    

To assemble the necessary modeling inputs, the following attributes were sampled at 50m increments 

along all streams in the watershed: 

• Physical attributes 

o Latitude/longitude 

o Topographic shade angle 

o Stream elevation  

o Stream gradient 

• Riparian buffer attributes 

o Vegetation height 

o Bare earth elevation 

All of the riparian vegetation and physical attribute data listed above was derived from LiDAR raster data 

(3 ft. pixel resolution) within a 30m wide buffer along both banks of all streams within the Johnson 

Creek watershed. Physical attribute data was sampled at each 50m longitudinal sampling node. In 

addition, riparian vegetation was sampled for every 50m of stream length using a radial sampling 

pattern that extends 30 meters outward in seven cardinal directions from the stream centerline. The 

radial sampling pattern will be further discussed in sections to come. Before sampling could be 

performed, however, base data to derive the modeling inputs from was acquired and/or created using 

the methods described below.  

2.3.1 Base Data 

   A digitized stream layer, including the Johnson Creek mainstem and all tributaries, was developed by 

the JCWC in 2007 using a combination of LiDAR raster data (3 ft. resolution) and aerial photographs, and 

subsequently modified in 2009 to include additional data provided by the City of Gresham. This pre-
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existing polyline stream layer was digitized using high spatial resolution imagery and, as a result, 

exhibited a high level of accuracy when overlain with current aerial photographs and LiDAR derived 

raster data. Subwatershed boundaries were delineated by the JCWC using this same digitized stream 

layer. Both the polyline stream layer and subwatershed boundary layer were acquired with the help of 

various members from the Johnson Creek Watershed Inter-jurisdictional Committee (JCW-IJC).  Once 

acquired, the polyline stream layer was subdivided into many separate streams in ArcGIS, such that each 

stream was contained within a separate shapefile, and could be sampled and modeled separately. All 

streams less than 50 meters in length fell below the minimum length required for sampling and, as such, 

were excluded from the study. A total of 461 streams were delineated, 14 of which fell below the 

minimum length requirement resulting in a final count of 448 streams to be sampled and modeled.   

   LiDAR derived raster datasets for bare earth elevation (otherwise known as a Digital Elevation Model 

(DEM)) and vegetation height within the boundary of the watershed were acquired from three separate 

data acquisition flights (DOGAMI/ODF 2007; Puget Sound LiDAR Consortium (PSLC) 2004, 2005) and 

were pieced together by Ryan Michie. The majority (~90%) of LiDAR data came from the Portland/Mt. 

Hood data acquisition project, flown on March 16th -April 15th of 2007. A small portion of the watershed 

in the Milwaukie area came from the Portland Pilot study flown in March of 2004. Another small portion 

of the watershed in the Crystal Springs area came from the Lower Columbia Study, flown between 

January 10th and February 12th of 2005.  Once combined, the final raster dataset for bare earth (DEM) 

and vegetation had a pixel resolution of 3ft.     

   The Datum used for all spatial data analysis was D_North _American_1983_HARN with a geographic 

coordinate system of GCS_North_American_1983_HARN and projected coordinate system of 

NAD_1983_HARN_Lambert_Conformal_Conic. Jurisdictional (city, county, and metro) and 12th field 

Hydrologic Unit (HU) boundaries were derived from public RLIS data dated August 2013 (RLIS 2013). 
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Additional base data concerning taxlot attributes (such as land ownership and land use) and subbasin 

boundaries were provided by members of the JCW- IJC and used for post-modeling data analysis 

purposes.  

2.3.2 Restored Conditions 

  A separate restored conditions raster was created to facilitate sampling and modeling of all streams 

under a restoration scenario. The restoration scenario is a scenario in which all shade restoration efforts 

that are likely to occur within the watershed are completed. Shade restoration is defined in this paper as 

the process of enhancing the height, extent, and density of riparian vegetation in order to reduce the 

amount of incoming solar radiation that reaches the stream surface (DeWalle 2008). The restored 

conditions raster was created by modifying the current-day LiDAR derived raster dataset (3 ft.) to depict 

the state of riparian vegetation in the watershed under the restoration scenario.  

Restoration Buffer 

    First, a restoration buffer was delineated  along all streams within the watershed, extending 15 

meters to either side of the stream channel; this buffer represents the furthest distance from the stream 

in which restoration is likely occur. This buffer width has also been shown to provide an adequate level 

of shade to small streams in various studies (Chen et al. 1998b; DeWalle 2008; Fullerton et al. 2006; 

Washington State Department of Ecology (WSDOE) 2007; Watanabe et al. 2005). Buffer widths between 

9-30m are generally considered adequate to provide shade benefits to smaller streams (DeWalle 2008; 

USGS 2007). Depending on the width of a stream, studies have shown that the percent effective shade 

ceases to increase as buffers become wider than 10-30m (Chen et al. 1998b; DeWalle 2010; Fullerton et 

al. 2006; Sridhar et al. 2004; Watanabe et al. 2005). 

Restorable vs. Un-restorable Area 
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   Using current day LiDAR raster data (3 ft.), each pixel of vegetation within the restoration buffer was 

classified as either: vegetation greater than or equal to 4m in height or vegetation less than 4m in 

height. Vegetation currently greater than or equal to 4 meters in height  was classified as un-restorable 

area and remained unchanged under the restoration scenario, whereas vegetation currently less than 4 

meters in height was classified as restorable area and was modified under a restoration scenario. A 4 

meter height threshold for restorable area was chosen based on the assumption that most invasive 

species targeted for restoration, such as Himalayan blackberry (Rubus discolor and Rubus procerus), 

Japanese knotweed (Polygonum cuspidatum), or purple loosestrife (Lythrum salicaria L.), will fall under 

this threshold; all of the aforementioned species are common throughout the watershed (BES 2001; 

JCWC 2012) and can reach heights of 3-4 meters (Francis; King County 2013). Similarly, riparian 

vegetation was classified as restorable or un-restorable on a per-pixel scale since invasive species are 

often targeted for eradication and restorative purposes from equally small areas (BES 2001). Riparian 

vegetation within restored areas was assigned height, width and density dimensions typical of a climax 

life stage for native riparian tree species, which is characterized by the following conditions (ODEQ 

2006): 

• Vegetation is mature;  

• Vegetation height and density are at or near the potential expected for the given plant 

community; and 

• Vegetated buffer is sufficiently wide to maximize solar flux attenuation. 

These same criteria are also used by ODEQ to determine “system potential effective shade” during 

TMDL development (ODEQ 2006).  Characteristics of riparian vegetation within restored areas was 

determined from current data sources describing the optimal dimensions and species composition of a 

mature, native riparian community within the geographic study region. Restored conditions were 
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designed to represent the condition of riparian vegetation under the restoration scenario. Following the 

implementation of restoration activities that are likely to occur throughout the watershed, all vegetation 

in restorable areas are at a climax life stage and vegetation within un-restorable areas remain in the 

same state as current conditions.   

   All un-restorable area remained unchanged to control for the natural background growth of the 

vegetation that surrounds restored areas and to isolate the shade benefit of restoration efforts from the 

shade benefit of natural background growth. Isolating the shade benefit of restoration efforts will 

enable the performance of potential restoration sites under a restoration scenario to be compared to 

one another and prioritized according to where the largest benefit occurs due to restoration efforts 

alone. Where buildings and roads occurred within the restoration buffer, vegetation height also 

remained unchanged, since restoration is not likely to be feasible in these areas (see Figure 3 for 

example).  

   All areas with current vegetation greater than or equal to 4m in height, or occupied by buildings 

and/or roads are collectively referred to as the “un-restorable” area.   Similarly, the total area within the 

restoration buffer occupied by vegetation currently <4 meters in height is collectively referred to as the 

total “restorable” area in the watershed (Figure 3).  

  

19 



I205

POWELL

82
ND

FOSTER

MCLOUGHLIN

12
2N

D

HWY 224

WOODSTOCK

I20
5

FOSTER

Restorable Area

0 1.5 30.75 Miles

Figure 3: Total Restorable Area

March, 2014

ORIENT

POWELL

FOSTER HWY 26

24
2N

D
HO

GA
N

BLUFF

HWY 212

KA
NE18

2N
D

SUNNYSIDE
COMPTON

BLUFF

A

B

A: Western Half of Watershed
B: Eastern Half of Watershed¹



 

Figure 4: Example of restored conditions  

Area in orange corresponds to restorable area, or area within 15m of stream channel containing 

vegetation currently <4m in height.  

Height of Restored Vegetation 

   The height of restored vegetation was determined from the average height at maturity for six of the 

most common riparian tree species planted for restoration purposes in the Johnson Creek watershed. A 

major assumption of this approach is that all tree species will be uniformly distributed within restored 

areas and throughout the watershed. Many other shade modeling studies have involved similar 

assumptions and generalizations regarding the dimensions of riparian vegetation in an effort to maintain 

model simplicity (Chen et al. 1998 a, b; Cristea and Burges 2010; Guoyuan et al. 2012; ODEQ 2006). In 
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their determination of system potential conditions for the Johnson Creek Watershed TMDL, ODEQ 

(2006) used a similar approach, in which each land cover class, or riparian community, was assigned a 

uniform value that represents the average height at maturity for that community, regardless of location 

within the watershed. Similarly, Greenberg et al. (2012) calculated the vegetation height for each stream 

reach modeled as the mean height of all vegetation within the riparian buffer for that reach.  

   The most common riparian tree species were identified using the Portland Plant List of Native Plant 

Communities: Mixed coniferous/deciduous riparian forest (ODOT 2011). They include: big leaf maple 

(Acer macrophyllum), red alder (Alnus rubra), Oregon ash (Fraxinus latifolia), black cottonwood (Populus 

balsamifera var. trichocarpa), Pacific willow (Salix lucida ssp lasiandra) and Western red cedar (Thuja 

plicata). Two additional tree species, black hawthorn (Crataegus suksdorfii) and quaking aspen (Populus 

tremuloides), were included in the Portland Plant list for this community but are not commonly planted 

for restoration purposes and as such, were excluded from the restored height calculation (Jenkinson, 

personal correspondence, February 19, 2013).  

    For each tree species, the height at maturity was derived from the USDA PLANTS database. The 

average of all values came to 26.6 meters and was rounded up to 27 meters for the final value. Cristea 

and Burges (2010) used similar values of 25-28m to characterize the average site potential tree height 

along streams dominated by cottonwood (Populus sp.), willow (Salix sp.) and red-osier dogwood (Cornus 

sericea). Similarly, Chen et al (1998b) found vegetation heights between 25-35m were necessary to 

bring tributary streams in the Upper Grande Ronde watershed into compliance with water quality 

standards (Chen et al. 1998b). The average age at maturity for each species was derived from a few 

different sources; the average age at maturity for all six tree species is estimated at 55 years old (Burns 

and Honkala 1990; Niemic et al. 1995; USDA 2013; WSDOE 2013); see Table 1for further details.  
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Table 1: Characteristics of most common riparian tree species planted in riparian restoration projects  

Species Age at 
maturity 

4Height at maturity 
(m) 

Big leaf maple (Acer macrophyllum) 160 18 

Red alder (Alnus rubra) 165 27 

Oregon ash (Fraxinus latifolia) 160 21 

Black cottonwood (Populus balsamifera var. trichocarpa) 160 30 

Pacific willow (Salix lucida ssp lasiandra) 330 16 

Western red cedar (Thuja plicata) 255 45 

1Source: Niemic et al. (1995)  
2Source: Burns and Honkala (1990) 
3Source: WSDOE Plant selection guide (accessed online 2013) 
4Source: USDA Plants Database (accessed online 2013) 
  

The final restored conditions raster depicted the state of riparian vegetation throughout the watershed 

following shade restoration activities that are likely to occur. All restorable area was restored to a height 

of 27m whereas all un-restorable area, including buildings and roads, was left unchanged. The restored 

conditions raster was used to derive the modeling inputs concerning riparian vegetation dimensions 

(height, width and density) under a restoration scenario.  

2.3.3 Sampling for Modeling Inputs 

   All riparian vegetation and physical attribute data were sampled from LiDAR derived raster datasets (3 

ft. resolution) using Ttools, an ArcGIS extension developed by ODEQ for use in conjunction with Heat 

Source, and the LiDAR Landcover Sampler, a python script created by Ryan Michie (ODEQ 2011). All of 

the above programming tools were pre-existing and previously utilized for other projects.  Both Heat 

Source and Ttools are used extensively by ODEQ for purposes of water quality analysis (ODEQ 2012). 

The following table (Table 2) provides information on the sources and resolution of raster datasets used 
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to sample data concerning the height of riparian vegetation and physical attributes under both current 

and restored conditions. 

Table 2: Modeling input parameters derived from geospatial data 

Input Parameters  Data Source Resolution 

Stream length (km) Derived from digitized stream 
channel-shapefile using Ttools; 
stream channel digitized using 
LiDAR derived raster data 

3 ft. 

Coordinates (lat/lon) Derived from DEM raster data 
using  Ttools 

3 ft. 

Gradient Derived from DEM raster data 
using Ttools 

3 ft. 

Elevation (meters) Derived from DEM raster data 
using Ttools 

3 ft. 

Topographic shade (in 3 
directions) 

Derived from DEM raster data 
using Ttools 

3 ft. 

Bare earth elevation (mean)  Derived from DEM raster data 
using LiDAR Landcover Sampler 

3 ft. 

Vegetation height (mean) Derived from LiDAR raster data 
using LiDAR Landcover Sampler 

3 ft. 

 

Sampling Units 

   Each stream was sampled for physical attribute and riparian vegetation data at a longitudinal sampling 

rate of 50 meters. Two different sampling units were used; one primarily for sampling physical attributes 

and one primarily for sampling riparian vegetation. Longitudinal sampling nodes occurring at 50m 

intervals along each stream were used to sample physical attribute data including elevation, gradient, 

geographic coordinates and topographic shade.  While longitudinal sampling rates between 30-100m 

are commonly used for shade modeling purposes (Chen et al 1998b; Cristea and Burges 2010; Fullerton 

et al. 2006; Quinn et al. 1992; Watanabe et al. 2005) recent advances in remote sensing technologies 
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have enabled sampling at the finer scale of pixels (1-30m2) to become more prevalent (Allen et al. 2007; 

Greenberg et al. 2012; Johnson et al. 2007; Kentula 1997). However, these smaller sampling rates are 

accompanied by relatively large amounts of data and, as such, are often used for modeling areas much 

smaller than a watershed, such as a single stream reach.  

At each of these longitudinal sampling nodes, the height of riparian vegetation and bare earth elevation 

were sampled using a radial sampling pattern (Figure 5). The radial sampling pattern involves multiple 

polygon-type sampling units (Figure 5) that radiate outward in seven cardinal directions from each 

longitudinal sampling node to a distance of 30m.  

The following section begins with a description of the radial sampling pattern used for deriving riparian 

vegetation and bare earth elevation data and is followed by a description of the sampling pattern used 

to derive physical attribute data.  
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Figure 5: Radial sampling pattern  

Radial sampling of riparian vegetation and bare earth elevation occurs at each longitudinal sampling 

node (every 50 meters of stream length). Sampling extends 30 meters out from each sampling node at 

2m increments, in seven cardinal directions. Each single polygon is assigned a unique identifying code 

based on its location both within the radial sample and along the stream. Northernmost wedges are 

excluded from modeling since the sun does not shine from that direction in the Northern hemisphere.  
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Figure 6: Series of radial sampling patterns along a single stream.  

Sampling occurs at a longitudinal sampling rate of 50 meters. Each longitudinal sampling node is labeled 

according to its stream length (m), with length 0 starting at the mouth of the stream. The last sample at 

the upper end of the stream (length=238.14m) falls short of 50 meters from the previous sample and is 

not included in the model.  
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Vegetation Height and Bare Earth Elevation Sampling 

   The following sampling pattern was used to sample riparian vegetation height and bare earth 

elevation from both current and restored condition raster datasets. At each longitudinal sampling node, 

radial sampling extended 30 meters out in every cardinal direction (north, northeast, east, southeast, 

south, southwest, west, northwest) creating a circle with eight “wedges”, or directional zones (Figure 5). 

Within each wedge, area samples were taken every 2 meters out from the stream channel, up to a 

distance of 30 meters, resulting in a total of 15 polygons sampled in each cardinal direction (Figure 5). 

Many other shade modeling studies have ignored lateral, or cross-sectional gradients in riparian 

vegetation, using evenly distributed and generalized blocks of vegetation along either side of the stream 

channel (Chen et al. 1998 a, b; DeWalle 2010; Greenberg et al. 2012; Li et al. 2012; Ryan et al. 2013). The 

lateral sampling rate of 2m used for this study will capture a greater level of lateral variation within the 

riparian buffer in comparison.  

Samples that occurred within the North wedges were not included in the final model since the sun does 

not shine from that direction in the Northern Hemisphere and consequently, shadows will not be cast in 

a southerly direction (Boyd & Kasper 2003). Therefore, 105 polygons were individually sampled 

(excluding the North wedge) for near-stream vegetation height and bare earth elevation, at every 50 

meters of stream length (Figure 5 and Figure 6).  

Each individual polygon sampled was assigned an identifying code which is a function of the stream km, 

wedge zone, and veg zone associated with each polygon (see Figure 5). While these codes are unique to 

the stream they are associated with, they are not unique across streams (i.e. many streams will have 

codes in common but no individual stream will have duplicate codes occurring within it).  

   Within each polygon sampling unit, the current height of riparian vegetation was sampled from LiDAR 

derived raster data (3 ft. resolution) using the LiDAR Landcover Sampler. Summary statistics for 
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vegetation height and bare earth elevation were generated for each polygon including: minimum, 

maximum, range, mean, standard deviation, and sum. All vegetation height and elevation values within 

each polygon were averaged, resulting in a block of vegetation with uniform height and bare earth 

elevation as the final modeling input. In addition, a uniform density estimate for each polygon is 

included as a modeling input; methods used to estimate vegetation density within each polygon will be 

discussed in the following section.  

   The height of riparian vegetation under restored conditions was sampled from the restored conditions 

raster dataset using the LiDAR Landcover Sampler (Michie 2011), following the same radial sampling 

procedure used to sample current vegetation. Bare earth elevation was not re-sampled under restored 

conditions since it is assumed to remain unchanged from current conditions.  

Elevation, Gradient, and Topographic Shade Sampling 

   Physical attribute data was sampled at each longitudinal sampling node (every 50 meters of stream 

length). At each node, Ttools was used to derive the following physical attribute data from DEM raster 

data: geographic coordinates, maximum topographic shade angle, elevation and gradient. Ttools 

calculated elevation by sampling 25 pixels surrounding each node and defaulting to the lowest elevation 

found. Stream gradient was calculated from the elevation of each sampling node and the distance 

between nodes. Topographic shade is defined as the angle between the center of the stream and the 

highest topographic feature. Topographic shade angles were calculated at every 50 meter sampling 

node in three directions: east, south, and west. For each angle, Ttools sampled DEM pixels for elevation 

up to 10 km away from each longitudinal sampling node and recorded the maximum topographic shade 

angle found within this zone.  

   Sampling of physical attribute data (i.e. elevation, gradient, topographic shade) was not repeated for 

restored conditions since these values remained the same under both current and restored conditions; 
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the only difference between current and restored modeling input parameters was the height and 

density of  riparian vegetation, the latter of which was estimated and not sampled (see following section 

for details).  

2.3.4 Vegetation Density 

  Almost all input parameters for Heat Source modeling were derived from raster data using Ttools and 

LiDAR Landcover Sampler (see Table 2) In addition to sampled modeling inputs, vegetation density 

values were estimated for each polygon. Vegetation density is required as a modeling input to calculate 

the transmissivity, or shade density, for each polygon, which is calculated using Beer’s Law (Oke 1978) 

(see page 45 for equation). Heat Source, the model utilized in this study, defines vegetation density as 

an ocular estimate of the canopy closure and, as such, methods for estimating canopy closure were 

utilized to derive vegetation density modeling inputs (Boyd & Kasper 2003). Canopy closure is defined as 

the proportion of the sky hemisphere obscured by vegetation when viewed from a single point and is 

generally measured in terms of the size and frequency of gaps in the canopy (DeWalle 2008; Fujita et al. 

2003; Jennings et al. 1999; Warren et al. 2013).  

   One common approach for estimating canopy closure or vegetation density involves delineation of 

polygons from  aerial photographs that appear to contain relatively homogenous vegetative cover and 

assigning each polygon a uniform, generalized value (Boyd & Kasper 2003; Chen et al. 1998b; Cristea and 

Burges 2010; DeWalle 2008, 2010; Li et al 2012).  In this study, polygons were prohibitively small and 

numerous making this approach impractical.  

   The approach used for this study is similar to the ‘crown position index’ method (Baker 1950; Clark and 

Clark 1992; Dawkins & Field 1978; Smith 1986) as well as the ‘vegetation height profile technique’ 

(Brokaw & Grear 1991; Fujita et al. 2003; Hubbell & Foster 1986; Karr 1971; Nakashizuka 1995). Both the 

crown position index and vegetation height profile technique are used to evaluate various attributes 
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concerning canopy structure including gap distribution, gap frequency and light transmission through 

the canopy as a function of “canopy surface roughness” or the magnitude of variation in the vertical 

canopy height profile.  The ‘crown position index’ and ‘vegetation height profile technique’ methods 

support the premise that vertical canopy height profiles can be used to estimate gap frequency and 

canopy closure-the approach used to estimate canopy closure in this study.  

   Canopy closure was estimated within each polygon using an index approach. For each polygon, an 

index of canopy spread was calculated based on the magnitude of variation, or spread, in the vertical 

canopy height profile. The objective of using this approach is to evaluate the size and frequency of gaps 

in the canopy of each polygon; the more variation there is in the vertical canopy height profile, the more 

gaps are assumed to occur. Once calculated, select index values were then assigned density (i.e. canopy 

closure) values based on how dispersed or compact the canopy profile was. Using paired index values 

and assigned density values, a formula for vegetation density was then derived to enable estimation of 

density within each polygon. The following steps illustrate how 1) canopy spread index values and 2) the 

final density formula were derived.  

Step 1) Using the vegetation height data sampled within each polygon, an index of canopy spread was 

determined for each polygon using the following equation: 

(𝑚𝑎𝑥 −𝑚𝑒𝑎𝑛)
𝑠𝑡𝑑𝑑𝑒𝑣

 

Where max is equal to the maximum vegetation height (m), mean is equal to the mean vegetation 

height (m) and stddev is equal to the standard deviation of vegetation heights from the mean (m). 

Resultant index values ranged from 0 to 7, with 0 indicating a lack of gaps in the canopy and 7 indicating 

a large number of gaps in the canopy. 
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Step 2) After calculating the canopy spread index for each polygon, the density equation was derived 

using the point-slope formula for a linear line with two known coordinates. The two known coordinates 

were determined by assigning density values to the lowest and highest index values, 0 and 7. The lowest 

index value was assigned a density of 10% whereas the highest index value was assigned a density of 

90%. For comparison, other studies were identified that used similar maximum or optimal density values 

(~85%) for effective shade modeling (Chen et al. 1998b; WSDOT 2007). The lowest density value of 10% 

was chosen instead of 5% or 0% since none of the polygons were completely barren or void of 

vegetation. The resulting coordinates were: (0, 90) and (7, 10) where x is equal to the canopy spread 

index and y is equal to the density (%).  The following formulas were used to derive the density equation 

using these two known coordinates:  

Slope formula: 

𝑚 =
𝑦1 − 𝑦2
𝑥1 − 𝑥2

 

 

𝑚 =
90 − 10

0 − 7
=
−80

7
 

Point-slope formula: 

(𝑦 − 𝑦1) = 𝑚(𝑥 − 𝑥1) 

(𝑦 − 90) =
−80

7
(𝑥 − 0) 

𝑦 =
−80

7
𝑥 + 90 = 𝝆 

 

Where m equals the slope of the line, x is equal to the canopy spread index and y is equal to the density 

(ρ (%)). The density (ρ) of vegetation within each polygon was estimated using this final equation.  
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2.4 Modeling  

  Modeling was accomplished using Heat Source (version 8.0), a temperature model utilized by ODEQ to 

estimate stream network thermodynamics and hydrology. It was developed in 1996 by a graduate 

student, Mathew Boyd,  as a Masters Thesis at Oregon State University in the Bioresource Engineering 

and Civil Engineering Departments and has been regularly updated through 2007 (Boyd & Kasper 2003; 

ODEQ 2006). Heat Source is recognized as a relatively data intensive stream temperature model utilizing 

high resolution inputs and producing equally refined outputs (Boyd & Kasper 2003; Watanabe et al. 

2005). Heat Source uses multiple Microsoft Excel worksheets to store and configure model inputs and to 

chart and store model outputs. Using Python programming to calculate simulation algorithms, the 

model is capable of executing various modules including simulation of effective shade, comprehensive 

heat and mass transfer and water column temperature. The module utilized for this study, referred to as 

Shade-a-lator, is a solar routing routine from the sun to the stream surface used to simulate effective 

shade and stream surface solar exposure. Shade-a-lator is an implementation of the shade estimation 

method proposed by Chen et al. (1998 a,b) that computes a time series of effective shade as a function 

of solar position (solar altitude and solar azimuth), riparian vegetation (height, width and density), 

geographic location (latitude, longitude, and topography), and stream morphology (stream gradient and 

elevation).   

    Effective shade estimates are calculated using a relatively simple and straightforward algorithm 

(Figure 7). Heat Source simulates the sun's daily path across the sky based on the season and time of 

day) to determine the potential amount of incoming direct beam solar radiation that would reach the 

stream surface without shading or obstructions of any kind to attenuate or scatter the incoming 

radiation (i.e. vegetation or topography) (Solar1). The amount of incoming direct beam solar radiation 

actually received at the stream surface (Solar2) is estimated as a function of solar position (solar altitude 

and azimuth), riparian vegetation (height, density and width), elevation, gradient and topography.  
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* Represents potential solar insolation without any interference from vegetation or topography. 
Source: Heat Source Methodology (Boyd & Kasper 2003) 

Figure 7: Effective shade formula  

2.2.1 Solar Position 

 Solar positioning variables, including solar altitude5 (θSA) and solar azimuth6 (θAZ) were calculated using 

the algorithms provided below.  

Solar Declination 

𝛿 = sin−1 �sin �𝜃𝑂𝐵 ∙
𝜋

180°
� ∙ sin �𝜃𝐴𝐿 ∙

𝜋
180°

�� ∙
180°
𝜋

 

5 Solar altitude comprises the vertical position of the sun relative to a stream segment and is defined as the angular 
distance of the sun above or below the horizon (Boyd and Kasper 2003). 
6 Solar azimuth comprises the horizontal position of the sun relative to the stream segment. It is defined as the 
angular distance clockwise along the horizon from a specified location to the intersection with the circle drawn 
from the zenith, through a body on the celestial sphere (Boyd and Kasper 2003).  
 

* 

34 

                                                           



Where δ  is equal to solar declination, θOB is equal to the obliquity of the elliptic (degrees) and θAL is 

equal to the apparent longitude of the sun (degrees). For equations used to derive 𝜃𝑂𝐵 and 𝜃𝐴𝐿, please 

refer to the Heat Source Methodology (Boyd and Kasper 2003). 

Hour Angle  

0° ≥ 𝜃𝐻𝐴 ≤ 360° 

𝜃𝐻𝐴 =
𝑡𝑠
4
− 180 

Where 𝜃𝐻𝐴 is equal to the hour angle (degrees) and 𝑡𝑠 is equal to solar time (minutes). For equation 

used to derive 𝑡𝑠, please refer to the Heat Source Methodology (Boyd and Kasper 2003). 

Solar Zenith- Uncorrected for Refraction (Ibqual 1983) 

𝜃𝑆𝑍′ = cos−1(𝐴) ∙
𝜋

180°
 

 Where  (−1 ≤ 𝐴 ≥ 1) , 

𝐴 = sin �𝜃𝑙𝑎𝑡 ∙
𝜋

180°
� ∙ sin �𝛿 ∙

𝜋
180°

�+ cos �𝜃𝑙𝑎𝑡 ∙
𝜋

180°
� ∙ cos �𝛿 ∙

𝜋
180°

� ∙ cos�𝜃𝐻𝐴 ∙
𝜋

180°
� 

Where 𝜃𝑆𝑍′ is equal to the solar zenith (uncorrected for refraction; in degrees), 𝜃𝑙𝑎𝑡 is equal to latitude 

(degrees), 𝛿 is equal to solar declination (degrees), and 𝜃𝐻𝐴 is equal to hour angle (degrees). 

Atmospheric Elevation (Ibqual 1983) 

𝛼 = 90° − 𝜃𝑆𝑍′ 

Where α is equal to atmospheric elevation (degrees) and 𝜃𝑆𝑍′ is equal to the solar zenith (uncorrected 

for refraction; in degrees).  

Refraction Correction Coefficient 

If α>85° then, 
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𝐶𝑅 = 0° 

If 5°>α≤85° then, 

𝐶𝑅 =

58.1
𝛼 ∙ 𝜋

180°
− 0.07

�𝛼 ∙ 𝜋
180°�

3 + 0.000086

�𝛼 ∙ 𝜋
180°�

5

3600°
 

If -0.575>α≤5° then, 

𝐶𝑅 =
1735 + 𝛼 ∙ �−518.2 + 𝛼 ∙ �103.4 + 𝛼 ∙ (−12.79 + 𝛼 ∙ 0.711)��

3600°
 

If α≤-0.575 then, 

𝐶𝑅 =
−20.774

tan �𝛼 ∙ 𝜋
180°� ∙ 3600°

 

Where 𝐶𝑅 is equal to the refraction correction coefficient (degrees), and 𝛼 is equal to atmospheric 

elevation (degrees). 

Solar Zenith (corrected for refraction) 

θSZ = θSZ′ − CR 

Where 𝜃𝑆𝑍 is equal to the solar zenith (corrected for refraction; in degrees),  𝜃𝑆𝑍′ is equal to the solar 

zenith (uncorrected for refraction; in degrees) and CR is equal to the refraction correction coefficient 

(degrees).  

Solar Altitude (corrected for refraction) 

𝜃𝑆𝐴 = 90° − 𝜃𝑆𝑍 

Where 𝜃𝑆𝐴 is equal to solar altitude (degrees) and 𝜃𝑆𝑍 is equal to the solar zenith (corrected for 

refraction; in degrees).  
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Solar Azimuth (Ibqual 1983) (0°>θAZ≤360°) 

𝜃𝐴𝑍 =
sin �𝜃𝑙𝑎𝑡 ∙

𝜋
180°� ∙ cos �𝜃𝑆𝑍 ∙

𝜋
180°� − sin �𝛿 ∙ 𝜋

180°�

cos �𝜃𝑙𝑎𝑡 ∙
𝜋

180°� ∙ sin �𝜃𝑆𝑍 ∙
𝜋

180°�
 

Where𝜃𝐴𝑍 is equal to solar azimuth (degrees), 𝜃𝑙𝑎𝑡 is equal to latitude (degrees), 𝜃𝑆𝑍 is equal to the solar 

zenith (corrected for refraction; in degrees), and 𝛿 is equal to solar declination (degrees).  

2.2.2 Potential Incoming Solar Radiation 

The potential amount of incoming direct beam solar radiation (𝛷𝑆𝑅𝐵1) above topographic features, or 

before interception by topography, is estimated as a function of Julian day (𝐽𝐷), solar altitude (𝜃𝑆𝐴), and 

stream elevation (𝑧𝑠).  Julian day and stream elevation are measured or known variables whereas solar 

position is calculated in Heat Source using algorithms provided in the previous section (2.2.1) Julian day 

(JD) refers to a continuous numeric count of calendar days (1 to 365). The following algorithms were 

used to estimate potential amount of incoming solar radiation at each stream sampling node: 

Global Solar Radiation flux at the edge of the atmosphere (Wunderlich 1972) 

𝛷𝑆𝑅𝐺 =
𝛷𝑆𝑅𝐶
𝑟2

sin𝜃𝑆𝐴 

Where 𝛷𝑆𝑅𝐺 is equal to global solar flux (watts/m2), 𝛷𝑆𝑅𝐶  is equal to the solar constant (watts/m2), r is 

equal to the radius vector (radians) and 𝜃𝑆𝐴 is equal to solar altitude (degrees).  

Solar Constant (Dingman 2002) 

𝛷𝑆𝑅𝐶 = 1367 𝑤𝑎𝑡𝑡𝑠/𝑚2 

Where 𝛷𝑆𝑅𝐶  is equal to the solar constant (watts/m2). 

Radius Vector (Wunderlich 1972) 

𝑟 = 1 + 0.017 ∙ cos �2 ∙
𝜋

365
� ∙ �186 − 𝐽𝐷 +

𝑡𝐷𝑆𝑇
24

� 
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Where r is equal to the radius vector (radians),  𝐽𝐷 is equal to Julian day (1-365) and 𝑡𝐷𝑆𝑇 is equal to 

daylight savings time (day fraction).  

Atmospheric Transmissivity (Ibqual 1983) 

TA = 0.0685 ∙ cos ��2 ∙
𝜋

365
� ∙ (𝐽𝐷 + 10)� + 0.8 

Where TA is equal to air mass transmissivity and JD is equal to Julian day (1-365). 

Optical Air Mass Thickness (Ibqual 1983) 

MA =
35 ∙ 𝑒(−0.0001184∙𝑧𝑠)

�1224 ∙ sin �𝜃𝑆𝐴 ∙
𝜋

180°�+ 1
 

Where MA is equal to air mass thickness, zs is equal to stream elevation (m), and 𝜃𝑆𝐴 is equal to solar 

altitude (degrees).  

Estimate-Potential Incoming Direct Beam Solar Radiation (above Topographic 
Features) (Wunderlich 1972, Martin and McCutcheon 1999) 

𝛷𝑆𝑅𝐵 = 𝛷𝑆𝑅𝐺 ∙ 𝑇𝐴𝑀
𝐴

 

Where 𝛷𝑆𝑅𝐵 is equal to an estimate of the potential incoming direct beam solar radiation (above 

topographic features; watts/m2), 𝛷𝑆𝑅𝐺 is equal to global solar flux (watts/m2), TA is equal to air mass 

transmissivity and MA is equal to air mass thickness.  

Diffuse fraction (Chen 1994) 

𝐷𝐹 = (0.938 + 1.071 ∙ 𝐶𝐼)− (5.14 ∙ 𝐶𝐼2) + (2.98 ∙ 𝐶𝐼3) − �sin�2𝜋 ∙
(𝐽𝐷 − 40)

365 �� ∙ (0.009− 0.078 ∙ 𝐶𝐼) 

Where 𝐷𝐹 is equal to the diffuse fraction of solar radiation, 𝐶𝐼 is equal to the clearness index and JD is 

equal to Julian Day (1 to 365).  
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Potential Incoming Direct Beam Solar Radiation (above Topographic Features) 
(Chen 1994) 

𝛷𝑆𝑅𝐵1 = 𝛷𝑆𝑅𝐵 ∙ (1 − 𝐷𝐹) 

Where 𝛷𝑆𝑅𝐵1 is equal to potential incoming direct beam solar radiation (above topography; watts/m2), 

𝛷𝑆𝑅𝐵 is equal to the estimate of potential incoming direct beam solar radiation (above topography; 

watts/m2) and DF is equal to the diffuse fraction of solar radiation.  

2.2.3 Solar Radiation Blocked by Vegetation and Topography 

   Topography is oftentimes the first barrier encountered by incoming direct beam solar radiation (Boyd 

and Kasper 2003). If the solar altitude (𝜃𝑆𝐴) is greater than the topographic shade angle (𝜃𝑇𝑧), or the 

angle between the center of the stream and the highest topographic feature, then topographic shade is 

not occurring. However, if the solar altitude (𝜃𝑆𝐴) is less than the topographic shade angle (𝜃𝑇𝑧), 

topographic shade is occurring and incoming direct beam solar radiation (𝛷𝑆𝑅𝐵2) is assumed to be zero.  

Direct Beam Solar Radiation below Topography 

When topographic shade is occurring �𝜃𝑆𝐴 ≤ 𝜃𝑇𝑧� 

𝛷𝑆𝑅𝐵2 = 0 

When topographic shade is not occurring �𝜃𝑆𝐴 > 𝜃𝑇𝑧� 

𝛷𝑆𝑅𝐵2 = 𝛷𝑆𝑅𝐵1 

Where 𝛷𝑆𝑅𝐵2 is equal to direct beam solar radiation below topography (watts/m2), 𝛷𝑆𝑅𝐵1 is equal to 

potential incoming direct beam solar radiation (above topographic features; watts/m2),  𝜃𝑆𝐴 is equal to 

solar altitude (degrees) and  𝜃𝑇𝑧 is equal to the topographic shade angle (degrees).  

Direct Beam Solar Radiation below Vegetation 
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The amount of incoming solar insolation attenuation by the riparian vegetation within each polygon 

sampled depends on the height (𝐻𝑝𝑜𝑙𝑦), width (𝑊𝑝𝑜𝑙𝑦) and density (𝛹𝑝𝑜𝑙𝑦) of riparian vegetation within 

each polygon. As previously discussed, these data are sampled at each longitudinal sampling node, in 

105 individual and consecutive polygon sampling units that radiate out from each sampling node in 

seven cardinal direction (northeast, east, southeast, south, southwest, west, northwest) (Figure 5).   

In addition, solar flux attenuation within each polygon is determined by the path length that radiation 

must travel through the polygon and a light extinction coefficient. Path length varies with solar altitude 

(𝜃𝑆𝐴), solar azimuth (𝜃𝐴𝑍), and the width of each vegetation polygon (𝑊𝑝𝑜𝑙𝑦). Attenuation of direct 

beam solar radiation as it travels through each block of vegetation is estimated using Beer’s Law (Oke 

1978) to determine the amount of solar radiation leaving each polygon (𝐴𝑝𝑜𝑙𝑦); as previously 

mentioned, this value depends on the density of vegetation within each polygon.  

Direct beam radiation is routed through riparian vegetation polygons beginning at the outermost 

polygon and working inward to the stream center. The calculated amount of radiation that passes 

through each polygon is routed to the next innermost polygon and factored into its solar flux 

attenuation estimate; the process is repeated until solar flux estimates for all polygons are complete and 

the final amount reaching the stream surface can be determined.  

Step 1: Within each polygon, the following formula is used to calculate the length of the shadow cast by 

the vegetation within each polygon (SL): 

𝑆𝐿𝑝𝑜𝑙𝑦 =
𝐻𝑝𝑜𝑙𝑦 + 𝑍𝑝𝑜𝑙𝑦

tan �𝜃𝑆𝐴 ∙
𝜋

180°�
 

Where 𝑆𝐿𝑝𝑜𝑙𝑦  is equal to the shadow length for each riparian vegetation polygon, 𝐻𝑝𝑜𝑙𝑦 is equal to the 

mean height of vegetation within each polygon, 𝑍𝑝𝑜𝑙𝑦 is equal to the bare earth elevation within each 
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polygon, and 𝜃𝑆𝐴 is equal to the solar altitude. If the shadow length cast from a polygon is greater than 

the distance to the stream, then shade is occurring.  

Step 2: The following formulas  are used to calculate 1) the path length (PL) over which the direct beam 

solar radiation must travel through each polygon and 2) the shade density (Ψ), or transmissivity, of each 

polygon: 

If  𝑆𝐿𝑝𝑜𝑙𝑦 ≥ 𝑊𝑝𝑜𝑙𝑦  then: 

𝑃𝐿𝑝𝑜𝑙𝑦 =
𝑊𝑝𝑜𝑙𝑦

𝐶𝑜𝑠 �𝜃𝑆𝐴 ∙
𝜋

180°�
 

𝛹𝑝𝑜𝑙𝑦 = 1 − 𝐸𝑥𝑝 �
𝐿𝑜𝑔 �1 − 𝑉𝐷𝑝𝑜𝑙𝑦�

10
∙ 𝑃𝐿𝑝𝑜𝑙𝑦� 

If  𝑆𝐿𝑝𝑜𝑙𝑦 < 𝑊𝑝𝑜𝑙𝑦  then: 

𝑃𝐿𝑝𝑜𝑙𝑦 = 0 

𝛹𝑝𝑜𝑙𝑦 = 0 

Where 𝑊𝑝𝑜𝑙𝑦 is equal to the width of each polygon, 𝑃𝐿𝑝𝑜𝑙𝑦 is equal to the path length over which direct 

beam solar radiation must travel through each polygon, 𝑉𝐷𝑝𝑜𝑙𝑦 is equal to the vegetation density in 

each polygon and 𝛹𝑝𝑜𝑙𝑦 is equal to the shade density of each polygon.  

Step 3: The amount of direct beam solar radiation received by each polygon is then calculated as a 

function of shade density and the direct beam solar flux leaving the previous zone using the following 

formula: 

For polygons #15 (outermost) to #1 (innermost) 
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 First polygon (outermost; #15): 

𝐴𝑝𝑟𝑒𝑣 = 𝛷𝑆𝑅𝐵2 

𝐴𝑝𝑜𝑙𝑦 = 𝐴𝑝𝑟𝑒𝑣 ∙ �1 −𝛹𝑝𝑜𝑙𝑦� 

 Next polygon:  

𝐴𝑝𝑟𝑒𝑣 = 𝛷𝑆𝑅𝐵3 

Where 𝐴𝑝𝑜𝑙𝑦 is equal to the solar flux leaving a polygon, 𝐴𝑝𝑟𝑒𝑣 is equal to the solar flux leaving the 

previous (outer) polygon (watts/m2), 𝛷𝑆𝑅𝐵2 is equal to direct beam solar radiation below topography 

(watts/m2), 𝛹𝑝𝑜𝑙𝑦 is equal to the shade density in each polygon, and 𝛷𝑆𝑅𝐵3 is equal to the direct beam 

solar radiation below vegetation (watts/m2).  

The direct beam solar radiation received at the stream surface of each longitudinal sampling node is 

determined by the cumulative solar flux contributed by all 7 of the innermost polygons (veg-zone 1 from 

each wedge): 

𝛷𝑆𝑅𝐵4=𝐴𝑁𝑊 𝑝𝑜𝑙𝑦(1)+𝐴𝑊 𝑝𝑜𝑙𝑦(1)+𝐴𝑆𝑊 𝑝𝑜𝑙𝑦(1)+𝐴𝑆 𝑝𝑜𝑙𝑦(1) + 𝐴𝑆𝐸 𝑝𝑜𝑙𝑦(1)+𝐴𝐸 𝑝𝑜𝑙𝑦(1) + 𝐴𝑁𝐸 𝑝𝑜𝑙𝑦(1) 

Where 𝛷𝑆𝑅𝐵4 is equal to the direct beam solar radiation received at the stream surface (watts/m2), 

𝐴𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑦(1) is equal to the innermost polygon (veg-zone 1) within each wedge, and direction is 

equal to the cardinal direction of each wedge (Figure 5).  

2.2.4 Effective Shade 

Finally, Effective shade can be estimated for each sampling node using the following formula: 

𝑆𝑜𝑙𝑎𝑟1 = 𝛷𝑆𝑅𝐵1 
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𝑆𝑜𝑙𝑎𝑟2 = 𝛷𝑆𝑅𝐵4 

𝐸𝑆 =
(𝑆𝑜𝑙𝑎𝑟1 − 𝑆𝑜𝑙𝑎𝑟2)

𝑆𝑜𝑙𝑎𝑟1
 

Where 𝐸𝑆 is equal to the effective shade (%) for the sampling node, 𝑆𝑜𝑙𝑎𝑟1 is equal to a daily average of 

the potential incoming direct beam solar radiation (above topographic features) at the sampling node 

(𝛷𝑆𝑅𝐵1) (watts/m2) and 𝑆𝑜𝑙𝑎𝑟2 is equal to a daily average of the direct beam solar radiation received at 

the stream surface of the sampling node (𝛷𝑆𝑅𝐵4)(watts/m2), after accounting for the solar flux 

attenuated by topographic features and riparian vegetation combined (𝛷𝑆𝑅𝐵3).  

2.2.5 Model Execution 

Shade simulations were set to occur for every minute on August 1st, 2012; this date was chosen to 

represent the time of year when maximum stream heating typically occurs as a result of higher sun 

altitude and infrequent cloud cover (Chen et al. 1998b; DeWalle 2008, 2010). Many other shade 

modeling studies use similar parameters for the time step (1 minute), or frequency of simulations (Chen 

et al. 1998 a,b; DeWalle 2008; Greenberg et al. 2012; Watanabe et al. 2005), duration(24 hrs.) (Allen et 

al. 2007; DeWalle 2008; Ryan et al. 2013) and time of year (Chen et al. 1998 b; DeWalle 2008; 

Greenberg et al. 2012; Ryan et al. 2013). At each longitudinal node, the model calculated the amount of 

incoming solar radiation, or solar flux, attenuated by the vegetation in surrounding polygons once every 

minute during the specified 24 hour period. The final output provides the daily average of incoming 

solar radiation that is attenuated by the vegetation within each polygon (henceforth referred to as solar 

flux attenuation (watts/m2)). Based on the net incoming solar radiation at each longitudinal sampling 

node, the model also calculates the daily average of percent effective shade at each longitudinal 

sampling node. 
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   It should be noted that the solar flux attenuation estimates associated with each polygon represent 

the amount of incoming solar radiation prevented from reaching the stream surface at a specific 

location, which is determined by the location of the longitudinal sampling node the polygon corresponds 

to. In other words, the model is not estimating the overall solar flux attenuation provided by the 

vegetation within a polygon; it only estimates the solar flux attenuation provided to a discrete point 

along the stream. In this way, the overlap that occurs between neighboring polygons (Figure 5) will not 

result in certain riparian areas being double-counted; overlapping polygons will have completely 

different solar flux estimates since they will each correspond to two completely different points along 

the stream.     

   Each stream was individually modeled under two scenarios; current conditions and a restoration 

scenario. Both scenarios differed only with respect to vegetation height and density; all other inputs 

were the same between both current and restored scenarios. Prioritization of taxlots, subwatersheds 

and jurisdictions was accomplished using model outputs for the average daily solar flux attenuation 

(watts/m2) in each polygon. Model outputs for effective shade (%) at each longitudinal sampling node 

were used for evaluative and quality control purposes only; they were not used in the prioritization 

scheme.  

2.5 Effective Shade Analysis 

   Effective shade estimates under current and restored conditions were compared to determine where 

the largest gains, in terms of effective shade, were produced under the restoration scenario.  Effective 

shade estimates under current conditions were subtracted from effective shade estimates under 

restored conditions to determine the net gain in effective shade (%) resulting from restoration at each 

longitudinal sampling node.  Modeling results for effective shade were spatially joined to all sampling 
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nodes in ArcGIS and partitioned into various effective shade brackets to produce the maps found in 

section 3.1.  

2.6 Restoration Prioritization 

  Restoration prioritization was performed at three different scales: taxlots, jurisdictions, and 

subwatersheds. Prioritizing at the taxlot scale identifies valuable prospects for land owner outreach, 

whereas prioritizing at the jurisdictional or subwatershed scale identifies broader spatial patterns and 

trends in riparian shade throughout the watershed that will help city and county jurisdictional 

representatives evaluate their need for action.  

   Before prioritization at each scale was performed, some minimal post-processing of modeling outputs 

was required. Solar flux attenuation estimates from current conditions were subtracted from restored 

condition estimates to determine the net increase in solar flux attenuation per polygon resulting from 

restoration. This is essentially the amount of solar insolation prevented from reaching the stream 

surface that is a direct result of restoring all restorable area within that polygon. Additional 

programming tools (using python scripts) were used to rearrange, or sort, the simulation data results 

into a table format with the net increase in solar flux attenuation under restored condition listed per 

polygon.  

In order to prioritize taxlots, subwatersheds and jurisdictions for restoration, a series of steps were 

taken to determine a single value representing the restoration efficiency of each individual taxlot, 

subwatershed, or jurisdiction. Restoration efficiency is defined in this paper as the net increase in solar 

flux attenuation per acre restored. For each individual taxlot, subwatershed, or jurisdiction, the net 

increase in solar flux attenuation was found by aggregating all streams (and the polygons therein) within 

their boundaries and taking the sum of the solar flux attenuation for those streams. This value was then 
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divided by the acres restored within each unit, to determine the restoration efficiency. The process used 

for prioritizing at each scale is discussed in further detail below.  

Prioritizing Taxlots 

   Modeling results for all streams were spatially joined to taxlot data and incorporated into a single 

taxlot shapefile in ArcGIS using the following procedure. Polygons containing solar flux attenuation data 

were converted to points in ArcGIS (Figure 7) and all points within each taxlot were aggregated resulting 

in a total sum of potential solar flux attenuation (watts/m2) for each taxlot. Additionally, the amount of 

restorable area within each taxlot (vegetation <4m in height and within 15m or stream channel) was 

calculated using built-in geometry calculation functions in ArcGIS. GIS derived taxlot data was then 

transferred to an Excel spreadsheet to calculate priority rankings.  

    Dividing the solar flux attenuation by the acreage restored for each taxlot produced a measure of 

restoration efficiency within each taxlot that was then used to sort the taxlots from most efficient 

(greatest solar flux attenuation per are) to least efficient (least solar flux attenuation per acre).  Once 

sorted, the cumulative solar flux reduction was calculated for the entire watershed; the cumulative 

solar flux reduction is equal to the net increase in solar flux attenuation under a restoration scenario for 

the entire watershed. A running total of the percent of the cumulative solar flux reduction having been 

met was tabulated, beginning with the most efficient taxlots (in terms of restoration efficiency) at the 

top of the list and down to the least efficient at the bottom. Priority rankings were assigned based on 

the following criteria: taxlots that collectively attain the first 50% of the cumulative solar flux reduction 

are classified as high priority; taxlots that collectively attain the next 40% (from 50-90%) are classified as 

medium priority; taxlots that make up the last 10% (from 90-100%) are classified as low priority and 

finally, taxlots that do not contribute to the cumulative solar flux reduction ( increase in solar flux 

attenuation =0) are classified as “maintain”.  
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Figure 8: Polygon-to-point conversion 

Polygons were converted to points prior to being spatially joined with taxlots. Each point has a value for 

total daily solar flux reduction (watts/m2). All points contained within each taxlot were aggregated to 

determine the total daily solar flux reduction per taxlot (watts/m2).  

Prioritizing Subwatersheds and Jurisdictions 

   Subwatersheds and jurisdictions were prioritized almost exactly the same way as with taxlots. After 

solar flux attenuation estimates were aggregated within taxlots, the total solar flux attenuation from all 

taxlots within each subwatershed or jurisdiction was aggregated, resulting in a total sum of solar flux 
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attenuation for each subwatershed or jurisdiction. The amount of restorable area in each subwatershed 

or jurisdiction was calculated using built-in geometry calculation functions in ArcGIS and the data was 

transferred to an Excel spreadsheet to calculate priority rankings. In Excel, the restoration efficiency 

within each subwatershed or jurisdiction was calculated and used to sort them from highest restoration 

efficiency down to least efficient. The cumulative solar flux reduction for subwatersheds and 

jurisdictions was the same as with taxlots and a running total of the percentage of the cumulative solar 

flux reduction being met was calculated similarly. Priority rankings were assigned using the same 

cumulative solar flux reduction thresholds as criteria (first 50%; next 40%; last 10%).    

 Summary Statistics 

  All summary statistics were calculated in an Excel spreadsheet or using ArcGIS data summary tools. The 

number of taxlots, subwatersheds and jurisdictions that fall within each priority ranking were calculated 

to identify which areas in the watershed will maximize the ecological returns, in terms of shade, of 

restoration efforts.  Furthermore, summary statistics were used to evaluate the relationships between 

priority rankings and certain taxlot, subwatershed or jurisdictional attributes, such as size, acres of 

restorable area, or the percent of the restoration buffer that is restorable within each unit.   

2.7 Quality Control 

Testing an Alternative Approach 

     In an effort to evaluate the potential impact of not accounting for the growth of un-restored 

vegetation under the restoration scenario, 14 streams were re-modeled using an alternative set of 

assumptions to define restored conditions. The 14 streams chosen for re-modeling occupy the north-

western portion of the Sunshine Creek subwatershed and comprise a cluster of tributary streams that 

eventually converge with the mainstem of Sunshine Creek; they are not randomly scattered throughout 

the watershed but rather clustered together. The restored conditions raster was modified from its 
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original design only with respect to the height of un-restored vegetation. Un-restored vegetation was 

assumed to contain a similar riparian community as restored vegetation and, as such, the height of all 

un-restored vegetation currently less than 27m was set equal to 27m under restored conditions. In sum, 

the restored conditions assumed that in 55 years, the height of all vegetation, weather restorable or un-

restorable, would be equal to or greater than 27m. Only vegetation that is currently over 27m tall was 

assumed to remain at its current height (having already reached its climax life stage) and did not receive 

additional growth.  

   Restored conditions were re-modeled for the streams and compared to current conditions to 

determine the net change in solar flux attenuation as a result of both restoration and the natural growth 

of vegetation. Spatially assigning solar flux attenuation estimates to taxlots was done exactly the same 

way as previously described in Section 2.6. A total of 51 taxlots intersected the subset of re-modeled 

streams.  

   Priority rankings were assigned to each taxlot using the same general approach outlined in Section 2.6, 

however, only the subset of taxlots that intersected the re-modeled streams were included in the 

prioritization scheme (i.e. the priority rankings did not reflect their ranking in the entire watershed, but 

only within the streams that were re-modeled). The cumulative solar flux reduction was determined by 

summing up solar flux attenuation estimates for just the 51 taxlots being evaluated. Then, the taxlots 

were sorted from highest restoration efficiency to lowest and prioritized according to their contribution 

to the cumulative solar flux reduction. For each taxlot, two priority rankings were determined: the first 

using the old solar flux estimates, and the second using the new solar flux estimates.     

   The majority of priority rankings were either the same or only a single ranking removed (i.e. maintain 

instead of low, or medium instead of high). Over half of the priority rankings (52%) were the same for 

both model runs, whereas 43% were only a single ranking removed.. There were 2 taxlots that had very 
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different rankings resulting from each model run; one went from a maintain ranking (original approach) 

to medium ranking (alternative approach) and another went from a maintain ranking (original approach) 

to a high ranking (alternative approach).  

   The taxlot that changed from maintain (using original approach) to medium (using alternative 

approach) had restorable area within it, but did not contribute any increase (increase was equal to 0 

watts/acre) in solar flux attenuation as a result of restoration; thus the maintain ranking from the 

original approach. Once the un-restorable area was allowed to grow, the observed increase in solar flux 

attenuation under restored conditions significantly increased. When this new solar flux estimate was 

divided by the restorable area, it appeared as though a large increase in solar flux attenuation resulted 

from a very small amount of restoration when in reality the true cause for this increase was actually a 

combination of un-restored vegetation growing taller and restoration efforts.  In this situation, dividing 

the increase in solar flux attenuation by restorable acres does not produce a measure of restoration 

efficiency since the increase in solar flux attenuation is no longer exclusively the result of restoration 

efforts. While it would make more sense in this situation to divide the increase in solar flux attenuation 

by the total acres within each taxlot, as opposed to restorable acres only, this would no longer assist in 

the prioritization of taxlots based on their potential to produce large gains from restoration efforts; 

instead, it would prioritize taxlots based on their potential to produce large gains without considering 

the magnitude of restoration efforts needed.  

   A similar circumstance can explain how the second taxlot went from maintain (using original approach) 

to high priority (using alternative approach) as well. While there was restorable area in this taxlot, the 

increase in solar flux attenuation as a result of restoration was extremely low (~1watt/acre); thus the 

maintain ranking from original approach. When the un-restorable area was allowed to grow, the 

observed increase in solar flux attenuation significantly increased while the restorable acres remained 
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the same. As a result, dividing solar flux attenuation by restorable acres gave the false impression that 

the restoration efficiency for this taxlot was very high when in reality, the increase in solar flux 

attenuation for this taxlot was primarily caused by natural background growth, not restoration.  

      In order to identify taxlots with a high level of restoration efficiency, the effect of un-restored 

vegetation must be controlled for by keeping it fixed. Furthermore, a major assumption of the 

alternative approach is that all vegetation is comprised of trees and that the tree species are the same 

as those planted in restorable areas (height and age at maturity are the same as in restored areas). This 

is not likely to be true since invasive species, which are often shrubs, are known to be prevalent 

throughout the watershed (BES, 2001; JCWC 2012). 

Re-modeling 

   To ensure accuracy of modeling results, ~10% of the streams (43 streams) were randomly chosen 

(using the RANDBETWEEN function in Microsoft Excel) to be re-sampled and re-modeled, using exactly 

the same sampling and modeling procedures from the original run. Results from second models were 

compared to the first model results in an attempt to identify recurring errors. Results from the second 

set of model runs exhibited a 4.6% margin of error when compared to original model outputs. In 

particular, 2 streams out of the 43 total (i.e. 4.6%) that were randomly chosen to be re-sampled and 

modeled had output values that differed from their original counterparts. For the remaining 41 streams, 

model results from first and second runs were 100% identical.  

   For one of the streams that exhibited modeling errors, the source of the error was determined to be 

improperly formatted model inputs. To ensure that this error was not widespread, the datasheets 

containing input parameters for all streams were double-checked for similar formatting errors. No 

additional formatting errors were found as a result of these efforts and the pervasiveness of this specific 

error is assumed to be low.  
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   The second stream exhibiting modeling errors was also determined to be a result of operator error. 

During the second model run for this stream, data concerning current vegetation was mistakenly used 

when modeling both current and restored scenarios and, as a result, when comparing results for both 

scenarios the apparent difference in daily solar flux attenuation was zero watts/m2 for all polygons 

sampled. This error was also very easily detectable during the post-processing of modeling results (i.e. 

the output file contains all zeros which are visually obvious) and was not apparent in any of the other 

streams modeled. As such, this particular operator error is not likely to be prevalent; however, operator 

errors in general are likely to remain largely undetected and a 4.6% margin of error is assumed to 

appropriately reflect the level of operator error to be expected within the modeling results presented in 

this paper.   

Field Measurements 

   In order to evaluate the accuracy of model predictions for current conditions, 24 field measurements 

of effective shade were collected for comparison; over half (14) were collected in July 2012 and the 

remaining 10 were collected in November, 2013. Collection of field measurements was originally 

scheduled to occur during the month of August, in order to match up with the date used for shade 

simulations. Additional measurements were taken in November to increase the sample size of field 

measurements and provide a more robust measurement of error.  

   Using a solar pathfinder (Perusion) adjusted for the appropriate latitude band (45°) and magnetic 

declination (15°), the sunpath arc for August was used to measure effective shade at these locations 

during both field surveys. GPS coordinates (UTM) were recorded using a Samsung Galaxy cell phone with 

the Backcountry Navigator PRO application. Modeling estimates for percent effective shade generally 

agreed with field measurements; the average difference between measured and modeled percent 
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effective shade estimates was only ~4% (R2=0.73)7 (Figure 8); typically, values greater than 0.5 are 

considered acceptable (Moriasi et al. 2007; Santhi et al.,2001, Van Liew et al., 2003). Possible causes for 

disagreement stem from outdated LiDAR raster data (2007), solar pathfinder measurement error, 

modeling error, or because some of the measurements were taken in November after abscission of 

deciduous trees had begun. 

 

Figure 9: Field measurements vs. modeling estimates of percent effective shade  

3.0 Results 

3.1 Effective Shade 

Modeling results for effective shade under current and restored conditions are presented in Table 3 

below. The average effective shade for all streams in the watershed is currently estimated at 73% 

(±29%). Under a restoration scenario, the average effective shade is estimated at 93% (±9.6%). 

7 This value was calculated using Excel’s built-in function for a linear regression trendline.  
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Currently, only 63% of all sampling nodes meet the 80% effective shade target identified for Johnson 

Creek in the 2006 TMDL whereas 95% of all sampling nodes met this target under a restoration scenario 

(Figure 10). The average increase in effective shade under restored conditions was 19% (±28%), with the 

majority of all sampling nodes (73% of total) exhibiting an increase in effective shade between 1-25% 

(see Figure 11). 

Table 3: Effective Shade Summary Statistics 

 Av. Effective 
Shade (%) 

Std 
Dev 

Min/Max % of sampling nodes ≥ 80% 
Effective Shade 

Current 
Conditions 

73% ±29% 0%/100% 63% 

Restored 
Conditions 

93% ±9.6% 13%/100% 95% 
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3.2 Restored Conditions 

The cumulative solar flux reduction, or net increase in solar flux attenuation for the entire watershed as 

a result of restoration, was estimated at 209,118.9 (watts/m2 /d).  The entire restoration buffer, or area 

extending 15m to either side of the stream channel where restoration activities are likely to occur, 

encompassed a total area of 8,841.4 acres. The total restorable area, or area with current vegetation < 

4m in height within the restoration buffer that would be restored under a restored scenario, was 

estimated at 544.9 acres (6% of the total restoration buffer). The remaining 94% of the restoration 

buffer either currently supports vegetation ≥4m in height, or is occupied by buildings or roads and would 

not be restored under a restoration scenario. Figure 3 shows the extent and geographic distribution of 

the total restorable area within the study area.  

3.3 Priority Rankings by Taxlot 

   A total of 3,722 taxlots of varying sizes and land uses were found to intersect the restoration buffer 

within the study area. According to RLIS taxlot data, the primary land uses in these taxlots include: single 

family residential (54.7% of all taxlots), undeveloped (24.3%), rural (8.1%), agriculture (3.9%), forest 

(2.6%), commercial (2.4%) and multi-family residential (1.0%). The average area for each taxlot was 2.78 

acres, with values ranging between 8.72*10-4 to 153.77 acres. The restorable area within each taxlot 

was, on average, only 9.8% of the entire restoration buffer within each taxlot, yet these values were 

highly variable ranging between 0 and 100%.  

   As shown in Figure 12, high priority taxlots collectively achieved 50% of the cumulative solar flux 

reduction for the watershed. Medium priority taxlots collectively made up another 40% of the 

cumulative solar flux reduction, bringing the watershed up to 90% of its goal. Low priority taxlots 
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collectively made up 10% of the cumulative solar flux reduction, bringing the total to 100%. Finally, 

taxlots categorized as “maintain” did not contribute at all. 

   High priority taxlots had the largest gain in solar flux attenuation rates as a result of restoration (1719 

watts/acre/d on average), medium priority taxlots gained an intermediate amount (438 watts/acre/d on 

average), low priority taxlots gained even less (102 watts/acre/d on average) and taxlots classified as 

“maintain” did not exhibit any change in solar attenuation between current and restored conditions 

(increase of 0 watts/acre/d).  

Number of Taxlots in Each Ranking 

   Of the 3,722 taxlots that were found to intersect the restoration buffer, 831 (22% of all taxlots) were 

categorized as high priority, 601 (16%) were categorized as medium priority 837 (22%) were categorize 

as low priority and 1453 (39%) were categorized as “maintain”. Table 4provides summary statistics for 

each priority ranking group. In addition, Figure 12 illustrates the percentage of all taxlots that fall within 

each prioritization ranking group. Figure 13 and Figure 14provide detailed maps of taxlot rankings 

throughout the watershed.  

Restorable Acres in each Ranking 

   Based on prioritization rankings made at the taxlot scale, 113.7 acres of the total 544.9 restorable 

acres within the study area (21% of total restorable acres) fell within high priority taxlots, 184.8 acres 

(34%) fell within the medium priority taxlots, 189.2 acres (35%) fell within low priority taxlots and 57.0 

(10%) occurred in taxlots categorized as “maintain” (Table 4and Figure 12). 
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Table 4: Summary statistics for taxlot priority rankings  

Please refer to the Glossary for clarification of any terminology used in this Table. The average percent of restoration buffer deemed restorable is 

essentially the number of restorable acres, divided by the un-restorable acres within each taxlot (converted to a percentage).  

Priority # 
Taxlots  

% of all 
taxlots 

Restorable 
acres 

% of total 
restorable 
acres 

Av. taxlot 
area (acres) 

Av. %  of restoration 
buffer deemed 
restorable 

 Av. Daily Increase in solar flux 
attenuation/acre restored 

High 831 22% 113.7 21% 1.6 15%  1719 

Medium 601 16% 184.8 34% 4.0 14%  438 

Low 837 22% 189.2 35% 5.2 10%  102 

Maintain 1,453 39% 57.0 10% 1.5 5%  0 

Total 3722 100% 544.9 100%     
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Figure 12: Taxlot priority rankings chart 

Taxlot priority rankings are evaluated in terms of various spatial metrics. The cumulative solar flux 

reduction is the net increase in solar flux attenuation for the entire watershed resulting from restoration 

(209,118.9 watts/m2/d). The total amount of restorable acres is the total acreage in the watershed that 

would be restored under a restoration scenario (544.9 acres). The total number of taxlots in the 

watershed that intersected the restoration buffer was 3,722.   
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3.4 Priority Rankings by Subwatershed 

   A total of 36 subwatersheds intersected the restoration buffer and were considered in the 

prioritization scheme.  The same prioritization scheme used for taxlots was applied at the subwatershed 

scale, where subwatersheds that collectively attain the first 50% of the cumulative solar flux reduction 

are high priority, the next 40% are medium priority, the last 10% are low priority, and those that do not 

contribute at all are classified as "maintain". Table 5 provides summary statistics for each priority 

ranking group in terms of subwatershed allocations. 

Number of Subwatersheds in each Ranking 

   Of the 36 subwatersheds, 18 (50% of all subwatersheds considered) were categorized as high priority, 

7 (19%) were categorized as medium priority 9 (25%) were categorize as low priority and 2 (6%) were 

categorized as “maintain”. Figure 15illustrates the percentage of all subwatersheds that fall within each 

prioritization ranking group. In addition, Figure 16depicts the priority ranking assigned to each 

subwatershed in the study area. 

Restorable Acres in each Ranking 

   In terms of restorable acres, high priority subwatersheds collectively comprised 38% of all restorable 

acres in the study area, medium priority subwatersheds comprised 29%, low priority subwatersheds 

comprised 31% and subwatersheds classified as "maintain" comprised 2% of all restorable acres (Figure 

15).  

   Due to differences in the size of each subwatershed, the amount of restorable area within them was 

highly variable, ranging from 0 to 110 acres (Figure 17). The percentage of restorable area within each 

subwatershed's entire restoration buffer is variable, ranging between 0-11% (Table 5 and Figure 18). 
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Table 5: Summary statistics for subwatershed priority rankings  

Please refer to the Glossary for clarification of any terminology used in this Table. The average percent of restoration buffer deemed restorable is 

essentially the number of restorable acres, divided by the un-restorable acres within each subwatsershed (converted to a percentage).  

Priority 
Ranking 

# of 
subwatersheds 

% of all 
subwatersheds 

Restorable 
acres 

% of total 
restorable 
acres 

Av. 
subwatershed 
area (acres) 

Av. % of 
restoration 
buffer that is 
deemed 
restorable 

Av. Daily 
Increase in 
solar flux 
attenuation/ac
re restored 

high 18 50% 204.7 38% 1189.7 7% 542.0 

medium 7 19% 158.8 29% 817.3 6% 362.3 

low 9 25% 169.7 31% 517.1 7% 263.1 

maintain 2 6% 11.6 2% 182.5 2% 75.7 

Total  36 100% 544.9 100%    
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Figure 15: Subwatershed priority rankings chart 

Subwatershed priority rankings evaluated using various spatial metrics. The cumulative solar flux 

reduction is the net increase in solar flux attenuation for the entire watershed resulting from restoration 

(209,118.9 watts/m2/d). The total amount of restorable acres is the total acreage in the watershed that 

would be restored under a restoration scenario (544.9 acres). The total number of subwatersheds that 

intersected the restoration buffer was 36. 
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Figure 17:  Restorable acres within each subwatershed  

The priority ranking of each subwatershed is indicated by its color. While some subwatersheds are bigger in size than others, it is important to 

consider the percentage of total acres within each subwatershed that are restorable when interpreting this chart and evaluating the restoration 

potential of each (see Figure 18).  
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Figure 18: Percent of each subwatershed's restoration buffer deemed restorable 

The restoration buffer extends 15m out from the stream channel and represents the area in which restoration activities are likely to occur. 

Restorable acres are those that fall within the restoration buffer and contain vegetation currently <4m in height. 
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3.5 Priority Rankings by Jurisdiction 

   A total of 7 jurisdictions occur within the watershed, they are: the cities of Portland, Gresham, 

Milwaukie, Happy Valley and Damascus and Clackamas and Multnomah counties.  The same 

prioritization scheme used for taxlots was applied at the jurisdictional scale, where jurisdictions that 

collectively attain the first 50% of the cumulative solar flux reduction are considered high priority, the 

next 40% are medium priority, the last 10% are low priority, and those that do not contribute at all are 

classified as "maintain". Table 6provides summary statistics for each priority ranking group in terms of 

jurisdictional allocations. 

Number of Jurisdictions in Each Ranking 

   Of the 7 total jurisdictions, 3 (43% of all jurisdictions considered) were categorized as high priority, 2 

(29% of the total) were categorized as medium priority and 2 (29% of the total) were categorized as low 

priority. Figure 19illustrates the percentage of all jurisdictions that fall within each prioritization ranking 

group. In addition, Figure 20 depicts the priority ranking assigned to each jurisdiction in the study area. 

Restorable Acres in Each Ranking    

   In terms of restorable acres, high priority jurisdictions collectively comprised 41% of all restorable 

acres in the study area, medium priority jurisdictions comprised 46%, and low priority jurisdictions 

comprised 13% (Figure 19).  

   Due to differences in the size of each jurisdiction, the amount of restorable area within them was 

highly variable, ranging from 9 to 145 acres (Figure 21). The percentage of restorable area within each 

jurisdiction’s entire restoration buffer is slightly variable, ranging between 4-10% (Figure 22).  
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Table 6: Summary statistics for Jurisdictional rankings 

Please refer to the Glossary for clarification of any terminology used in this Table. The average percent of restoration buffer deemed restorable is 

essentially the number of restorable acres, divided by the un-restorable acres within each jurisdiction (converted to a percentage). Average 

jurisdiction area is calculated from the acres of each jurisdiction that fall within the boundaries of the watershed only; it does not account for the 

area outside the boundaries of the watershed.  

 

Priority # 
Jurisdictions 

% of total 
jurisdictions 

Restorable 
acres 

% of total 
restorable 
acres 

Av. jurisdiction 
area (acres) 

Av. % of restoration 
buffer deemed 
restorable 

Av. increase in solar flux 
attenuation/acre restored 

High 3 43% 222.54 41% 3406.3 7.4% 481.4 

Medium 2 29% 251.72 46% 5523.3 6.5% 366.7 

Low 2 29% 70.63 13% 828.8 4.6% 318.4 

Total 7 100% 544.9 100%    
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Figure 19: Jurisdictional priority rankings chart  

Jurisdictional priority rankings evaluated using various spatial metrics. The cumulative solar flux 

reduction is the net increase in solar flux attenuation for the entire watershed resulting from restoration 

(209,118.9 watts/m2/d). The total amount of restorable acres is the total acreage in the watershed that 

would be restored under a restoration scenario (544.9 acres). There are a total of 7 jurisdictions in the 

watershed. 

% of Total Jurisdictions % of Total Restorable
Acres

% of Cumulative Solar Flux
Reduction

low 29% 13% 10%
medium 29% 46% 40%
high 43% 41% 50%
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Figure 21: Restorable acres within each jurisdiction  

Priority ranking for each jurisdiction is indicated by color. Restorable acres are those that both fall within 

the restoration buffer and contain vegetation currently <4m in height. While some jurisdictions are 

bigger in size than others, it is important to consider the percentage of each jurisdiction’s restoration 

buffer that is deemed restorable when interpreting this chart (see Figure 22).  
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Figure 22: Percent of each jurisdiction’s restoration buffer that is deemed restorable.  

Priority ranking for each Jurisdiction is indicated by color. The restoration buffer extends 15m out from 

the stream channel and represents the area in which restoration activities are likely to occur. Restorable 

acres are those that both fall within the restoration buffer and contain vegetation currently <4m in 

height. For each jurisdiction, the percentage of their own restoration buffer that was deemed restorable 

is presented in this chart; higher priority jurisdictions tend to have a larger percentage of their own 

restoration buffer deemed restorable.  
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4.0 Discussion 

4.1 Summary of Findings 

   Effective shade was modeled under current and restored conditions as a function of geographic 

location, solar position and limited riparian vegetation and stream morphology attributes. Currently, 

effective shade in the watershed is 73% on average, with only 63% of all sampling nodes meeting the 

effective shade target of 80%. Under restored conditions the average effective shade is 93% and 95% of 

all sampling nodes met the effective shade target of 80%. Within each stream, a substantial amount of 

longitudinal variability, in terms of effective shade, exists. This means that prioritizing at a spatial scale 

smaller than a single stream may be appropriate since each stream has localized areas of both low and 

high percent effective shade. Furthermore, occasional clusters of sampling nodes exhibiting large 

increases in effective shade as a result of restoration also occur, meaning prioritization at a spatial scale 

of taxlots, subwatersheds, jurisdictions may be able to capture these “hot spots”, or clusters, of areas 

with greatest potential. Overall, areas exhibiting the largest gains under restored conditions, in terms of 

effective shade, and that currently have very low levels of effective shade (0-40%) also tend to occur 

within taxlots, subwatersheds or jurisdictions classified as high or medium priority. 

   Taxlots, subwatersheds and jurisdictions were prioritized according to the increase in solar flux 

attenuation they would provide if all vegetation within 15m of the stream channel that is currently less 

than 4m in height were restored.   Prioritization at the taxlot scale reveals that restoring only 22% of all 

taxlots or 21% of all restorable acres in the watershed would achieve 50% of the cumulative solar flux 

reduction. Similarly, restoring only 55% of all taxlots or 38% of all restorable acres would achieve 90% of 

the cumulative solar flux reduction. These results suggest that prioritization and implementation of 

restoration efforts at the taxlot scale has the potential to produce a high rate of returns, in terms of 

shade enhancement and ultimately, reduced stream temperatures, per acre restored.  
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   Prioritization at the subwatershed and jurisdictional scale reveals that restoring 50% of all 

subwatersheds or 43% of all jurisdictions in the watershed would be needed to achieve 50% of the 

cumulative solar flux reduction. Similarly, restoring 69% of all subwatersheds or 72% of all jurisdictions 

would be needed to achieve 90% of the cumulative solar flux reduction. These results suggest that 

restoration efforts prioritized and implemented at the larger scale of subwatersheds or jurisdictions is 

not as efficient, in terms of the benefits produced per unit restored, when compared to prioritization at 

the taxlot scale. However, priority rankings for subwatersheds and jurisdictions bring attention to some 

subtle spatial patterns and trends in shade conditions throughout the watershed.   Milwaukie, 

Clackamas county and Gresham exhibited the largest increase in solar flux attenuation under a 

restoration scenario; however, all jurisdictions had similar percentages of their restoration buffers 

deemed restorable (4-10%). This means that while some jurisdictions produce larger returns, in terms of 

shade enhancement, per acre restored, they all have similar ratios of restorable to un-restorable area 

within them. Milwaukie is the only jurisdiction that stands out as having a disproportionally large 

amount of restorable acres (see Figure 22). 

4.2 Model Assumptions 

   As with all modeling endeavors, the modeling technique used in this study may be limited in its ability 

to provide accurate estimates of stream shading due to averaged measures of stream morphology, 

riparian condition and restored conditions, sampling design, or simplification of the stream heat budget 

(Johnson 2003; Li et al. 2012). Many environmental attributes were simplified or excluded from the 

model in an effort to maintain model simplicity or as a result of financial and technological constraints. 

Over time, technological advances in satellite image production and processing techniques are expected 

to allow for data to be more easily extracted from high spatial resolution imagery and incorporated into 

shade models (Gergel et al. 2007).   
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LiDAR Derived Raster data 

Input parameters concerning physical attributes and vegetation height were sampled from raster data 

collected between 2004 and 2007; the large majority (90%) was collected in 2007. Any changes to bare 

earth and/or vegetation occurring since 2007 were not considered in the model. The impact of riparian 

restoration projects that have taken place in the watershed since 2007 on stream shading are not 

reflected in the modeling results; however, the growth of vegetation since 2007 is not likely to greatly 

exceed 4 meters based on the average growth rates and establishment periods for the riparian tree 

species planted (BES 2001; Watanabe et al. 2005). Additionally, assuming that the stream channel has 

not migrated is fairly safe, considering the extent and magnitude of stream channelization that has 

occurred throughout the watershed. The accuracy of the digitized stream channel was verified using 

aerial photos from 2010.  

Heat Budget Simplification 

In this study and many others, model simplicity is maintained by estimating effective shade as a function 

of solar radiation exclusively (Allen et al.2007; Beschta 1997; DeWalle 2010; Li et al. 2012). Although 

stream temperatures are governed by a variety of heat exchange processes including, but not limited to, 

short wave direct solar radiation, long wave radiation from the atmosphere or water, evaporative flux, 

and bed conduction flux (Cristea and Burges 2010; DeWalle 2008; Herb and Stefan 2011), in most cases, 

direct and diffuse solar radiation is the primary source of heat loading to streams, particularly low-order 

streams with narrow channel widths (Boyd and Kasper 2003; Chen et al. 1998a; Cristea and Burges 

2010).  

   In addition, stream temperature is influenced by hydrologic components such as groundwater inputs 

and stream flow.  Groundwater-fed streams are susceptible to a cooling effect from inflowing 

groundwater, which could effectively reduce the need for stream shading (Webb et al. 2008). Since 
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effective shade is considered a surrogate measure of stream temperature, additional variables 

concerning hydrologic components and heat exchange processes were not included in this study to 

maintain model simplicity. However, certain streams with unique stream flow and groundwater 

dynamics may exhibit unique shade requirements; in these circumstances, a consideration of stream 

flow and groundwater inputs would be advisable since they have the potential to significantly influence 

increase or decrease the need for, and effectiveness of, riparian restoration efforts.  

  Channel width, vegetation overhang, stream bank shading, and cloudiness are some commonly 

considered variables in shade modeling endeavors that were not considered in this study. While most 

shade modeling studies involve some level of simplification and exclusion of variables (DeWalle 2008; 

Rutherford et al. 2010), the specific variables included or ignored by each study tends to vary (Allen et 

al. 2007; Rutherford et al. 2010). For example, DeWalle (2008, 2010) and Li et al. (2012)modeled 

riparian shade using simplified, uniformly applied values for vegetation height and overhang, as well as 

stream width yet ignored the influence of topographic shade.  Chen et al. (1998a,b)considered channel 

width, vegetation overhang, topographic shade and cloudiness, but did not consider stream bank 

shading. Lastly, while many studies have chosen to simulate stream shading under clear-sky, or cloud-

free, conditions to represent summer conditions when solar insolation is at its greatest (DeWalle 2008; 

Greenberg et al. 2012; Li et al. 2012), many other studies have included cloud cover as well (Chen et al. 

1998 a,b).  

Sampling Design 

   Most aspects of the sampling design utilized for this study are well-supported in the literature 

including the longitudinal sampling rate of 50 meters (Chen et al. 1998 a,b; Rutherford et al. 1997) and 

buffer width of 30 meters (Chen et al. 1998 a,b; DeWalle 2010; Johnson et al. 2007). In addition, some 

aspects of the sampling design tend to exceed the spatial or temporal resolution standards of most 
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studies including the lateral sampling rate of 2 meters (Chen et al. 1998a; DeWalle 2008; Greenberg et 

al. 2012; Li et al. 2012) and the number of topographic shade measurements (DeWalle 2010; Li et al. 

2012; Rutherford et al. 2010). However, the main sampling aspect that tends to differ amongst studies is 

the longitudinal sampling rate.  In general, the longitudinal sampling rate should reflect the longitudinal 

scale of variation in shade (Allen et al. 2007; Li et al. 2012). If accounting for tree overhang and bank 

shading, the shadows cast by trees will be very complex and are likely to vary at the scale of tree spacing 

(4-8m), requiring relatively smaller longitudinal sampling rates from 1-30m (DeWalle 2012; Guoyuan et 

al. 2012). Also, the magnitude of shade variation is related to age-class structure, with young or 

secondary forests exhibiting much less heterogeneity in canopy structure and light attenuation 

compared to old growth forests (Warren et al. 2013). However, shade models oftentimes employ 

simplifying assumptions regarding the shape of riparian vegetation by assigning uniform values for 

height, density, and/or overhang to discrete blocks of vegetation, such as in this study (Boothroyd et al. 

2004; Chen et al. 1998 a,b; Guoyuan et al. 2012; Quinn et al. 1992). These assumptions regarding the 

shape of vegetation effectively reduce the scale of spatial variation enabling the use of greater 

longitudinal sampling rates.  

While interest has grown in the study of micro-gradients along stream channels and riparian buffers, 

research in this topic has generally focused on lateral gradients, radiating out from the center of the 

stream out to the stream banks, rather than longitudinal, or along-stream, gradients (Goebel 2012; 

Guoyuan et al. 2012; Moore et al. 2005; Olson et al. 2007; Warren et al. 2013; Webb et al. 2008).Due to 

the lack of knowledge surrounding along-stream shade gradients, it remains difficult to determine a 

proper longitudinal sampling rate a priori (Chen et al. 1998b). Use of a smaller longitudinal sampling rate 

(30m) may have yielded more accurate estimates of effective shade, especially if additional riparian 

vegetation attributes, such as vegetation overhang or channel width, had been included as modeling 

inputs (Greenberg et al. 2012).  
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4.3 Restored Conditions 

   Restored conditions were coarsely defined and uniformly applied to all near-stream vegetation 

throughout the study area. Overall, the main assumptions made in terms of restored conditions that are 

likely to reduce the accuracy of modeling results relate to the height, width, density and uniform 

distribution of restored vegetation. In addition, this study did not account for the growth of un-restored 

vegetation in an effort to isolate the signal, or effect, of restoration efforts on solar flux attenuation 

from that of naturally occurring growth of riparian vegetation. While the true solar flux attenuation 

provided by restored vegetation at maturity would be influenced by the surrounding, un-restored 

vegetation, accounting for the growth of un-restored vegetation would have involved various 

assumptions regarding species composition and age, which would have introduced additional sources of 

modeling error. It should be noted, however, that the cumulative solar flux estimate does not account 

for the future solar flux attenuation provided by un-restored vegetation. 

Vegetation Height, Width and Density 

   The height, width and density of riparian vegetation required for adequate stream shading will vary 

according to localized stream conditions such as tree overhang, channel width, orientation, gradient and 

stream flow (Chen et al. 1998b; DeWalle 2008; Guoyuan et al. 2012). Many advanced models exist that 

are capable of determining ideal restored conditions more discerningly, including some of the modules 

within Heat Source that were not used for this project (Johnson 2003; Li et al. 2012). For this study, all 

streams were assumed to have uniform shade requirements for attainment of desired stream 

temperatures. While this assumption is likely true for most tributary streams, shade requirements along 

the mainstem will generally be different from tributaries since the average channel width of the 

mainstem is greater (Moore et al. 2005).  Based on the modeling results, the dimensions of restored 

vegetation under the restoration scenario are sufficient to meet or exceed effective shade targets for 
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95% of all streams in the watershed, including most of the mainstem. However, this amount of shade 

may be more than necessary for some streams. For instance, some of the smaller tributaries may 

require vegetation less than 27 meters in height or restoration buffers less than 15 meters wide, in 

order to attain stream temperatures in compliance with regulations.  

The height of vegetation under restored conditions was derived from the average height at maturity 

(~55 years) for six of the most common riparian trees species planted in riparian areas. Should the actual 

tree species planted deviate from this chosen assemblage, the average height at maturity would also be 

subject to change. For example, a single pixel (3 ft.) of restorable area surrounded by un-restorable area 

would not realistically be able to support a full grown tree under most circumstances; these areas would 

likely be planted with smaller herbaceous plants or shrubs (BES 2001). Also, it is assumed that all tree 

species will be planted in a uniform distribution and will successfully reach a mature age unimpeded by 

natural processes such as competitive displacement, flooding or erosion. While the mean height of 

vegetation under restored conditions was used rather than the maximum height (27m), both under- and 

over- estimation of heights are possible sources of error.  

The height of riparian vegetation required for adequate stream shading varies according to localized 

stream conditions such as channel width, hydrology, topography and stream orientation (DeWalle 2010; 

Larson and Larson 1996; Moore et al. 2005; Opperman and Merenlender 2004; Webb et al. 2008). 

Generally, north-south oriented streams will require greater vegetation heights for sufficient shading 

compared to east-west oriented streams (Chen et al. 1998b; DeWalle 2008; Larson and Larson 1996). 

Density estimates were derived from a single equation and uniformly applied to all riparian vegetation. 

While the density of riparian vegetation is likely to vary with species composition, age, and understory 

growth, these factors were not considered in density estimates. Also, the effect of riparian shading 

diminishes with increasing stream width (Cristea and Burges 2010). As such, larger streams may require 
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riparian buffers as wide as the height of a mature tree (~30m) to meet their shading needs (DeWalle 

2010; Fullerton et al. 2006; Moore et al. 2005). Conversely, smaller streams may require narrower 

buffers as well (DeWalle 2010).  

Vegetation Quality 

   All vegetation that is currently ≥4m was not considered within the restorable area, with no regard to 

the species composition or overall quality of habitat provided by this vegetation. In some circumstances, 

where near-stream vegetation is overrun with invasive species for instance, vegetation currently ≥4m in 

height would, in fact, be considered worthy of restoration by natural resource managers. Instead, it is 

assumed that the shade provided by this low quality vegetation would overshadow any sense of urgency 

in restoring these areas. Conversely, some vegetation currently less than 4m in height may be comprised 

of native shrubs and herbaceous grasses that would not be directly targeted for removal during 

restoration efforts. In reality, these areas would still be targeted for restoration in an effort to increase 

shade, but measures would be taken to avoid disturbing native understory shrubs and grasses.  

4.4 Priority Rankings 

Site Suitability Criteria 

   Site suitability criteria are the variables used to identify areas within the spatial extent of a project that 

are most deserving of riparian restoration. Criteria can be ecologically based or opportunistic, and in 

many cases a combination of one or more criteria are used in the selection of restoration sites (Fullerton 

et al. 2006; Landers 1997; Opperman & Merenlender 2004; Watanabe et al. 2005).  For this project, the 

site suitability criteria used was effective shade, or the amount of incoming solar radiation that is 

blocked by vegetation before reaching the stream surface. Although effective shade is a commonly used 

indicator of healthy riparian systems, there are many other criteria that were not considered in this 
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prioritization scheme that will likely influence the outcome of restoration efforts (Kentula 1997; Webb et 

al. 2008). For example, the continuity of the riparian buffer or proximity to intact riparian habitat, 

although not included as a site suitability criteria, is believed to enhance the ability of riparian buffers to 

regulate stream temperature and, as such, is often considered in the prioritization of restoration sites 

(Fullerton et al. 2006). While there is a general lack of consensus regarding lengths of continuous 

riparian areas necessary for recovery of salmon populations or, more broadly, stream temperature 

reductions, many studies suggest lengths of continuous riparian habitat between 300-600m are ideal 

(Fullerton et al 2006; Ryan et al. 2013).  

   Environmental attributes more directly related to climate, hydrology or channel morphology such as 

hyporheic exchange, stream flow, air temperature, stream width and depth, channel slope, floodplain 

width and connectivity, frequency of natural disturbances, substrate and soil moisture content are also 

important variables in stream temperature regulation that were not considered in this study as site 

suitability criteria (Kentula 1997; Landers 1997; Opperman & Merenlender 2004; Webb et al. 2008; 

WSDOE 2007).Lastly, prioritizing riparian areas for restoration without considering the social, political, 

and economic aspects will inevitably challenge and constrain the implementation of those projects 

(Kentula 1997). While socioeconomic criteria were not incorporated into the prioritization scheme for 

this project, it is assumed that future restoration efforts will be informed by a combination of 

socioeconomic aspects and ecological knowledge. From a management perspective, it is important to 

acknowledge and consider these additional factors when interpreting the results and implementing 

restoration efforts.  

   Partnering agencies involved with this project have indicated an interest in using the results from this 

study as one of many site suitability criteria they are likely to examine in their own prioritization 

schemes. The Johnson Creek Watershed Council for example, intends to incorporate the results from 
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this study into their 2013 Riparian Restoration Strategy, whereby sites will be prioritized for riparian 

restoration based on solar flux attenuation estimates as well as buffer continuity, stream flow, stream 

order, and landowner willingness (JCWC 2013). In sum, the taxlots, subwatersheds and jurisdictions 

prioritized in this project will be subject to additional screening criteria that will address important 

factors not considered in the modeling or prioritization process for this study.  

Taxlot Outcomes 

   Restoring a small percentage of all taxlots and restorable acres (~20% for each) resulted in a 

disproportionately large amount of increased solar flux attenuation (50% of the cumulative solar flux 

reduction). The restoration efficiency, or the net increase in solar flux attenuation per acre of restored 

area, is highly variable between taxlots. As such, using taxlots as the minimum restoration unit is not 

only appropriate but also promotes a high level of efficiency in the allocation of restoration efforts.  

  Minor differences in the average size and proportion of restorable area within taxlots were observed 

between different priority rankings (Table 4). High priority taxlots tended to have a comparatively higher 

proportion of restorable area within them and were smaller in size. By contrast, low priority taxlots had 

a comparatively low proportion of restorable area within them and were larger in size. Medium priority 

taxlots fell somewhere in between high and low, while maintain taxlots were both small in size and had 

a low proportion of restorable area within them. In sum, taxlots that exhibited the largest amount of 

change between current and restored conditions were those with the highest percentage of their 

restoration buffer deemed restorable.  

Subwatershed Outcomes 

   Prioritizing at the subwatershed or jurisdictional scale resulted in a lower level of efficiency in the 

allocation of restoration efforts compared to prioritization at the taxlot scale. Restoring only 22% of all 
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taxlots achieved the same amount of solar reduction as restoring 50% of all subwatersheds or 43% of all 

jurisdictions. Similarly, 39% of all taxlots were categorized as “maintain” whereas zero jurisdictions and 

only 6% of subwatersheds received this same ranking. In part, this is due to a reduced “signal” of 

landscape heterogeneity that resulted from using a coarser scale, or larger minimum restoration unit. 

For example, the percent of all restorable acres in each subwatershed ranking was much less 

pronounced compared to the percent of all restorable acres in each taxlot ranking. Similarly, the 

percentage of restoration buffer deemed restorable within each subwatershed and jurisdiction is 

relatively uniform across them all; meaning they all exhibit similar shade conditions and there is less 

variation to aid in the prioritization of restoration efforts.      

    When prioritization is performed at the comparatively coarser scale of subwatersheds or jurisdictions, 

fine scaled variations in the condition of riparian vegetation and stream morphology is lost during the 

process of aggregating total solar flux attenuation within these large areas. Using the finer scaled 

restoration unit of a taxlot can increase the efficiency of restoration efforts by highlighting aspects of 

landscape heterogeneity and using that knowledge to refine the site selection process.   

Maintain Ranking Group 

   The number of taxlots and acreage found to contribute 0 watts/acre to the cumulative solar flux 

reduction was somewhat unexpected. For some of these taxlots, all near-stream vegetation is currently 

≥4m and, as such, there is no difference between current and restored conditions which comes as no 

surprise. However, the majority (65%) of these taxlots had restorable area that, when restored, did not 

reduce heat loading to the stream.  In other words, 68 acres of restorable area would not contribute to 

the cumulative solar flux reduction if restoration occurred here; this is most likely due to pre-existing 

topographic and vegetative conditions that provide sufficient shading to the stream, even when 

discontinuities in the riparian buffer are present. Furthermore, certain stream orientations (i.e. North 
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facing streams) require less shade than others, and the benefit of riparian vegetation will be smaller for 

these streams in terms of solar flux attenuation (DeWalle 2008; Opperman and Merenlender 2004).  

   While this ranking group was labeled as “maintain” it should not be assumed that restoration in these 

areas would lack any sort of ecological benefit. In addition to shade, restoring riparian vegetation 

provides numerous ancillary benefits, including erosion control, flood mitigation, water purification, 

improved channel complexity, formation of in-stream and riparian habitat and general ecosystem 

resilience (Chen et al. 1998; Gebhardt & Fischer 1999; Holmes et al. 2004; Johnson et al. 2007; Kentula 

2007; Li et al. 2012; Niemi et al. 2006; ODEQ 2006; Teels et al. 2006). Some of these benefits may even 

lead to reduced stream temperatures indirectly (i.e. LWD recruitment and stream bank stability). In sum, 

the taxlots classified as “maintain” are currently providing an adequate level of shade but in no way 

should this determination imply that all other ecological processes that occur within the riparian 

complex are functioning properly as well.  

5.0 Conclusion 

Management Implications 

   While the majority of the watershed (63% of all sampling nodes) currently meets the effective shade 

target of 80%, the remaining areas of concern are spatially diffuse, with individual streams exhibiting 

substantial longitudinal variability in terms of shade, with occasional clusters of high priority stream 

reaches. As a result of this spatial heterogeneity, prioritization of riparian restoration efforts is greatly 

influenced by the spatial scale of restoration efforts. Taxlots, subwatersheds, and jurisdictions within the 

Johnson Creek watershed have been prioritized for riparian restoration based on the net increase in 

solar flux attenuation per acre restored. Prioritizing at the scale of taxlots, as opposed to subwatersheds 

or jurisdictions, is likely to produce the largest returns, in terms of shade enhancement, from restoration 
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investments. Although the priority rankings assigned to taxlots are indicative of their ability to provide 

shade to the stream, it is not a measure of their overall worth in terms of habitat or opportunity. All 

taxlots should be subject to additional screening criteria such as landowner willingness, stream flow, 

community support, proximity to existing restoration projects, and fundraising opportunities. Taxlots 

classified as “maintain” may still provide ancillary benefits when restored and, as such, should still be 

included in additional screening efforts.  

   Data concerning solar flux attenuation and effective shade estimates and priority rankings can be used, 

at the discretion of each jurisdiction, to encourage landowner cooperation, community support, or 

fundraising prospects. In terms of monitoring overall watershed health, this data also provides a 

snapshot of the current status of riparian shade within the watershed.  

Suggested Topics for Future Research 

    The National Resource Council broadly defines restoration as "...re-establishment of pre-disturbance 

functions and related physical, chemical and biological characteristics." Given the broad definition of 

restoration, coupled with the inherent variability and stochasticity of physical, biological, and chemical 

phenomena, there is no universal formula for successful riparian restoration. To further compound the 

issue, restoration ecology is a relatively young interdisciplinary field and, as such, the literature tends to 

lack consensus and resolve on many issues (Johnson 2003; Landers 1997; Palmer 2009). In general, the 

relative effectiveness of individual prioritization and implementation strategies is both highly debated 

and difficult to assess given the existing body of literature, making it difficult to choose strategies with 

confidence (Opperman and Merenlender 2004; Palmer et al. 2005; Palmer 2009; Roni et al. 2002, 2008, 

2010).  

   Major questions that remain to be answered include: Can smaller headwater streams be sufficiently 

shaded by short grasses and shrub vegetation? To what extent does tree overhang influence riparian 
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shade along streams of varying sizes? What are ideal buffer widths for streams of varying sizes and 

orientations? In sum, when choosing a riparian restoration strategy, a combination of socio-economic 

and informational limitations demands a careful, calculated consideration of trade-offs. Regardless of 

which limitations are encountered, restoration efforts are inherently risky endeavors; examples of both 

successes and failures abound (Beechie & Bolton 1999; Landers 1997; Roni et al. 2002, 2008, 2010). 

Given this high level of uncertainty, natural resource managers are encouraged to take an experimental 

approach to restoration and acknowledge the value of their contribution, whether a success or failure, 

to the body of knowledge surrounding restoration ecology (Landers 1997).  

    To assist natural resource managers in the prioritization of areas for riparian restoration efforts, more 

research is needed that evaluates the relative effectiveness of restoration techniques and prioritization 

schemes. Suggested topics for future research include: the influence of stream order, adjacent land use, 

land ownership, floodplain width, continuity and width of riparian buffers, hydrographic setting, channel 

slope and substrate, and soil moisture content on the long term effectiveness of riparian restoration 

efforts. Furthermore, monitoring the response of multiple indicators including macro-invertebrates, fish 

and wildlife, nutrient and sediment regimes, and even community perceptions will help to advance our 

understanding of the functional relationships that take place within the riparian complex and will 

capture more of the benefits received from our efforts. In turn, this knowledge can also help to advance 

our understanding of the relative effectiveness of restoration techniques and help managers choose 

their prioritization schemes more wisely.  

   A growing number of managers have begun to recognize the shortcomings of a piecemeal (ex: 

uncoordinated efforts or failure to recognize and protect the inter-relationships between ecological 

processes) approach to riparian restoration and have instead adopted a more refined, holistic approach 

that acknowledges the importance of many ecological processes at multiple spatial and temporal scales 
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in maintaining the riparian complex (Chen et al. 1998; Beechie & Bolton 1999; Fullerton et al. 2006; 

Harris & Olson 1997; Roni et al. 2002, 2008). These types of projects establish objectives that concern 

both biological resources and hydro-geological processes at broad spatial and temporal scales, such as 

enhancing regional ecological resiliency and habitat heterogeneity, or restoring the natural processes 

(i.e. disturbance regime or LWD recruitment) that maintain healthy ecological function of the riparian 

complex (Beechie & Bolton 1999; Palmer 2005; Roni et al. 2002, 2008; Seavy et al. 2009). While these 

holistic approaches, often referred to as "process-based restoration", are gaining in popularity, they can 

be prohibitively expensive and socio-economically unfeasible (Palmer et al. 2005; Seavy et al. 2009).  In 

order to facilitate the gradual transition from current restoration strategies to more refined, holistic 

approaches, it is imperative that socioeconomic and ecological factors are both considered. Identifying 

effective, workable restoration strategies that can accommodate the socio-economic atmosphere of 

urban watersheds should be recognized as an important endeavor in the field of restoration ecology.   
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Glossary 
 

Canopy closure: the proportion of the sky hemisphere obscured by vegetation when viewed from a 
single point. 

Cumulative solar flux reduction: the net increase in solar flux attenuation (watts/m2/d) for the entire 
watershed under a restoration scenario.  

Effective shade: the percentage of direct beam solar radiation attenuated and scattered by riparian 
vegetation before reaching the ground or stream surface (ODEQ 2006). 

Restorable area: all area within the restoration buffer that is currently occupied by vegetation <4 
meters in height and is not occupied by roads or buildings.  

Restoration buffer: the area in which restoration activities are likely to occur. It extends 15m to either 
side of the stream channel for Johnson Creek mainstem and all tributary streams.  

Restoration efficiency: the net increase in solar flux attenuation per acre restored (solar flux 
attenuation/acre).  

Restored conditions:  the condition of riparian vegetation following the implementation of restoration 
activities that are likely to occur throughout the watershed, with vegetation in restorable areas at a 
climax life stage and vegetation within un-restorable areas in the same state as current day conditions.   

Restoration scenario: all restorable area is set equal to 27 meters in height whereas all un-restorable 
remains unchanged from current conditions.   

Site suitability criteria: ecological, socioeconomic, or physical attributes used to identify areas that are 
most deserving of restoration. 

Solar flux attenuation: the amount of incoming direct beam solar radiation (watts/m2/d) that is 
attenuated by riparian vegetation before reaching the stream surface. Percent effective shade is a 
commonly used metric for quantifying solar flux attenuation.  

Solar insolation: The amount of energy received from the sun at the earths’ surface; on a clear day 
~1000 W/m2 reaches a surface perpendicular to the incoming radiation. This energy varies due to the 
angle of the incoming radiation and cloud cover.  

Un-restorable area: all area within the restoration buffer that is currently occupied by vegetation ≥4 
meters in height, or buildings or roads. 

Vegetation density: in this study, vegetation density is defined as an estimate of canopy closure. 
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