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Preface

Our goal in this set of lecture notes is to provide students with a strong foundation in mathematical
analysis. Such a foundation is crucial for future study of deeper topics of analysis. Students should be
familiar with most of the concepts presented here after completing the calculus sequence. However,
these concepts will be reinforced through rigorous proofs.

The lecture notes contain topics of real analysis usually covered in a 10-week course: the
completeness axiom, sequences and convergence, continuity, and differentiation. In addition, the
notes include many carefully selected exercises of various levels of difficulty. Hints and solutions
to selected exercises are available in the back of the book. For each section, there is at least one
exercise with hints or fully solved. For those exercises, besides the solutions, there are explanations
about the process itself and examples of more general problems where the same technique may be
used. Exercises with solutions are indicated by a ▶ and those with hints are indicated by a ▷.

The last chapter contains additional topics. These include topological properties of the real line,
generalizations of the extreme value theorem and more contemporary topics that expand on the
notions of continuity or optimization. Lower and upper semicontinuity, differentiation of convex
functions, and generalized differentiation of non-differentiable convex functions can be used as
optional mathematical projects.

Finally, to make it easier for students to navigate the text, the electronic version of these notes
contains many hyperlinks that students can click on to go to a definition, theorem, example, or
exercise at a different place in the notes. These hyperlinks can be easily recognized because the text
or number is on a different color and the mouse pointer changes shape when going over them.

Changes in the Third Edition

This third edition includes a number of improvements based on recommendations from students
and colleagues and on our own experience teaching the course over the last several years.

We reorganized the narrative in multiple sections. More significantly, the first four chapters now
offer a streamlined presentation of the main topics without going into more abstract topological
properties of the real line. While various definitions such as limits and continuity are defined in some
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generality for functions defined on arbitrary subsets of R, the main results are stated and proved
for functions defined on intervals. We leave the notions of open sets, closed sets and compact sets
to Chapter 5. We also moved to this chapter various results about continuous functions defined on
compact sets.

A second important feature of this edition is the addition of more detailed explanations on various
techniques for proving limits (of sequences and of functions) directly from the definition. These
explanations are intended to make the text more welcoming for students who are tackling various
proofs in analysis for the first time.

Finally, we corrected a number of typos that have stubbornly persisted in the second edition.
We have used these notes multiple times to teach the one-quarter course Introduction to Mathe-

matical Analysis I at Portland State University. We are currently completing the second volume that
will include Riemann integration and series as well as additional special topics for exploration.

Acknowledgements
We would like to thank our colleagues in the Fariborz Maseeh Department of Mathematics and

Statistics for their constructive feedback and thoughtful insights. We also want to acknowledge the
many students in our courses who offered suggestions. Finally, we give special thanks to Karen
Bjork, Head of Digital Initiatives, Cataloging, & eAccess at the Portland State University Library,
for her continuing support for this project. The creation and update of this textbook were supported
in part by a PSU faculty enhancement grant and by an OER grant.



Basic Concepts of Set Theory
Functions
The Natural Numbers and Mathematical Induction
Ordered Field Axioms
The Completeness Axiom for the Real Numbers
Applications of the Completeness Axiom

1. TOOLS FOR ANALYSIS

This chapter discusses various mathematical concepts and constructions which are central to the
study of many fundamental results in analysis. Generalities are kept to a minimum in order to move
quickly to the heart of analysis: the structure of the real number system and the notion of limit. The
reader should consult the bibliographical references for more details.

1.1 Basic Concepts of Set Theory
Intuitively, a set is a collection of objects with certain properties. The objects in a set are called

the elements or members of the set. We usually use uppercase letters to denote sets and lowercase
letters to denote elements of sets. If a is an element of a set A, we write a ∈ A. If a is not an element
of a set A, we write a ̸∈ A. To specify a set, we can list all of its elements, if possible, or we can use
a defining rule. For instance, to specify the fact that a set A contains four elements a,b,c,d, we write

A = {a,b,c,d}.

To describe the set E containing all even integers, we write

E = {x : x = 2k for some integer k}.

We say that a set A is a subset of a set B if every element of A is also an element of B, and write

A ⊂ B or B ⊃ A.

Two sets are equal if they contain the same elements. If A and B are equal, we write A = B. The
following result is straightforward and very convenient for proving equality between sets.

Theorem 1.1.1 Two sets A and B are equal if and only if A ⊂ B and B ⊂ A.

If A ⊂ B and A does not equal B, we say that A is a proper subset of B, and write

A ⊊ B.
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The set /0 = {x : x ̸= x} is called the empty set. This set clearly has no elements. Using
Theorem 1.1.1, it is easy to show that all sets with no elements are equal. Thus, we refer to the empty
set.

Throughout this book, we will discuss several sets of numbers which should be familiar to the
reader:

• N= {1,2,3, . . .}, the set of natural numbers or positive integers.

• Z= {0,1,−1,2,−2, . . .}, the set of integers (that is, the natural numbers together with zero
and the negative of each natural number).

• Q= {m/n : m,n ∈ Z,n ̸= 0}, the set of rational numbers.

• R, the set of real numbers.

• Intervals. For a,b ∈ R, a ≤ b, we define:

[a,b] = {x ∈ R : a ≤ x ≤ b}.

(a,b) = {x ∈ R : a < x < b}.

[a,b) = {x ∈ R : a ≤ x < b}.

(a,b] = {x ∈ R : a < x ≤ b}.

We call intervals of the form [a,b] closed intervals and intervals of the form (a,b) open
intervals. Moreover, we will use the symbols ∞ and −∞ in the following definitions:

[a,∞) = {x ∈ R : a ≤ x}.

(−∞,b] = {x ∈ R : x ≤ b}.

(a,∞) = {x ∈ R : a < x}.

(−∞,b) = {x ∈ R : x < b}.

We will say more about the symbols ∞ and −∞ in Section 1.5.

Since the real numbers are central to the study of analysis, we will discuss them in great detail in
Sections 1.4, 1.5, and 1.6.

For two sets A and B, the union, intersection, difference, and symmetric difference of A and B are
given respectively by:

A∪B = {x : x ∈ A or x ∈ B}.
A∩B = {x : x ∈ A and x ∈ B}.
A\B = {x : x ∈ A and x /∈ B}.
A ∆ B = (A\B)∪ (B\A).

If A∩B = /0, we say that A and B are disjoint.
The difference of A and B is also called the complement of B in A. If X is a universal set, that is,

a set containing all the objects under consideration, then the complement of A in X is denoted simply
by Ac.
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Theorem 1.1.2 Let A,B, and C be subsets of a universal set X . Then the following hold:

(i) A∪Ac = X .
(ii) A∩Ac = /0.

(iii) (Ac)c = A.
(iv) (Distributive law) A∩ (B∪C) = (A∩B)∪ (A∩C).
(v) (Distributive law) A∪ (B∩C) = (A∪B)∩ (A∪C).

(vi) (DeMorgan’s law) A\ (B∪C) = (A\B)∩ (A\C).
(vii) (DeMorgan’s law) A\ (B∩C) = (A\B)∪ (A\C).

(viii) A\B = A∩Bc.

Proof: We prove some of the results and leave the rest for the exercises.
(i) Clearly, A∪Ac ⊂ X since both A and Ac are subsets of X . Now let x ∈ X . Then either x

is an element of A or it is not an element of A. In the first case, x ∈ A and, so, x ∈ A∪Ac. In the
second case, x ∈ Ac and, so, x ∈ A∪Ac. Thus, X ⊂ A∪Ac. Applying Theorem (1.1.1) it follows that
A∪Ac = X .

(ii) No element x can be simultaneously in A and not in A. Thus, A∩Ac = /0.
(iv) Let x ∈ A∩ (B∪C). Then x ∈ A and x ∈ B∪C. Therefore, x ∈ B or x ∈ C. In the first

case, since x is also in A we get x ∈ A∩B and, hence, x ∈ (A∩B)∪ (A∩C). In the second case,
x ∈ A∩C and, hence, x ∈ (A∩B)∪ (A∩C). Thus, in all cases, x ∈ (A∩B)∪ (A∩C). This shows
A∩ (B∪C)⊂ (A∩B)∪ (A∩C).

Now we prove the other inclusion. Let x ∈ (A∩B)∪ (A∩C). Then x ∈ A∩B or x ∈ A∩C.
In either case, x ∈ A. In the first case, x ∈ B and, hence, x ∈ B∪C. It follows in this case that
x ∈ A∩ (B∪C). In the second case, x ∈C and, hence, x ∈ B∪C. Again, we conclude x ∈ A∩ (B∪C).
Therefore, (A∩B)∪ (A∩C)⊂ A∩ (B∪C). Applying Theorem (1.1.1) the equality follows. □

A set whose elements are sets is often called a collection/family of sets and is often denoted by
script letters such as A or B.

Let I be a nonempty set such that to each i ∈ I corresponds a set Ai. Then the family of all sets
Ai as i ranges over I is denoted by

{Ai : i ∈ I}.

Such a family of sets is called an indexed family and the set I is called the index set. Consider the
indexed family of sets {Ai : i ∈ I}. The union and intersection of this family as i ranges over I is
defined respectively by⋃

i∈I

Ai = {x : x ∈ Ai for some i ∈ I}

and ⋂
i∈I

Ai = {x : x ∈ Ai for every i ∈ I}.

■ Example 1.1.1 The following examples illustrate the notation.

(a) Let the index set be I = N and for each n ∈ N we have An = [−n,n]. Then⋃
n∈N

An = R and
⋂

n∈N
An = [−1,1].
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(b) Here we let the index set be J = (0,1] and for each s ∈ J we have As = (−s,s). Then⋃
s∈J

As = (−1,1) and
⋂
s∈J

As = {0}.

The proofs of the following properties are similar to those in Theorem 1.1.2. We include the
proof of part (i) and leave the rest as an exercise.

Theorem 1.1.3 Let {Ai : i ∈ I} be an indexed family of subsets of a universal set X and let B be a
subset of X . Then the following hold:

(i) B∪
(⋂

i∈I Ai
)
=
⋂

i∈I(B∪Ai).
(ii) B∩

(⋃
i∈I Ai

)
=
⋃

i∈I(B∩Ai).
(iii) B\

(⋂
i∈I Ai

)
=
⋃

i∈I(B\Ai).
(iv) B\

(⋃
i∈I Ai

)
=
⋂

i∈I(B\Ai).
(v)

(⋂
i∈I Ai

)c
=
⋃

i∈I Ac
i .

(vi)
(⋃

i∈I Ai
)c

=
⋂

i∈I Ac
i .

Proof of (i): Let x ∈ B∪
(⋂

i∈I Ai
)
. Then x ∈ B or x ∈

⋂
i∈I Ai. If x ∈ B, then x ∈ B∪Ai for all i ∈ I

and, thus, x ∈
⋂

i∈I(B∪Ai). If x ∈
⋂

i∈I Ai, then x ∈ Ai for all i ∈ I. Therefore, x ∈ B∪Ai for all i ∈ I
and, hence, x ∈

⋂
i∈I(B∪Ai). We have thus showed B∪

(⋂
i∈I Ai

)
⊂
⋂

i∈I(B∪Ai).
Now let x ∈

⋂
i∈I(B∪Ai). Then x ∈ B∪Ai for all i ∈ I. If x ∈ B, then x ∈ B∪

(⋂
i∈I Ai

)
. If x ̸∈ B,

then we must have that x ∈ Ai for all i ∈ I. Therefore, x ∈
⋂

i∈I Ai and, hence, x ∈ B∪
(⋂

i∈I Ai
)
. This

proves the other inclusion and, so, the equality. □

We want to consider pairs of objects in which the order matters. Given objects a and b, we will
denote by (a,b) the ordered pair where a is the first element and b is the second element. The main
characteristic of ordered pairs is that (a,b) = (c,d) if and only if a = c and b = d. Thus, the ordered
pair (0,1) represents a different object than the pair (1,0) (while the set {0,1} is the same as the set
{1,0})1.

Given two sets A and B, the Cartesian product of A and B is the set defined by

A×B := {(a,b) : a ∈ A and b ∈ B}.

■ Example 1.1.2 If A = {1,2} and B = {−2,0,1}, then

A×B = {(1,−2),(1,0),(1,1),(2,−2),(2,0),(2,1)}.

■ Example 1.1.3 If A and B are the intervals [−1,2] and [0,7] respectively, then A×B is the
rectangle

[−1,2]× [0,7] = {(x,y) : −1 ≤ x ≤ 2, 0 ≤ y ≤ 7}.

We will make use of cartesian products in the next section when we discuss functions.

1For a precise definition of ordered pair in terms of sets see [Lay13]
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Exercises

1.1.1 Prove the remaining items in Theorem 1.1.2.

1.1.2 ▶ Let Y and Z be subsets of X . Prove that

(X \Y )∩Z = Z \ (Y ∩Z).

1.1.3 Prove the remaining items in Theorem 1.1.3.

1.1.4 Let A, B, C, and D be sets. Prove the following.

(a) (A∩B)×C = (A×C)∩ (B×C).
(b) (A∪B)×C = (A×C)∪ (B×C).
(c) (A×B)∩ (C×D) = (A∩C)× (B∩D).

1.1.5 Let A ⊂ X and B ⊂ Y . Determine if the following equalities are true and justify your answer:

(a) (X ×Y )\ (A×B) = (X \A)× (Y \B).
(b) (X ×Y )\ (A×B) = [(X \A)×Y ]∪ [X × (Y \B)].

1.2 Functions

Definition 1.2.1 Let X and Y be sets. A function from X into Y is a subset f ⊂ X ×Y with the
following properties:

(i) For all x ∈ X there is y ∈ Y such that (x,y) ∈ f .
(ii) If (x,y) ∈ f and (x,z) ∈ f , then y = z.

The set X is called the domain of f , the set Y is called the codomain of f , and we write f : X → Y .
The range of f is the subset of Y defined by {y ∈ Y : there is x ∈ X such that (x,y) ∈ f}.

It follows from the definition that, for each x ∈ X , there is exactly one element y ∈ Y such that
(x,y) ∈ f . We will write y = f (x). If x ∈ X , the element f (x) is called the value of f at x or the
image of x under f .

Note that, in this definition, a function is a collection of ordered pairs and, thus, corresponds
to the geometric interpretation of the graph of a function given in calculus. In fact, we will refer
indistinctly to the function f or to the graph of f . Both refer to the set {(x, f (x)) : x ∈ X}.

Let f : X → Y and g : X → Y be two functions. Then the two functions are equal if they are
equal as subsets of X ×Y . It is easy to see that f equals g if and only if

f (x) = g(x) for all x ∈ X .

Note that it is implicit in the definition that two equal functions must have the same domain and
codomain.

Let f : X → Y be a function and let A be a subset of X . The restriction of f on A, denoted by f|A,
is a new function from A into Y given by

f|A(a) = f (a) for all a ∈ A.
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Definition 1.2.2 Let f : X → Y be a function.

(i) We say f is surjective (or maps X onto Y ) if for every element y ∈ Y , there exists an element
x ∈ X such that f (x) = y.

(ii) We say f is injective (or one-to-one) if whenever x1,x2 ∈ X , x1 ̸= x2, then f (x1) ̸= f (x2).
Equivalently, f is one-to-one if for all x1,x2 ∈ X with f (x1) = f (x2), it follows that x1 = x2.

(iii) If f is both surjective and injective, we say f is bijective (or a one-to-one correspondence).

Remark 1.2.1 When the function f is a bijection, for any y ∈Y , there exists a unique element x ∈ X
such that f (x) = y. This element x is then denoted by f−1(y). In this way, we already built a function
from Y to X called the inverse of f .

Theorem 1.2.1 Let f : X → Y . If there are two functions g : Y → X and h : Y → X such that
g( f (x)) = x for every x ∈ X and f (h(y)) = y for every y ∈ Y , then f is bijective and g = h = f−1.

Proof: First we prove that f is surjective. Let y ∈ Y and set x = h(y). Then, from the assumption on
h, we have f (x) = f (h(y)) = y. This shows that f is surjective.

Next we prove that f is injective. Let x1,x2 ∈ X be such that f (x1) = f (x2). Then x1 =
g( f (x1)) = g( f (x2)) = x2. Thus, f is injective.

We have shown that for each y ∈ Y , there is a unique x ∈ X , which we denote f−1(y), such that
f (x) = y. Since for such a y, g(y) = g( f (x)) = x, we obtain g(y) = f−1(y). Since f (h(y)) = y, we
also conclude that h(y) = x = f−1(y). □

■ Example 1.2.1 Consider the function f : (1,2]→ [3,4) given by f (x) = 4−(x−1)2. We show that
f is bijective. First let x1,x2 ∈ (1,2] be such that f (x1) = f (x2). That is, 4−(x1−1)2 = 4−(x2−1)2.
Then (x1 −1)2 = (x2 −1)2. Since both x1 > 1 and x2 > 1, we conclude that x1 −1 = x2 −1 and, so,
x1 = x2. This proves f is injective.

Next let y∈ [3,4). We need to find x ∈ (1,2] such that f (x) = y. For that, we set up 4−(x−1)2 =
y and solve for x. We get, x =

√
4− y+1. Note that since y < 4, 4− y has a square root. Also note

that since 3 ≤ y < 4, we have 1 ≥ 4− y > 0 and, hence, 2 ≥
√

4− y+1 > 1. Therefore, x ∈ (1,2].
This proves f is surjective.

Definition 1.2.3 Let f : X → Y be a function and let A be a subset of X . Then the image of A under
f is given by

f (A) = { f (a) : a ∈ A}.

It follows from the definition that f (A) = {b ∈ Y : b = f (a) for some a ∈ A}. Moreover, f is
surjective if and only if f (X) = Y .

Definition 1.2.4 Let f : X → Y be a function and let B be a subset of Y . Then the preimage of B
under f is given by

f−1(B) = {x ∈ X : f (x) ∈ B}.

Remark 1.2.2 Note that, despite the notation, the definition of preimage does not require the
function to have an inverse. It does not even require the function to be injective. The examples below
illustrate these concepts.
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■ Example 1.2.2 Let f : R→R be given by f (x) = 3x−1. Let A = [0,2) and B = {1,−4,5}. Then
f (A) = [−1,5) and f−1(B) = {2

3 ,−1,2}.

■ Example 1.2.3 Let f : R→ R be given by f (x) =−x+7. Let A = [0,2) and B = (−∞,3]. Then
f (A) = (5,7] and f−1(B) = [4,∞).

■ Example 1.2.4 Let f : R → R be given by f (x) = x2. Let A = (−1,2) and B = [1,4). Then
f (A) = [0,4) and f−1(B) = (−2,−1]∪ [1,2).

Theorem 1.2.2 Let f : X → Y be a function, let A be a subset of X , and let B be a subset of Y . The
following hold:

(i) A ⊂ f−1( f (A)).
(ii) f ( f−1(B))⊂ B.

Proof: We prove (i) and leave (ii) as an exercise.
Let x ∈ A. By the definition of image, f (x) ∈ f (A). Now, by the definition of preimage,

x ∈ f−1( f (A)). □

Theorem 1.2.3 Let f : X → Y be a function, let A,B ⊂ X , and let C,D ⊂ Y . The following hold:

(i) If C ⊂ D, then f−1(C)⊂ f−1(D).
(ii) f−1(D\C) = f−1(D)\ f−1(C).

(iii) If A ⊂ B, then f (A)⊂ f (B).
(iv) f (A\B)⊃ f (A)\ f (B).

Proof: We prove (ii) and leave the other parts as an exercise.
We show first f−1(D\C)⊂ f−1(D)\ f−1(C). Let x ∈ f−1(D\C). Then, from the definition of

inverse image, we get f (x)∈D\C. Thus, f (x)∈D and f (x) ̸∈C. Hence x ∈ f−1(D) and x ̸∈ f−1(C).
We conclude that x ∈ f−1(D)\ f−1(C).

Next we prove f−1(D)\ f−1(C)⊂ f−1(D\C). Let x ∈ f−1(D)\ f−1(C). Thus, x ∈ f−1(D) and
x ̸∈ f−1(C). Therefore, f (x) ∈ D and f (x) ̸∈C. This means f (x) ∈ D\C and, so, x ∈ f−1(D\C). □

Theorem 1.2.4 Let f : X → Y be a function, let {Aα}α∈I be an indexed family of subsets of X , and
let {Bβ}β∈J be an indexed family of subsets of Y . The following hold:

(i) f (
⋃

α∈I Aα) =
⋃

α∈I f (Aα).
(ii) f (

⋂
α∈I Aα)⊂

⋂
α∈I f (Aα).

(iii) f−1(
⋃

β∈J Bβ ) =
⋃

β∈J f−1(Bβ ).

(iv) f−1(
⋂

β∈J Bβ ) =
⋂

β∈J f−1(Bβ ).

Proof: We prove (i) and leave the other parts as an exercise.
First we show f (

⋃
α∈I Aα)⊂

⋃
α∈I f (Aα). Let y ∈ f (

⋃
α∈I Aα). From the definition of image of

a set, there is x ∈
⋃

α∈I Aα such that y = f (x). From the definition of union of a family of sets, there
is α0 ∈ I such that x ∈ Aα0 . Therefore, y = f (x) ∈ f (Aα0) and, so, y ∈

⋃
α∈I f (Aα).
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We now prove that
⋃

α∈I f (Aα)⊂ f (
⋃

α∈I Aα). Let y ∈
⋃

α∈I f (Aα). From the definition of union
of a family of sets, there is α0 ∈ I such that y ∈ f (Aα0). From the definition of image of a set, there
is x ∈ Aα0 such that y = f (x). We have x ∈ Aα0 ⊂

⋃
α∈I Aα . Therefore, y = f (x) ∈ f (

⋃
α∈I Aα).

By Theorem 1.1.1 the result follows. □

Definition 1.2.5 Let f : X → Y and g : Y → Z be two functions. Then the composition function
g◦ f of f and g is the function g◦ f : X → Z given by

(g◦ f )(x) = g( f (x)) for all x ∈ X .

Theorem 1.2.5 Let f : X → Y and g : Y → Z be two functions and let B ⊂ Z. The following hold:

(i) (g◦ f )−1(B) = f−1(g−1(B)).
(ii) If f and g are injective, then g◦ f is injective.

(iii) If f and g are surjective, then g◦ f is surjective.
(iv) If g◦ f is injective, then f is injective.
(v) If g◦ f is surjective, then g is surjective.

Proof: We prove (iv) and leave the other parts as an exercise.
Suppose g ◦ f is injective and let x1,x2 ∈ X be such that f (x1) = f (x2). Then (g ◦ f )(x1) =

g( f (x1)) = g( f (x2)) = (g◦ f )(x2). Since g◦ f is injective, it follows that x1 = x2. We conclude that
f is injective. □

Definition 1.2.6 A sequence of elements of a set A is a function with domain N and codomain A.
We discuss sequences in detail in Chapter 2.

Definition 1.2.7 We say that set A is finite if it is empty or if there exists a natural number n and a
one-to-one correspondence f : A →{1,2, . . . ,n}. A set is infinite if it is not finite.

We leave it as an exercise to prove that the union of two finite sets is finite. It is also easy to
show, by contradiction, that N is infinite.

Exercises
1.2.1 ▶ Let f : X → Y be a function. Prove that:

(a) If f is one-to-one, then A = f−1( f (A)) for every subset A of X .
(b) If f is onto, then f ( f−1(B)) = B for every subset B of Y .

1.2.2 Let f : R→R be given by f (x) = x2 −3 and let A = [−2,1) and B = (−1,6). Find f (A) and
f−1(B).

1.2.3 Prove that each of the following functions is bijective.

(a) f : (−∞,3]→ [−2,∞) given by f (x) = |x−3|−2.
(b) g : (1,2)→ (3,∞) given by g(x) = 3/(x−1).

1.2.4 Prove that if f : X → Y is injective, then the following hold:

(a) f (A∩B) = f (A)∩ f (B) for A,B ⊂ X .
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(b) f (A\B) = f (A)\ f (B) for A,B ⊂ X .

1.2.5 Prove part (ii) of Theorem 1.2.2.

1.2.6 Prove the remaining parts of Theorem 1.2.3.

1.2.7 Prove the remaining parts of Theorem 1.2.4.

1.2.8 Prove the remaining parts of Theorem 1.2.5.

1.2.9 Prove that the union of two finite sets is finite. Hint: it is easier to show when the sets are
disjoint.

1.3 The Natural Numbers and Mathematical Induction
We will assume familiarity with the set N of natural numbers, with the usual arithmetic operations

of addition and multiplication on N, and with the notion of what it means for one natural number to
be less than another.

In addition, we will also assume the following property of the natural numbers.
Well-Ordering Property of the Natural Numbers: If A is a nonempty subset of N, then there
exists an element ℓ ∈ A such that ℓ≤ x for all x ∈ A.

To paraphrase the previous property, every nonempty subset of positive integers has a smallest
element.

The principle of mathematical induction is a useful tool for proving facts about sequences.

Theorem 1.3.1 — Principle of Mathematical Induction. For each natural number n ∈ N, suppose
that P(n) denotes a proposition which is either true or false. Let A = {n ∈N : P(n) is true}. Suppose
the following conditions hold:

(i) 1 ∈ A.
(ii) For each k ∈ N, if k ∈ A, then k+1 ∈ A.

Then A = N.

Proof: Suppose conditions (i) and (ii) hold. Assume, by way of contradiction, that A ̸= N. Set
B = N\A, that is, B = {n ∈ N : P(n) is false}. Then B is a nonempty subset of N. By the Well-
Ordering Property of the natural numbers, there exists a smallest element ℓ ∈ B. By condition (i),
1 ̸∈ B. Hence, ℓ≥ 2. It follows that k = ℓ−1 is a natural number. Since k < ℓ, then k ̸∈ B and, hence,
we have that P(k) is true. By condition (ii), we obtain that P(k+1) is true. But k+1 = ℓ, and P(ℓ)
is false, since ℓ ∈ B. This is a contradiction, so the conclusion follows. □

The principle says that, given a list of propositions P(n), one for each n ∈ N, if P(1) is true and,
moreover, P(k+1) is true whenever P(k) is true, then all propositions are true.

We will refer to this principle as mathematical induction or simply induction. Condition (i) above
is called the base case and condition (ii) the inductive step. When proving (ii), the statement P(k) is
called the inductive hypothesis.

■ Example 1.3.1 Prove using induction that

1+2+ · · ·+n =
n(n+1)

2
for all n ∈ N .
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The statement P(n) is the equality 1+2+ · · ·+n = n(n+1)
2 for n ∈ N. Now the base case says

that 1 = 1(1+1)
2 , which is clearly true.

Suppose P(k) is true for some k ∈ N. That is, suppose that 1+ 2+ · · ·+ k = k(k+1)
2 for some

k ∈ N (this is the inductive hypothesis). Now we have

1+2+ · · ·+ k+(k+1) =
k(k+1)

2
+(k+1) =

k(k+1)+2(k+1)
2

=
(k+1)(k+2)

2
.

This shows that P(k+1) is true. We have now proved conditions (i) and (ii) of Theorem 1.3.1.
Therefore, by the principle of mathematical induction we conclude that

1+2+ · · ·+n =
n(n+1)

2
for all n ∈ N .

■ Example 1.3.2 Prove using induction that 7n −2n is divisible by 5 for all n ∈ N.

The statement P(n) is 7n −2n is divisible by 5 for n ∈N. For n = 1, we have 7−2 = 5, which is
clearly a multiple of 5. Therefore the base case is true.

Suppose now that P(k) is true for some k ∈N. That is, there is an integer j such that 7k −2k = 5 j.
It follows that 7k = 2k +5 j. Now, substituting this expression below, we have

7k+1−2k+1 = 7·7k−2 ·2k = 7(2k+5 j)−2 ·2k = 7·2k−2 ·2k+7 ·5 j = 2k(7−2)+5·7 j = 5(2k+7 j).

Hence 7k+1 −2k+1 is a multiple of 5. This completes the proof of the inductive step.
We conclude by induction that 7n −2n is divisible by 5 for all n ∈ N.

■ Example 1.3.3 Prove using induction that

n+1 ≤ 2n for all n ∈ N .

The statement P(n) is the inequality n+1 ≤ 2n for n ∈ N. For n = 1, we have 1+1 = 2 ≤ 21,
so the base case is true.

Suppose next that P(k) is true for some that k ∈ N. That is, k+1 ≤ 2k for some k ∈ N. Then
(k+1)+1 ≤ 2k +1. Since 2k is a positive integer, we also have 1 ≤ 2k. Therefore,

(k+1)+1 ≤ 2k +1 ≤ 2k +2k = 2 ·2k = 2k+1.

This completes the proof of the inductive step. We conclude by the principle of mathematical
induction that n+1 ≤ 2n for all n ∈ N.

The following result is known as the Generalized Principle of Mathematical Induction. It simply
states that we can start the induction process at any integer n0, and then we obtain the truth of all
statements P(n) for n ≥ n0.

Theorem 1.3.2 — Generalized Principle of Mathematical Induction. Let n0 ∈ N and for
each natural n ≥ n0, suppose that P(n) denotes a proposition which is either true or false. Let
A = {n ∈ N : P(n) is true}. Suppose the following two conditions hold:

(i) n0 ∈ A.
(ii) For each k ∈ N, k ≥ n0, if k ∈ A, then k+1 ∈ A.
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Then {k ∈ N : k ≥ n0} ⊂ A.

Proof: Suppose conditions (i) and (ii) hold. Assume, by way of contradiction, that the conclusion
is false. That is, {k ∈ N : k ≥ n0} ̸⊂ A. Set B = {n ∈ N : n ≥ n0 and P(n) is false}. Then B is a
nonempty subset of N. By the Well-Ordering Property of the natural numbers, there exists a smallest
element ℓ ∈ B. By condition (i), n0 ̸∈ B. Hence, ℓ ≥ n0 +1. It follows that k = ℓ−1 ≥ n0. Since
k < ℓ, k ̸∈ B and, so, we have that P(k) is true. By condition (ii), we obtain that P(k+1) is true. But
k+1 = ℓ, and P(ℓ) is false, since ℓ ∈ B. This is a contradiction, so the conclusion follows. □

■ Example 1.3.4 Prove by induction that 3n < 2n for all n ≥ 4.
Let P(n) be the statement 3n < 2n for n ∈N, n ≥ 4. P(n) is true for n = 4 since 12 < 16. Suppose

next that P(k) is true for some k ∈ N, k ≥ 4. That is, 3k < 2k for some k ∈ N, k ≥ 4.
Now,

3(k+1) = 3k+3 < 2k +3 < 2k +2k = 2k+1,

where the second inequality follows since k ≥ 4 and, so, 2k ≥ 16 > 3. This shows that P(k+1) is
true. Thus, by the Generalized Principle of Induction, 3n < 2n for all n ≥ 4.

Next we present another variant of the induction principle which makes it easier to prove the
inductive step. Despite its name, this principle is equivalent to the standard one.

Theorem 1.3.3 — Principle of Strong Induction. For each natural n ∈N, suppose that P(n) denotes
a proposition which is either true or false. Let A = {n ∈ N : P(n) is true}. Suppose the following
two conditions hold:

(i) 1 ∈ A.
(ii) For each k ∈ N, if 1,2, . . . ,k ∈ A, then k+1 ∈ A.

Then A = N.

Remark 1.3.1 Note that the inductive step above says that, in order to prove P(k+1) is true, we
may assume not only that P(k) is true, but also that P(1), P(2),. . . ,P(k−1) are true.

There is also a generalized version of this theorem where the condition (i) is replaced by n0 ∈ A,
for some integer n0 > 1. We illustrate this theorem with the following example.

■ Example 1.3.5 Prove by induction that every positive integer greater than 1 is either a prime
number or a product of prime numbers.

Let P(n) be the statement n is either a prime number or a product of prime numbers, for n ∈ N,
n ≥ 2. Clearly, the statement is true for n = 2. Suppose that P(2), P(3),. . . ,P(k) are true for some
k ∈ N, k ≥ 2. If k+ 1 is prime, then P(k+ 1) is true and the result follows. Otherwise, there are
positive integers p,q > 1 such that k+1 = pq. Since p,q ≤ k, by the inductive assumption applied to
both p and q we can find prime numbers r1,. . . ,rℓ and s1,. . . ,sm such that p = r1 · · ·rℓ and q = s1 · · ·sm

(note that ℓ and m may both equal 1). But then

k+1 = r1 · · ·rℓs1 · · ·sm.

Thus, the statement holds true for k+1. The conclusion now follows by the generalized principle of
strong induction.
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Exercises
1.3.1 Prove the following using Mathematical Induction.

(a) 12 +22 + · · ·+n2 = n(n+1)(2n+1)
6 for all n ∈ N.

(b) 13 +23 + · · ·+n3 = n2(n+1)2

4 for all n ∈ N.

(c) 1+3+ · · ·+(2n−1) = n2 for all n ∈ N.

1.3.2 Prove the following using Mathematical Induction.

(a) 9n −5n is divisible by 4 for all n ∈ N.

(b) 7n −1 is divisible by 3 for all n ∈ N.

(c) 32n −1 is divisible by 8 for all n ∈ N.

(d) xn − yn is divisible by x− y for all n ∈ N where x,y ∈ Z, x ̸= y.

1.3.3 Prove the following using Mathematical Induction.

(a) 1+3n ≤ 4n for all n ∈ N.

(b) 1+2n ≤ 2n for all n ∈ N, n ≥ 3.

(c) n2 ≤ 3n for all n ∈ N.

(d) n3 ≤ 3n for all n ∈ N. (Hint: Check the cases n = 1 and n = 2 directly and then use induction
for n ≥ 3.)

1.3.4 Given a real number a ̸= 1, prove that

1+a+a2 + · · ·+an =
1−an+1

1−a
for all n ∈ N .

1.3.5 ▶ The Fibonacci sequence is defined by

a1 = a2 = 1 and an+2 = an+1 +an for n ≥ 1.

Prove that

an =
1√
5

[(1+
√

5
2

)n
−
(1−

√
5

2

)n]
.

1.3.6 Let a ≥−1. Prove by induction that

(1+a)n ≥ 1+na for all n ∈ N .

1.3.7 ▷ Let a,b ∈ R and n ∈ N. Use Mathematical Induction to prove the binomial theorem

(a+b)n =
n

∑
k=0

(
n
k

)
akbn−k,

where
(

n
k

)
=

n!
k!(n− k)!

.
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1.4 Ordered Field Axioms
In this section and the next we present an axiomatic description of the set of real numbers. That

is, we will assume that there exists a set, denoted by R, satisfying the ordered field axioms, stated
below, together with the completeness axiom, presented in the next section. In this way we identify
the basic properties that characterize the real numbers. After listing the ordered field axioms we
derive from them additional familiar properties of the real numbers. We conclude the section with
the definition of absolute value of a real number and with several results about it that will be used
often later in the text.

We assume the existence of a set R (the set of real numbers) and two operations + and · (addition
and multiplication) assigning to each pair of real numbers x,y, unique real numbers x+ y and x · y
and satisfying the following properties:

(A1) (x+ y)+ z = x+(y+ z) for all x,y,z ∈ R.
(A2) x+ y = y+ x for all x,y ∈ R.
(A3) There exists a unique element 0 ∈ R such that x+0 = x for all x ∈ R.
(A4) For each x ∈ R, there exists a unique element −x ∈ R such that x+(−x) = 0.

(M1) (x · y) · z = x · (y · z) for all x,y,z ∈ R.
(M2) x · y = y · x for all x,y ∈ R.
(M3) There exists a unique element 1 ∈ R such that 1 ̸= 0 and x ·1 = x for all x ∈ R.
(M4) For each x ∈ R\{0}, there exists a unique element x−1 ∈ R such that x · (x−1) = 1. (We also

write 1/x instead of x−1.)

(D1) x · (y+ z) = x · y+ x · z for all x,y,z ∈ R.

We often write xy instead of x · y.

In addition to the algebraic axioms above, there is a relation < on R that satisfies the order
axioms below:

(O1) For all x,y ∈ R, exactly one of the three relations holds: x = y, y < x, or x < y.
(O2) For all x,y,z ∈ R, if x < y and y < z, then x < z.
(O3) For all x,y,z ∈ R, if x < y, then x+ z < y+ z.
(O4) For all x,y,z ∈ R, if x < y and 0 < z, then xz < yz.

We will use the notation x ≤ y to mean x < y or x = y. We may also use the notation x > y to
represent y < x and the notation x ≥ y to mean x > y or x = y.

A set F together with two operations + and · and a relation < satifying the 13 axioms above is
called an ordered field. Thus, the real numbers are an example of an ordered field. Another example
of an ordered field is the set of rational numbers Q with the familiar operations and order. The
integers Z do not form a field since for an integer m other than 1 or −1, its reciprocal 1/m is not an
integer and, thus, axiom (M4) above does not hold. In particular, the set of positive integers N does
not form a field either. As mentioned above the real numbers R will be defined as the ordered field
which satisfies one additional property described in the next section: the completeness axiom.

From these axioms, many familiar properties of R can be derived. Some examples are given
in the next proposition. The proof illustrates how the given axioms are used at each step of the
derivation.
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Proposition 1.4.1 For x,y,z ∈ R, the following hold:

(i) If x+ y = x+ z, then y = z.
(ii) −(−x) = x.

(iii) If x ̸= 0 and xy = xz, then y = z.
(iv) If x ̸= 0, then 1/(1/x) = x.
(v) 0x = 0 = x0.

(vi) −x = (−1)x.
(vii) x(−z) = (−x)z =−(xz).

(viii) If x > 0, then −x < 0; if x < 0, then −x > 0.
(ix) If x < y and z < 0, then xz > yz.
(x) 0 < 1.

Proof: (i) Suppose x+ y = x+ z. Adding −x (which exists by axiom (A4)) to both sides, we have

(−x)+(x+ y) = (−x)+(x+ z).

Then axiom (A1) gives

[(−x)+ x]+ y = [(−x)+ x]+ z.

Thus, again by axiom (A4), 0+ y = 0+ z and, by axiom (A3), y = z.

(ii) Since (−x)+ x = 0, we have (by uniqueness in axiom (A4)) −(−x) = x.

The proofs of (iii) and (iv) are similar.

(v) Using axiom (D1) we have 0x = (0+0)x = 0x+0x. Adding −(0x) to both sides (axiom (A4))
and using axioms (A1) and (A3), we get

0 =−(0x)+0x =−(0x)+(0x+0x) = (−(0x)+0x)+0x = 0+0x = 0x.

That 0x = x0 follows from axiom (M2).

(vi) Using axioms (M3) and (D1) we get x+(−1)x = 1x+(−1)x = (1+(−1))x. From ax-
iom (A4) we get 1+(−1) = 0 and from part (v) we get x+(−1)x = 0x = 0. From the uniqueness
in axiom (A4) we get (−1)x =−x as desired.

(vii) Using axioms (D1) and (A3) and part (v) we have xz+x(−z) = x(z+(−z)) = x0 = 0. Thus,
using axiom (A4) we get that x(−z) =−(xz). The other equality follows similarly.

(viii) From x > 0, using axioms (O3) and (A3) we have x+(−x)> 0+(−x) =−x. Thus, using
axiom (A4), we get 0 >−x. The other case follows in a similar way.

(ix) Since z < 0, by part (viii), −z > 0. Then, by axiom (O4), x(−z)< y(−z). Combining this
with part (vii) we get −xz <−yz. Adding xz+ yz to both sides and using axioms (A1), (O3), (A2),
and (A3) we get

yz = (−xz+xz)+yz =−xz+(xz+yz)<−yz+(xz+yz) =−yz+(yz+xz) = (−yz+yz)+xz = xz.
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(x) Axiom (M3) gives that 1 ̸= 0. Suppose, by way of contradiction, that 1 < 0. Then by part (ix),
1 · 1 > 0 · 1. Since 1 · 1 = 1, by axiom (M3) and 0 · 1 = 0 by part (v), we get 1 > 0 which is a
contradiction. It follows that 1 > 0. □

Note that we can assume that the set of all natural numbers is a subset of R (and of any ordered
field, in fact) by identifying the 1 in N with the 1 in axiom (M3) above, the number 2 with 1+1, 3
with 1+1+1, etc. Furthermore, since 0 < 1 (from part (x) of the previous proposition), axiom (O3)
gives, 1 < 2 < 3, etc. (in particular all these numbers are distinct). In a similar way, we can include
Z and Q as subsets.

We say that a real number x is irrational if x ∈ R\Q, that is, if it is not rational.

Definition 1.4.1 Given x ∈ R, define the absolute value of x by

|x|=

{
x, if x ≥ 0;
−x, if x < 0.

Figure 1.1: The absolute value function.

The following properties of absolute value follow directly from the definition.

Proposition 1.4.2 Let x,y,M ∈ R and suppose M > 0. The following properties hold:

(i) |x| ≥ 0.
(ii) |− x|= |x|.

(iii) |xy|= |x||y|.
(iv) |x|< M if and only if −M < x < M. (The same holds if < is replaced with ≤.)

Proof: We prove (iv) and leave the other parts as an exercise.
Suppose |x| < M. We consider two cases, x ≥ 0 and x < 0. Suppose first x ≥ 0. Then |x| = x

and since M > 0, −M < 0. Hence, −M < 0 ≤ x = |x| < M. Now suppose x < 0. Then |x| = −x.
Therefore, −x < M and, so x >−M. It follows that −M < x < 0 < M.
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For the converse, suppose −M < x<M. Again, we consider two cases. If x≥ 0, then |x|= x<M
as desired. Next suppose x < 0. Now, −M < x implies M > −x. Then |x| = −x < M. The result
follows. □

Note that as a consequence of part (iv) above, since |x| ≤ |x| we get −|x| ≤ x ≤ |x|.
The next theorem will play an important role in the study of limits.

Theorem 1.4.3 — Triangle Inequality. Given x,y ∈ R,

|x+ y| ≤ |x|+ |y|.

Proof: From the observation above, we have

−|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|.

Adding up the inequalities gives

−|x|− |y| ≤ x+ y ≤ |x|+ |y|.

Since −|x|− |y|=−(|x|+ |y|), the conclusion follows from Proposition 1.4.2 (iv). □

Corollary 1.4.4 For any x,y ∈ R,

||x|− |y|| ≤ |x− y|.

Remark 1.4.1 The absolute value has a geometric interpretation when considering the numbers in
an ordered field as points on a line. The number |x| denotes the distance from the number x to 0.
More generally, the number d(x,y) = |x− y| is the distance between the points x and y. It follows
easily from Proposition 1.4.2 that d(x,y) ≥ 0, and d(x,y) = 0 if and only if x = y. Moreover, the
triangle inequality implies that

d(x,y)≤ d(x,z)+d(z,y) for all real numbers x,y,z.

Exercises
1.4.1 Prove that n is an even integer if and only if n2 is an even integer. (Hint: prove the “if” part

by contraposition, that is, prove that if n is odd, then n2 is odd.)

1.4.2 Prove parts (iii) and (iv) of Proposition 1.4.1

1.4.3 Let x ∈ R. Prove that

(a) if 0 < x < 1, then x2 < x.
(b) if x > 1, then x < x2.

1.4.4 Let x,y,z,w ∈ R. Suppose 0 < x < y and 0 < z < w. Prove that xz < yw.

1.4.5 Let x,y ∈ R. Prove the following.

(a) xy ≤ 1
2(x

2 + y2).
(b) If x ≥ 0 and y ≥ 0, then

√
xy ≤ 1

2(x+ y).



23

(c) If n > 0, then xy ≤ 1
2(nx2 + 1

n y2).

1.4.6 Prove parts (i), (ii), and (iii) of Proposition 1.4.2.

1.4.7 ▶ Prove Corollary 1.4.4.

1.4.8 Given two real numbers x and y, prove that

max{x,y}= x+ y+ |x− y|
2

and min{x,y}= x+ y−|x− y|
2

.

1.4.9 Let x,y,M ∈ R. Prove the following:

(a) |x|2 = x2.
(b) |x|< M if and only if x < M and −x < M.
(c) |x+ y|= |x|+ |y| if and only if xy ≥ 0.

1.4.10 Let x,y,z ∈ R. Prove the following statements.

(a) If 0 ≤ x < ε for all ε > 0, then x = 0.
(b) The following are equivalent:

(i) y ≤ z.
(ii) y < z+ ε for all ε > 0.

1.5 The Completeness Axiom for the Real Numbers
There are many examples of ordered fields. However, we are interested in the field of real

numbers. There is an additional axiom that will distinguish this ordered field from all others. In
order to introduce our last axiom for the real numbers, we first need some definitions.

Definition 1.5.1 Let A be a subset of R. A number M is called an upper bound of A if

x ≤ M for all x ∈ A.

If A has an upper bound, then A is said to be bounded above.

Similarly, a number L is a lower bound of A if

L ≤ x for all x ∈ A,

A is said to be bounded below if it has a lower bound. We also say that A is bounded if it is both
bounded above and bounded below.

It follows that a set A is bounded if and only if there exist M ∈ R such that |x| ≤ M for all x ∈ A
(see Exercise 1.5.1).

The following concept plays a central role in the study of the real numbers.

Definition 1.5.2 — Supremum of a set. Let A be a nonempty set that is bounded above. We call a
number α a least upper bound or supremum of A, if the following conditions hold:

(1) x ≤ α for all x ∈ A (that is, α is an upper bound of A).
(2) If M is an upper bound of A, then α ≤ M (this means α is smallest among all upper bounds).

It can be shown that if A has a supremum, then it has only one (see Exercise 1.5.2). In this case,
we denote such a number by supA.
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■ Example 1.5.1

(a) sup[0,3) = sup[0,3] = 3.
First consider the set [0,3] = {x ∈ R : 0 ≤ x ≤ 3}. We will show that 3 satisfies conditions (1)
and (2) in the definition of supremum. By the definition of the given set, we see that for all
x ∈ [0,3], x ≤ 3. Thus 3 is an upper bound. This verifies condition (1). To verify condition (2)
suppose that M is an upper bound of [0,3]. Since 3 ∈ [0,3], we get 3 ≤ M. Therefore
condition (2) holds. It follows that 3 is indeed the supremum of [0,3].
Consider next the set [0,3) = {x∈R : 0≤ x< 3}. We again verify that 3 satisfies conditions (1)
and (2) in the definition of supremum. Condition (1) follows as before since 3 is an upper
bound of [0,3). For condition (2), because 3 is not in the set we cannot proceed as before.
Suppose that M is an upper bound of [0,3) and assume, by way of contradiction, that 3 > M.
Since M is an upper bound of [0,3), we have that M > 0. Set x = M+3

2 . Then 0 < M = M+M
2 <

M+3
2 < 3+3

2 = 3 or M < x < 3. This is a contradiction since M is an upper bound of [0,3) and
x ∈ [0,3). We conclude that 3 ≤ M and, hence, 3 is the supremum of [0,3).

(b) sup{3,5,7,8,10}= 10.
Clearly 10 is an upper bound of the set. Moreover, any upper bound M must satisfy 10 ≤ M as
10 is an element of the set. Thus 10 is the supremum.

(c) sup
{
(−1)n

n
: n ∈ N

}
=

1
2

.

Note that if n ∈ N is even, then n ≥ 2 and

(−1)n

n
=

1
n
≤ 1

2
.

If n ∈ N is odd, then

(−1)n

n
=

−1
n

< 0 <
1
2
.

This shows that (−1)n/n ≤ 1
2 for all n ∈ N. Hence 1/2 an upper bound of the set. Also 1/2 is

an element of the set, it follows as in the previous example that 1/2 is the supremum.
(d) sup{x2 : −2 < x < 1, x ∈ R}= 4.

Set A = {x2 : −2 < x < 1, x ∈ R}. If y ∈ A, then y = x2 for some x ∈ (−2,1) and, hence,
|x|< 2. Therefore, y = x2 = |x|2 < 4. Thus, 4 is an upper bound of A.
Suppose M is an upper bound of A but M < 4. Choose a number y ∈ R such that M < y < 4
and 0 < y. Set x =−√

y. Then −2 < x < 0 < 1 and, so, y = x2 ∈ A. However, y > M which
contradicts the fact that M is an upper bound. Thus 4 ≤ M. This proves that 4 = supA.

Remark 1.5.1 Let A be a nonempty subset of R. If there is an element aM ∈ A such that aM ≥ x for
all x ∈ A, we say that aM is the maximum of A and write aM = maxA. If there is an element am ∈ A
such that am ≤ x for all x ∈ A, we say that am is the minimum of A and write am = minA.

It is clear that if A has a maximum element then it is bounded above since maxA is an upper
bound. Also, if an upper bound belongs to the set then it is the maximum of the set.
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It should also be noted that a set may have neither a maximum nor a minimum element. Consider
for example the set A = (0,1). If a ∈ (0,1), then 0 < a < 1 and therefore there are elements b1 and
b2 in (0,1) such that 0 < b1 < a < b2 < 1. This shows that a is neither a maximum nor a minimum
element of A.

The following proposition is convenient in working with suprema.

Proposition 1.5.1 Let A be a nonempty subset of R that is bounded above. Then α = supA if and
only if

(1’) x ≤ α for all x ∈ A,
(2’) For any ε > 0, there exists a ∈ A such that α − ε < a.

Proof: Suppose first that α = supA. Then clearly (1’) holds (since this is identical to condition (1)
in the definition of supremum). Now let ε > 0. Since α − ε < α , condition (2) in the definition of
supremum implies that α − ε is not an upper bound of A. Therefore, there must exist an element a
of A such that α − ε < a as desired.

Conversely, suppose conditions (1’) and (2’) hold. Then all we need to show is that condition (2)
in the definition of supremum holds. Let M be an upper bound of A and assume, by way of
contradiction, that M < α . Set ε = α −M. Note that ε > 0. By condition (2’), there is a ∈ A
such that a > α − ε = α − (α −M) = M. This contradicts the fact that M is an upper bound. The
conclusion now follows. □

The following is an axiom of the real numbers and is called the completeness axiom.

The Completeness Axiom. Every nonempty subset A of R that is bounded above has a least upper
bound. That is, supA exists and is a real number.

This axiom distinguishes the real numbers from all other ordered fields and it is crucial in the
proofs of the central theorems of analysis.

There is a corresponding definition for the infimum of a set.

Definition 1.5.3 Let A be a nonempty subset of R that is bounded below. We call a number β a
greatest lower bound or infimum of A, denoted by β = infA, if the following conditions hold:

(1) x ≥ β for all x ∈ A (that is, β is a lower bound of A).
(2) If L is a lower bound of A, then β ≥ L (this means β is largest among all lower bounds).

Using the completeness axiom, we can prove that if a nonempty set is bounded below, then its
infimum exists (see Exercise 1.5.5).

■ Example 1.5.2

(a) inf(0,3] = inf[0,3] = 0.
(b) inf{3,5,7,8,10}= 3.

(c) inf
{
(−1)n

n
: n ∈ N

}
=−1.

(d) inf{1+
1
n

: n ∈ N}= 1.

(e) inf{x2 : −2 < x < 1,x ∈ R}= 0.
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The following proposition is useful when dealing with infima and its proof is completely
analogous to that of Proposition 1.5.1.

Proposition 1.5.2 Let A be a nonempty subset of R that is bounded below. Then β = infA if and
only if

(1’) x ≥ β for all x ∈ A,
(2’) For any ε > 0, there exists a ∈ A such that a < β + ε .

The following is a basic property of suprema. Additional ones are described in the exercises.

Theorem 1.5.3 Let A and B be nonempty sets and A ⊂ B. Suppose B is bounded above. Then
supA ≤ supB.

Proof: Let M be an upper bound for B, then for x ∈ B, x ≤ M. In particular, it is also true that
x ≤ M for x ∈ A since A ⊂ B. Thus, A is also bounded above. Now, since supB is an upper bound
for B, it is also an upper bound for A. Then, by the second condition in the definition of supremum,
supA ≤ supB as desired. □

It will be convenient for the study of limits of sequences and functions to introduce two additional
symbols.

Definition 1.5.4 The extended real number system consists of the real field R and the two symbols
∞ and −∞. We preserve the original order in R and define

−∞ < x < ∞ for every x ∈ R

The extended real number system does not form an ordered field, but it is customary to make the
following conventions:

(a) If x is a real number, then x+∞ = ∞, x+(−∞) =−∞.
(b) If x > 0, then x ·∞ = ∞, x · (−∞) =−∞.
(c) If x < 0, then x ·∞ =−∞, x · (−∞) = ∞.
(d) ∞+∞ = ∞, −∞+(−∞) =−∞, ∞ ·∞ = (−∞) · (−∞) = ∞, and (−∞) ·∞ = ∞ · (−∞) =−∞.

We denote the extended real number set by R. The expressions 0 ·∞, ∞+(−∞), and (−∞)+∞

are left undefined.
The set R with the above conventions will be convenient when describing results about limits in

later chapters.

Definition 1.5.5 If A ̸= /0 is not bounded above in R, we will write supA = ∞. If A is not bounded
below in R, we will write infA =−∞.

With this definition, every nonempty subset of R has a supremum and an infimum in R. To
complete the picture we adopt the following conventions for the empty set: sup /0 = −∞ and
inf /0 = ∞.

Exercises
1.5.1 Prove that a subset A of R is bounded if and only if there is M ∈ R such that |x| ≤ M for all

x ∈ A.
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1.5.2 Let A be a nonempty set and suppose α1 and α2 satisfy conditions (1) and (2) in Defini-
tion 1.5.2 (that is, both are suprema of A). Prove that α1 = α2.

1.5.3 For each subset of R below, determine if it is bounded above, bounded below, or both. If it is
bounded above (below) find the supremum (infimum). Justify all your conclusions.

(a) {1,5,17}
(b) [0,5)

(c)
{

1+
(−1)n

n
: n ∈ N

}
(d) (−3,∞)

(e) {x ∈ R : x2 −3x+2 = 0}
(f) {x2 −3x+2 : x ∈ R}
(g) {x ∈ R : x3 −4x < 0}
(h) {x ∈ R : 1 ≤ |x|< 3}

1.5.4 ▶ Suppose A and B are nonempty subsets of R that are bounded above. Define

A+B = {a+b : a ∈ A and b ∈ B}.

Prove that A+B is bounded above and sup(A+B) = supA+ supB.

1.5.5 Let A be a nonempty subset of R. Define −A = {−a : a ∈ A}.

(a) Prove that if A is bounded below, then −A is bounded above.
(b) Prove that if A is bounded below, then A has an infimum in R and infA =−sup(−A).

1.5.6 Let A be a nonempty subset of R and t ∈ R. Define tA = {ta : a ∈ A}. Prove the following
statements:

(a) If t > 0 and A is bounded above, then tA is bounded above and sup(tA) = t supA.
(b) If t < 0 and A is bounded above, then tA is bounded below and inf(tA) = t supA.

1.5.7 Suppose A and B are nonempty subsets of R that are bounded below. Prove that A+B is
bounded below and

inf(A+B) = infA+ infB.

1.5.8 Let A,B be nonempty subsets of R that are bounded below. Prove that if A ⊂ B, then

infA ≥ infB.

1.6 Applications of the Completeness Axiom
We prove here several fundamental properties of the real numbers that are direct consequences

of the Completeness Axiom.

Theorem 1.6.1 — The Archimedean Property. The set of natural numbers is unbounded above.
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Proof: Let us assume by contradiction that N is bounded above. Since N is nonempty, by the
Completeness Axiom the supremum of A exists and it is a real number. Say

α = supN

By Proposition 1.5.1 (2’) (with ε = 1), there exists n ∈ N such that

α −1 < n ≤ α.

But then n+1 > α . This is a contradiction since n+1 is a natural number. □

The following theorem presents several immediate consequences.

Theorem 1.6.2 The following hold:

(i) For any x ∈ R, there exists n ∈ N such that x < n.
(ii) For any ε > 0, there exists n ∈ N such that 1/n < ε .

(iii) For any x > 0 and for any y ∈ R, there exists n ∈ N such that y < nx.
(iv) For any x ∈ R, there exists m ∈ Z such that m−1 ≤ x < m.

Proof: (i) Fix any x ∈ R. Since N is not bounded above, x cannot be an upper bound of N. Thus,
there exists n ∈ N such that x < n.

(ii) Fix any ε > 0. Then 1/ε is a real number. By (i), there exists n ∈ N such that

1/ε < n.

This implies 1/n < ε .
(iii) We only need to apply (i) for the real number y/x.
(iv) First we consider the case where x > 0. Define the set

A = {n ∈ N : x < n}.

From part (i), A is nonempty. Since A is a subset of N, by the Well-Ordering Property of the natural
numbers, A has a smallest element ℓ. In particular, x < ℓ and ℓ−1 is not in A. Since ℓ ∈ N, either
ℓ− 1 ∈ N or ℓ− 1 = 0. If ℓ− 1 ∈ N, since ℓ− 1 ̸∈ A we get ℓ− 1 ≤ x. If ℓ− 1 = 0, we have
ℓ−1 = 0 < x. Therefore, in both cases we have ℓ−1 ≤ x < ℓ and the conclusion follows with m = ℓ.

In the case x ≤ 0, by part (i), there exists N ∈ N such that

|x|< N.

In this case, −N < x < N, so x+N > 0. Then, by the result just obtained for positive numbers, there
exists a natural number k such that k−1 ≤ x+N < k. This implies

k−N −1 ≤ x < k−N.

Setting m = k−N, the conclusion follows. The proof is now complete. □
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■ Example 1.6.1 Let A = {1− 1
n : n ∈ N}. We claim that supA = 1.

We use Proposition 1.5.1. Since 1−1/n < 1 for all n ∈ N, we obtain condition (1’). Next, let
ε > 0. From Theorem 1.6.2 (ii) we can find n ∈ N such that 1

n < ε . Then

1− ε < 1− 1
n
.

This proves condition (2’) with a = 1− 1
n and the result follows.

Theorem 1.6.3 — The Density Property of Q. If x and y are two real numbers such that x < y, then
there exists a rational number r such that x < r < y.

Proof: We are going to prove that there exist an integer m and a positive integer n such that

x < m/n < y,

or, equivalently,

nx < m < ny = nx+n(y− x).

Since y− x > 0, by Theorem 1.6.2 (iii), there exists n ∈ N such that 1 < n(y− x). Then

ny = nx+n(y− x)> nx+1.

By Theorem 1.6.2 (iv), one can choose m ∈ Z such that

m−1 ≤ nx < m.

Then nx < m ≤ nx+1 < ny. Therefore,

x < m/n < y.

The proof is now complete. □

We will prove in a later section (see Examples 3.4.2 and 4.3.1) that there exists a (unique)
positive real number x such that x2 = 2. We denote that number by

√
2. The following result shows,

in particular, that R ̸=Q.

Proposition 1.6.4 The number
√

2 is irrational.

Proof: Suppose, by way of contradiction, that
√

2 ∈Q. Then there are integers r and s with s ̸= 0,
such that

√
2 =

r
s
.

By canceling out the common factors of r and s, we may assume that r and s have no common
factors.

Now, by squaring both sides of the equation above, we get

2 =
r2

s2 ,
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and, hence,

2s2 = r2. (1.1)

It follows that r2 is an even integer. Therefore, r is an even integer (see Exercise 1.4.1). We can then
write r = 2 j for some integer j. Hence r2 = 4 j2. Substituting in (1.1), we get s2 = 2 j2. Therefore,
s2 is even. We conclude as before that s is even. Thus, both r and s have a common factor, which is a
contradiction. □

The next theorem shows that irrational numbers are as ubiquitous as rational numbers.

Theorem 1.6.5 Let x and y be two real numbers such that x < y. Then there exists an irrational
number t such that

x < t < y.

Proof: Since x < y, one has

x−
√

2 < y−
√

2

By Theorem 1.6.3, there exists a rational number r such that

x−
√

2 < r < y−
√

2

This implies

x < r+
√

2 < y.

Since r is rational, the number t = r+
√

2 is irrational (see Exercise 1.6.4) and x < t < y. □

Exercises
1.6.1 For each sets below determine if it is bounded above, bounded below, or both. If it is bounded
above (below) find the supremum (infimum). Prove your claims.

(a)
{

1+
(−1)n

n
: n ∈ N

}
(b)

{
3n

n+4
: n ∈ N

}
(c)

{
(−1)n +

1
n

: n ∈ N
}

(d)
{
(−1)n − (−1)n

n
: n ∈ N

}
1.6.2 ▶ Let r be a rational number such that 0 < r < 1. Prove that there is n ∈ N such that

1
n+1

< r ≤ 1
n
.
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1.6.3 Let x ∈ R. Prove that for every n ∈ N, there is r ∈Q such that |x− r|< 1
n

.

1.6.4 Prove that if x is a rational number and y is an irrational number, then x+y is irrational. What
can you say about xy?

1.6.5 Prove that in between two real numbers x and y with x < y, there are infinitely many rational
numbers.

1.6.6 Prove that in between two real numbers x and y with x < y, there are infinitely many irrational
numbers.





Convergence
Limit Theorems
Monotone Sequences
The Bolzano-Weierstrass Theorem
Limit Superior and Limit Inferior

2. SEQUENCES

We introduce the notion of limit first through sequences. As mentioned in Chapter 1, a sequence
is just a function with domain N. More precisely, a sequence of elements of a set A is a function
f : N→ A. We will denote the image of n under the function with subscripted variables, for example,
an = f (n). We will also denote sequences by {an}∞

n=1, {an}n, or even {an}. Each value an is called
a term of the sequence, more precisely, the nth term of the sequence.

■ Example 2.0.1 Consider the sequence {an} given by an =
1
n for n ∈ N. This is a sequence of

rational numbers. On occasion, when the pattern is clear, we may list the terms explicitly as in

1,
1
2
,
1
3
,
1
4
,
1
5
, . . .

■ Example 2.0.2 Let {an} be the sequence given by an = (−1)n for n ∈ N. This is a sequence of
integers, namely,

−1,1,−1,1,−1,1, . . .

Note that the sequence takes on only two values. This should not be confused with the two-element
set {1,−1}.

2.1 Convergence

Definition 2.1.1 Let {an} be a sequence of real numbers. We say that the sequence {an} converges
to a ∈ R if for any ε > 0 there exists a positive integer N such that

|an −a|< ε for any n ∈ N with n ≥ N.

In this case, we call a the limit of the sequence (see Theorem 2.1.1 below) and write limn→∞ an = a.
If the sequence {an} does not converge, we call the sequence divergent.
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Remark 2.1.1 It follows directly from the definition, using the Archimedean property, that a
sequence {an} converges to a if and only if for any ε > 0, there exists a real number N such that

|an −a|< ε for any n ∈ N with n > N.

Remark 2.1.2 Applying Proposition 1.4.2(iv), the condition |an − a| < ε in Definition 2.1.1 is
equivalent to

a− ε < an < a+ ε for any n ∈ N with n ≥ N

or

an ∈ (a− ε,a+ ε) for any n ∈ N with n ≥ N.

■ Example 2.1.1 Let {an} be the sequence given by an =
1
n for n ∈N. We claim that limn→∞ an = 0.

First notice that in this example a = 0. We verify the claim using the definition. Given ε > 0, we
seek an N ∈ N such that if n ≥ N then |an −a| < ε . To find a suitable positive integer N we start
with the expression |an −a|. We have

|an −a|=
∣∣∣∣1n −0

∣∣∣∣= ∣∣∣∣1n
∣∣∣∣= 1

n
.

We look for N ∈ N such that if n ≥ N, then 1
n < ε . This suggests that N > 1/ε is a good choice

since then 1
n ≤ 1

N < 1
1/ε

= ε . Now that we have found N, the last step is to write a formal proof.
Let ε > 0 and choose an integer N, N > 1/ε . Note that such a positive integer N exists due to

the Archimedean property (Theorem 1.6.1). If n ∈ N with n ≥ N, we have

|an −a|=
∣∣∣∣1n −0

∣∣∣∣= 1
n
≤ 1

N
<

1
1/ε

= ε.

This shows that limn→∞ 1/n = 0.

■ Example 2.1.2 We now generalize the previous example as follows. Let α > 0 and consider the
sequence {an} given by

an =
1

nα
for n ∈ N .

We will show that limn→∞ an = 0.
Let ε > 0. As in the previous example, we start with the expression |an −a| and find a suitable

condition for N ∈ N. We have

|an −a|=
∣∣∣∣ 1
nα

−0
∣∣∣∣= 1

nα
.

Observe that if n ≥ N, then 1
nα ≤ 1

Nα .
We are seeking N such that 1

Nα < ε . Solving the inequality for N gives N > ( 1
ε
)1/α . The last step

is to write a formal proof.
Let ε > 0 and choose an integer N satisfying N > ( 1

ε
)1/α . Such an N exists by the Archimedean

property (Theorem 1.6.1). For every n ≥ N, one has nα ≥ Nα . This implies∣∣∣∣ 1
nα

−0
∣∣∣∣= 1

nα
≤ 1

Nα
<

1
1/ε

= ε.

We conclude that limn→∞ 1/nα = 0.
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■ Example 2.1.3 Consider the sequence {an} where

an =
3n2 +4

2n2 +n+5
.

We will prove directly from the definition that this sequence converges to a = 3/2.
Let ε > 0. We first search for a suitable positive integer N. To that end, we simplify and estimate

the expression |an −a|. Notice that∣∣∣∣an −
3
2

∣∣∣∣ =

∣∣∣∣ 3n2 +4
2n2 +n+5

− 3
2

∣∣∣∣= ∣∣∣∣2(3n2 +4)−3(2n2 +n+5)
2(2n2 +n+5)

∣∣∣∣= |−7−3n|
|2(2n2 +n+5)|

=
3n+7

2(2n2 +n+5)
<

3n+7n
4n2 +2n+5

<
10n
4n2 =

10
4n

.

Observe that if n ≥ N, then 10
4n ≤ 10

4N . To find the condition on N we solve the inequality 10
4N < ε

obtaining N > 10
4ε

. The last step is to write a formal proof. Let ε > 0 and choose an integer N
satisfying N > 10

4ε
. Such an N exists by the Archimedean property (Theorem 1.6.1). For every n ≥ N,

one has

|an −a| ≤ 10
4n

≤ 10
4N

<
10
4 10

4ε

= ε.

Therefore,

lim
n→∞

3n2 +4
2n2 +n+5

=
3
2
.

■ Example 2.1.4 Let {an} be given by

an =
4n2 −1
3n2 −n

.

We claim limn→∞ an = 4/3.
Let ε > 0. We search for a suitable N. First notice that∣∣∣∣4n2 −1

3n2 −n
− 4

3

∣∣∣∣= ∣∣∣∣12n2 −3−12n2 +4n
3(3n2 −n)

∣∣∣∣= |4n−3|
|3(3n2 −n)|

=
|4n−3|

3|3n2 −n|
.

Since n ≥ 1, we have 4n > 3 and n2 ≥ n. Thus, |4n−3|= 4n−3 and |3n2 −n|= 3n2 −n. Also
4n−3 < 4n and 3n−1 ≥ 3n−n.

Therefore,

|4n−3|
3|3n2 −n|

=
4n−3

3(3n2 −n)
=

4n−3
3n(3n−1)

≤ 4n−3
3n(3n−n)

<
4n
6n2 =

4
6n

.

Hence, if N > 4
6ε

, we have, for n ≥ N∣∣∣∣4n2 −1
3n2 −n

− 4
3

∣∣∣∣< 4
6n

≤ 4
6N

< ε.

Therefore,

lim
n→∞

4n2 −1
3n2 −n

=
4
3
.
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Remark 2.1.3 Note that in the definition of convergence of a sequence (Definition 2.1.1), the
inequality |an−a|< ε only needs to be satisfied for “sufficiently large” values of the index n (n ≥ N).
Therefore, it is sometimes convenient to assume that n is already, say, larger than 20, if that helps
simplify a calculation. In this case, the ultimate value of N chosen would also need to be greater
than 20. The following example illustrates this technique.

■ Example 2.1.5 Consider the sequence given by

an =
n2 +5

4n2 +n
.

We prove directly from the definition that {an} converges to 1/4.
Let ε > 0 and consider the expression |an −a| given by∣∣∣∣ n2 +5

4n2 +n
− 1

4

∣∣∣∣= ∣∣∣∣4n2 +20−4n2 −n
4(4n2 +n)

∣∣∣∣= |20−n|
4(4n2 +n)

.

If n ≥ 20, then |20−n|= n−20. Therefore, for such n we have

|20−n|
4(4n2 +n)

=
n−20

4(4n2 +n)
=

n−20
4n(4n+1)

≤ n
16n2 =

1
16n

.

Now if n ≥ N, then 1
16n ≤ 1

16N . We also observe that

1
16N

< ε if N ≥ 1
16ε

.

However, we have also required another condition on n, that is n ≥ 20. To account for both
conditions, we choose a positive integer N > max

{ 1
16ε

,20
}

. Then, for n ≥ N we get∣∣∣∣ n2 +5
4n2 +n

− 1
4

∣∣∣∣= n−20
4n(4n+1)

≤ 1
16n

≤ 1
16N

< ε.

Hence,

lim
n→∞

n2 +5
4n2 +n

=
1
4
.

Remark 2.1.4 The proof of Theorem 2.1.1 below uses a new technique which is convenient when
combining two or more inequalities to achieve an estimate. The definition of convergence states that
for any arbitrary positive number (called ε in Definition 2.1.1) there exists an index (N) for which a
certain inequality is satisfied (|an −a|< ε , for all n ≥ N). Now, if ε > 0, then so is ε/2 (or ε/3, ε/7,
5ε or even cε for any c > 0). So, if an → a there also exists an N1 (possibly different from N) so that
|an −a|< ε/2 for all n ≥ N1. This technique will be used several times in subsequent proofs.

As anticipated in Definition 2.1.1, we now prove that a convergent sequence can have only one
limit. This justifies referring to the limit of a sequence (rather than to a limit of a sequence).

Theorem 2.1.1 A convergent sequence {an} has at most one limit.
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Proof: Suppose {an} converges to a and b. Then given ε > 0, there exist positive integers N1 and
N2 such that

|an −a|< ε/2 for all n ≥ N1

and

|an −b|< ε/2 for all n ≥ N2.

Let N = max{N1,N2}. Then

|a−b| ≤ |a−aN |+ |aN −b|< ε/2+ ε/2 = ε.

Since ε > 0 is arbitrary, it follows that |a−b|= 0 (see Exercise 1.4.10) and hence a = b.
The next result shows that (non-strict) inequalities are preserved “in the limit”.

Theorem 2.1.2 — Comparison Theorem. Let {an} and {bn} be sequences of real numbers.
Suppose that:

(i) limn→∞ an = a and limn→∞ bn = b for some a,b ∈ R,
(ii) an ≤ bn for all n ∈ N.

Then a ≤ b.

Proof: For any ε > 0, there exist N1,N2 ∈ N such that

a− ε

2
< an < a+

ε

2
, for n ≥ N1,

b− ε

2
< bn < b+

ε

2
, for n ≥ N2.

Choose N = max{N1,N2}. Then

a− ε

2
< aN ≤ bN < b+

ε

2
.

Thus, a < b+ ε for any ε > 0. From this it follows that a ≤ b (see Exercise 1.4.10). □

Theorem 2.1.3 — Squeeze Theorem. Let {an}, {bn}, and {cn} be sequences of real numbers.
Suppose that:

(i) an ≤ bn ≤ cn for all n ∈ N,
(ii) limn→∞ an = ℓ= limn→∞ cn.

Then limn→∞ bn = ℓ.

Proof: Fix any ε > 0. Since limn→∞ an = ℓ, there exists N1 ∈ N such that

ℓ− ε < an < ℓ+ ε

for all n ≥ N1. Similarly, since limn→∞ cn = ℓ, there exists N2 ∈ N such that

ℓ− ε < cn < ℓ+ ε

for all n ≥ N2. Let N = max{N1,N2}. Then, for n ≥ N, we have

ℓ− ε < an ≤ bn ≤ cn < ℓ+ ε,

which implies |bn − ℓ|< ε . Therefore, limn→∞ bn = ℓ. □
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Definition 2.1.2 A sequence {an} is bounded above if the set {an : n ∈ N} is bounded above.
Similarly, the sequence {an} is bounded below if the set {an : n ∈ N} is bounded below. We say that
the sequence {an} is bounded if the set {an : n ∈ N} is bounded, that is, if it is both bounded above
and bounded below.

It follows from the observation after Definition 1.5.1 that the sequence {an} is bounded if and
only if there is M ∈ R such that |an| ≤ M for all n ∈ N.

Theorem 2.1.4 A convergent sequence is bounded.

Proof: Suppose the sequence {an} converges to a. Then, for ε = 1, there exists N ∈ N such that

|an −a|< 1 for all n ≥ N.

Since |an|− |a| ≤ ||an|− |a|| ≤ |an −a|, this implies |an|< 1+ |a| for all n ≥ N. Set

M = max{|a1|, . . . , |aN−1|, |a|+1}.

Then |an| ≤ M for all n ∈ N. Therefore, {an} is bounded. □

Definition 2.1.3 Let {an}∞
n=1 be a sequence of real numbers. The sequence {bk}∞

k=1 is called a
subsequence of {an}∞

n=1 if there exists a sequence of strictly increasing positive integers

n1 < n2 < n3 < · · · ,

such that bk = ank for each k ∈ N.

■ Example 2.1.6 Consider the sequence {an} where an = (−1)n for n ∈ N. Then {bk}= {a2k} is a
subsequence of {an} and a2k = 1 for all k (here nk = 2k for all k). Similarly, {ck}= {a2k+1} is also
a subsequence of {an} and a2k+1 =−1 for all k (here nk = 2k+1 for all k).

Lemma 2.1.5 Let {nk}k be a sequence of positive integers with n1 < n2 < n3 < · · · . Then nk ≥ k
for all k ∈ N.

Proof: We use mathematical induction. When k = 1, it is clear that n1 ≥ 1 since n1 is a positive
integer. Assume nk ≥ k for some k. Now nk+1 > nk and, since nk and nk+1 are integers, this implies,
nk+1 ≥ nk +1. Therefore, nk+1 ≥ k+1 by the inductive hypothesis. The conclusion now follows by
the principle of mathematical induction (Theorem 1.3.1). □

Theorem 2.1.6 If a sequence {an} converges to a, then any subsequence {ank} of {an} also
converges to a.

Proof: Suppose {an} converges to a and let ε > 0 be given. Then there exists N such that

|an −a|< ε for all n ≥ N.

For any k ≥ N, since nk ≥ k, we also have

|ank −a|< ε.

Thus, {ank} converges to a as k → ∞. □
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■ Example 2.1.7 Let an = (−1)n for n ∈ N. Then the sequence {an} is divergent. Indeed, suppose
by contradiction that

lim
n→∞

an = ℓ.

Then every subsequence of {an} converges to a number ℓ∈R. From the previous theorem, it follows,
in particular, that

ℓ= lim
k→∞

a2k = 1 and ℓ= lim
k→∞

a2k+1 =−1.

This contradiction shows that the sequence is divergent.
Since the sequence {an} is bounded but not convergent, this example illustrates the fact that the

converse of Theorem 2.1.4 is not true.

Remark 2.1.5 Given a positive integer k0, it will be convenient to also talk about the sequence
{an}n≥k0 , that is, a function defined only for the integers greater than or equal to k0. For simplicity
of notation, we may also denote this sequence by {an} whenever the integer k0 is clear from the
context. For instance, we talk of the sequence {an} given by

an =
n+1

(n−1)(n−2)
.

although a1 and a2 are not defined. In all cases, the sequence must be defined from some integer
onwards.

Exercises
2.1.1 Prove the following directly from the definition of limit.

(a) lim
n→∞

2n2 +2
3n3 +1

= 0.

(b) lim
n→∞

n+1
5n+1

=
1
5

.

(c) lim
n→∞

n−5
2n+1

=
1
2

.

(d) lim
n→∞

2n3 −3
4n3 +n

=
1
2

.

(e) lim
n→∞

5−3n2

2n2 +1
=−3

2
.

(f) lim
n→∞

√
n+5

3
√

n+2
=

1
3

.

2.1.2 Prove the following directly from the definition of limit.

(a) lim
n→∞

n2 +n−7
3n2 +5

=
1
3

.

(b) lim
n→∞

n2 +1
5n2 +n+1

=
1
5

.
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(c) lim
n→∞

5n2 +n+1
3n2 +2n−7

=
5
3

.

(d) lim
n→∞

3n2 +5
6n2 +n

=
1
2

.

(e) lim
n→∞

2n2 +n+5
5n2 +1

=
2
5

.

(f) lim
n→∞

2n+1
3n−1

=
2
3

.

(g) lim
n→∞

2n3 +1
4n3 −n

=
1
2

.

(h) lim
n→∞

4n2 −1
n2 −n

= 4.

2.1.3 Prove that if {an} converges to a, a ∈ R, then {|an|} converges to |a|. Is the converse true?

2.1.4 Let {an} be a sequence. Prove that if the sequence {|an|} converges to 0, then {an} also
converges to 0.

2.1.5 Prove that limn→∞

sinn
n

= 0.

2.1.6 Let {xn} be a bounded sequence and let {yn} be a sequence that converges to 0. Prove that
the sequence {xnyn} converges to 0.

2.1.7 Prove that the following limits are 0. (Hint: use Theorem 2.1.3.)

(a) lim
n→∞

n+ cos(n2 −3)
2n2 +1

(b) lim
n→∞

3n

n!

(c) lim
n→∞

n!
nn

(d) lim
n→∞

n2

3n (Hint: see Exercise 1.3.3(d)).

2.1.8 Prove that for every real number x there is a sequence of rational numbers {rn} which
converges to x. (Hint: use the density property of Q, Theorem 1.6.3.)

2.1.9 Prove that for every real number x there is a sequence of irrational numbers {sn} which
converges to x. (Hint: use the density of the irrational numbers, Theorem 1.6.5.)

2.1.10 Let A be a non-empty subset of real numbers bounded above and let α = supA. Prove that
there is a sequence {xn} in A which converges to α .

2.1.11 Prove that if limn→∞ an = a > 0, then there exists N ∈ N such that an > 0 for all n ≥ N.

2.1.12 ▶ Prove that if limn→∞ an = a ̸= 0, then limn→∞
an+1
an

= 1. Is the conclusion still true if
a = 0?

2.1.13 Let {an} be a sequence of real numbers such that limn→∞ an = 3. Use Definition 2.1.1 to
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prove the following:

(a) lim
n→∞

(3an −7) = 2.

(b) lim
n→∞

an +1
an

=
4
3

. (Hint: prove first that there is N such that an > 1 for n ≥ N.)

2.1.14 Let an ≥ 0 for all n ∈ N. Prove that if limn→∞ an = ℓ, then limn→∞

√
an =

√
ℓ.

2.1.15 Prove that the sequence {an} with an = sin(nπ/2) is divergent.

2.1.16 ▶ Consider a sequence {an}.

(a) Prove that limn→∞ an = ℓ if and only if limk→∞ a2k = ℓ and limk→∞ a2k+1 = ℓ.
(b) Prove that limn→∞ an = ℓ if and only if limk→∞ a3k = ℓ, limk→∞ a3k+1 = ℓ, and

limk→∞ a3k+2 = ℓ.

2.1.17 Given a sequence {an}, define a new sequence {bn} by

bn =
a1 +a2 + . . .+an

n
.

(a) Prove that if limn→∞ an = ℓ, then limn→∞ bn = ℓ.
(b) Find a counterexample to show that the converse does not hold in general.

2.2 Limit Theorems
We now prove several theorems that facilitate the computation of limits of some sequences in

terms of those of other simpler sequences.

Theorem 2.2.1 Let {an} and {bn} be sequences of real numbers and let k be a real number. Suppose
{an} converges to a and {bn} converges to b. Then the sequences {an + bn}, {kan}, and {anbn}
converge and

(i) limn→∞(an +bn) = a+b,
(ii) limn→∞(kan) = ka,

(iii) limn→∞(anbn) = ab,
(iv) If in addition b ̸= 0 and bn ̸= 0 for n ∈ N, then {an/bn} converges and limn→∞ an/bn = a/b.

Proof: (i) Fix any ε > 0. Since {an} converges to a, there exists N1 ∈ N such that

|an −a|< ε

2
for all n ≥ N1.

Similarly, there exists N2 ∈ N such that

|bn −b|< ε

2
for all n ≥ N2.

Let N = max{N1,N2}. For any n ≥ N, one has

|(an +bn)− (a+b)|= |(an −a)+(bn −b)| ≤ |an −a|+ |bn −b|< ε

2
+

ε

2
= ε.
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Therefore, limn→∞(an +bn) = a+b. This proves (i).

(ii) If k = 0, then ka = 0 and kan = 0 for all n. The conclusion follows immediately. Suppose
next that k ̸= 0. Given ε > 0, let N ∈ N be such that |an −a|< ε/|k| for n ≥ N. Then for n ≥ N,

|kan − ka|= |k(an −a)|= |k||an −a|< |k| ε

|k|
= ε.

It follows that limn→∞(kan) = ka as desired. This proves (ii).

(iii) Since {an} is convergent, it follows from Theorem 2.1.4 that it is bounded. Thus, there
exists M > 0 such that

|an| ≤ M for all n ∈ N .

For every n ∈ N, we have the following estimate:

|anbn −ab|= |anbn −anb+anb−ab| ≤ |an||bn −b|+ |b||an −a|. (2.1)

Let ε > 0. Since {an} converges to a, we may choose N1 ∈ N such that

|an −a|< ε

2(|b|+1)
for all n ≥ N1.

Similarly, since {bn} converges to b, we may choose N2 ∈ N such that

|bn −b|< ε

2M
for all n ≥ N2.

Let N = max{N1,N2}. Then, for n ≥ N, it follows from (2.1) that

|anbn −ab|< M
ε

2M
+ |b| ε

2(|b|+1)
=

ε

2
+

(
|b|

|b|+1

)
ε

2
<

ε

2
+

ε

2
= ε for all n ≥ N.

Therefore, limn→∞ anbn = ab. This proves (iii).

(iv) We first show that

lim
n→∞

1
bn

=
1
b
.

Since {bn} converges to b, there is N1 ∈ N such that

|bn −b|< |b|
2

for n ≥ N1.

Using Corollary (1.4.4) it follows that, for such n,

−|b|
2

< |bn|− |b|< |b|
2

and, hence,
|b|
2

< |bn|. For each n ≥ N1, we have the following estimate∣∣∣∣ 1
bn

− 1
b

∣∣∣∣= |bn −b|
|bn||b|

≤ |bn −b|
|b|
2
|b|

=
2|bn −b|

b2 . (2.2)
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Now let ε > 0. Since limn→∞ bn = b, there exists N2 ∈ N such that

|bn −b|< b2ε

2
for all n ≥ N2.

Let N = max{N1,N2}. By (2.2), one has∣∣∣∣ 1
bn

− 1
b

∣∣∣∣≤ 2|bn −b|
b2 < ε for all n ≥ N.

It follows that limn→∞

1
bn

=
1
b

.

Finally, we can apply part (iii) and have

lim
n→∞

an

bn
= lim

n→∞
an

(
1
bn

)
=

a
b
.

The proof is now complete. □

■ Example 2.2.1 Consider the sequence {an} given by

an =
3n2 −2n+5
1−4n+7n2 . (2.3)

Dividing numerator and denominator by n2, we can write

an =
3−2/n+5/n2

1/n2 −4/n+7
(2.4)

Therefore, by the limit theorems above,

lim
n→∞

an = lim
n→∞

3−2/n+5/n2

1/n2 −4/n+7
=

limn→∞ 3− limn→∞ 2/n+ limn→∞ 5/n2

limn→∞ 1/n2 − limn→∞ 4/n+ limn→∞ 7
=

3
7
. (2.5)

■ Example 2.2.2 Let an =
n
√

b, where b > 0. Consider the case where b > 1. In this case, an > 1 for
every n. By the binomial theorem,

b = an
n = (an −1+1)n ≥ 1+n(an −1).

This implies

0 < an −1 ≤ b−1
n

.

For each ε > 0, choose N >
b−1

ε
. It follows that for n ≥ N,

|an −1|= an −1 <
b−1

n
≤ b−1

N
< ε.

Thus, limn→∞ an = 1.
In the case where b = 1, it is obvious that an = 1 for all n and, hence, limn→∞ an = 1.
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If 0 < b < 1, let c =
1
b

and define

xn =
n
√

c =
1
an

.

Since c > 1, it has been shown that limn→∞ xn = 1. This implies

lim
n→∞

an = lim
n→∞

1
xn

= 1.

Exercises
2.2.1 Find the following limits:

(a) lim
n→∞

3n2 −6n+7
4n2 −3

,

(b) lim
n→∞

1+3n−n3

3n3 −2n2 +1
.

2.2.2 Find the following limits:

(a) lim
n→∞

√
3n+1

√
n+

√
3

,

(b) lim
n→∞

n

√
2n+1

n
.

2.2.3 ▶ Find the following limits if they exist:

(a) lim
n→∞

(
√

n2 +n−n),

(b) lim
n→∞

(
3
√

n3 +3n2 −n),

(c) lim
n→∞

(
3
√

n3 +3n2 −
√

n2 +n),

(d) lim
n→∞

(
√

n+1−
√

n),

(e) lim
n→∞

(
√

n+1−
√

n)/n.

2.2.4 Find the following limits.

(a) For |r|< 1 and b ∈ R, limn→∞(b+br+br2 + · · ·+brn).

(b) lim
n→∞

(
2
10

+
2

102 + · · ·+ 2
10n

)
.

2.2.5 Provide counterexamples for each of the following statements:

(a) If {an} and {bn} are divergent sequences, then {an +bn} is a divergent sequence.
(b) If {an} and {bn} are divergent sequences, then {anbn} is a divergent sequence.
(c) If {an} and {an +bn} are divergent sequences, then {bn} is a divergent sequence.
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2.3 Monotone Sequences
Definition 2.3.1 A sequence {an} is called increasing if

an ≤ an+1 for all n ∈ N.

It is called decreasing if

an ≥ an+1 for all n ∈ N.

If {an} is increasing or decreasing, then it is called a monotone sequence.
The sequence is called strictly increasing (resp. strictly decreasing) if an < an+1 for all n ∈ N

(resp. an > an+1 for all n ∈ N). If {an} is strictly increasing or strictly decreasing, then it is called a
strictly monotone sequence.

It is easy to show by induction that if {an} is an increasing sequence, then an ≤ am whenever
n ≤ m.

Theorem 2.3.1 — Monotone Convergence Theorem. Let {an} be a sequence of real numbers.
The following hold:

(i) If {an} is increasing and bounded above, then it is convergent.
(ii) If {an} is decreasing and bounded below, then it is convergent.

Proof: (i) Let {an} be an increasing sequence that is bounded above. Define A = {an : n ∈N}. Then
A is a subset of R that is nonempty and bounded above and, hence, supA exists. Let ℓ= supA and
let ε > 0. By Proposition 1.5.1, there exists N ∈ N such that

ℓ− ε < aN ≤ ℓ.

Since {an} is increasing,

ℓ− ε < aN ≤ an for all n ≥ N.

On the other hand, since ℓ is an upper bound for A, we have an ≤ ℓ for all n. Thus,

ℓ− ε < an ≤ ℓ < ℓ+ ε for all n ≥ N.

Therefore, limn→∞ an = ℓ.
(ii) Let {an} be a decreasing sequence that is bounded below. Define bn =−an. Then {bn} is

increasing and bounded above (if M is a lower bound for {an}, then −M is an upper bound for {bn}).
Let

ℓ= lim
n→∞

bn = lim
n→∞

(−an).

Then {an} converges to −ℓ by Theorem 2.2.1. □

Remark 2.3.1 It follows from the proof of Theorem 2.3.1 that if {an} is increasing and bounded
above, then

lim
n→∞

an = sup{an : n ∈ N}.

Similarly, if {an} is decreasing and bounded below, then

lim
n→∞

an = inf{an : n ∈ N}.
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■ Example 2.3.1 Given r ∈ R with |r|< 1, define an = rn for n ∈ N. Then

lim
n→∞

an = 0.

This is clear if r = 0. Let us first consider the case where 0 < r < 1. Then 0 ≤ an+1 = ran ≤ an for
all n. Therefore, {an} is decreasing and bounded below. By Theorem 2.3.1, the sequence converges.
Let

ℓ= lim
n→∞

an.

Since an+1 = ran for all n, taking limits on both sides gives ℓ= rℓ. Thus, (1− r)ℓ= 0 and, hence,
ℓ= 0. In the general case, we only need to consider the sequence defined by bn = |an| for n ∈N; see
Exercise 2.1.4.

■ Example 2.3.2 Consider the sequence {an} defined as follows:

a1 = 2 (2.6)

an+1 =
an +5

3
for n ≥ 1. (2.7)

We will apply the Monotone Convergence Theorem (Theorem 2.3.1) to show that the sequence
converges and then find the value of its limit. First we will show that the sequence is increasing. We
prove by induction that for all n ∈ N, an < an+1. Since a2 =

a1+5
3 = 7

3 > 2 = a1, the statement is
true for n = 1. Next, suppose ak < ak+1 for some k ∈ N. Then ak +5 < ak+1 +5 and (ak +5)/3 <
(ak+1 +5)/3. Therefore,

ak+1 =
ak +5

3
<

ak+1 +5
3

= ak+2.

It follows by induction that the sequence is increasing.
Next we prove that the sequence is bounded above by 3. Again, we proceed by induction. The

statement is clearly true for n = 1. Suppose that ak ≤ 3 for some k ∈ N. Then

ak+1 =
ak +5

3
≤ 3+5

3
=

8
3
≤ 3.

It follows that an ≤ 3 for all n ∈ N.
From the Monotone Convergence Theorem (Theorem 2.3.1), we deduce that there is an ℓ ∈ R

such that limn→∞ an = ℓ. Since the subsequence {ak+1}∞
k=1 also converges to ℓ, taking limits on both

sides of the equation in (2.7), we obtain

ℓ=
ℓ+5

3
.

Therefore, 3ℓ= ℓ+5 and, hence, ℓ= 5/2.

■ Example 2.3.3 —The number e. Consider the sequence {an} given by

an =

(
1+

1
n

)n

, n ∈ N .
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By the binomial theorem,

an =
n

∑
k=0

(
n
k

)(
1
n

)k

= 1+1+
n(n−1)

2!
1
n2 +

n(n−1)(n−2)
3!

1
n3 + · · ·+ n(n−1) · · ·(n− (n−1))

n!
1
nn

= 1+1+
1
2!

(
1− 1

n

)
+

1
3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− n−1
n

)
.

The corresponding expression for an+1 has one more term and each factor (1− k
n) is replaced by the

larger factor (1− k
n+1). It is then clear that an < an+1 for all n ∈ N. Thus, the sequence is increasing.

Moreover,

an ≤ 1+1+
1
2!

+
1
3!

+ · · ·+ 1
n!

< 2+
1

1.2
+

1
2.3

+ · · ·+ 1
(n−1) ·n

= 2+
n−1

∑
k=1

(
1
k
− 1

k+1

)
= 3− 1

n
< 3.

Hence the sequence is bounded above.
By the Monotone Convergence Theorem (Theorem 2.3.1), limn→∞ an exists and is denoted by e.

In fact, e is an irrational number and e ≈ 2.71828.

The following fundamental result is an application of the Monotone Convergence Theorem.

Theorem 2.3.2 — Nested Intervals Theorem. Let {In}∞
n=1 be a sequence of nonempty closed

bounded intervals satisfying In+1 ⊂ In for all n ∈ N. Then the following hold:

(i)
⋂

∞
n=1 In ̸= /0.

(ii) If, in addition, the lengths of the intervals In converge to zero, then
⋂

∞
n=1 In consists of a single

point.

Proof: Let {In} be as in the statement with In = [an,bn]. In particular, an ≤ bn for all n ∈ N. Given
that In+1 ⊂ In, we have an ≤ an+1 and bn+1 ≤ bn for all n ∈ N. This shows that {an} is an increasing
sequence bounded above by b1 and {bn} is a decreasing sequence bounded below by a1. By the
Monotone Convergence Theorem (Theorem 2.3.1), there exist a,b ∈ R such that limn→∞ an = a
and limn→∞ bn = b. Since an ≤ bn for all n, by Theorem 2.1.2, we get a ≤ b. Now, we also have
an ≤ a and b ≤ bn for all n ∈ N (since {an} is increasing and {bn} is decreasing). This shows that if
a ≤ x ≤ b, then x ∈ In for all n ∈ N. Thus, [a,b]⊂

⋂
∞
n=1 In. It follows that

⋂
∞
n=1 In ̸= /0. This proves

part (i).
Now note also that

⋂
∞
n=1 In ⊂ [a,b]. Indeed, if x ∈

⋂
∞
n=1 In, then x ∈ In for all n. Therefore,

an ≤ x ≤ bn for all n. Using Theorem 2.1.2, we conclude a ≤ x ≤ b. Thus, x ∈ [a,b]. This proves the
desired inclusion and, hence,

⋂
∞
n=1 In = [a,b].

We now prove part (ii). Suppose the lengths of the intervals In converge to zero. This
means limn→∞(bn − an) = 0. Then b = limn→∞ bn = limn→∞[(bn − an)+ an] = limn→∞(bn − an)+
limn→∞ an = 0+a = a. It follows that

⋂
∞
n=1 In = {a} as desired. □
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When a monotone sequence is not bounded, it does not converge. However, the behavior follows
a clear pattern. To make this precise we provide the following definition.

Definition 2.3.2 A sequence {an} is said to diverge to ∞ if for every M ∈R, there exists N ∈N such
that

an > M for all n ≥ N.

In this case, we write limn→∞ an = ∞. Similarly, we say that {an} diverges to −∞ and write
limn→∞ an =−∞ if for every M ∈ R, there exists N ∈ N such that

an < M for all n ≥ N.

Remark 2.3.2 We should not confuse a sequence that diverges to ∞ (that is, one that satisfies the
previous definition), with a divergent sequence (that is, one that does not converge).

■ Example 2.3.4 Consider the sequence {an} given by

an =
n2 +1

5n
.

We will show, using Definition 2.3.2, that limn→∞ an = ∞.
Let M ∈ R. Note that

n2 +1
5n

=
n
5
+

1
5n

≥ n
5
.

Choose N > 5M. Then, if n ≥ N, we have

an ≥
n
5
≥ N

5
> M.

The following result completes the description of the behavior of monotone sequences.

Theorem 2.3.3 If a sequence {an} is increasing and not bounded above, then

lim
n→∞

an = ∞.

Similarly, if {an} is decreasing and not bounded below, then

lim
n→∞

an =−∞.

Proof: Fix any real number M. Since {an} is not bounded above, there exists N ∈ N such that
aN ≥ M. Then

an ≥ aN ≥ M for all n ≥ N

because {an} is increasing. Therefore, limn→∞ an = ∞. The proof for the second case is similar. □

Theorem 2.3.4 Let {an}, {bn}, and {cn} be sequences of real numbers and let k be a constant.
Suppose

lim
n→∞

an = ∞, lim
n→∞

bn = ∞, and lim
n→∞

cn =−∞

Then
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(i) limn→∞(an +bn) = ∞,
(ii) limn→∞(anbn) = ∞,

(iii) limn→∞(ancn) =−∞,
(iv) limn→∞ kan = ∞ if k > 0, and limn→∞ kan =−∞ if k < 0,

(v) limn→∞

1
an

= 0. (Here we assume an ̸= 0 for all n.)

Proof: We provide proofs for (i) and (v) and leave the others as exercises.
(i) Fix any M ∈ R. Since limn→∞ an = ∞, there exists N1 ∈ N such that

an ≥
M
2

for all n ≥ N1.

Similarly, there exists N2 ∈ N such that

bn ≥
M
2

for all n ≥ N2.

Let N = max{N1,N2}. Then it is clear that

an +bn ≥ M for all n ≥ N.

This proves (i).
(v) For any ε > 0, let M = 1/ε . Since limn→∞ an = ∞, there exists N ∈ N such that

an >
1
ε

for all n ≥ N.

This implies that for n ≥ N,∣∣∣∣ 1
an

−0
∣∣∣∣= 1

an
< ε.

Thus, (v) holds. □

The proof of the comparison theorem below follows directly from Definition 2.3.2 (see also
Theorem 2.1.2).

Theorem 2.3.5 Suppose an ≤ bn for all n ∈ N.

(a) If limn→∞ an = ∞, then limn→∞ bn = ∞.
(b) If limn→∞ bn =−∞, then limn→∞ an =−∞.

Exercises
2.3.1 ▶ Let a1 =

√
2. Define

an+1 =
√

an +2 for n ≥ 1.

(a) Prove that an < 2 for all n ∈ N.
(b) Prove that {an} is an increasing sequence.
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(c) Prove that limn→∞ an = 2.

2.3.2 ▷ Prove that each of the following sequences is convergent and find its limit.

(a) a1 = 1 and an+1 =
an +3

2
for n ≥ 1.

(b) a1 =
√

6 and an+1 =
√

an +6 for n ≥ 1.

(c) a1 > 1 and an+1 = 2− 1
an

for n ≥ 1.

(d) a1 > 0 and an+1 =
1
3

(
2an +

1
a2

n

)
for n ≥ 1.

(e) a1 >
√

b for b > 0 and an+1 =
1
2

(
an +

b
an

)
for n ≥ 1.

2.3.3 ▷ Prove that each of the following sequences is convergent and find its limit.

(a)
√

2;
√

2
√

2;
√

2
√

2
√

2; · · ·

(b) 1/2;
1

2+1/2
;

1

2+
1

2+1/2

; · · ·

2.3.4 Prove that for every real number x there is a strictly monotone sequence of rational numbers
{rn} which converges to x. (Hint: use the density property of Q, Theorem 1.6.3)

2.3.5 Prove that for every real number x there is a strictly monotone sequence of irrational numbers
{sn} which converges to x. (Hint: use the density of the irrational numbers, Theorem 1.6.5.)

2.3.6 Prove that the following sequence is convergent:

an = 1+
1
2!

+
1
3!

+ · · ·+ 1
n!
, n ∈ N .

2.3.7 ▷ Let a and b be two positive real numbers with a < b. Define a1 = a, b1 = b, and

an+1 =
√

anbn and bn+1 =
an +bn

2
for n ≥ 1.

Show that {an} and {bn} converge to the same limit.

2.3.8 Prove the following using Definition 2.3.2.

(a) lim
n→∞

2n2 +n+1
n−2

= ∞.

(b) lim
n→∞

1−3n2

n+2
=−∞.

2.3.9 Prove parts (ii), (iii), and (iv) of Theorem 2.3.4.

2.3.10 Prove Theorem 2.3.5.
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2.4 The Bolzano-Weierstrass Theorem
The Bolzano-Weierstrass Theorem is at the foundation of many results in analysis. It is, in fact,

equivalent to the completeness axiom of the real numbers.

Theorem 2.4.1 — Bolzano-Weierstrass. Every bounded sequence {an} of real numbers has a
convergent subsequence.

Proof: Suppose {an} is a bounded sequence. Define A = {an : n ∈ N} (the set of values of the
sequence {an}). If A is finite, then at least one of the elements of A, say x, must be equal to an for
infinitely many choices of n. More precisely, Bx = {n ∈ N : an = x} is infinite. We can then define
a convergent subsequence as follows. Pick n1 such that an1 = x. Now, since Bx is infinite, we can
choose n2 > n1 such that an2 = x. Continuing in this way, we can define a subsequence {ank} which
is constant, equal to x and, thus, converges to x.

Suppose now that A is infinite. Since {an} is a bounded sequence there exist c,d ∈ R such that
c ≤ an ≤ d for all n ∈ N, that is, A ⊂ [c,d].

We define a sequence of nonempty nested closed bounded intervals as follows. Set I1 = [c,d].
Next consider the two subintervals [c, c+d

2 ] and [ c+d
2 ,d]. Since A is infinite, at least one of A∩ [c, c+d

2 ]
or A∩ [ c+d

2 ,d] is infinite. Let I2 = [c, c+d
2 ] if A∩ [c, c+d

2 ] is infinite and I2 = [ c+d
2 ,d] otherwise.

Continuing in this way, we construct a nested sequence of nonempty closed bounded intervals {In}
such that In ∩A is infinite and the length of In tends to 0 as n → ∞.

We now construct the desired subsequence of {an} as follows. Let n1 = 1. Choose n2 > n1 such
that an2 ∈ I2. This is possible since I2 ∩A is infinite. Next choose n3 > n2 such that an3 ∈ I3. In this
way, we obtain a subsequence {ank} such that ank ∈ Ik for all k ∈ N.

Set In = [cn,dn]. Then limn→∞(dn − cn) = 0. We also know from the proof of the Monotone
Convergence Theorem (Theorem 2.3.1), that {cn} converges. Say ℓ= limn→∞ cn. Thus, limn→∞ dn =
limn→∞[(dn − cn)+ cn] = ℓ as well. Since ck ≤ ank ≤ dk for all k ∈ N, it follows from Theorem 2.1.2
that limk→∞ ank = ℓ. This completes the proof. □

Definition 2.4.1 (Cauchy sequence). A sequence {an} of real numbers is called a Cauchy sequence
if for any ε > 0 there exists a positive integer N such that

|am −an|< ε for any m,n ≥ N.

Theorem 2.4.2 A convergent sequence is a Cauchy sequence.

Proof: Let {an} be a convergent sequence and let

lim
n→∞

an = a.

Then for any ε > 0, there exists a positive integer N such that

|an −a|< ε/2 for all n ≥ N.

For any m,n ≥ N, one has

|am −an| ≤ |am −a|+ |an −a|< ε/2+ ε/2 = ε.

Thus, {an} is a Cauchy sequence. □
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Theorem 2.4.3 A Cauchy sequence is bounded.

Proof: Let {an} be a Cauchy sequence. Then for ε = 1, there exists a positive integer N such that

|am −an|< 1 for all m,n ≥ N.

In particular,

|an −aN |< 1 for all n ≥ N.

Let M = max{|a1|, . . . , |aN−1|,1+ |aN |}. Then, for n = 1, . . . ,N − 1, we clearly have |an| ≤ M.
Moreover, for n ≥ N,

|an|= |an −aN +aN | ≤ |an −aN |+ |aN | ≤ 1+ |aN | ≤ M.

Therefore, |an| ≤ M for all n ∈ N and, thus, {an} is bounded. □

Lemma 2.4.4 A Cauchy sequence that has a convergent subsequence is convergent.

Proof: Let {an} be a Cauchy sequence that has a convergent subsequence. For any ε > 0, there
exists a positive integer N1 such that

|am −an|< ε/2 for all m,n ≥ N1.

Let {ank} be a subsequence of {an} that converges to some point a. For the above ε , there exists a
positive number K such that

|ank −a|< ε/2 for all k ≥ K.

Let N = max{N1,K} and consider nℓ such that ℓ > N. Then for any n ≥ N, we have

|an −a| ≤ |an −anℓ |+ |anℓ −a|< ε/2+ ε/2 = ε.

Therefore, {an} converges to a. □

Theorem 2.4.5 Any Cauchy sequence of real numbers is convergent.

Proof: Let {an} be a Cauchy sequence. Then it is bounded by Theorem 2.4.3. By the Bolzano-
Weierstrass theorem, {an} has a convergent subsequence. Therefore, it is convergent by Lemma
2.4.4. □

Remark 2.4.1 It follows from Definition 2.4.1 that {an} is a Cauchy sequence if and only if for
every ε > 0, there exists N ∈ N such that

|an+p −an|< ε for all n ≥ N and for all p ∈ N .

Definition 2.4.2 A sequence {an} is called contractive if there exists k ∈ [0,1) such that

|an+2 −an+1| ≤ k|an+1 −an| for all n ∈ N .

Theorem 2.4.6 Every contractive sequence is convergent.
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Proof: By induction, one has

|an+1 −an| ≤ kn−1|a2 −a1| for all n ∈ N .

Thus,

|an+p −an| ≤ |an+1 −an|+ |an+2 −an+1|+ · · ·+ |an+p −an+p−1|
≤ (kn−1 + kn + · · ·+ kn+p−2)|a2 −a1|
≤ kn−1(1+ k+ k2 + · · ·+ kp−1)|a2 −a1|

≤ kn−1

1− k
|a2 −a1|.

for all n, p ∈ N. Since kn−1 → 0 as n → ∞ (independently of p), this implies {an} is a Cauchy
sequence and, hence, it is convergent. □

The condition k < 1 in the previous theorem is crucial. Consider the following example.

■ Example 2.4.1 Let an = lnn for all n ∈ N. Since 1 < n+2
n+1 < n+1

n for all n ∈ N and the natural
logarithm is an increasing function, we have

|an+2 −an+1|= | ln(n+2)− ln(n+1)|=
∣∣∣∣ln(n+2

n+1

)∣∣∣∣= ln
(

n+2
n+1

)
< ln

(
n+1

n

)
= | ln(n+1)− lnn|= |an+1 −an|.

Therefore, the inequality in Definition 2.4.2 is satisfied with k = 1, yet the sequence {lnn} does
not converge since it is not bounded.

Exercises

2.4.1 ▶ Determine which of the following are Cauchy sequences.

(a) an = (−1)n.
(b) an = (−1)n/n.
(c) an = n/(n+1).
(d) an = (cosn)/n.

2.4.2 Prove that the sequence

an =
ncos(3n2 +2n+1)

n+1

has a convergent subsequence.
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2.4.3 Let f : [0,∞)→ R be such that f (x)> 0 for all x. Define

an =
f (n)

f (n)+1
.

Prove that the sequence {an} has a convergent subsequence.

2.4.4 Define

an =
1+2n

2n for n ∈ N .

Prove that the sequence {an} is contractive.

2.4.5 Let r ∈ R be such that |r| < 1. Define an = rn for n ∈ N. Prove that the sequence {an} is
contractive.

2.4.6 Prove that the sequence {1/n}∞

n=1 is not contractive.

2.5 Limit Superior and Limit Inferior
In this section, we consider the extended real line R defined in Definition 1.5.4. Along with the

usual inequalities in R, we use c < ∞, −∞ < c for all c ∈ R, and −∞ < ∞.

Definition 2.5.1 Let {xn} be a sequence in R and let ℓ be a real number. We define the following:

(i) limn→∞ xn = ℓ if for any ε > 0, there exists N ∈ N such that xn ∈ R and |xn − ℓ| < ε for all
n ≥ N.

(ii) limn→∞ xn = ∞ if for any M ∈ R, there exists N ∈ N such that M < xn for all n ≥ N.
(iii) limn→∞ xn =−∞ if for any M ∈ R, there exists N ∈ N such that xn < M for all n ≥ N.

Let {an} be a sequence of real numbers. Define

sn = sup{ak : k ≥ n} (2.8)

and

tn = inf{ak : k ≥ n}. (2.9)

Observe that in general {sn} and {tn} are sequences in R.

Definition 2.5.2 Let {an} be a sequence of real numbers. Then the limit superior of {an}, denoted
by limsupn→∞ an, is defined by

limsup
n→∞

an = lim
n→∞

sn,

where sn is defined in (2.8).
Similarly, the limit inferior of {an}, denoted by liminfn→∞ an, is defined by

liminf
n→∞

an = lim
n→∞

tn,

where tn is defined in (2.9).
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■ Example 2.5.1 Consider the sequence {an} given by an = (−1)n. For any n ∈ N,

sn = sup{ak : k ≥ n}= 1 and tn = inf{ak : k ≥ n}=−1.

Then limn→∞ sn = 1 and limn→∞ tn =−1. Thus, limsupn→∞ an = 1 and liminfn→∞ an =−1.

■ Example 2.5.2 Consider the sequence {an} given by an = (−1)nn. For any n ∈ N,

sn = sup{ak : k ≥ n}= ∞ and tn = inf{ak : k ≥ n}=−∞.

Then limn→∞ sn = ∞ and limn→∞ tn =−∞. Thus, limsupn→∞ an = ∞ and liminfn→∞ an =−∞.

■ Example 2.5.3 Consider the sequence {an} given by an = n. For any n ∈ N,

sn = sup{ak : k ≥ n}= ∞ and tn = inf{ak : k ≥ n}= n.

Then limn→∞ sn =∞ and limn→∞ tn = limn→∞ n=∞. Thus, limsupn→∞ an =∞ and liminfn→∞ an =∞.
In a similar way, if {bn} is given by bn =−n, we have limsupn→∞ bn =−∞ and liminfn→∞ bn =−∞.

Proposition 2.5.1 Let {an} be a bounded sequence of real numbers. Then limsupn→∞ an and
liminfn→∞ an exist (as real numbers).

Proof: Since {an} is bounded, we see that the sequence {sn} defined in (2.8) is a bounded sequence
of real numbers, so it is bounded below. If m ≤ n, then {ak : k ≥ n} ⊂ {ak : k ≥ m}. Thus, it follows
from Theorem 1.5.3 that sn ≤ sm, so the sequence {sn} is decreasing. Similarly, the sequence {tn}
defined in (2.9) is increasing and bounded above. Therefore, both sequences are convergent by
Theorem 2.3.1. By the definition, limsupn→∞ an and liminfn→∞ an exist (as real numbers). □

Proposition 2.5.2 Let {an} be a sequence of real numbers. If {an} is not bounded above, then

limsup
n→∞

an = ∞.

Similarly, if {an} is not bounded below, then

liminf
n→∞

an =−∞,

Proof: Suppose {an} is not bounded above. We will show that limn→∞ sn = ∞, where sn is defined
in (2.8). Since {an} is not bounded above, for any n ∈ N, the set {ak : k ≥ n} is also not bounded
above. Thus, sn = sup{ak : k ≥ n}= ∞ for all n. Therefore,

limsup
n→∞

an = lim
n→∞

sn = ∞.

The proof for the second case is similar. □

Proposition 2.5.3 Let {an} be a sequence of real numbers. Then

(i) limsupn→∞ an =−∞ if and only if limn→∞ an =−∞,
(ii) liminfn→∞ an = ∞ if and only if limn→∞ an = ∞.
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Proof: Suppose limsupn→∞ an =−∞. Then for any M ∈ R, there exists N ∈ N such that

sn < M for all n ≥ N,

where sn is defined in (2.8). In particular, sN = sup{ak : k ≥ N}< M, so ak ≤ sN < M for all k ≥ N.
By the definition, limn→∞ an =−∞. Let us now prove the converse. Suppose limn→∞ an =−∞. Then
for any M ∈ R, there exists N ∈ N such that

an < M−1 < M for all n ≥ N.

Take any n ≥ N. Since the set {ak : k ≥ n} is bounded above by M−1, we get

sn = sup{ak : k ≥ n} ≤ M−1 < M.

It follows that limn→∞ sn =−∞. By the definition, limsupn→∞ an =−∞. This completes the proof
of (i). The proof of (ii) is similar. □

Theorem 2.5.4 Let {an} be a sequence and let ℓ ∈ R. The following are equivalent:

(i) limsupn→∞ an = ℓ.
(ii) For any ε > 0, there exists N ∈ N such that

an < ℓ+ ε for all n ≥ N,

and there exists a subsequence {ank} of {an} such that

lim
k→∞

ank = ℓ.

Proof: Suppose limsupn→∞ an = ℓ. Then limn→∞ sn = ℓ, where sn is defined in (2.8). For any ε > 0,
there exists N ∈ N such that

ℓ− ε < sn < ℓ+ ε for all n ≥ N.

This implies sN = sup{an : n ≥ N}< ℓ+ ε. Thus,

an < ℓ+ ε for all n ≥ N.

Moreover, for ε = 1, there exists N1 ∈ N such that

ℓ−1 < sN1 = sup{an : n ≥ N1}< ℓ+1.

Thus, there exists n1 ∈ N such that

ℓ−1 < an1 < ℓ+1.

For ε = 1
2 , there exists N2 ∈ N and N2 > n1 such that

ℓ− 1
2
< sN2 = sup{an : n ≥ N2}< ℓ+

1
2
.
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Thus, there exists n2 > n1 such that

ℓ− 1
2
< an2 < ℓ+

1
2
.

In this way, we can construct a strictly increasing sequence {nk} of positive integers such that

ℓ− 1
k
< ank < ℓ+

1
k
.

Therefore, limk→∞ ank = ℓ.
We now prove the converse. Suppose that (ii) is satisfied. Given any ε > 0, there exists N ∈ N

such that

an < ℓ+
ε

2
and ℓ− ε < ank < ℓ+ ε

for all n ≥ N and k ≥ N. Fix any m ≥ N. Then we have

sm = sup{ak : k ≥ m} ≤ ℓ+
ε

2
< ℓ+ ε.

By Lemma 2.1.5, nm ≥ m, so we also have

sm = sup{ak : k ≥ m} ≥ anm > ℓ− ε.

Therefore, limm→∞ sm = limsupn→∞ an = ℓ. □

The next result can be proved in a similar way.

Theorem 2.5.5 Let {an} be a sequence and let ℓ ∈ R. The following are equivalent:

(i) liminfn→∞ an = ℓ.
(ii) For any ε > 0, there exists N ∈ N such that

an > ℓ− ε for all n ≥ N,

and there exists a subsequence {ank} of {an} such that

lim
k→∞

ank = ℓ.

The following corollary follows directly from Theorems 2.5.4 and 2.5.5.

Corollary 2.5.6 Let {an} be a sequence and let ℓ ∈ R. Then the following are equivalent:

(i) limn→∞ an = ℓ

(ii) limsupn→∞ an = liminfn→∞ an = ℓ.

Corollary 2.5.7 Let {an} be a sequence and let ℓ,ℓ′ be real numbers.

(i) Suppose limsupn→∞ an = ℓ and {ank} is a subsequence of {an} with limk→∞ ank = ℓ′. Then
ℓ′ ≤ ℓ.

(ii) Suppose liminfn→∞ an = ℓ and {ank} is a subsequence of {an} with limk→∞ ank = ℓ′. Then
ℓ′ ≥ ℓ.
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Proof: We prove only (i) because the proof of (ii) is similar. By Theorem 2.5.4 and the definition of
limits, for any ε > 0, there exists N ∈ N such that

an < ℓ+ ε and ℓ′− ε < ank < ℓ′+ ε

for all n ≥ N and k ≥ N. Since nN ≥ N, this implies

ℓ′− ε < anN < ℓ+ ε.

Thus, ℓ′ < ℓ+2ε and, hence, ℓ′ ≤ ℓ because ε > 0 is arbitrary. □

Remark 2.5.1 Let {an} be a bounded sequence. Define

A = {x ∈ R : there exists a subsequence {ank} with limank = x}.

Each element of the set A is called a subsequential limit of the sequence {an}. It follows from
Theorem 2.5.4, Theorem 2.5.5, and Corollary 2.5.7 that A ̸= /0 and

limsup
n→∞

an = maxA and liminf
n→∞

an = minA.

Theorem 2.5.8 Suppose {an} is a sequence such that an > 0 for every n ∈ N and

limsup
n→∞

(
an+1

an

)
= ℓ < 1.

Then limn→∞ an = 0.

Proof: Choose ε > 0 such that ℓ+ ε < 1. By Theorem 2.5.4, there exists N ∈ N such that
an+1

an
< ℓ+ ε for all n ≥ N.

Let q = ℓ+ ε . Then 0 < q < 1. By induction,

0 < an ≤ qn−NaN for all n ≥ N.

Since limn→∞ qn−NaN = 0, we have limn→∞ an = 0. □

By a similar method, we obtain the theorem below.

Theorem 2.5.9 Suppose {an} is a sequence such that an > 0 for every n ∈ N and

liminf
n→∞

(
an+1

an

)
= ℓ > 1.

Then limn→∞ an = ∞.

■ Example 2.5.4 Given a real number α , define

an =
αn

n!
, n ∈ N .

When α = 0, it is obvious that limn→∞ an = 0. Suppose α > 0. Then

limsup
n→∞

(
an+1

an

)
= lim

n→∞

α

n+1
= 0 < 1.

Thus, limn→∞ an = 0. In the general case, we can also show that limn→∞ an = 0 by considering
limn→∞ |an| and using Exercise 2.1.4.
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Exercises
2.5.1 Find limsupn→∞ an and liminfn→∞ an for each sequence.

(a) an = sin
(nπ

2

)
.

(b) an =
1+(−1)n

n
.

(c) an = nsin
(nπ

2

)
.

2.5.2 Let {an} and {bn} be bounded sequences. Prove that:

(a) sup{ak +bk : k ≥ n} ≤ sup{ak : k ≥ n}+ sup{bk : k ≥ n}.
(b) inf{ak +bk : k ≥ n} ≥ inf{ak : k ≥ n}+ inf{bk : k ≥ n}.

2.5.3 ▶ Let {an} and {bn} be bounded sequences.

(a) Prove that limsupn→∞(an +bn)≤ limsupn→∞ an + limsupn→∞ bn.
(b) Prove that liminfn→∞(an +bn)≥ liminfn→∞ an + liminfn→∞ bn.
(c) Find two counterexamples to show that the equalities may not hold in part (a) and part (b).

Is the conclusion still true in each of parts (a) and (b) if the sequences involved are not necessarily
bounded?

2.5.4 Let {an} be a convergent sequence and let {bn} be an arbitrary sequence. Prove that

(a) limsupn→∞(an +bn) = limsupn→∞ an + limsupn→∞ bn = limn→∞ an + limsupn→∞ bn.
(b) liminfn→∞(an +bn) = liminfn→∞ an + liminfn→∞ bn = limn→∞ an + liminfn→∞ bn.
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3. LIMITS AND CONTINUITY

In this chapter, we extend our analysis of limit processes to functions and give the precise
definition of continuous function. We derive rigorously two fundamental theorems about continuous
functions: the extreme value theorem and the intermediate value theorem.

3.1 Limits of Functions
We first introduce the notion of limit point of a set.

Definition 3.1.1 Let D be a subset of R. A point x0 ∈ R (not necessarily in D) is called a limit point
of D if for every δ > 0, the open interval (x0 −δ ,x0 +δ ) contains a point x of D, x ̸= x0.1

Definition 3.1.2 A point x0 ∈ D which is not a limit point of D is called an isolated point of D.
Note that a point x0 in R is a limit point of a set D if it can be approximated arbitrarily close

by elements of D. The following proposition makes this statement precise. The proof is left as an
exercise.

Proposition 3.1.1 Let D be a subset of R. The following are equivalent:

(i) The point x0 is a limit point of D.
(ii) There exists a sequence {xn} in D such that xn ̸= x0 for all n ∈ N and limn→∞ xn = x0.

■ Example 3.1.1 The following examples illustrate the definition of limit point.

(a) Let D = [1,3). Then every point of D is a limit point. Moreover, 3 is a limit point of D as well.
The set D has no isolated points. In general, if an interval has more than one point, then every
point of the interval is a limit point. If in addition, the interval is bounded, its endpoints are
limit points as well.

(b) Let D = N. Then D does not have any limit points. Every element of N is an isolated point
of N.

1Other authors refer to limit points as accumulation points or cluster points.
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(c) Let δ > 0 and let D = (4− δ ,4+ δ )\ {4} = (4− δ ,4)∪ (4,4+ δ ). Then 4 is a limit point
of D.

(d) Let D = Q. Then every real number is a limit point of D. This follows directly from the
density of Q (see Theorem 1.6.3 and also Exercise 2.1.8).

Definition 3.1.3 Let f : D → R and let x0 be a limit point of D. We say that f has a limit at x0 if
there exists a real number ℓ such that for any real number ε > 0, there exists δ > 0 for which

| f (x)− ℓ|< ε for all x ∈ D with 0 < |x− x0|< δ .

In this case, we say that ℓ is the limit of the function f at x0 and we write

lim
x→x0

f (x) = ℓ.

Remark 3.1.1 If the limit of a function at a point exists, it is unique. The proof of this fact is similar
to the one given for sequences in Theorem 2.1.1 and we leave it as an exercise.

Remark 3.1.2 Note that the limit point x0 in the definition of limit of a function may or may not be
an element of the domain D. In any case, the inequality | f (x)− ℓ| < ε needs only be satisfied by
elements x of D.

■ Example 3.1.2 Let f : R→ R be given by f (x) = 5x− 7. We will prove that limx→2 f (x) = 3.
First notice that in this example, x0 = 2 and ℓ= 3. Given any ε > 0, we seek δ > 0 such that if x ∈R
with 0 < |x−2|< δ , then | f (x)−3|< ε . To find a suitable δ , we start by simplifying the expression
| f (x)−3|. We have

| f (x)−3|= |(5x−7)−3|= |5x−10|= |5(x−2)|= |5||x−2|= 5|x−2|.

Now we need δ > 0 such that if 0 < |x−2|< δ , then 5|x−2|< ε . This suggests that δ = ε/5
is a good choice since then 5|x−2|< 5δ = 5(ε/5) = ε . Now that we have found δ , the last step is
to write a formal proof.

Let ε > 0 and consider δ = ε/5 > 0. If x ∈ R and 0 < |x−2|< δ , we have

| f (x)−3|= 5|x−2|< 5δ = ε.

This shows that limx→2 f (x) = 3.

■ Example 3.1.3 Let f : [0,1)→R be given by f (x) = x2 +7x. We will show that limx→1 f (x) = 8.
In this case, x0 = 1 and ℓ = 8. Following the previous example, let us start by simplifying the
expression | f (x)− ℓ|. We have

| f (x)− ℓ|= |(x2 +7x)−8|= |x2 +7x−8|= |x+8||x−1|.

Since D = [0,1), any x ∈ D satisfies the inequality |x|< 1. This allows us to find an upper bound for
|x+8| using the triangle inequality. If x ∈ [0,1), then

|x+8| ≤ |x|+8 < 1+8 = 9.
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Now, given ε > 0, we need to find a suitable δ > 0 such that if x ∈ [0,1) with 0 < |x−1|< δ , then
| f (x)−8|< ε . We have

| f (x)− ℓ|= |(x2 +7x)−8|= |x+8||x−1| ≤ 9|x−1|.

Next we determine δ > 0 such that if 0 < |x− 1| < δ , then 9|x− 1| < ε . This suggests to select
δ = ε/9. We now write a formal proof.

Let ε > 0 and consider δ = ε/9 > 0. If x ∈ [0,1) is such that 0 < |x−1|< δ , then

| f (x)−8|= |x+8||x−1|< 9δ = 9
(

ε

9

)
= ε.

This shows that limx→1 f (x) = 8.

■ Example 3.1.4 Let f : R→ R be given by f (x) = x2 +7x. We show that limx→1 f (x) = 8.
We have x0 = 1 and ℓ = 8. Note that even though the expression of the function given is the

same as in the previous example, the domain is not. In this example, D =R is not a bounded domain.
We cannot proceed in the same way as in Example 3.1.3.

The simplification of the expression | f (x)− ℓ| is the same as before. Since the domain is all
of R, the estimate |x+8| ≤ |x|+8 < 1+8 = 9 is no longer valid. However, we are interested only
in values of x close to x0 = 1. Thus, we impose the condition δ ≤ 1 (we can choose any positive
number we like). If |x−1|< 1, then −1 < x−1 < 1, so 0 < x < 2. It follows, for such x, that |x|< 2
and, hence |x+8| ≤ |x|+8 < 2+8 = 10.

Now, given ε > 0 we choose δ = min{1, ε

10}. Then, whenever |x−1|< δ we get

| f (x)−8|= |x+8||x−1| ≤ (|x|+8)|x−1|< 10δ ≤ 10
(

ε

10

)
= ε.

This shows that limx→1 f (x) = 8.

■ Example 3.1.5 Let f : R→ R be given by f (x) =
3x−5
x2 +3

. We prove that limx→1 f (x) =−1/2.

First we look at the expression | f (x)− (−1
2)| and try to identify a factor |x−1| (because here

x0 = 1). We have∣∣∣∣ f (x)−(−1
2

)∣∣∣∣= ∣∣∣∣3x−5
x2 +3

+
1
2

∣∣∣∣= ∣∣∣∣6x−10+ x2 +3
2(x2 +3)

∣∣∣∣= ∣∣∣∣x2 +6x−7
2(x2 +3)

∣∣∣∣= |x−1||x+7|
|2(x2 +3)|

.

Since |2(x2+3)|= 2(x2+3), 2(x2+3)≥ x2+3 and x2+3 ≥ 3 for all x ∈R, we obtain the following
estimate:

|x−1||x+7|
|2(x2 +3)|

=
|x−1||x+7|

2(x2 +3)
≤ |x−1||x+7|

x2 +3
≤ 1

3
|x−1||x+7|.

Proceeding as in the previous example, if |x−1|< 1 we get −1 < x−1 < 1, so 0 < x < 2. Thus,
|x|< 2 and |x+7| ≤ |x|+7 < 9.

Now, given ε > 0, we choose δ = min{1, ε

3}. It follows that if x ∈ R with 0 < |x−1|< δ , then∣∣∣∣ f (x)− (−1
2
)

∣∣∣∣≤ |x+7|
3

|x−1|< 9
3

δ = 3δ ≤ ε.

We have proved that limx→1 f (x) =−1/2.
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The following theorem will let us apply our earlier results on limits of sequences to obtain new
results on limits of functions.

Theorem 3.1.2 — Sequential Characterization of Limits. Let f : D → R and let x0 be a limit
point of D. Then the following are equivalent:

(i) lim
x→x0

f (x) = ℓ.

(ii) lim
n→∞

f (xn) = ℓ for every sequence {xn} in D\{x0} such that xn → x0.

Proof: We first prove that (i) implies (ii). Suppose (i) holds. Let {xn} be a sequence in D with xn ̸= x0
for every n and such that {xn} converges to x0. We now proceed to show that limn→∞ f (xn) = ℓ. Let
ε > 0. From the assumption (i) we know there exists δ > 0 such that | f (x)− ℓ|< ε whenever x ∈ D
and 0 < |x− x0| < δ . Since xn → x0, there exists N ∈ N such that 0 < |xn − x0| < δ for all n ≥ N.
For such n, we have

| f (xn)− ℓ|< ε.

This shows that limn→∞ f (xn) = ℓ and, thus, (ii) follows.
We now prove that (ii) implies (i). We proceed by contradiction. We assume that (ii) is true

but (i) is false. Since (i) is false, there exists ε0 > 0 such that for every δ > 0, there exists x ∈ D
with 0 < |x− x0|< δ and | f (x)− ℓ| ≥ ε0. We will use this fact about ε0 with different choices of δ ,
namely, with δ = 1/n where n is a positive integer. Thus, for every n ∈ N, there exists xn ∈ D with
0 < |xn − x0|< 1

n and | f (xn)− ℓ| ≥ ε0. By the squeeze theorem (Theorem 2.1.3), the sequence {xn}
converges to x0. Moreover, xn ̸= x0 for every n. On the other hand, the inequality with ε0 shows that
that the sequence { f (xn)} does not converge to ℓ. This contradicts (ii). It follows that (ii) implies (i)
and the proof is complete. □

A useful application of Theorem 3.1.2 is in proving that the limit of a function does not exist
at some point. The following corollaries illustrate two approaches. The proofs follow immediately
from the theorem and are left as exercises.

Corollary 3.1.3 Let f : D → R and let x0 be a limit point of D. Then f does not have a limit at x0
if and only if there exists a sequence {xn} in D\{x0} such that {xn} converges to x0, and { f (xn)}
does not converge.

■ Example 3.1.6 Consider f : R\{0}→R given by f (x)= cos(1/x). We will prove that limx→0 f (x)
does not exist. For that, consider the sequence {xn} given by xn =

1
nπ

for n ∈N. Then limn→∞ xn = 0
and xn ̸= 0 for all n ∈ N, that is, {xn} is in R\{0}. We have

lim
n→∞

f (xn) = lim
n→∞

cos(1/xn) = lim
n→∞

cos(nπ) = (−1)n.

Since this limit does not exist, applying corollary 3.1.3 we conclude that limx→0 f (x) does not
exist.

Corollary 3.1.4 Let f : D → R and let x0 be a limit point of D. If there exist two sequences {xn}
and {yn} in D \ {x0} such that both sequences {xn} and {yn} converge to x0 and limn→∞ f (xn) ̸=
limn→∞ f (yn), then f does not have a limit at x0.
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■ Example 3.1.7 Consider the Dirichlet function f : R→ R given by

f (x) =

{
1, if x ∈Q;
0, if x ∈Qc.

We will show that the limx→x0 f (x) does not exist for any x0 ∈ R. For that, consider x0 ∈ R and
choose two sequences {rn}, {sn} converging to x0 such that rn ∈ Q and sn ̸∈ Q for all n ∈ N (see
Exercises 2.1.8 and 2.1.9). Since f (rn) = 1 for all n ∈ N, the sequence { f (rn)} converges to 1
and since f (sn) = 0 for all n ∈ N, the sequence { f (sn)} converges to 0. Applying corollary 3.1.4
we conclude that limx→x0 f (x) does not exist. Since x0 was an arbitrary real number, the Dirichlet
function does not have a limit at any point in R.

Theorem 3.1.5 — Comparison Theorem for Functions. Let f ,g : D → R and let x0 be a limit
point of D. Suppose that

(i) limx→x0 f (x) = ℓ1, limx→x0 g(x) = ℓ2,
(ii) there exists δ > 0 such that f (x)≤ g(x) for all x ∈ (x0 −δ ,x0 +δ )∩D,x ̸= x0.

Then ℓ1 ≤ ℓ2.

Proof: Let {xn} be a sequence in (x0 −δ ,x0 +δ )∩D that converges to x0 and xn ̸= x0 for all n. By
Theorem 3.1.2,

lim
n→∞

f (xn) = ℓ1 and lim
n→∞

g(xn) = ℓ2.

Since f (xn)≤ g(xn) for all n ∈ N, applying Theorem 2.1.2, we obtain ℓ1 ≤ ℓ2. □

Theorem 3.1.6 Let f ,g : D → R and let x0 be a limit point of D. Suppose that

(i) limx→x0 f (x) = ℓ1, limx→x0 g(x) = ℓ2,
(ii) ℓ1 < ℓ2.

Then there exists δ > 0 such that f (x)< g(x) for all x ∈ (x0 −δ ,x0 +δ )∩D,x ̸= x0.

Proof: Choose ε > 0 such that ℓ1 + ε < ℓ2 − ε (equivalently, such that ε < ℓ2−ℓ1
2 ). Then there exists

δ > 0 such that

ℓ1 − ε < f (x)< ℓ1 + ε and ℓ2 − ε < g(x)< ℓ2 + ε

for all x ∈ (x0 −δ ,x0 +δ )∩D,x ̸= x0. Thus,

f (x)< ℓ1 + ε < ℓ2 − ε < g(x) for all x ∈ (x0 −δ ,x0 +δ )∩D,x ̸= x0.

The proof is now complete. □

Theorem 3.1.7 — Squeeze Theorem for Functions. Let f ,g,h : D → R and let x0 be a limit point
of D. Suppose that

(i) there exists δ > 0 such that f (x)≤ g(x)≤ h(x) for all x ∈ (x0 −δ ,x0 +δ )∩D,x ̸= x0,
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(ii) limx→x0 f (x) = limx→x0 h(x) = ℓ.

Then limx→x0 g(x) = ℓ.

Proof: The proof is straightforward using Theorem 2.1.3 and Theorem 3.1.2. □

Remark 3.1.3 We will adopt the following convention. When we write limx→x0 f (x) without
specifying the domain D of f we will assume that D is the largest subset of R such that if x ∈ D,
then f (x) results in a real number. For example, in

lim
x→2

1
x+3

we assume D = R\{−3} and in

lim
x→1

√
x

we assume D = [0,∞).

Exercises
3.1.1 Use the definition of limit to prove that

(a) limx→2(3x−7) =−1.
(b) limx→3(x2 +1) = 10.

(c) lim
x→1

x+3
x+1

= 2.

(d) limx→0
√

x = 0.
(e) limx→2 x3 = 8.

3.1.2 Let f : D → R and let x0 be a limit point of D. Prove that if f has a limit at x0, then this limit
is unique. (Hint: the argument is analogous to the one used in the proof of Theorem 2.1.1.)

3.1.3 Prove Proposition 3.1.1.

3.1.4 Let I = (a,b) for a,b ∈ R, a < b. Prove that if c ∈ I, then c is a limit point of I \{c}.

3.1.5 Prove Corollary 3.1.3

3.1.6 Prove Corollary 3.1.4

3.1.7 Using Corollary 3.1.4, prove that the following limits do not exist.

(a) lim
x→0

x
|x|

.

(b) lim
x→0

sin(1/x).

3.1.8 Let f : D → R and let x0 be a limit point of D. Prove that if limx→x0 f (x) = ℓ, then

lim
x→x0

| f (x)|= |ℓ|.

Give an example to show that the converse is not true in general.
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3.1.9 Let f : D → R and let x0 be a limit point of D. Suppose f (x)≥ 0 for all x ∈ D. Prove that if
limx→x0 f (x) = ℓ, then

lim
x→x0

√
f (x) =

√
ℓ.

3.1.10 Prove that limx→0 xsin(1/x) = 0.

3.1.11 ▶ Let f : [0,1]→ R be the function given by

f (x) =

{
x, if x ∈Q;
1− x, if x ∈Qc.

Determine which of the following limits exist. For those that exist find their values.

(a) limx→1/2 f (x).
(b) limx→0 f (x).
(c) limx→1 f (x).

3.2 Limit Theorems

Here we state and prove various theorems that facilitate the computation of general limits.

Definition 3.2.1 Let f ,g : D → R and let c be a constant. The functions f + g, f g, and c f are
respectively defined as functions from D to R by

( f +g)(x) = f (x)+g(x),

( f g)(x) = f (x)g(x),

(c f )(x) = c f (x)

for x ∈ D. Let D̃ = {x ∈ D : g(x) ̸= 0}. The function f/g is defined as a function from D̃ to R by(
f
g

)
(x) =

f (x)
g(x)

, for x ∈ D̃.

Theorem 3.2.1 Let f ,g : D → R and let c ∈ R. Suppose x0 is a limit point of D and

lim
x→x0

f (x) = ℓ, lim
x→x0

g(x) = m.

Then

(i) limx→x0( f +g)(x) = ℓ+m,
(ii) limx→x0( f g)(x) = ℓm,

(iii) limx→x0(c f )(x) = cℓ,

(iv) lim
x→x0

(
f
g

)
(x) =

ℓ

m
provided that m ̸= 0.
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Proof: Let us first prove (i). Let {xn} be a sequence in D that converges to x0 and xn ̸= x0 for every
n. By Theorem 3.1.2,

lim
n→∞

f (xn) = ℓ and lim
n→∞

g(xn) = m.

It follows from Theorem 2.2.1 that

lim
n→∞

( f +g)(xn) = lim
n→∞

( f (xn)+g(xn)) = ℓ+m.

Since {xn} was an arbitrary sequence in D converging to x0 and xn ̸= x0 for every n, applying
Theorem 3.1.2 again, we get limx→x0( f +g)(x) = ℓ+m. The proofs of (ii) and (iii) are similar.

We will show that if m ̸= 0, then x0 is a limit point of D̃. If x0 is a limit point of D, there is a
sequence {un} in D converging to x0 such that un ̸= x0 for every n. Since m ̸= 0, it follows from
Theorem 3.1.6 that there exists δ > 0 with

g(x) ̸= 0 whenever 0 < |x− x0|< δ ,x ∈ D.

This implies x ∈ D̃ whenever 0 < |x− x0|< δ ,x ∈ D. Then un ∈ D̃ for all n sufficiently large, and
hence x0 is a limit point of D̃. The rest of the proof of (iv) can be completed easily following the
proof of (i). □

■ Example 3.2.1 Consider f : R\{−7} → R given by f (x) =
x2 +2x−3

x+7
. Then, combining all

parts of Theorem 3.2.1, we get

lim
x→−2

f (x) =
limx→−2(x2 +2x−3)

limx→−2(x+7)
=

limx→−2 x2 + limx→−2 2x− limx→−2 3
limx→−2 x+ limx→−2 7

=
(limx→−2 x)2 +2limx→−2 x− limx→−2 3

limx→−2 x+ limx→−2 7
=

(−2)2 +2(−2)−3
−2+7

=−3
5
.

■ Example 3.2.2 We proceed in the same way to compute the following limit:

lim
x→0

1+(2x−1)2

x2 +7
=

limx→0 1+ limx→0(2x−1)2

limx→0 x2 + limx→0 7
=

1+1
0+7

=
2
7
.

■ Example 3.2.3 We now consider

lim
x→−1

x2 +6x+5
x+1

.

Since the limit of the denominator is 0, we cannot apply directly part (iv) of Theorem 3.2.1. Instead,
we first simplify the expression keeping in mind that in the definition of limit we never need to
evaluate the expression at the limit point itself. In this case, this means we may assume that x ̸=−1.
For any such x we have

x2 +6x+5
x+1

=
(x+1)(x+5)

x+1
= x+5.
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Therefore,

lim
x→−1

x2 +6x+5
x+1

= lim
x→−1

x+5 = 4.

Theorem 3.2.2 (Cauchy’s criterion) Let f : D → R and let x0 be a limit point of D.
The following are equivalent:

(i) f has a limit at x0.
(ii) For any ε > 0, there exists δ > 0 such that

| f (r)− f (s)|< ε whenever r,s ∈ D and 0 < |r− x0|< δ ,0 < |s− x0|< δ . (3.1)

Proof: Suppose limx→x0 f (x) = ℓ. Given ε > 0, there exists δ > 0 such that

| f (x)− ℓ|< ε

2
whenever x ∈ D and 0 < |x− x0|< δ .

Thus, for r,s ∈ D with 0 < |r− x0|< δ and 0 < |s− x0|< δ , we have

| f (r)− f (s)| ≤ | f (r)− ℓ|+ |ℓ− f (s)|< ε.

Let us prove the converse. Fix a sequence {un} in D such that limn→∞ un = x0 and un ̸= x0 for every
n. We are assuming that given ε > 0, there exists δ > 0 such that

| f (r)− f (s)|< ε whenever r,s ∈ D and 0 < |r− x0|< δ ,0 < |s− x0|< δ .

Since limn→∞ un = x0, there exists N ∈ N satisfying

0 < |un − x0|< δ for all n ≥ N.

This implies

| f (un)− f (um)|< ε for all m,n ≥ N.

Thus, { f (un)} is a Cauchy sequence, and hence there exists ℓ ∈ R such that limn→∞ f (un) = ℓ.
We now prove that f has limit ℓ at x0 using Theorem 3.1.2. Let {xn} be a sequence in D such

that limn→∞ xn = x0 and xn ̸= x0 for every n. By the previous argument, there exists ℓ′ ∈ R such that

lim
n→∞

f (xn) = ℓ′.

Fix any ε > 0 and let δ > 0 satisfy (3.1). There exists K ∈ N such that

|un − x0|< δ and |xn − x0|< δ

for all n ≥ K. Then | f (un)− f (xn)|< ε for such n. Letting n → ∞, we have |ℓ−ℓ′| ≤ ε . Thus, ℓ= ℓ′

since ε is arbitrary. It now follows from Theorem 3.1.2 that limx→x0 f (x) = ℓ. □

The rest of this section discusses some special limits and their properties. First we introduce the
notion of left and right limit point of a set.
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Definition 3.2.2 Given a subset D of R, we say that x0 is a left limit point of D if for every δ > 0,
the open interval (x0 −δ ,x0) contains a point x of D, x ̸= x0. Similarly, x0 is called a right limit point
of D if for every δ > 0, the open interval (x0,x0 +δ ) contains a point x of D, x ̸= x0.

It follows from the definition that x0 is a limit point of D if and only if it is a left limit point of D
or it is a right limit point of D.

Definition 3.2.3 (One-sided limits) Let f : D → R and let x0 be a left limit point of D. We say that
f has a left-hand limit at x0 if there exists a real number ℓ such that for any real number ε > 0, there
exists δ > 0 such

| f (x)− ℓ|< ε for all x ∈ (x0 −δ ,x0).

In this case, we say that ℓ is the left-hand limit of f at x0 and write

lim
x→x−0

f (x) = ℓ.

The right-hand limit of f at x0 can be defined in a similar way and is denoted limx→x+0
f (x).

■ Example 3.2.4 Consider the function f : R\{0}→ R given by f (x) = |x|/x.
Let x0 = 0. Note first that 0 is a limit point of the set D = R \ {0}. For x > 0, we have

f (x) = x/x = 1 and therefore limx→x+0
f (x) = limx→0+ 1 = 1.

Similarly, for x < 0 we have f (x) =−x/x =−1. Therefore, limx→x−0
f (x) = limx→0− −1 =−1.

■ Example 3.2.5 Consider the function f : R→ R given by

f (x) =

{
x2 −1, if x ≥−1;
x+4, if x <−1.

(3.2)

We have

lim
x→−1+

f (x) = lim
x→−1+

(x2 −1) = 0,

and

lim
x→−1−

f (x) = lim
x→−1−

(x+4) = 3,

The following theorem follows directly from the definition of one-sided limits. The proof is left
as an exercise.

Theorem 3.2.3 Let f : D → R and let x0 be both a left limit point of D and a right limit point of D.
Then the following are equivalent:

(i) lim
x→x0

f (x) = ℓ.

(ii) lim
x→x+0

f (x) = ℓ= lim
x→x−0

f (x).

■ Example 3.2.6 It follows from Example 3.2.4 that lim
x→0

|x|
x

does not exist, since the one-sided

limits do not agree.
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Definition 3.2.4 (monotonicity) Let f : (a,b)→ R.

(i) We say that f is increasing on (a,b) if, for all x1,x2 ∈ (a,b), x1 < x2 implies f (x1)≤ f (x2).
(ii) We say that f is decreasing on (a,b) if, for all x1,x2 ∈ (a,b), x1 < x2 implies f (x1)≥ f (x2).

If f is increasing or decreasing on (a,b), we say that f is monotone on this interval. Strict mono-
tonicity can be defined similarly using strict inequalities: f (x1) < f (x2) in (i) and f (x1) > f (x2)
in (ii).

Theorem 3.2.4 Suppose f : (a,b)→ R is increasing on (a,b) and x0 ∈ (a,b). Then limx→x−0
f (x)

and limx→x+0
f (x) exist. Moreover,

sup
a<x<x0

f (x) = lim
x→x−0

f (x)≤ f (x0)≤ lim
x→x+0

f (x) = inf
x0<x<b

f (x).

Proof: Since f (x)≤ f (x0) for all x ∈ (a,x0), the set { f (x) : x ∈ (a,x0)} is nonempty and bounded
above. By completeness axiom, the supremum of the set exists, say ℓ= sup{ f (x) : x ∈ (a,x0)}.

We will show that limx→x−0
f (x) = ℓ. For any ε > 0, by the definition of the least upper bound,

there exists a < x1 < x0 such that ℓ− ε < f (x1).
Let δ = x0 − x1 > 0. Using the increasing monotonicity, we get

ℓ− ε < f (x1)≤ f (x)≤ ℓ < ℓ+ ε for all x ∈ (x1,x0) = (x0 −δ ,x0).

Therefore, limx→x−0
f (x) = ℓ. The rest of the proof of the theorem is similar. □

Definition 3.2.5 (infinite limits) Let f : D → R and let x0 be a limit point of D.

(i) We say that f has limit ∞ as x → x0 if for every M ∈ R, there exists δ > 0 such

f (x)> M for all x ∈ D for which 0 < |x− x0|< δ

and write limx→x0 f (x) = ∞,
(ii) We say that f has limit −∞ as x → x0 if for every L ∈ R, there exists δ > 0 such

f (x)< L for all x ∈ D for which 0 < |x− x0|< δ

and write limx→x0 f (x) =−∞,

Infinite limits of functions have similar properties to those of sequences from Chapter 2 (see
Definition 2.3.2 and Theorem 2.3.4).

■ Example 3.2.7 We prove from the definition that

lim
x→0

1
x2 = ∞.

Let M ∈ R be given. We can assume M > 0 because if the inequality f (x) > M is true for a
positive M then it is also true for all numbers less or equal to M. We want to find δ > 0 that will
guarantee f (x) = 1

x2 > M whenever 0 < |x|< δ . As in the case of finite limits, we work backwards
from f (x)> M to find a suitable δ .
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Note that f (x) = 1
x2 > M is equivalent to 1

M > x2 since M > 0. It follows that
√

1
M > |x|.

Now, if we choose δ such that 0 < δ <
√

1
M . Then, if 0 < |x| < δ we get 0 < x2 < δ 2 and

δ 2 < 1
M . Therefore

1
x2 >

1
δ 2 >

1
1
M

= M,

as desired.

Definition 3.2.6 (limits at infinity) Let f : D → R.

(i) When D is not bounded above, we say that f has limit ℓ as x → ∞ if for every ε > 0, there
exists M ∈ R such

| f (x)− ℓ|< ε for all x > M,x ∈ D

and write limx→∞ f (x) = ℓ,
(ii) When D is not bounded below, we say that f has limit ℓ as x →−∞ if for every ε > 0, there

exists L ∈ R such

| f (x)− ℓ|< ε for all x < L,x ∈ D

and write limx→−∞ f (x) = ℓ.

We can also define limx→∞ f (x) =±∞ and limx→−∞ f (x) =±∞ in a similar way.

■ Example 3.2.8 We prove from the definition that

lim
x→∞

3x2

2x2 +1
=

3
2
.

The approach is similar to that for sequences, with the difference that x need not be an integer.
Let ε > 0. We want to find M such that for all x > M,∣∣∣∣ 3x2

2x2 +1
− 3

2

∣∣∣∣< ε. (3.3)

Now,∣∣∣∣ 3x2

2x2 +1
− 3

2

∣∣∣∣= ∣∣∣∣6x2 −6x2 −3
2(2x2 +1)

∣∣∣∣= ∣∣∣∣ −3
4x2 +2

∣∣∣∣= 3
4x2 +2

.

To simplify the calculations it will be convenient to assume that x > 0. This assumption is justified
since we can always choose M > 0.

Since 4x2 +2 > 4x2, we have∣∣∣∣ 3x2

2x2 +1
− 3

2

∣∣∣∣= 3
4x2 +2

<
3

4x2 (3.4)
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We now find M by solving the inequality

3
4x2 < ε

for the variable x. We obtain

3
4ε

< x2 or equivalently

√
3

4ε
< |x|.

This inequality suggests that choosing M =
√

3
4ε

will suffice.

If x > M, then x >
√

3
4ε

and x2 > 3
4ε

. Hence,∣∣∣∣ 3x2

2x2 +1
− 3

2

∣∣∣∣= 3
4x2 +2

<
3

4x2 < ε.

Therefore

lim
x→∞

3x2

2x2 +1
=

3
2
.

Exercises
3.2.1 Find the following limits:

(a) lim
x→2

3x2 −2x+5
x−3

,

(b) lim
x→−3

x2 +4x+3
x2 −9

.

3.2.2 Let f : D → R and let x0 is a limit point of D. Prove that if limx→x0 f (x) exists, then

lim
x→x0

[ f (x)]n = [ lim
x→x0

f (x)]n, for any n ∈ N .

3.2.3 Find the following limits:

(a) lim
x→1

√
x−1

x2 −1
,

(b) lim
x→1

xm −1
xn −1

, where m,n ∈ N,

(c) lim
x→1

n
√

x−1
m
√

x−1
, where m,n ∈ N, m,n ≥ 2,

(d) lim
x→1

√
x− 3

√
x

x−1
.

3.2.4 Find the following limits:

(a) limx→∞(
3
√

x3 +3x2 −
√

x2 +1),
(b) limx→−∞(

3
√

x3 +3x2 −
√

x2 +1).
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3.2.5 ▶ Let f : D → R and let x0 be a limit point of D. Suppose that

| f (x)− f (y)| ≤ k|x− y| for all x,y ∈ D\{x0}, where k ≥ 0 is a constant.

Prove that limx→x0 f (x) exists.

3.2.6 Prove Theorem 3.2.3

3.2.7 Determine the one-sided limits limx→3+ [x] and limx→3− [x], where [x] denotes the greatest
integer that is less than or equal to x.

3.2.8 Find each of the following limits if they exist:

(a) lim
x→1+

x+1
x−1

,

(b) lim
x→0+

∣∣x3 sin(1/x)
∣∣,

(c) lim
x→1

(x− [x]).

3.2.9 For a ∈ R, let f be the function given by

f (x) =

{
x2, if x > 1;
ax−1, if x ≤ 1.

Find the value of a such that limx→1 f (x) exists.

3.2.10 Determine all values of x0 such that the limit limx→x0(1+ x− [x]) exists.

3.2.11 Let a,b ∈ R and suppose f : (a,b)→ R is increasing. Prove the following:

(a) If f is bounded above, then limx→b− f (x) exists and is a real number.
(b) If f is not bounded above, then limx→b− f (x) = ∞.

State and prove analogous results in case f is bounded below and in case that the domain of f is one
of (−∞,b), (a,∞), or (−∞,∞).

3.3 Continuity
Definition 3.3.1 Let D be a nonempty subset of R and let f : D → R be a function. The function f
is said to be continuous at x0 ∈ D if for any real number ε > 0, there exists δ > 0 such that

| f (x)− f (x0)|< ε for all x ∈ D with |x− x0|< δ .

If f is continuous at every point x ∈ D, we say that f is continuous on D (or just continuous if
no confusion occurs).

■ Example 3.3.1 Let f : R→ R be given by f (x) = 3x+7. Let x0 ∈ R and let ε > 0. We need to
find a δ such that if |x− x0| < δ , then | f (x)− f (x0)| < ε . As we have done before with limits of
functions, we start with | f (x)− f (x0)|.

| f (x)− f (x0)|= |(3x+7)− (3x0 +7)|= |3(x− x0)|= 3|x− x0|.
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This suggests that δ = ε/3 will be a good choice for δ .
We write now a formal proof.
Given ε > 0, choose δ = ε/3. If |x− x0|< δ , we have

| f (x)− f (x0)|= |(3x+7)− (3x0 +7)|= |3(x− x0)|= 3|x− x0|< 3δ = 3(
ε

3
) = ε

This shows that f is continuous at x0.

Figure 3.1: Definition of continuity.

Remark 3.3.1 Note that the above definition of continuity does not mention limits. This allows to
include in the definition, points x0 ∈ D which are not limit points of D. If x0 is an isolated point of D,
then there is δ > 0 such that (x0 −δ ,x0 +δ )∩D = {x0}. It follows that for x ∈ (x0 −δ ,x0 +δ )∩D,
| f (x)− f (x0)|= 0 < ε for any ε . Therefore, every function is continuous at an isolated point of its
domain.

To study continuity at limit points of D, we have the following theorem which follows directly
from the definitions of continuity and limit.

Theorem 3.3.1 Let f : D → R and let x0 ∈ D be a limit point of D. The following are equivalent:

(i) f is continuous at x0.
(ii) limx→x0 f (x) = f (x0).

■ Example 3.3.2 Let f : R → R be given by f (x) = 3x2 − 2x+ 1. Fix x0 ∈ R. Since, from the
results of the previous theorem, we have

lim
x→x0

f (x) = lim
x→x0

(3x2 −2x+1) = 3x2
0 −2x0 +1 = f (x0).

It follows that f is continuous at x0.

The following theorem follows directly from the definition of continuity, Theorem 3.1.2 and
Theorem 3.3.1 and we leave its proof as an exercise.

Theorem 3.3.2 Let f : D → R and let x0 ∈ D. Then f is continuous at x0 if and only if for any
sequence {xn} in D that converges to x0, the sequence { f (xn)} converges to f (x0).

The proofs of the next two theorems are straightforward using Theorem 3.3.2.
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Theorem 3.3.3 Let f ,g : D → R and let x0 ∈ D. Suppose f and g are continuous at x0. Then

(i) f +g and f g are continuous at x0.
(ii) c f is continuous at x0 for any constant c.

(iii) If g(x0) ̸= 0, then f/g (defined on D̃ = {x ∈ D : g(x) ̸= 0}) is continuous at x0.

Proof: We prove (i) and leave the other parts as an exercise. We will use Theorem 3.3.2. Let {xn}
be a sequence in D that converges to x0. Since f and g are continuous at x0, by Theorem 3.3.2 we
obtain that { f (xn)} converges to f (x0) and {g(xn)} converges to g(x0). By Theorem 2.2.1 (i),we get
that { f (xn)+g(xn)} converges to f (x0)+g(x0). Therefore,

lim
n→∞

( f +g)(xn) = lim
n→∞

( f (xn)+g(xn)) = lim
n→∞

f (xn)+ lim
n→∞

g(xn) = f (x0)+g(x0) = ( f +g)(x0).

Since {xn} was arbitrary, using Theorem 3.3.2 again we conclude f +g is continuous at x0. □

Theorem 3.3.4 Let f : D → R and let g : E → R with f (D)⊂ E. If f is continuous at x0 and g is
continuous at f (x0), then g◦ f is continuous at x0.

Exercises

3.3.1 Prove, using definition 3.3.1, that each of the following functions is continuous at the indicated
point x0:

(a) f (x) = 3x−7, x0 = 2.
(b) f (x) = x2 +1, x0 = 3.

(c) f (x) =
x+3
x+1

, x0 = 1.

3.3.2 Prove, using definition 3.3.1, that each of the following functions is continuous on the given
domain:

(a) f (x) = ax+b, a,b ∈ R, on R.
(b) f (x) = x2 −3 on R.
(c) f (x) = |x|, on R.
(d) f (x) =

√
x on [0,∞).

(e) f (x) =
1
x

on R\{0}.

3.3.3 Determine the values of x at which each function is continuous. The domain of all the
functions is R. You may assume the functions sine and cosine are continuous in R.

(a) f (x) =

xsin
1
x
, if x ̸= 0;

0, if x = 0.

(b) f (x) =


∣∣∣∣sinx

x

∣∣∣∣ , if x ̸= 0;

1, if x = 0.
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(c) f (x) =


sinx
|x|

, if x ̸= 0;

1, if x = 0.

(d) f (x) =

cos
πx
2
, if |x| ≤ 1;

|x−1|, if |x|> 1.

(e) f (x) = lim
n→∞

sin
π

2(1+ x2n)
, x ∈ R.

3.3.4 Let f : R→ R be the function given by

f (x) =

{
x2 +a, if x > 2;
ax−1, if x ≤ 2.

Find the value of a such that f is continuous.

3.3.5 Determine the values of x at which each function is continuous. The domain of all the
functions is R.

(a) f (x) =

{
1, if x ∈Q;
−1, if x ∈Qc.

(b) f (x) =

{
x, if x ∈Q;
0, if x ∈Qc.

(c) f (x) =

{
x, if x ∈Q;
1− x, if x ∈Qc.

3.3.6 ▶ Let g,h : R→ R be continuous functions and define

f (x) =

{
g(x), if x ∈Q;
h(x), if x ∈Qc.

Prove that if g(a) = h(a), for some a ∈ R, then f is continuous at a.

3.3.7 ▷ Consider k distinct points x1,x2, . . . ,xk ∈ R, k ≥ 1. Find a function defined on R that is
continuous at each xi, i = 1, . . . ,k, and discontinuous at all other points.

3.3.8 Let f : D → R and let x0 ∈ D. Prove that if f is continuous at x0, then | f | is continuous at
this point. Is the converse true in general?

3.3.9 Prove Theorem 3.3.2. (Hint: treat separately the cases when x0 is a limit point of D and when
it is not.)

3.3.10 Suppose that f ,g are continuous functions on R and f (x) = g(x) for all x ∈Q. Prove that
f (x) = g(x) for all x ∈ R.

3.3.11 Prove parts (ii) and (iii) of Theorem 3.3.3.
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3.3.12 Prove Theorem 3.3.4.

3.3.13 ▷ Consider the Thomae function defined on (0,1] by

f (x) =


1
q
, if x =

p
q
, p,q ∈ N,where p and q have no common factors;

0, if x is irrational.

(a) Prove that for every ε > 0, the set

Aε = {x ∈ (0,1] : f (x)≥ ε}

is finite.
(b) Prove that f is continuous at every irrational point, and discontinuous at every rational point.

3.4 Properties of Continuous Functions
In this section we present the most fundamental theorems about continuous functions on the real

line. Wherever we use the interval [a,b] it is understood that a,b ∈ R and a < b.

Definition 3.4.1 We say that the function f : D → R is bounded if there exists M ∈ R such that
| f (x)| ≤ M, for all x ∈ D.

Theorem 3.4.1 — Boundedness Theorem. Let f : [a,b]→ R be continuous on [a,b]. Then f is
bounded.

Proof: Suppose, by way of contradiction, that f is not bounded. Then, for each n ∈ N, there is
xn ∈ [a,b] such that | f (xn)|> n. The sequence {xn} is contained in [a,b], so it is bounded. It follows
from the Bolzano-Weierstrass theorem (Theorem 2.4.1) that there exists a convergent subsequence,
say, {xnk}, and x0 ∈ R such that limk→∞ xnk = x0.

Note that by the comparison theorem (Theorem 2.1.2), x0 ∈ [a,b]. Using now the fact that f is
continuous on [a,b], we conclude that limk→∞ f (xnk) = f (x0). Hence { f (xnk)} is bounded since it is
a convergent sequence.

This is a contradiction since | f (xnk)| > nk ≥ k for all k ∈ N. We have thus proved that f is
bounded. □

Definition 3.4.2 Let f : D → R.

(i) f has an absolute maximum at x0 ∈ D if f (x)≤ f (x0) for every x ∈ D.
(ii) f has an absolute minimum at x0 ∈ D if f (x)≥ f (x0) for every x ∈ D.

Theorem 3.4.2 — Extreme Value Theorem. Let f : [a,b]→ R continuous on [a,b]. Then f has an
absolute maximum and an absolute minimum on [a,b]. That is, there exists xM and xm in [a,b] such
that

f (xm)≤ f (x)≤ f (xM), for all x ∈ [a,b].

Proof: Consider A = f ([a,b]) = { f (x) : x ∈ [a,b]}. Note that f (a) ∈ A, so A is a non-empty subset
of R and it is bounded (by the boundedness theorem). Applying the completeness axiom, A has a
supremum, say α = supA.
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For every n ∈ N, there exists xn ∈ [a,b] such that α −1/n < f (xn)≤ α .
Since a ≤ xn ≤ b for every n, the sequence is bounded. Applying the Bolzano-Weierstrass

theorem (Theorem 2.4.1), there exists a convergent subsequence, say, {xnk}, and x0 such that

lim
k→∞

xnk = x0.

Note that x0 ∈ [a,b] by the Comparison theorem (Theorem 2.1.2). From the continuity of f on
[a,b] we have

lim
k→∞

f (xnk) = f (x0).

On the other hand,

α − 1
nk

< f (xnk)≤ α for every k

and applying the Squeeze theorem (Theorem 2.1.3) we get that limk→∞ f (xnk) = α .
Since f is a continuous function and limk→∞ xnk = x0, we have limk→∞ f (xnk) = f (x0). Therefore

f (x0) = α and f (x0) ≥ f (x) for every x ∈ [a,b]. Thus, f has an absolute maximum at x0. Let
xM = x0.

Similarly, considering − f instead of f , we can show the existence of the absolute minimum.
The result follows. □

The following result is a basic property of continuous functions that is used in a variety of
situations.

Lemma 3.4.3 Let f : D → R be continuous at c ∈ D. Suppose f (c)> 0. Then there exists δ > 0
such that

f (x)> 0 for every x ∈ D such that |x− c|< δ

Proof: Let ε = f (c)
2 > 0. By the continuity of f at c, there exists δ > 0 such that if x ∈ D and

|x− c|< δ , then | f (x)− f (c)|< ε . This implies, in particular, that

f (x)> f (c)− ε =
f (c)
2

> 0.

Pick this δ , then the result follows. □

Remark 3.4.1 An analogous result holds if f (c)< 0.

Theorem 3.4.4 Let f : [a,b]→ R be a continuous function. Suppose 0 is strictly between f (a) and
f (b) (that is, either f (a) < 0 < f (b) or f (a) > 0 > f (b)). Then there exists c ∈ (a,b) such that
f (c) = 0.

Proof: We prove only the case f (a)< 0 < f (b) (the case f (a)> 0 > f (b) is completely analogous).
Define

A = {x ∈ [a,b] : f (x)≤ 0}.
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This set is nonempty since a ∈ A and bounded since A ⊂ [a,b]. Therefore, c = supA exists. Since
c = supA, we can find a sequence {xn} in A such that xn → c (see Exercise 2.1.10). Applying the
comparison theorem for sequences (Theorem 2.1.2), we obtain a≤ c≤ b and since f is continuous on
[a,b], f (xn)→ f (c). Applying the comparison theorem one more time, we conclude that f (c)≤ 0.

We will prove that f (c) = 0 by showing that f (c)< 0 leads to a contradiction. Suppose f (c)< 0.
Then, by Remark 3.4.1, there exists δ > 0 such that

f (x)< 0 for all x ∈ [a,b] such that |x− c|< δ .

Because c < b (since f (b)> 0), we can find x ∈ (c,b) such that f (x)< 0. This is a contradiction
because x ∈ A and x > c.

We conclude that f (c) = 0. □

Figure 3.2: Illustration of the Intermediate Value Theorem.

Theorem 3.4.5 — Intermediate Value Theorem. Let f : [a,b] → R be a continuous function.
Suppose f (a)< γ < f (b). Then there exists a number c ∈ (a,b) such that f (c) = γ .

The same conclusion follows if f (a)> γ > f (b).

Proof: Define

ϕ(x) = f (x)− γ, x ∈ [a,b].

Then ϕ is continuous on [a,b]. Moreover, ϕ(a)< 0 < ϕ(b).
By Theorem 3.4.4, there exists c ∈ (a,b) such that ϕ(c) = 0. This is equivalent to f (c) = γ . The

proof is now complete. □

Corollary 3.4.6 Let f : [a,b]→ R be a continuous function. Let

m = min{ f (x) : x ∈ [a,b]} and M = max{ f (x) : x ∈ [a,b]}.

Then for every γ ∈ [m,M], there exists c ∈ [a,b] such that f (c) = γ .

■ Example 3.4.1 We will use the Intermediate Value Theorem to prove that the equation ex =−x
has at least one real solution. We will assume known that the exponential function is continuous on
R and that ex < 1 for x < 0.

First define the function f : R → R by f (x) = ex + x. Notice that the given equation has a
solution x if and only if f (x) = 0. Now, the function f is continuous (as the sum of continuous
functions). Moreover, note that f (−1) = e−1 +(−1)< 1−1 = 0 and f (0) = 1 > 0. We can now
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apply the intermediate value theorem to the function f on the interval [−1,0] with γ = 0 to conclude
that there is c ∈ [−1,0] such that f (c) = 0. The point c is the desired solution to the original equation.

■ Example 3.4.2 We show now that, given n ∈ N, every positive real number has a positive nth root.
Let n ∈ N and let a ∈ R with a > 0. First observe that (1+a)n ≥ 1+na > a (see Exercise 1.3.6).
Now consider the function f : [0,∞)→ R given by f (x) = xn. Since f (0) = 0 and f (1+a)> a, it
follows from the intermediate value theorem that there is x ∈ (0,1+a) such that f (x) = a. That is,
xn = a, as desired. (We show later in Example 4.3.1 that such an x is unique.)

Now we are going to discuss the continuity of the inverse function.

Theorem 3.4.7 Let f : [a,b]→ R be strictly increasing and continuous on [a,b]. Let c = f (a) and
d = f (b). Then f is one-to-one, f ([a,b]) = [c,d], and the inverse function f−1 defined on [c,d] by

f−1( f (x)) = x where x ∈ [a,b],

is a continuous function from [c,d] onto [a,b].

Proof: The first two assertions follow from the monotonicity of f and the intermediate value theorem
(see also Corollary 3.4.6). We will prove that f−1 is continuous on [c,d]. Fix any y0 ∈ [c,d] and fix
any sequence {yn} in [c,d] that converges to y0. Let x0 ∈ [a,b] and xn ∈ [a,b] be such that

f (x0) = y0 and f (xn) = yn for every n.

Then f−1(y0) = x0 and f−1(yn) = xn for every n. Suppose by contradiction that {xn} does not
converge to x0. Then there exist ε0 > 0 and a subsequence {xnk} of {xn} such that

|xnk − x0| ≥ ε0 for every k. (3.5)

Since the sequence {xnk} is bounded, it has a further subsequence that converges to some x1 ∈ [a,b].
To simplify the notation, we will again call the new subsequence {xnk}. Taking limits in (3.5), we
get

|x1 − x0| ≥ ε0 > 0. (3.6)

On the other hand, by the continuity of f , { f (xnk)} converges to f (x1). Since f (xnk) = ynk → y0 as
k → ∞, it follows that f (x1) = y0 = f (x0). This implies x1 = x0, which contradicts (3.6). □

An analogous theorem can be proved for strictly decreasing functions.

Remark 3.4.2 A similar result holds if the domain of f is the open interval (a,b) with some
additional considerations. If f : (a,b) → R is increasing and bounded, following the argument
in Theorem 3.2.4 we can show that both limx→a+ f (x) = c and limx→b− f (x) = d exist in R (see
Exercise 3.2.11). Using the intermediate value theorem we obtain that f ((a,b)) = (c,d). We can
now proceed as in the previous theorem to show that f has a continuous inverse from (c,d) to (a,b).

If f : (a,b) → R is increasing, continuous, bounded below, but not bounded above, then
limx→a+ f (x) = c ∈ R, but limx→b− f (x) = ∞ (again see Exercise 3.2.11). In this case we can
show using the intermediate value theorem that f ((a,b)) = (c,∞) and we can proceed as above to
prove that f has a continuous inverse from (c,∞) to (a,b).

The other possibilities lead to similar results.
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Exercises

3.4.1 Let f : D → R be continuous at c ∈ D and let γ ∈ R. Suppose f (c) > γ . Prove that there
exists δ > 0 such that

f (x)> γ for every x ∈ (c−δ ,c+δ )∩D.

3.4.2 Let f ,g be continuous functions on [a,b]. Suppose f (a)< g(a) and f (b)> g(b). Prove that
there exists x0 ∈ (a,b) such that f (x0) = g(x0).

3.4.3 Prove that the equation cosx = x has at least one solution in R. (Assume known that the
function cosx is continuous.)

3.4.4 Prove that the equation x2 −2 = cos(x+1) has at least two real solutions. (Assume known
that the function cosx is continuous.)

3.4.5 Let f : [a,b]→ [a,b] be a continuous function.

(a) Prove that the equation f (x) = x has a solution on [a,b].
(b) Suppose further that

| f (x)− f (y)|< |x− y| for all x,y ∈ [a,b],x ̸= y.

Prove that the equation f (x) = x has a unique solution on [a,b].

3.4.6 ▷ Let f be a continuous function on [a,b] and x1,x2, . . . ,xn ∈ [a,b]. Prove that there exists
c ∈ [a,b] with

f (c) =
f (x1)+ f (x2)+ · · ·+ f (xn)

n
.

3.4.7 ▷ Suppose f is a continuous function on R such that | f (x)|< |x| for all x ̸= 0.

(a) Prove that f (0) = 0.
(b) Given two positive numbers a and b with a < b, prove that there exists ℓ ∈ [0,1) such that

| f (x)| ≤ ℓ|x| for all x ∈ [a,b].

3.4.8 ▶ Let f ,g : [0,1]→ [0,1] be continuous functions such that

f (g(x)) = g( f (x)) for all x ∈ [0,1].

Suppose further that f is monotone. Prove that there exists x0 ∈ [0,1] such that

f (x0) = g(x0) = x0.

3.4.9 Prove Corollary 3.4.6.
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3.5 Uniform Continuity
We discuss here a stronger notion of continuity.

Definition 3.5.1 Let D be a nonempty subset of R. A function f : D → R is called uniformly
continuous on D if for any ε > 0, there exists δ > 0 such that

| f (u)− f (v)|< ε for all u,v ∈ D with |u− v|< δ .

■ Example 3.5.1 Any constant function f : D → R, is uniformly continuous on its domain. Indeed,
given ε > 0, | f (u)− f (v)|= 0 < ε for all u,v ∈ D regardless of the choice of δ .

The following result is straightforward from the definition.

Theorem 3.5.1 If f : D → R is uniformly continuous on D, then f is continuous at every point
x0 ∈ D.

■ Example 3.5.2 Let f : R → R be given by f (x) = 7x− 2. We will show that f is uniformly
continuous on R.

Let ε > 0 and choose δ = ε/7. Then, if u,v ∈ R and |u− v|< δ , we have

| f (u)− f (v)|= |(7u−2)− (7v−2)|= |7(u− v)|= 7|u− v|< 7δ = ε.

■ Example 3.5.3 Let f : [−3,2]→ R be given by f (x) = x2. This function is uniformly continuous
on [−3,2].

Let ε > 0. First observe that for u,v ∈ [−3,2] we have |u+ v| ≤ |u|+ |v| ≤ 3+3 = 6. Now set
δ = ε/6. Then, for u,v ∈ [−3,2] satisfying |u− v|< δ , we have

| f (u)− f (v)|= |u2 − v2|= |u− v||u+ v| ≤ 6|u− v|< 6δ = ε.

■ Example 3.5.4 Let f : R → R be given by f (x) =
x2

x2 +1
. We will show that f is uniformly

continuous on R.
Let ε > 0. We observe first that∣∣∣∣ u2

u2 +1
− v2

v2 +1

∣∣∣∣= ∣∣∣∣u2(v2 +1)− v2(u2 +1)
(u2 +1)(v2 +1)

∣∣∣∣= |u− v||u+ v|
(u2 +1)(v2 +1)

≤ |u− v|(|u|+ |v|)
(u2 +1)(v2 +1)

≤ |u− v|((u2 +1)+(v2 +1))
(u2 +1)(v2 +1)

≤ |u− v|
(

1
v2 +1

+
1

u2 +1

)
≤ 2|u− v|,

(where we used the fact that |x| ≤ x2 + 1 for all x ∈ R, which can be proved by considering
separately the cases |x| ≤ 1 and |x| ≥ 1).

Now, set δ = ε/2. In view of the previous calculation, given u,v ∈ R satisfying |u− v|< δ we
have

| f (u)− f (v)|=
∣∣∣∣ u2

u2 +1
− v2

v2 +1

∣∣∣∣≤ 2|u− v|< 2δ = ε.
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Definition 3.5.2 (Hölder continuity). Let D be a nonempty subset of R. A function f : D → R is
said to be Hölder continuous if there are constants ℓ≥ 0 and α > 0 such that

| f (u)− f (v)| ≤ ℓ|u− v|α for every u,v ∈ D.

The number α is called the Hölder exponent of the function. If α = 1, then the function f is called
Lipschitz continuous.

Theorem 3.5.2 If a function f : D → R is Hölder continuous, then it is uniformly continuous.

Proof: Since f is Hölder continuous, there are constants ℓ≥ 0 and α > 0 such that

| f (u)− f (v)| ≤ ℓ|u− v|α for every u,v ∈ D.

If ℓ= 0, then f is constant and, thus, uniformly continuous. Suppose next that ℓ > 0. For any
ε > 0, let δ =

(
ε

ℓ

)1/α . Then, whenever u,v ∈ D, with |u− v|< δ we have

| f (u)− f (v)| ≤ ℓ|u− v|α < ℓδ α = ε.

The proof is now complete. □

Figure 3.3: The square root function.

■ Example 3.5.5 (a) Let D = [a,∞), where a > 0. We will show that f (x) =
√

x is Lipschitz
continuous on D and, hence, uniformly continuous on this set. Given u,v ∈ D, we have

| f (u)− f (v)|= |
√

u−
√

v|= |u− v|√
u+

√
v
≤ 1

2
√

a
|u− v|,

which shows f is Lipschitz continuous with ℓ= 1/(2
√

a).
(b) Let D = [0,∞). We will show that f (x) =

√
x is not Lipschitz continuous on D, but it is Hölder

continuous on D and, hence, f is also uniformly continuous on this set.
Suppose by contradiction that f is Lipschitz continuous on D. Then there exists a constant
ℓ > 0 such that

| f (u)− f (v)|= |
√

u−
√

v| ≤ ℓ|u− v| for every u,v ∈ D.

Considering v = 0 and un = 1/n for every n ∈ N,we have∣∣∣∣ 1√
n
−0
∣∣∣∣≤ ℓ

∣∣∣∣1n −0
∣∣∣∣ .
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Therefore,

√
n ≤ ℓ or n ≤ ℓ2 for every n ∈ N .

This is a contradiction. Hence, f is not Lipschitz continuous on D.
Now we prove that f is Hölder continuous on D by showing that

| f (u)− f (v)| ≤ |u− v|1/2 for every u,v ∈ D. (3.7)

The inequality in (3.7) holds obviously for u = v = 0. For u > 0 or v > 0, we have

| f (u)− f (v)|= |
√

u−
√

v|

=

∣∣∣∣ u− v√
u+

√
v

∣∣∣∣
=
√

|u− v|
√
|u− v|√
u+

√
v

≤
√

u+ v√
u+

√
v

√
|u− v|

≤
√

|u− v|.

Note that one can justify the inequality
√

u+v√
u+

√
v ≤ 1 by squaring both sides since they are both

positive. Thus, (3.7) holds and it follows that f (x) is Hölder continuous on [0,∞).

While every uniformly continuous function on a set D is also continuous at each point of D, the
converse is not true in general. The following example illustrates this point.

■ Example 3.5.6 Let f : (0,1)→ R be given by

f (x) =
1
x
.

We already know that this function is continuous at every x0 ∈ (0,1). We will show that f is not
uniformly continuous on (0,1). Let ε0 = 2 and δ > 0. Set δ0 = min{δ/2,1/4}, x = δ0, and y = 2δ0.
Then x,y ∈ (0,1) and |x− y|= δ0 < δ , but

| f (x)− f (y)|=
∣∣∣∣1x − 1

y

∣∣∣∣= ∣∣∣∣y− x
xy

∣∣∣∣= ∣∣∣∣ δ0

2δ 2
0

∣∣∣∣= ∣∣∣∣ 1
2δ0

∣∣∣∣≥ 2 = ε0.

This shows f is not uniformly continuous on (0,1).

The following theorem offers a sequential characterization of uniform continuity analogous to
that in Theorem 3.3.2.

Theorem 3.5.3 Let D be a nonempty subset of R and f : D → R. Then the following are equivalent:

(i) f is uniformly continuous on D.
(ii) For every two sequences {un}, {vn} in D such that limn→∞(un − vn) = 0, it follows that

limn→∞( f (un)− f (vn)) = 0.
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Figure 3.4: Continuous but not uniformly continuous on (0,∞).

Proof: Suppose first that f is uniformly continuous and let {un}, {vn} be sequences in D
such that limn→∞(un − vn) = 0. Let ε > 0. Choose δ > 0 such that | f (u)− f (v)| < ε whenever
u,v ∈ D and |u− v| < δ . Let N ∈ N be such that |un − vn| < δ for n ≥ N. For such n, we have
| f (un)− f (vn)|< ε . This shows limn→∞( f (un)− f (vn)) = 0.

To prove the converse, assume (ii) holds and suppose, by way of contradiction, that f is not
uniformly continuous. Then there exists ε0 > 0 such that for any δ > 0, there exist u,v ∈ D with

|u− v|< δ and | f (u)− f (v)| ≥ ε0.

Thus, for every n ∈ N, there exist un,vn ∈ D with

|un − vn| ≤ 1/n and | f (un)− f (vn)| ≥ ε0.

It follows that for such sequences, limn→∞(un − vn) = 0, but { f (un)− f (vn)} does not converge to
zero, which contradicts the assumption. □

■ Example 3.5.7 Using this theorem, we can give an easier proof that the function in Example 3.5.6
is not uniformly continuous. Consider the two sequences un = 1/(n+1) and vn = 1/n for all n ≥ 2.
Then clearly, limn→∞(un − vn) = 0, but

lim
n→∞

( f (un)− f (vn)) = lim
n→∞

(
1

1/(n+1)
− 1

1/n

)
= lim

n→∞
(n+1−n) = 1 ̸= 0.

The following theorem shows one important case in which continuity implies uniform continuity.

Theorem 3.5.4 Let f : [a,b]→ R. If f is continuous on [a,b], then f is uniformly continuous on
[a.b].
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Proof: Suppose by contradiction that f is not uniformly continuous on [a,b]. Then there exists
ε0 > 0 such that for any δ > 0, there exist u,v ∈ [a,b] with

|u− v|< δ and | f (u)− f (v)| ≥ ε0.

Thus, for every n ∈ N, there exist un,vn ∈ [a,b] with

|un − vn| ≤ 1/n and | f (un)− f (vn)| ≥ ε0.

Applying the Bolzano-Weierstrass theorem (Theorem 2.4.1) there exists a subsequence {unk} of
{un} and u0 ∈ [a,b] such that unk → u0 as k → ∞. Then

|unk − vnk | ≤
1
nk
,

for all k and, hence, we also have vnk → u0 as k → ∞. By the continuity of f ,

f (unk)→ f (u0) and f (vnk)→ f (u0).

Therefore, { f (unk)− f (vnk)} converges to zero, which is a contradiction. The proof is now com-
plete. □

We now prove a result that characterizes uniform continuity on open bounded intervals. We
first make the observation that if f : D → R is uniformly continuous on D and A ⊂ D, then f is
uniformly continuous on A. More precisely, the restriction f|A : A → R is uniformly continuous on A
(see Section 1.2 for the notation). This follows by noting that if | f (u)− f (v)|< ε whenever u,v ∈ D
with |u− v|< δ , then we also have | f (u)− f (v)|< ε when we restrict u,v to be in A.

Theorem 3.5.5 Let a,b ∈ R and a < b. A function f : (a,b)→ R is uniformly continuous if and
only if f can be extended to a continuous function f̃ : [a,b] → R (that is, there is a continuous
function f̃ : [a,b]→ R such that f = f̃|(a,b)).

Proof: Suppose first that there exists a continuous function f̃ : [a,b]→ R such that f = f̃|(a,b). By
Theorem 3.5.4, the function f̃ is uniformly continuous on [a,b]. Therefore, it follows from our early
observation that f is uniformly continuous on (a,b).

For the converse, suppose f : (a,b) → R is uniformly continuous. We will show first that
limx→a+ f (x) exists. Note that the one sided limit corresponds to the limit in Theorem 3.2.2. We will
check that the ε-δ condition of Theorem 3.2.2 holds.

Let ε > 0. Choose δ0 > 0 so that | f (u)− f (v)|< ε whenever u,v ∈ (a,b) and |u− v|< δ0. Set
δ = δ0/2. Then, if u,v ∈ (a,b), |u−a|< δ , and |v−a|< δ we have

|u− v| ≤ |u−a|+ |a− v|< δ +δ = δ0

and, hence, | f (u)− f (v)|< ε . We can now invoke Theorem 3.2.2 to conclude limx→a+ f (x) exists.
In a similar way we can show that limx→b− f (x) exists. Now define, f̃ : [a,b]→ R by

f̃ (x) =


f (x), if x ∈ (a,b);
limx→a+ f (x), if x = a;
limx→b− f (x), if x = b.

By its definition f̃|(a,b) = f and, so, f̃ is continuous at every x ∈ (a,b). Moreover, limx→a+ f̃ (x) =
limx→a+ f (x) = f̃ (a) and limx→b− f̃ (x) = limx→b− f (x) = f̃ (b), so f̃ is also continuous at a and b by
Theorem 3.3.1. Thus f̃ is the desired continuous extension of f . □
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Exercises
3.5.1 Prove that each of the following functions is uniformly continuous on the given domain:

(a) f (x) = ax+b, a,b ∈ R, on R.
(b) f (x) = 1/x on [a,∞), where a > 0.

3.5.2 ▶ Prove that each of the following functions is not uniformly continuous on the given domain:

(a) f (x) = x2 on R.

(b) f (x) = sin
1
x

on (0,1).

(c) f (x) = ln(x) on (0,∞).

3.5.3 Determine which of the following functions are uniformly continuous on the given domains.

(a) f (x) = xsin(1
x ) on (0,1).

(b) f (x) =
x

x+1
on [0,∞).

(c) f (x) =
1

|x−1|
on (0,1).

(d) f (x) =
1

|x−2|
on (0,1).

3.5.4 Let D ⊂ R and k ∈ R. Prove that if f ,g : D → R are uniformly continuous on D, then f +g
and k f are uniformly continuous on D.

3.5.5 Give an example of a subset D of R and uniformly continuous functions f ,g : D → R such
that f g is not uniformly conitnuous on D.

3.5.6 Let D be a nonempty subset of R and let f : D → R. Suppose that f is uniformly continuous
on D. Prove that if {xn} is a Cauchy sequence with xn ∈ D for every n ∈ N, then { f (xn)} is also a
Cauchy sequence.

3.5.7 ▷ Let a,b ∈ R and let f : (a,b)→ R.

(a) Prove that if f is uniformly continuous, then f is bounded.
(b) Prove that if f is continuous, bounded, and monotone, then it is uniformly continuous.

3.5.8 ▷ Let f be a continuous function on [a,∞). Suppose

lim
x→∞

f (x) = c.

(a) Prove that f is bounded on [a,∞).
(b) Prove that f is uniformly continuous on [a,∞).
(c) Suppose further that c > f (a). Prove that there exists x0 ∈ [a,∞) such that

f (x0) = inf{ f (x) : x ∈ [a,∞)}.
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4. DIFFERENTIATION

In this chapter, we discuss basic properties of the derivative of a function and several major
theorems, including the Mean Value Theorem and L’Hôpital’s Rule.

Throughout this chapter, we consider functions defined on an open interval I = (a,b), where
a,b ∈ R and a < b.

4.1 Definition and Basic Properties of the Derivative
Let f : I → R be a function, where I is an open interval. For every x0 ∈ I, the function

φx0(x) =
f (x)− f (x0)

x− x0

is defined on I \{x0}. Since I is an open interval, x0 is a limit point of I \{x0} (see Exercise 3.1.4).
Thus, it is possible to discuss the limit

lim
x→x0

φx0(x) = lim
x→x0

f (x)− f (x0)

x− x0
.

Definition 4.1.1 Let I be an open interval in R and let x0 ∈ I. We say that the function f defined on
I is differentiable at x0 if the limit

lim
x→x0

f (x)− f (x0)

x− x0

exists (as a real number). In this case, the limit is called the derivative of f at x0 denoted by
f ′(x0), and f is said to be differentiable at x0. Thus, if f is differentiable at x0, then

f ′(x0) = lim
x→x0

f (x)− f (x0)

x− x0
.

We say that f is differentiable on I if f is differentiable at every point x0 ∈ I. In this case, the
function f ′ : I → R is called the derivative of f on I.
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■ Example 4.1.1 (a) Let f : R→ R be given by f (x) = x and let x0 ∈ R. Then

lim
x→ x0

f (x)− f (x0)

x− x0
= lim

x→ x0

x− x0

x− x0
= lim

x→ x0
1 = 1.

It follows that f is differentiable at x0 and f ′(x0) = 1. Since x0 was an arbitrary point in R, we
have f ′(x) = 1 for all x ∈ R.

(b) Let f : R→ R be given by f (x) = x2 and let x0 ∈ R. Then

lim
x→ x0

f (x)− f (x0)

x− x0
= lim

x→ x0

x2 − x2
0

x− x0
= lim

x→ x0

(x− x0)(x+ x0)

x− x0
= lim

x→ x0
(x+ x0) = 2x0.

Thus, f is differentiable at every x ∈ R and f ′(x) = 2x.
(c) Let f : R→ R be given by f (x) = |x| and let x0 = 0. Then

lim
x→ 0+

f (x)− f (0)
x−0

= lim
x→ 0+

|x|
x

= lim
x→ 0+

x
x
= 1,

and

lim
x→ 0−

f (x)− f (0)
x−0

= lim
x→ 0−

|x|
x

= lim
x→ 0−

−x
x

=−1.

Therefore, limx→ 0
f (x)− f (0)

x−0 does not exist and, hence, f is not differentiable at 0.

Theorem 4.1.1 Let I be an open interval in R and let f be defined on I. If f is differentiable at
x0 ∈ I, then f is continuous at this point.

Proof: We have the following identity for x ∈ I \{x0}:

f (x) = f (x)− f (x0)+ f (x0) =
f (x)− f (x0)

x− x0
(x− x0)+ f (x0).

Thus,

lim
x→x0

f (x) = lim
x→x0

[
f (x)− f (x0)

x− x0
(x− x0)+ f (x0)

]
= f ′(x0) ·0+ f (x0) = f (x0).

Therefore, f is continuous at x0 by Theorem 3.3.1. □

Remark 4.1.1 The converse of Theorem 4.1.1 is not true. For instance, the absolute value function
f (x) = |x| is continuous at 0, but it is not differentiable at this point (as shown in Example 4.1.1(c)).

Theorem 4.1.2 Let I be an open interval in R and let f ,g : I → R. Suppose both f and g are
differentiable at x0 ∈ I. Then the following hold.

(i) The function f +g is differentiable at x0 and

( f +g)′(x0) = f ′(x0)+g′(x0).

(ii) For any c ∈ R, the function c f is differentiable at x0 and

(c f )′(x0) = c f ′(x0).
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(iii) Product Rule. The function f g is differentiable at x0 and

( f g)′(x0) = f ′(x0)g(x0)+ f (x0)g′(x0).

(iv) Quotient Rule. Suppose additionally that g(x0) ̸= 0. Then the function
f
g

is differentiable at

x0 and(
f
g

)′
(x0) =

f ′(x0)g(x0)− f (x0)g′(x0)

(g(x0))2 .

Proof: The proofs of (i) and (ii) are straightforward and we leave them as exercises. We prove (iii).
For every x ∈ I \{x0}, we can write

( f g)(x)− ( f g)(x0)

x− x0
=

f (x)g(x)− f (x0)g(x)+ f (x0)g(x)− f (x0)g(x0)

x− x0

=
( f (x)− f (x0))g(x)

x− x0
+

f (x0)(g(x)−g(x0))

x− x0
.

By Theorem 4.1.1, the function g is continuous at x0 and, hence, limx→x0 g(x) = g(x0). Thus,

lim
x→x0

( f g)(x)− ( f g)(x0)

x− x0
= f ′(x0)g(x0)+ f (x0)g′(x0)

and (iii) follows.
Next we prove (iv). Since g(x0) ̸= 0, and g is continuous at x0, it follows from Lemma 3.4.3 or

Remark 3.4.1 that there exists an open interval I′ ⊂ I containing x0 such that g(x) ̸= 0 for all x ∈ I′.

Let h =
f
g

. Then h is defined on I′. Moreover,

h(x)−h(x0)

x− x0
=

f (x)
g(x) −

f (x0)
g(x) + f (x0)

g(x) − f (x0)
g(x0)

x− x0

=

1
g(x)( f (x)− f (x0))+

f (x0)
g(x)g(x0)

(g(x0)−g(x))

x− x0

=
1

g(x)g(x0)

[
g(x0)

f (x)− f (x0)

x− x0
− f (x0)

g(x)−g(x0)

x− x0

]
.

Taking the limit as x → x0, we obtain (iv). The proof is now complete. □

■ Example 4.1.2 Let f : R→ R be given by f (x) = x2 and let x0 ∈ R. Using Example 4.1.1(a) and
the product rule (Theorem 4.1.2(iii)) we can provide an alternative derivation of a formula for f ′(x0).
Indeed, let g : R→ R be given by g(x) = x. Then f = g ·g so

f ′(x0) = (gg)′(x0) = g′(x0)g(x0)+g(x0)g′(x0) = 2g′(x0)g(x0) = 2x0.

Therefore, f ′(x) = 2x, for x ∈ R.
Proceeding by induction, we can obtain the derivative of g : R→R given by g(x) = xn for n ∈N

as g′(x) = nxn−1. Furthermore, using this and Theorem 4.1.2(i)(ii) we obtain the familiar formula
for the derivative of a polynomial p(x) = anxn + · · ·+a1x+a0 as

p′(x) = nanxn−1 + · · ·+2a2x+a1.
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We now discuss the differentiability of the composition of functions.

Theorem 4.1.3 — Chain rule. Let f : I → R and g : J → R, where I and J are open intervals in R
with f (I)⊂ J. Let x0 ∈ I and suppose f is differentiable at x0 and g is differentiable at f (x0). Then
the function g◦ f is differentiable at x0 and

(g◦ f )′(x0) = g′( f (x0)) f ′(x0).

Proof: Our goal is to prove that

lim
x→x0

g( f (x))−g( f (x0))

x− x0

exists and equals g′( f (x0)) f ′(x0). If we could write

(g◦ f )(x)− (g◦ f )(x0)

x− x0
=

g( f (x))−g( f (x0))

x− x0
=

g( f (x))−g( f (x0))

f (x)− f (x0)
· f (x)− f (x0)

x− x0

and take the limit as x → x0, we would get the desired result.
Unfortunately, even though x ̸= x0, the expression f (x)− f (x0) could be zero for values of x

arbitrarily close to x0. When that is the case, we cannot divide by that difference. To fix this situation,
we will introduce an auxiliary function h : J → R given by

h(y) =


g(y)−g( f (x0))

y− f (x0)
, if y ̸= f (x0);

g′( f (x0), if y = f (x0).

Note that if y ̸= f (x0), then g(y)− g( f (x0)) = h(y)(y− f (x0)) and if y = f (x0), then g(y)−
g( f (x0)) = 0 = h(y)(y− f (x0)). Hence, g(y)− g( f (x0)) = h(y)(y− f (x0)) for all y ∈ J. Since
f (I)⊂ J we obtain

g( f (x))−g( f (x0)) = h( f (x))( f (x)− f (x0)), for all x ∈ I.

Now, for x ̸= x0, we get the equality

g( f (x))−g( f (x0))

x− x0
= h( f (x)) · f (x)− f (x0)

x− x0

Moreover, since g is differentiable at f (x0), we have that h is continuous at f (x0) because

lim
y→ f (x0)

h(y) = lim
y→ f (x0)

g(y)−g( f (x0))

y− f (x0)
= g′( f (x0)) = h( f (x0)).

Since f is differentiable at x0, f is also continuous at x0. Therefore, the composition h ◦ f is
continuous at x0. Putting this information together, we have

lim
x→x0

g( f (x))−g( f (x0))

x− x0
= lim

x→x0
h( f (x)) · lim

x→x0

f (x)− f (x0)

x− x0
= h( f (x0)) f ′(x0) = g′( f (x0)) f ′(x0)

and the theorem holds. □
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■ Example 4.1.3 Consider the function h : R→ R given by h(x) = (3x4 + x+7)15. Since h(x) is a
polynomial we could in principle compute h′(x) by expanding the power and using Example 4.1.2.
However, Theorem 4.1.3 provides a shorter way. Define f ,g : R→ R by f (x) = 3x4 + x+ 7 and
g(x) = x15. Then h = g◦ f . Given x0 ∈ R, it follows from Theorem 4.1.3 that

(g◦ f )′(x0) = g′( f (x0)) f ′(x0) = 15(3x4
0 + x0 +7)14(12x3

0 +1).

■ Example 4.1.4 By iterating the Chain Rule, we can extended the result to the composition
of more than two functions in a straightforward way. For example, given functions f : I1 → R,
g : I2 →R, and h : I3 →R such that f (I1)⊂ I2, g(I2)⊂ I3, f is differentiable at x0, g is differentiable
at f (x0), and h is differentiable at g( f (x0)), we obtain that h ◦ g ◦ f is differentiable at x0 and
(h◦g◦ f )′(x0) = h′(g( f (x0)))g′( f (x0)) f ′(x0).

Definition 4.1.2 Let I be an open interval in R and let f : I → R be a differentiable function. If the
function f ′ : I → R is also differentiable, we say that f is twice differentiable (on I). The second
derivative of f is denoted by f ′′ or f (2). Thus, f ′′ = ( f ′)′. Similarly, we say that f is three times
differentiable if f (2) is differentiable, and ( f (2))′ is called the third derivative of f and is denoted
by f ′′′ or f (3). We can define in this way n times differentiability and the nth derivative of f for any
positive integer n. As a convention, f (0) = f .

Definition 4.1.3 Let I be an open interval in R and let f : I → R. The function f is said to be
continuously differentiable on I if f is differentiable on I and f ′ is continuous on I. We denote by
C1(I) the set of all continuously differentiable functions on I. If f is n times differentiable on I and
the nth derivative is continuous, then f is called n times continuously differentiable on I. We denote
by Cn(I) the set of all n times continuously differentiable functions on I.

Exercises
4.1.1 Prove parts (i) and (ii) of Theorem 4.1.2.

4.1.2 Compute the following derivatives directly from the definition. That is, do not use Theo-
rem 4.1.2, but rather compute the appropriate limit directly (see Example 4.1.1).

(a) f (x) = mx+b where m,b ∈ R.

(b) f (x) =
1
x

(here assume x ̸= 0).

(c) f (x) =
√

x (here assume x > 0).

4.1.3 Let f : R→ R be given by

f (x) =

{
x2, if x > 0;
0, if x ≤ 0.

(a) Prove that f is differentiable at 0. Find f ′(x) for all x ∈ R.
(b) Is f ′ continuous? Is f ′ differentiable?

4.1.4 Let

f (x) =

{
xα , if x > 0;
0, if x ≤ 0.
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(a) Determine the values of α for which f is continuous on R.
(b) Determine the values of α for which f is differentiable on R. In this case, find f ′.

4.1.5 Use Theorems 4.1.2 and 4.1.3 to compute the derivatives of the following functions at the
indicated points (see also Example 4.1.4). (Assume known that the function sinx is differentiable at
all points and that its derivative is cosx.)

(a) f (x) =
3x4 +7x
2x2 +3

at x0 =−1.

(b) f (x) = sin5(3x2 + π

2 x) at x0 =
π

8 .

4.1.6 Determine the values of x at which each function is differentiable.

(a) f (x) =

xsin
1
x
, if x ̸= 0;

0, if x = 0.

(b) f (x) =

x2 sin
1
x
, if x ̸= 0;

0, if x = 0.

4.1.7 Determine if each of the following functions is differentiable at 0. Justify your answer.

(a) f (x) =

{
x2, if x ∈Q;
x3, if x /∈Q .

(b) f (x) = [x]sin2(πx).

(c) f (x) = cos(
√
|x|).

(d) f (x) = x|x|.

4.1.8 Let f ,g be differentiable at x0. Find the following limits:

(a) limx→x0

x f (x0)− x0 f (x)
x− x0

.

(b) limx→x0

f (x)g(x0)− f (x0)g(x)
x− x0

.

4.1.9 Let I be an open interval of R and x0 ∈ I. Prove that if f : I →R is Lipschitz continuous, then
g(x) = ( f (x)− f (x0))

2 is differentiable at x0.

4.1.10 ▷ Let f be differentiable at x0 and f (x0)> 0. Find the following limit:

lim
n→∞

(
f (x0 +

1
n)

f (x0)

)n

.

4.1.11 ▶ Consider the function

f (x) =

x2 sin
(

1
x

)
+ cx, if x ̸= 0;

0, if x = 0,
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where 0 < c < 1.

(a) Prove that the function is differentiable on R.
(b) Prove that for every α > 0, the function f ′ changes its sign on (−α,α).

4.1.12 Let f be differentiable at x0 ∈ (a,b) and let c be a constant. Prove that

(a) limn→∞ n
[

f (x0 +
1
n)− f (x0)

]
= f ′(x0).

(b) limh→0
f (x0 + ch)− f (x0)

h
= c f ′(x0).

4.1.13 Let f be differentiable at x0 ∈ (a,b) and let c be a constant. Find the limit

lim
h→0

f (x0 + ch)− f (x0 − ch)
h

.

4.1.14 Prove that f : R→ R, given by f (x) = |x|3, is in C2(R) but not in C3(R) (refer to Defini-
tion 4.1.3). (Hint: the key issue is differentiability at 0.)

4.2 The Mean Value Theorem
In this section, we focus on the Mean Value Theorem, one of the most important tools of calculus

and one of the most beautiful results of mathematical analysis. The Mean Value Theorem we study
in this section was stated by the French mathematician Augustin Louis Cauchy (1789–1857), which
follows from a simpler version called Rolle’s Theorem.

An important application of differentiation is solving optimization problems. A simple method
for identifying local extrema of a function was found by the French mathematician Pierre de Fermat
(1601–1665). Fermat’s method can also be used to prove Rolle’s Theorem.

Definition 4.2.1 Let D be a nonempty subset of R and let f : D → R. We say that f has a local (or
relative) minimum at c ∈ D if there exists δ > 0 such that

f (x)≥ f (c) for all x ∈ (c−δ ,c+δ )∩D.

Similarly, we say that f has a local (or relative) maximum at c ∈ D if there exists δ > 0 such that

f (x)≤ f (c) for all x ∈ (c−δ ,c+δ )∩D.

Theorem 4.2.1 — Fermat’s Rule. Let I be an open interval and f : I →R. If f has a local minimum
or maximum at c ∈ I and f is differentiable at c, then f ′(c) = 0.

Proof: Suppose f has a local minimum at c. Then there exists δ > 0 sufficiently small such that

f (x)≥ f (c) for all x ∈ (c−δ ,c+δ )⊂ I.

Since (c,c+δ ) is a subset of (c−δ ,c+δ ), we have

f (x)− f (c)
x− c

≥ 0 for all x ∈ (c,c+δ ).



96 4.2 The Mean Value Theorem

Figure 4.1: Illustration of Fermat’s Rule. The function f has a local minimum at a and a local
maximum at b.

Taking into account the differentiability of f at c yields

f ′(c) = lim
x→c

f (x)− f (c)
x− c

= lim
x→c+

f (x)− f (c)
x− c

≥ 0.

Similarly,

f (x)− f (c)
x− c

≤ 0 for all x ∈ (c−δ ,c).

It follows that

f ′(c) = lim
x→c

f (x)− f (c)
x− c

= lim
x→c−

f (x)− f (c)
x− c

≤ 0.

Therefore, f ′(c) = 0. The proof is similar for the case where f has a local maximum at c. □

Theorem 4.2.2 — Rolle’s Theorem. Let a,b ∈ R with a < b and f : [a,b] → R. Suppose f is
continuous on [a,b] and differentiable on (a,b) with f (a) = f (b). Then there exists c ∈ (a,b) such
that

f ′(c) = 0. (4.1)

Proof: Since f is continuous on [a,b], by the extreme value theorem (Theorem 3.4.2) there exist
xm ∈ [a,b] and xM ∈ [a,b] such that

f (xm) = min{ f (x) : x ∈ [a,b]} and f (xM) = max{ f (x) : x ∈ [a,b]}.

Then

f (xm)≤ f (x)≤ f (xM) for all x ∈ [a,b]. (4.2)

If xm ∈ (a,b) or xM ∈ (a,b), then f has a local minimum at xm or f has a local maximum at xM . By
Theorem 4.2.1, f ′(xm) = 0 or f ′(xM) = 0, and (4.1) holds with c = xm or c = xM.

If both xm and xM are the endpoints of [a,b], then f (xm) = f (xM) because f (a) = f (b). By (4.2),
f is a constant function, so f ′(c) = 0 for any c ∈ (a,b). □

We are now ready to use Rolle’s Theorem to prove the Mean Value Theorem presented below.
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Figure 4.2: Illustration of Rolle’s Theorem.

Figure 4.3: Illustration of the Mean Value Theorem.

Theorem 4.2.3 — Mean Value Theorem. Let a,b ∈ R with a < b and f : [a,b]→ R. Suppose f is
continuous on [a,b] and differentiable on (a,b). Then there exists c ∈ (a,b) such that

f ′(c) =
f (b)− f (a)

b−a
. (4.3)

Proof: The linear function whose graph goes through (a, f (a)) and (b, f (b)) is

g(x) =
f (b)− f (a)

b−a
(x−a)+ f (a).

Define

h(x) = f (x)−g(x) = f (x)−
[

f (b)− f (a)
b−a

(x−a)+ f (a)
]

for x ∈ [a,b].

Then h(a) = h(b), and h satisfies the assumptions of Theorem 4.2.2. Thus, there exists c ∈ (a,b)
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such that h′(c) = 0. Since

h′(x) = f ′(x)− f (b)− f (a)
b−a

,

it follows that

f ′(c)− f (b)− f (a)
b−a

= 0.

Thus, (4.3) holds. □

■ Example 4.2.1 We show that |sinx| ≤ |x| for all x ∈ R. Let f (x) = sinx for all x ∈ R. Then
f ′(x) = cosx. Now, fix x0 ∈ R, x0 > 0. By the Mean Value Theorem applied to f on the interval
[0,x0], there exists c ∈ (0,x0) such that

sinx0 − sin0
x0 −0

= cosc.

Therefore, |sinx0|
|x0| = |cosc|. Since |cosc| ≤ 1 we conclude |sinx0| ≤ |x0|. Since x0 was an arbitrary

positive real number, we can conclude that |sinx| ≤ |x| for all x > 0.
Next suppose x0 < 0. Another application of the Mean Value Theorem shows there exists

c ∈ (x0,0) such that

sin0− sinx0

0− x0
= cosc.

Then, again, |sinx0|
|x0| = |cosc| ≤ 1. It follows that |sinx0| ≤ |x0| for x0 < 0. Since x0 was an arbitrary

negative real number, we have shown that |sinx| ≤ |x| for all x < 0. Since equality holds for x0 = 0,
we conclude that |sinx| ≤ |x| for all x ∈ R.

■ Example 4.2.2 We show that
√

1+4x < (5+ 2x)/3 for all x > 2. We consider the function
f (x) =

√
1+4x for all x ≥ 2. Then

f ′(x) =
4

2
√

1+4x
=

2√
1+4x

.

Now, fix x0 ∈ R such that x0 > 2. We apply the Mean Value Theorem to f on the interval [2,x0].
Then, since f (2) = 3, there exists c ∈ (2,x0) such that√

1+4x0 − f (2) =
√

1+4x0 −3 = f ′(c)(x0 −2).

Since f ′(2) = 2/3 and f ′(c)< f ′(2) for c > 2 we conclude that√
1+4x0 −3 <

2
3
(x0 −2) =

2
3

x0 −
4
3
.

Hence,√
1+4x0 <

2
3

x0 −
4
3
+3 = (5+2x0)/3.

Since x0 > 2 is arbitrary, the result follows for every x > 2.
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A more general result which follows directly from the Mean Value Theorem is known as Cauchy’s
Theorem.

Theorem 4.2.4 — Cauchy’s Theorem. Let a,b ∈ R with a < b. Suppose f and g are continuous
on [a,b] and differentiable on (a,b). Then there exists c ∈ (a,b) such that

[ f (b)− f (a)]g′(c) = [g(b)−g(a)] f ′(c). (4.4)

Proof: Define

h(x) = [ f (b)− f (a)]g(x)− [g(b)−g(a)] f (x) for x ∈ [a,b].

Then h(a) = f (b)g(a)− f (a)g(b) = h(b), and h satisfies the assumptions of Theorem 4.2.2. Thus,
there exists c ∈ (a,b) such that h′(c) = 0. Since

h′(x) = [ f (b)− f (a)]g′(x)− [g(b)−g(a)] f ′(x),

this implies (4.4). □

The following theorem shows that the derivative of a differentiable function on [a,b] satisfies the
intermediate value property although the derivative function is not assumed to be continuous. To
give the theorem in its greatest generality, we introduce a couple of definitions.

Definition 4.2.2 Let a,b ∈ R, a < b, and let f : [a,b]→ R.

(i) We say that f has a right derivative at a if lim
x→a+

f (x)− f (a)
x−a

exists. In this case we write

f ′+(a) = lim
x→a+

f (x)− f (a)
x−a

. (4.5)

(ii) We say that f has a left derivative at b if lim
x→b−

f (x)− f (b)
x−b

exists. In this case we write

f ′−(b) = lim
x→b−

f (x)− f (b)
x−b

.

(iii) We say that f is differentiable on [a,b] if f ′(x) exists for each x ∈ (a,b) and, in addition, both
f ′+(a) and f ′−(b) exist.

Theorem 4.2.5 — Intermediate Value Theorem for Derivatives. Let a,b ∈R with a < b. Suppose
f is differentiable on [a,b] and

f ′+(a)< λ < f ′−(b).

Then there exists c ∈ (a,b) such that f ′(c) = λ .

Proof: Define the function g : [a,b]→ R by

g(x) = f (x)−λx.
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Figure 4.4: Right derivative.

Then g is differentiable on [a,b] and g′+(a)< 0 < g′−(b). Thus,

lim
x→a+

g(x)−g(a)
x−a

< 0.

It follows that there exists δ1 > 0 such that

g(x)< g(a) for all x ∈ (a,a+δ1)∩ [a,b].

Similarly, there exists δ2 > 0 such that

g(x)< g(b) for all x ∈ (b−δ2,b)∩ [a,b].

Since g is continuous on [a,b], it attains its minimum at a point c ∈ [a,b]. From the observations
above, it follows that c ∈ (a,b). This implies g′(c) = 0 or, equivalently, that f ′(c) = λ . □

Remark 4.2.1 The same conclusion follows if f ′+(a)> λ > f ′−(b).

Exercises
4.2.1 ▷ Let f and g be differentiable at x0. Suppose f (x0) = g(x0) and f (x)≤ g(x) for all x ∈ R.

Prove that f ′(x0) = g′(x0).

4.2.2 Prove the following inequalities using the Mean Value Theorem.
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(a)
√

1+ x < 1+ 1
2 x for x > 0.

(b) ex > 1+ x, for x > 0. (Assume known that the derivative of ex is itself.)

(c)
x−1

x
< lnx < x−1, for x > 1. (Assume known that the derivative of lnx is 1/x.)

4.2.3 ▶ Prove that |sin(x)− sin(y)| ≤ |x− y| for all x,y ∈ R.

4.2.4 ▷ Let n be a positive integer and let ak,bk ∈ R for k = 1, . . . ,n. Prove that the equation

x+
n

∑
k=1

(ak sinkx+bk coskx) = 0

has a solution on (−π,π).

4.2.5 ▷ Let f and g be differentiable functions on [a,b]. Suppose g(x) ̸= 0 and g′(x) ̸= 0 for all
x ∈ [a,b]. Prove that there exists c ∈ (a,b) such that

1
g(b)−g(a)

∣∣∣∣ f (a) f (b)
g(a) g(b)

∣∣∣∣= 1
g′(c)

∣∣∣∣ f (c) g(c)
f ′(c) g′(c)

∣∣∣∣ ,
where the bars denote determinants of the two-by-two matrices.

4.2.6 ▷Let n be a fixed positive integer.

(a) Suppose a1,a2, . . . ,an satisfy

a1 +
a2

2
+ · · ·+ an

n
= 0.

Prove that the equation a1 +a2x+a3x2 + · · ·+anxn−1 = 0 has a solution in (0,1).

(b) Suppose a0,a1, . . . ,an satisfy

n

∑
k=0

ak

2k+1
= 0.

Prove that the equation ∑
n
k=0 ak cos(2k+1)x = 0 has a solution on (0, π

2 ).

4.2.7 Let f : [0,∞)→R be a differentiable function. Prove that if both limx→∞ f (x) and limx→∞ f ′(x)
exist, then limx→∞ f ′(x) = 0

4.2.8 ▷ Let f : [0,∞)→ R be a differentiable function.

(a) Show that if limx→∞ f ′(x) = a, then limx→∞

f (x)
x

= a.

(b) Show that if limx→∞ f ′(x) = ∞, then limx→∞

f (x)
x

= ∞.

(c) Are the converses in part (a) and part (b) true?
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4.3 Some Applications of the Mean Value Theorem

In this section, we assume that a,b ∈ R and a < b. In the proposition below, we show that it is
possible to use the derivative to determine whether a function is constant. The proof is based on the
Mean Value Theorem.

Proposition 4.3.1 Let f be continuous on [a,b] and differentiable on (a,b). If f ′(x) = 0 for all
x ∈ (a,b), then f is constant on [a,b].

Proof: Suppose by contradiction that f is not constant on [a,b]. Then there exist a1 and b1 such
that a ≤ a1 < b1 ≤ b and f (a1) ̸= f (b1). By Theorem 4.2.3, there exists c ∈ (a1,b1) such that

f ′(c) =
f (b1)− f (a1)

b1 −a1
̸= 0,

which is a contradiction. Therefore, f is constant on [a,b]. □

The next application of the Mean Value Theorem concerns developing simple criteria for
monotonicity of real-valued functions based on the derivative.

Figure 4.5: Strictly Increasing Function.

Proposition 4.3.2 Let f be differentiable on (a,b).

(i) If f ′(x)> 0 for all x ∈ (a,b), then f is strictly increasing on (a,b).
(ii) If f ′(x)< 0 for all x ∈ (a,b), then f is strictly decreasing on (a,b).

Proof: Let us prove (i). Fix any x1,x2 ∈ (a,b) with x1 < x2. By Theorem 4.2.3, there exists
c ∈ (x1,x2) such that

f (x2)− f (x1)

x2 − x1
= f ′(c)> 0.

This implies f (x1)< f (x2). Therefore, f is strictly increasing on (a,b). The proof of (ii) is similar. □
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■ Example 4.3.1 Let n ∈ N and f : [0,∞)→ R be given by f (x) = xn. Then f ′(x) = nxn−1. There-
fore, f ′(x) > 0 for all x > 0 and, so, f is strictly increasing. In particular, this shows that every
positive real number has exactly one nth root (refer to Example 3.4.2).

Theorem 4.3.3 — Inverse Function Theorem. Suppose f is differentiable on I = (a,b) and
f ′(x) ̸= 0 for all x ∈ (a,b). Then f is one-to-one, f (I) is an open interval, and the inverse function
f−1 : f (I)→ I is differentiable. Moreover,

( f−1)′(y) =
1

f ′(x)
, (4.6)

where f (x) = y.

Proof: It follows from Theorem 4.2.5 that

f ′(x)> 0 for all x ∈ (a,b), or f ′(x)< 0 for all x ∈ (a,b).

Suppose f ′(x)> 0 for all x ∈ (a,b). Then f is strictly increasing on this interval and, hence, it is
one-to-one. It follows from Theorem 3.4.7 and Remark 3.4.2 that f (I) is an open interval and f−1 is
continuous on f (I).

It remains to prove the differentiability of the inverse function f−1 and the representation of its
derivative (4.6). Fix any y0 ∈ f (I) with y0 = f (x0). Let g = f−1. We will show that

lim
y→y0

g(y)−g(y0)

y− y0
=

1
f ′(x0)

.

Fix any sequence {yn} in f (I) that converges to y0 and yn ̸= y0 for every n. For each yn, there exists
xn ∈ I such that f (xn) = yn. That is, g(yn) = xn for all n. It follows from the continuity of g that {xn}
converges to x0. Then

lim
n→∞

g(yn)−g(y0)

yn − y0
= lim

n→∞

xn − x0

f (xn)− f (x0)
= lim

n→∞

1
f (xn)− f (x0)

xn − x0

=
1

f ′(x0)
.

The proof is now complete. □

■ Example 4.3.2 Let n ∈ N and consider the function f : (0,∞)→ R given by f (x) = xn. Then
f is differentiable and f ′(x) = nxn−1 ̸= 0 for all x ∈ (0,∞). It is also clear that f ((0,∞)) = (0,∞).
It follows from the inverse function theorem that f−1 : (0,∞)→ (0,∞) is differentiable and given
y ∈ (0,∞)

( f−1)′(y) =
1

f ′( f−1(y))
=

1
n( f−1(y))n−1 .

Given y > 0, the value f−1(y) is the unique positive real number whose nth power is y. We call
f−1(y) the (positive) nth root of y and denote it by n

√
y. We also obtain the formula

( f−1)′(y) =
1

n( n
√

y)n−1 .
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Exercises
4.3.1 (a) Let f : R→ R be differentiable. Prove that if f ′(x) is bounded, then f is Lipschitz

continuous and, in particular, uniformly continuous.
(b) Give an example of a function f : (0,∞)→R which is differentiable and uniformly continuous

but such that f ′(x) is not bounded.

4.3.2 ▶ Let f : R→ R. Suppose there exist ℓ≥ 0 and α > 0 such that

| f (u)− f (v)| ≤ ℓ|u− v|α for all u,v ∈ R . (4.7)

(a) Prove that f is uniformly continuous on R.
(b) Prove that if α > 1, then f is a constant function.
(c) Find a nondifferentiable function that satisfies the condition above for α = 1.

4.3.3 ▷ Let f and g be differentiable functions on R such that f (x0) = g(x0) and

f ′(x)≤ g′(x) for all x ≥ x0.

Prove that f (x)≤ g(x) for all x ≥ x0.

4.3.4 Let f ,g : R→ R be differentiable functions satisfying

(a) f (0) = g(0) = 1

(b) f (x)> 0, g(x)> 0 and
f ′(x)
f (x)

>
g′(x)
g(x)

for all x.

Prove that

f (1)
g(1)

> 1 >
g(1)
f (1)

.

4.3.5 ▷ Let f be twice differentiable on an open interval I. Suppose that there exist a,b,c ∈ I
with a < b < c such that f (a)< f (b) and f (b)> f (c). Prove that there exists d ∈ (a,c) such that
f ′′(d)< 0.

4.3.6 ▷ Prove that the function f defined in Exercise 4.1.11 is not monotone on any open interval
containing 0.

4.4 L’Hôpital’s Rule
We now prove a result that allows us to compute various limits by calculating a related limit

involving derivatives. All four theorems in this section are known as L’Hôpital’s Rule.
In this section, we assume a,b ∈ R with a < b.

Theorem 4.4.1 Let f and g be continuous on [a,b] and differentiable on (a,b). Suppose that:

(i) f (x0) = g(x0) = 0, where x0 ∈ [a,b],
(ii) there exists δ > 0 such that g′(x) ̸= 0 for all x ∈ (x0 −δ ,x0 +δ )∩ [a,b], x ̸= x0.
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(iii) limx→x0
f ′(x)
g′(x) = ℓ, for some ℓ ∈ R.

Then

lim
x→x0

f (x)
g(x)

= ℓ. (4.8)

Proof: Let {xn} be a sequence in [a,b] that converges to x0 and such that xn ̸= x0 for every n. By
Theorem 4.2.4, for each n, there exists a sequence {cn}, with cn between xn and x0, such that

[ f (xn)− f (x0)]g′(cn) = [g(xn)−g(x0)] f ′(cn).

Since f (x0) = g(x0) = 0, and g′(cn) ̸= 0 for sufficiently large n, we have

f (xn)

g(xn)
=

f ′(cn)

g′(cn)
.

Under the assumptions that g′(x) ̸= 0 for x near x0 and g(x0) = 0, we also have g(xn) ̸= 0 for
sufficiently large n. By the squeeze theorem (Theorem 2.1.3), {cn} converges to x0. Thus,

lim
k→∞

f (xn)

g(xn)
= lim

n→∞

f ′(cn)

g′(cn)
= lim

x→x0

f ′(x)
g′(x)

= ℓ.

Therefore, (4.8) follows from Theorem 3.1.2. □

■ Example 4.4.1 We will use Theorem 4.4.1 to show that

lim
x→0

2x+ sinx
x2 +3x

= 1.

First we observe that the conditions of Theorem 4.4.1 hold. Here f (x) = 2x+ sinx, g(x) = x2 +3x,
and x0 = 0. We may take [a,b] = [−1,1], for example, so that f and g are continuous on [a,b]
and differentiable on (a,b) and, furthermore, f (x)

g(x) is well defined on [a,b]\{x0}. Moreover, taking
δ = 7/3, we get g′(x) = 2x+3 ̸= 0 for x ∈ (x0 −δ ,x0 +δ )∩ [a,b]. Finally we calculate the limit of
the quotient of derivatives using Theorem 3.2.1 to get

lim
x→x0

f ′(x)
g′(x)

= lim
x→0

2+ cosx
2x+3

=
limx→0 2+ limx→0 cosx

limx→0(2x+3)
=

2+1
3

= 1.

It now follows from Theorem 4.4.1 that limx→0
2x+ sinx
x2 +3x

= 1 as we wanted to show.

■ Example 4.4.2 We will apply L’Hôpital’s rule to determine the limit

lim
x→1

3x3 −2x2 +4x−5
4x4 −2x−2

.

Here f (x) = 3x3 −2x2 +4x−5, g(x) = 4x4 −2x−2 and x0 = 1. Thus f (1) = g(1) = 0. Moreover,
f ′(x) = 9x2 − 4x+ 4 and g′(x) = 16x3 − 2. Since g′(1) = 14 ̸= 0 and g′ is continuous we have
g′(x) ̸= 0 for x near 1. Now,

lim
x→x0

f ′(x)
g′(x)

= lim
x→1

9x2 −4x+4
16x3 −2

=
9

14
.

Thus, the desired limit is 9
14 as well.
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■ Example 4.4.3 If the derivatives of the functions f and g themselves satisfy the assumptions of
Theorem 4.4.1 we may apply L’Hôpital’s rule to determine first the limit of f ′(x)/g′(x) and then
apply the rule again to determine the original limit.

Consider the limit

lim
x→0

x2

1− cosx
.

Here f (x) = x2 and g(x) = 1− cosx so both functions and all its derivatives are continuous. Now
g′(x) = sinx and, so, g′(x) ̸= 0 for x near zero, x ̸= 0. Also, f ′(0) = 0 = g′(0) and g′′(x) = cosx ̸= 0
for x near 0. Moreover,

lim
x→0

f ′′(x)
g′′(x)

= lim
x→0

2
cosx

= 2.

By L’Hôpital’s rule we get

lim
x→0

f ′(x)
g′(x)

= lim
x→0

f ′′(x)
g′′(x)

= lim
x→0

2
cosx

= 2.

Applying L’Hôpital’s rule one more time we get

lim
x→0

x2

1− cosx
= lim

x→0

f (x)
g(x)

= lim
x→0

f ′(x)
g′(x)

= 2.

■ Example 4.4.4 Let g(x) = x+3x2 and let f : R→ R be given by

f (x) =

x2 sin
1
x
, if x ̸= 0;

0, if x = 0.

Now consider the limit

lim
x→0

f (x)
g(x)

= lim
x→0

x2 sin 1
x

x+3x2 .

Using the derivative rules at x ̸= 0 and the definition of derivative at x = 0 we can see that f is
differentiable and

f ′(x) =

2xsin
1
x
− cos

1
x
, if x ̸= 0;

0, if x = 0,

However, f ′ is not continuous at 0 (since limx→0 f ′(x) does not exist) and, hence, L’Hôpital’s rule
cannot be applied in this case.

On the other hand limx→0
x2 sin 1

x
x+3x2 does exist as we can see from

lim
x→0

x2 sin 1
x

x+3x2 = lim
x→0

xsin 1
x

1+3x
=

limx→0(xsin 1
x )

limx→0(1+3x)
= 0.
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Theorem 4.4.2 Let a,b ∈ R, a < b, and x0 ∈ (a,b). Let f ,g : (a,b)\{x0}→ R be differentiable on
(a,b)\{x0}. Suppose that:

(i) limx→x0 f (x) = limx→x0 g(x) = ∞,
(ii) there exists δ > 0 such that g′(x) ̸= 0 for all x ∈ (x0 −δ ,x0 +δ )∩ (a,b), x ̸= x0,

(iii) limx→x0

f ′(x)
g′(x)

= ℓ, for some ℓ ∈ R.

Then

lim
x→x0

f (x)
g(x)

= ℓ.

Proof: Since limx→x0 f (x) = limx→x0 g(x) = ∞, choosing a smaller positive δ if necessary, we can
assume that f (x) ̸= 0 and g(x) ̸= 0 for all x ∈ (x0 −δ ,x0 +δ )∩ (a,b).

We will show that limx→x+0

f (x)
g(x)

= ℓ. The proof that limx→x−0

f (x)
g(x)

= ℓ is completely analogous.

Fix any ε > 0. We need to find δ0 > 0 such that | f (x)/g(x)−ℓ|< ε whenever x ∈ (x0,x0+δ0)∩
(a,b).

From (iii), one can choose K > 0 and a positive δ1 < δ such that∣∣∣∣ f ′(x)
g′(x)

∣∣∣∣≤ K and
∣∣∣∣ f ′(x)
g′(x)

− ℓ

∣∣∣∣< ε

2
(4.9)

whenever x ∈ (x0 −δ1,x0 +δ1)∩ (a,b), x ̸= x0.
Fix α ∈ (x0,x0 + δ1)∩ (a,b) (in particular, α > x0). Since limx→x0 f (x) = ∞, we can find

δ2 > 0 such that δ2 < min{δ1,α − x0} and f (x) ̸= f (α) for x ∈ (x0,x0 +δ2)∩ (a,b) = (x0,x0 +δ2).
Moreover, for such x, since g′(z) ̸= 0 if x < z < α , Rolle’s theorem (Theorem 4.2.2) guarantees that
g(x) ̸= g(α). Therefore, for all x ∈ (x0,x0 +δ2) we can write,

f (x)
g(x)

=
f (x)− f (α)

g(x)−g(α)

1− g(α)

g(x)

1− f (α)

f (x)

.

Now, define

Hα(x) =
1− g(α)

g(x)

1− f (α)

f (x)

for x ∈ (x0,x0 +δ2).

Since limx→x0 f (x) = limx→x0 g(x) =∞, we have that limx→x+0
Hα(x) = 1. Thus, there exists a positive

γ < δ2 such that

|Hα(x)−1|< ε

2K
whenever x ∈ (x0,x0 + γ).

For any x ∈ (x0,x0 + γ), applying Theorem 4.2.4 on the interval [x,α], we can write [ f (x)−
f (α)]g′(c) = [g(x)− g(α)] f ′(c) for some c ∈ (x,α) (note that, in particular, c ∈ (x0 − δ1,x0 +
δ1)∩ (a,b)). For such c we get

f (x)
g(x)

=
f ′(c)
g′(c)

Hα(x).
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Since c ∈ (x0 −δ1,x0 +δ1)∩ (a,b), applying (4.9) we get that, for x ∈ (x0,x0 + γ) = (x0,x0 + γ)∩
(a,b), ∣∣∣∣ f (x)

g(x)
− ℓ

∣∣∣∣= ∣∣∣∣ f ′(c)
g′(c)

Hα(x)− ℓ

∣∣∣∣
=

∣∣∣∣ f ′(c)
g′(c)

(Hα(x)−1)+
f ′(c)
g′(c)

− ℓ

∣∣∣∣
≤
∣∣∣∣ f ′(c)
g′(c)

∣∣∣∣ |Hα(x)−1|+
∣∣∣∣ f ′(c)
g′(c)

− ℓ

∣∣∣∣
< K

ε

2K
+

ε

2
= ε.

Setting δ0 = γ completes the proof. □

■ Example 4.4.5 Consider the limit

lim
x→0

lnx2

1+ 1
3√x2

.

Here f (x) = lnx2, g(x) = 1+ 1
3√x2

, x0 = 0, and we may take as (a,b) any open interval containing
0. Clearly f and g satisfy the differentiability assumptions and g′(x) ̸= 0 for all x ̸= 0. Moreover,
limx→x0 f (x) = limx→x0 g(x) = ∞. We analyze the quotient of the derivatives. We have

lim
x→0

2/x

−2
3

(
1

3√x5

) = lim
x→0

(−3)
3
√

x5

x
= lim

x→0
(−3) 3

√
x2 = 0.

It now follows from Theorem 4.4.2 that

lim
x→0

lnx2

1+ 1
3√x2

= 0.

Remark 4.4.1 The proofs of Theorem 4.4.1 and Theorem 4.4.2 show that the results in these
theorems can be applied for left-hand and right-hand limits. Moreover, the results can also be
modified to include the case when x0 is an endpoint of the domain of the functions f and g.

The following theorem can be proved following the method in the proof of Theorem 4.4.1.

Theorem 4.4.3 Let f and g be differentiable on (a,∞). Suppose that:

(i) g(x) ̸= 0 and g′(x) ̸= 0 for all x ∈ (a,∞),
(ii) limx→∞ f (x) = limx→∞ g(x) = 0,

(iii) limx→∞

f ′(x)
g′(x)

= ℓ, for some ℓ ∈ R.

Then

lim
x→∞

f (x)
g(x)

= ℓ.
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■ Example 4.4.6 Consider the limit

lim
x→∞

1
x(π

2 − arctanx)
.

Writing the quotient in the form 1/x
π

2 −arctanx , we can apply Theorem 4.4.3. We now compute the limit
of the quotient of the derivatives

lim
x→∞

−(1/x2)

−
(

1
x2+1

) = lim
x→∞

x2 +1
x2 = 1.

In view of Theorem 4.4.3 the desired limit is also 1.

The following theorem can be proved following the method in the proof of Theorem 4.4.2.

Theorem 4.4.4 Let f and g be differentiable on (a,∞). Suppose that:

(i) g′(x) ̸= 0 for all x ∈ (a,∞),
(ii) limx→∞ f (x) = limx→∞ g(x) = ∞,

(iii) limx→∞

f ′(x)
g′(x)

= ℓ, for some ℓ ∈ R.

Then

lim
x→∞

f (x)
g(x)

= ℓ.

■ Example 4.4.7 Consider the limit

lim
x→∞

lnx
x

.

Clearly the functions f (x) = lnx and g(x) = x satisfy the conditions of Theorem 4.4.4. We have

lim
x→∞

f ′(x)
g′(x)

= lim
x→∞

1/x
1

= 0

It follows from Theorem 4.4.4 that limx→∞

lnx
x

= 0.

Exercises
4.4.1 Use L’Hôpital’s rule to find the following limits (you may assume known all the relevant

derivatives from calculus):

(a) lim
x→−2

x3 −4x
3x2 +5x−2

.

(b) lim
x→0

ex − e−x

sinxcosx
.
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(c) lim
x→1

x−1
√

x+1−
√

2
.

(d) lim
x→0

ex − e−x

ln(1+ x)
.

(e) lim
x→1

lnx
sin(πx)

.

4.4.2 For the problems below use L’Hôpital’s rule as many times as appropriate to determine the
limits.

(a) lim
x→0

1− cos2x
xsinx

.

(b) lim
x→0

(x− π

2 )
2

1− sinx
.

(c) lim
x→0

x− arctanx
x3 .

(d) lim
x→0

x− sinx
x− tanx

.

4.4.3 Use the relevant version of L’Hôpital’s rule to compute each of the following limits.

(a) lim
x→∞

3x2 +2x+7
4x2 −6x+1

.

(b) lim
x→0+

− lnx
cotx

.

(c) lim
x→∞

π

2 − arctanx

ln(1+ 1
x )

.

(d) lim
x→∞

√
xe−x. (Hint: first rewrite as a quotient.)

4.4.4 Prove that the following functions are differentiable at 1 and -1.

(a) f (x) =

x2e−x2
, if |x| ≤ 1;

1
e
, if |x|> 1.

(b) f (x) =

arctanx, if |x| ≤ 1;
π

4
signx+

x−1
2

, if |x|> 1.

4.4.5 ▷ Let P(x) be a polynomial. Prove that

lim
x→∞

P(x)e−x = 0.

4.4.6 ▶ Consider the function

f (x) =

{
e−

1
x2 , if x ̸= 0;

0, if x = 0.

Prove that f ∈Cn(R) for every n ∈ N.
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4.5 Taylor’s Theorem
In this section, we prove a result that lets us approximate differentiable functions by polynomials.

Theorem 4.5.1 — Taylor’s Theorem. Let n be a positive integer. Suppose f : [a,b]→R is a function
such that f (n) is continuous on [a,b], and f (n+1)(x) exists for all x ∈ (a,b). Let x0 ∈ [a,b]. Then for
any x ∈ [a,b] with x ̸= x0, there exists a number c in between x0 and x such that

f (x) = Pn(x)+
f (n+1)(c)
(n+1)!

(x− x0)
n+1,

where

Pn(x) =
n

∑
k=0

f (k)(x0)

k!
(x− x0)

k.

Proof: Let x0 be as in the statement and fix x ̸= x0. Since x− x0 ̸= 0, there exists a number λ ∈ R
such that

f (x) = Pn(x)+
λ

(n+1)!
(x− x0)

n+1.

We will now show that

λ = f (n+1)(c), for some c in between x0 and x.

Consider the function

g(t) = f (x)−
n

∑
k=0

f (k)(t)
k!

(x− t)k − λ

(n+1)!
(x− t)n+1.

Then

g(x0)= f (x)−
n

∑
k=0

f (k)(x0)

k!
(x−x0)

k− λ

(n+1)!
(x−x0)

n+1 = f (x)−Pn(x)−
λ

(n+1)!
(x−x0)

n+1 = 0.

and

g(x) = f (x)−
n

∑
k=0

f (k)(x)
k!

(x− x)k − λ

(n+1)!
(x− x)n+1 = f (x)− f (x) = 0.

By Rolle’s theorem (Theorem 4.2.2), there exists c in between x0 and x such that g′(c) = 0. Taking
the derivative of g (keeping in mind that x is fixed and the independent variable is t) and using the
product rule for derivatives, we have

g′(c) = − f ′(c)+
n

∑
k=1

(
− f (k+1)(c)

k!
(x− c)k +

f (k)(c)
(k−1)!

(x− c)k−1

)
+

λ

n!
(x− c)n

=
λ

n!
(x− c)n − 1

n!
f (n+1)(c)(x− c)n = 0.

It follows that λ = f (n+1)(c). The proof is now complete. □

The polynomial Pn(x) given in the theorem is called the nth Taylor polynomial of f at x0.
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Remark 4.5.1 The conclusion of Taylor’s theorem still holds true if x = x0. In this case, c = x = x0.

■ Example 4.5.1 We will use Taylor’s theorem to estimate the error in approximating the function
f (x) = sinx with its 3rd Taylor polynomial at x0 = 0 on the interval [−π/2,π/2]. Since f ′(x) = cosx,
f ′′(x) =−sinx and f ′′′(x) =−cosx, a direct calculation shows that

P3(x) = x− x3

3!
.

Moreover, for any c ∈ R we have | f (4)(c)|= |sinc| ≤ 1. Therefore, for x ∈ [−π/2,π/2] we get (for
some c between x and 0),

|sinx−P3(x)|=
| f (4)(c)|

4!
|x| ≤ π/2

4!
≤ 0.066.

Theorem 4.5.2 Let n be an even positive integer. Suppose f (n) exists and continuous on (a,b). Let
x0 ∈ (a,b) satisfy

f ′(x0) = . . .= f (n−1)(x0) = 0 and f (n)(x0) ̸= 0.

The following hold:

(i) f (n)(x0)> 0 if and only if f has a local minimum at x0.
(ii) f (n)(x0)< 0 if and only if f has a local maximum at x0.

Proof: We will prove (i). Suppose f (n)(x0) > 0. Since f (n)(x0) > 0 and f (n) is continuous at x0,
there exists δ > 0 such that

f (n)(t)> 0 for all t ∈ (x0 −δ ,x0 +δ )⊂ (a,b).

Fix any x ∈ (x0 −δ ,x0 +δ ). By Taylor’s theorem (Theorem 4.5.1) and the given assumption, there
exists c in between x0 and x such that

f (x) = f (x0)+
f (n)(c)

n!
(x− x0)

n.

Since n is even and c ∈ (x0 −δ ,x0 +δ ), we have f (x)≥ f (x0). Thus, f has a local minimum at x0.
Now, for the converse, suppose that f has a local minimum at x0. Then there exists δ > 0 such

that

f (x)≥ f (x0) for all x ∈ (x0 −δ ,x0 +δ )⊂ (a,b).

Fix a sequence {xk} in (a,b) that converges to x0 with xk ̸= x0 for every k. By Taylor’s theorem
(Theorem 4.5.1), there exists a sequence {ck}, with ck between xk and x0 for each k, such that

f (xk) = f (x0)+
f (n)(ck)

n!
(xk − x0)

n.

Since xk ∈ (x0 −δ ,x0 +δ ) for sufficiently large k, we have

f (xk)≥ f (x0)
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for such k. It follows that

f (xk)− f (x0) =
f (n)(ck)

n!
(xk − x0)

n ≥ 0.

This implies f (n)(ck)≥ 0 for such k. Since {ck} converges to x0, f (n)(x0) = limk→∞ f (n)(ck)≥ 0.
The proof of (ii) is similar. □

■ Example 4.5.2 Consider the function f (x) = x2 cosx defined on R. Then f ′(x) = 2xcosx−x2 sinx
and f ′′(x) = 2cosx−4xsinx− x2 cosx. Then f (0) = f ′(0) = 0 and f ′′(0) = 2 > 0. It follows from
the previous theorem that f has a local minimum at 0. Notice, by the way, that since f (0) = 0 and
f (π)< 0, 0 is not a global minimum.

■ Example 4.5.3 Consider the function f (x) =−x6 +2x5 + x4 −4x3 + x2 +2x−3 defined on R. A
direct calculations shows f ′(1) = f ′′(1) = f ′′′(1) = f (4)(1) = 0 and f (5)(1)< 0. It follows from the
previous theorem that f has a local maximum at 1.

Exercises
4.5.1 ▷ Use Taylor’s theorem to prove that for all x > 0 and m ∈ N,

ex >
m

∑
k=0

xk

k!
.

4.5.2 Find the 5th Taylor polynomial, P5(x), at x0 = 0 for cosx. Determine an upper bound for the
error |P5(x)− cosx| for x ∈ [−π/2,π/2].

4.5.3 Use Theorem 4.5.2 to determine if the following functions have a local minimum or a local
maximum at the indicated points.

(a) f (x) = x3 sinx at x0 = 0.
(b) f (x) = (1− x) lnx at x0 = 1.

4.5.4 Suppose f is twice differentiable on (a,b). Show that for every x ∈ (a,b),

lim
h→0

f (x+h)+ f (x−h)−2 f (x)
h2 = f ′′(x).

4.5.5 ▶ (a) Suppose f is three times differentiable on (a,b) and x0 ∈ (a,b). Prove that

lim
h→0

f (x0 +h)− f (x0)− f ′(x0)
h
1! − f ′′(x0)

h2

2!
h3 =

f ′′′(x0)

3!
.

(b) State and prove a more general result for the case where f is n times differentiable on (a,b).

4.5.6 Suppose f is n times differentiable on (a,b) and x0 ∈ (a,b). Define

Pn(h) =
n

∑
k=0

f (n)(x0)
hn

n!
for h ∈ R .
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Prove that

lim
h→0

f (x0 +h)−Pn(h)
hn = 0.

(Thus, we have f (x0 +h) = Pn(h)+g(h), where g is a function that satisfies limh→0
g(h)
hn = 0. This

is called the Taylor expansion with Peano’s remainder.)
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tials

5. ADDITIONAL TOPICS

In this chapter we introduce topological properties of the real line and provide generalizations
of the main results about continuous functions in this context. In addition, we introduce the notion
of upper and lower semicontinuous functions and give further generalizations of the extreme value
theorem for them. Finally, we discuss convex functions and study the existence of extrema for them
using the notion of subdifferential.

5.1 Topology of the Real Line
In this section we introduce some topological concepts on the real line R. These concepts capture

the essential characteristics of sets that are relevant for the study of continuity. In particular they will
allow extensions of the extreme value theorem and other results to the case when the domain of the
function may not be an interval.

The open ball in R with center a ∈ R and radius δ > 0 is the set

B(a;δ ) = (a−δ ,a+δ ).

Definition 5.1.1 A subset A of R is said to be open if for each a ∈ A, there exists δ > 0 such that

B(a;δ )⊂ A.

■ Example 5.1.1 The following examples illustrate the concept of open set.

(a) Any open interval A = (c,d) is open. Indeed, for each a ∈ A, one has c < a < d. Let

δ = min{a− c,d −a}.

Then
B(a;δ ) = (a−δ ,a+δ )⊂ A.

Therefore, A is open.
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(b) The sets A= (−∞,c) and B= (c,∞) are open, but the set C = [c,∞) is not open. The reader can
easily verify that A and B are open. Let us show that C is not open. Assume by contradiction
that C is open. Then, for the element c ∈C, there exists δ > 0 such that

B(c;δ ) = (c−δ ,c+δ )⊂C.

However, this is a contradiction because for any positive δ we have that c−δ/2 /∈C.
(c) The set A = Zc is open. To show this, let a ∈ Zc, that is, a is not a positive integer, and let m

be the closest integer to a (see Theorem 1.6.2). Setting δ = |a−m|, we get δ > 0 since m ̸= a
and then B(x;δ )∩Z= /0, that is, B(x;δ )⊂ A.

Theorem 5.1.1 The following hold:

(i) The subsets /0 and R are open.
(ii) The union of any collection of open subsets of R is open.

(iii) The intersection of a finite number of open subsets of R is open.

Proof: The proof of (i) is straightforward.
(ii) Suppose {Gα : α ∈ I} is an arbitrary collection of open subsets of R. That means Gα is open

for every α ∈ I. Let us show that the set

G =
⋃
α∈I

Gα

is open. Take any a ∈ G. Then there exists α0 ∈ I such that a ∈ Gα0 . Since Gα0 is open, there exists
δ > 0 such that

B(a;δ )⊂ Gα0 .

This implies B(a;δ )⊂ G, because Gα0 ⊂ G. Thus, G is open.
(iii) Suppose Gi, i = 1, . . . ,n, are open subsets of R. Let us show that the set

G =
n⋂

i=1

Gi

is also open. Take any a ∈ G. Then a ∈ Gi for i = 1, . . . ,n. Since each Gi is open, there exists δi > 0,
i = 1, . . . ,n, such that

B(a;δi)⊂ Gi.

Let δ = min{δi : i = 1, . . . ,n}. Then δ > 0 and

B(a;δ )⊂ B(a,δi)⊂ Gi, for i = 1, . . . ,n.

Therefre B(a;δ )⊂ G. Thus, G is open. □

Definition 5.1.2 A subset S of R is called closed if its complement, Sc = R\S, is open.

■ Example 5.1.2 The following examples illustrate closed sets.

(a) The sets (−∞,a], and [a,∞) are closed. Indeed, (−∞,a]c = (a,∞) and [a,∞)c = (−∞,a) which
are open by Example 5.1.1.
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(b) Since [a,b]c = (−∞,a)∪ (b,∞), [a,b]c is open by Theorem 5.1.1. Also, single element sets
are closed since, say, {b}c = (−∞,b)∪ (b,∞) which is open.

(c) The set Z is closed as follows from Example 5.1.1(c)

Theorem 5.1.2 The following hold:

(i) The sets /0 and R are closed.
(ii) The intersection of any collection of closed subsets of R is closed.

(iii) The union of a finite number of closed subsets of R is closed.

Proof: The proofs for these are simple using the De Morgan’s law. Let us prove, for instance, (ii).
Let {Sα : α ∈ I} be a collection of closed sets. We will prove that the set

S =
⋂
α∈I

Sα

is also closed. We have

Sc =

(⋂
α∈I

Sα

)c

=
⋃
α∈I

Sc
α .

Thus, Sc is open because it is a union of opens sets in R (Theorem 5.1.1(ii)). Therefore, S is closed. □

■ Example 5.1.3 It follows from part (iii) and Example 5.1.2 that any finite set is closed.

Theorem 5.1.3 Let A be a subset of R. The following are equivalent:

(i) A is closed.
(ii) for any sequence {an} in A that converges to a point a ∈ R, it follows that a ∈ A.

Proof: Assume first that (i) holds. Let {an} is a sequence in A that converges to a. Suppose
by contradiction that a ̸∈ A. Since A is closed, Ac is open. Hence, there exists ε > 0 such that
B(a;ε) = (a− ε,a+ ε)⊂ Ac. Since {an} converges to a, there exists N ∈ N such that

a− ε < aN < a+ ε.

This implies aN ∈ Ac, a contradiction.
Let us now prove the converse. Assume (ii) holds. Suppose by contradiction that A is not closed.

Then Ac is not open. Since Ac is not open, there exists a ∈ Ac such that for any ε > 0, one has
B(a;ε)∩A ̸= /0. In particular, for such an a and for each n ∈ N, there exists an ∈ B(a; 1

n)∩A. It is
clear that the sequence {an} is in A and it is convergent to a (because |an −a|< 1

n , for all n ∈ N).
This contradicts (ii) since a ̸∈ A. Therefore, A is closed. □

The following result relates closed sets to the existence of maximum and minimum elements
(see Remark 1.5.1).

Theorem 5.1.4 If A is a nonempty subset of R that is closed and bounded above, then maxA exists.
Similarly, if A is a nonempty subset of R that is closed and bounded below, then minA exists
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Proof: Let A be a nonempty closed set that is bounded above. Then supA exists. Let m = supA. To
complete the proof, we will show that m ∈ A (and therefore m = maxA). Assume by contradiction
that m /∈ A. Then m ∈ Ac, which is an open set. So there exists δ > 0 such that

(m−δ ,m+δ )⊂ Ac.

This means there exists no a ∈ A with

m−δ < a ≤ m.

This contradicts the fact that m is the least upper bound of A (see Proposition 1.5.1). Therefore,
m ∈ A and hence maxA exists. □

Definition 5.1.3 A subset A of R is called compact if for every sequence {an} in A, there exists a
subsequence {ank} that converges to a point a ∈ A.1

■ Example 5.1.4 Let a,b ∈ R, a ≤ b. We show that the set A = [a,b] is compact. Let {an} be a
sequence in A. Since a ≤ an ≤ b for all n, then the sequence is bounded. By the Bolzano-Weierstrass
theorem (Theorem 2.4.1), we can obtain a convergent subsequence {ank}. Say, limk→∞ ank = s. We
now must show that s ∈ A. Since a ≤ ank ≤ b for all k, it follows from Theorem 2.1.2, that a ≤ s ≤ b
and, hence, s ∈ A as desired. We conclude that A is compact.

Theorem 5.1.5 — Heine-Borel. A subset A of R is compact if and only if it is closed and bounded.

Proof: Suppose A is a compact subset of R. Let us first show that A is bounded. Suppose, by
contradiction, that A is not bounded. Then for every n ∈ N, there exists an ∈ A such that

|an| ≥ n.

Since A is compact, there exists a subsequence {ank} that converges to some a ∈ A. Then

|ank | ≥ nk ≥ k for all k.

Therefore, limk→∞ |ank | = ∞. This is a contradiction because {|ank |} converges to |a|. Thus A is
bounded.

Let us now show that A is closed. Let {an} be a sequence in A that converges to a point a ∈ R.
By the definition of compactness, {an} has a subsequence {ank} that converges to b ∈ A. On the
other hand, every subsequence must converge to a. Therefore a = b ∈ A and, hence, A is closed by
Theorem 5.1.3.

For the converse, suppose A is closed and bounded and let {an} be a sequence in A. Since A
is bounded, the sequence is bounded and, by the Bolzano-Weierstrass theorem (Theorem 2.4.1), it
has a convergent subsequence, {ank}. Say, limk→∞ ank = a. It now follows from Theorem 5.1.3 that
a ∈ A. This shows that A is compact as desired. □

We now revisit the notion of limit point with new terminology and illustrate it with more general
examples of subsets of R.

Definition 5.1.4 Let A be a subset of R. A point a ∈ R (not necessarily in A) is called a limit point
of A if for every δ > 0, the open ball B(a;δ ) contains a point p of A, p ̸= a.

1This definition of compactness is more commonly referred to as sequential compactness.
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A point a ∈ A which is not a limit point of A is called an isolated point of A.
Observe that a point a ∈R is a limit point of a set D if for all δ > 0 the set (B(a,δ )\{a})∩D is

nonempty.

■ Example 5.1.5 (a) Let A = [0,1). Then a = 0 is a limit point of A and b = 1 is also a limit
point of A. In fact, any point of the interval [0,1] is a limit point of A. The set [0,1) has no
isolated points.

(b) Let A = Z. Then A does not have any limit points. Every element of Z is an isolated point of
Z.

(c) Let A = {1/n : n ∈ N}. Then a = 0 is the only limit point of A. All elements of A are isolated
points.

(d) Let A =Q. Then every real number is a limit point of A. This follows directly from the density
of Q (see Theorem 1.6.3 and also Exercise 2.1.8).

■ Example 5.1.6 If G is an open subset of R then every point of G is a limit point of G. In fact,
more is true. If G is open and a ∈ G, then a is a limit point of G\{a}. Indeed, let δ > 0 be such that
B(a;δ )⊂ G. Then (G\{a})∩B(a;δ ) = (a−δ ,a)∪ (a,a+δ ) and therefore it is nonempty.

The next result is useful when studying sequences and limit points.

Theorem 5.1.6 Suppose A is an infinite set. Then there exists a one-to-one function f : N→ A.

Proof: Let A be an infinite set. We define f as follows. Choose any element a1 ∈ A and set f (1) = a1.
Now the set A\{a1} is again infinite because otherwise A = {a1}∪ (A\{a1}) would be the union
of two finite sets and hence finite. So we may choose a2 ∈ A with a2 ̸= a1 and we define f (2) = a2

2.
Having defined f (1), . . . , f (k), we choose ak+1 ∈ A such that ak+1 ∈ A \ {a1, . . . ,ak} and define
f (k+ 1) = ak+1 (such an ak+1 exists because A \ {a1, . . . ,ak} is infinite and, so, nonempty). The
function f so defined clearly has the desired properties. □

To paraphrase, the previous theorem says that in every infinite set we can find a sequence made
up of all distinct points.

The following theorem is a variation of the Bolzano-Weierstrass theorem.

Theorem 5.1.7 Any infinite bounded subset of R has at least one limit point.

Proof: Let A be an infinite subset of R and let {an} be a sequence of A such that

am ̸= an for m ̸= n

(see Theorem 5.1.6). Since {an} is bounded, by the Bolzano-Weierstrass theorem (Theorem 2.4.1), it
has a convergent subsequence {ank}. Set b = limk→∞ ank . Given δ > 0, there exists K ∈ N such that
ank ∈ B(b;δ ) for k ≥ K. Since the set {ank : k ≥ K} is infinite, it follows that at least one ank with
k ≥ K is different from b. This shows that for every δ > 0, the set (B(b;δ )\{b})∩A is nonempty
and thus b is a limit point of A. □

The definitions and results given below provide the framework for discussing convergence within
subsets of R.

2This fact relies on a basic axiom of set theory called the Axiom of Choice. See [Lay13] for more details.
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Definition 5.1.5 Let D be a subset of R. We say that a subset V of D is open in D if for every a ∈V ,
there exists δ > 0 such that

B(a;δ )∩D ⊂V.

Theorem 5.1.8 Let D be a subset of R. A subset V of D is open in D if and only if there exists an
open subset G of R such that

V = D∩G.

Proof: Suppose V is open in D. By definition, for every a ∈V , there exists δa > 0 such that

B(a;δa)∩D ⊂V.

Define

G =
⋃
a∈V

B(a;δa)

Then G is a union of open subsets of R, so G is open. Moreover,

V ⊂ G∩D =
⋃
a∈V

[B(a;δa)∩D]⊂V.

Therefore, V = G∩D.
Let us now prove the converse. Suppose V = G∩D, where G is an open set. For any a ∈V , we

have a ∈ G, so there exists δ > 0 such that

B(a;δ )⊂ G.

It follows that

B(a;δ )∩D ⊂ G∩D =V.

The proof is now complete. □

■ Example 5.1.7 Let D = [0,1) and V = [0, 1
2). We can write V = D∩ (−1, 1

2). Since (−1, 1
2) is

open in R, we conclude from Theorem 5.1.8 that V is open in D. Notice that V itself is not an open
subset of R.

The following theorem is now a direct consequence of Theorems 5.1.8 and 5.1.1.

Theorem 5.1.9 Let D be a subset of R. The following hold:

(i) The subsets /0 and D are open in D.
(ii) The union of any collection of open sets in D is open in D.

(iii) The intersection of a finite number of open sets in D is open in D.

Definition 5.1.6 Let D be a subset of R. We say that a subset A of D is closed in D if D\A is open
in D.
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Theorem 5.1.10 Let D be a subset of R. A subset K of D is closed in D if and only if there exists a
closed subset F of R such that

K = D∩F.

Proof: Suppose K is a closed set in D. Then D\K is open in D. By Theorem 5.1.8, there exists an
open set G such that

D\K = D∩G.

It follows that

K = D\ (D\K) = D\ (D∩G) = D\G = D∩Gc.

Let F = Gc. Then F is a closed subset of R and K = D∩F.
Conversely, suppose that there exists a closed subset F of R such that K = D∩F . Then

D\K = D\ (D∩F) = D\F = D∩Fc.

Since Fc is an open subset of R, applying Theorem 5.1.8 again, one has that D \K is open in D.
Therefore, K is closed in D by definition. □

■ Example 5.1.8 Let D = [0,1) and K = [1
2 ,1). We can write K = D∩ [1

2 ,2]. Since [1
2 ,2] is closed

in R, we conclude from Theorem 5.1.10 that K is closed in D. Notice that K itself is not a closed
subset of R.

Corollary 5.1.11 Let D be a subset of R. A subset K of D is closed in D if and only if for every
sequence {xn} in K that converges to a point x0 ∈ D it follows that x0 ∈ K.
Proof: Let D be a subset of R. Suppose K is closed in D. By Theorem 5.1.10, there exists a closed
subset F of R such that

K = D∩F.

Let {xn} be a sequence in K that converges to a point x0 ∈ D. Since {xn} is also a sequence in F and
F is a closed subset of R, x0 ∈ F . Thus, x0 ∈ D∩F = K.

Let us prove the converse. Suppose by contradiction that K is not closed in D or D\K is not
open in D. Then there exists x0 ∈ D\K such that for every δ > 0, one has

B(x0;δ )∩D ⊈ D\K.

In particular, for every n ∈ N,

B
(

x0;
1
n

)
∩D ⊈ D\K.

For each n ∈ N, choose xn ∈ B(x0; 1
n)∩D such that xn /∈ D\K. Then {xn} is a sequence in K and,

moreover, {xn} converges to x0 ∈ D. Then x0 ∈ K. This is a contradiction. We conclude that K is
closed in D. □

The following theorem is a direct consequence of Theorems 5.1.10 and 5.1.2.
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Theorem 5.1.12 Let D be a subset of R. The following hold:

(i) The subsets /0 and D are closed in D.
(ii) The intersection of any collection of closed sets in D is closed in D.

(iii) The union of a finite number of closed sets in D is closed in D.

■ Example 5.1.9 Consider the set D = [0,1) and the subset A = [1
2 ,1). Clearly, A is bounded. We

showed in Example 5.1.8 that A is closed in D. However, A is not compact. We show this by finding
a sequence {an} in A for which no subsequence converges to a point in A.

Indeed, consider the sequence an = 1− 1
2n for n ∈ N. Then an ∈ A for all n. Moreover, {an}

converges to 1 and, hence, every subsequence also converges to 1. Since 1 ̸∈ A, it follows that A is
not compact.

Exercises
5.1.1 Prove that a subset A of R is open if and only if for any x ∈ A, there exists n ∈ N such that
(x−1/n,x+1/n)⊂ A.

5.1.2 Prove that the interval [0,1) is neither open nor closed.

5.1.3 ▶ Prove that if A and B are compact subsets of R, then A∪B is a compact set.

5.1.4 Prove that any finite set is compact. (Hint: first prove that a set with a single element is
compact and then use Exercise 5.1.3.)

5.1.5 Prove that the intersection of any collection of compact subsets of R is compact.

5.1.6 Find all limit points and all isolated points of each of the following sets:

(a) A = (0,1).
(b) B = [0,1).
(c) C =Q.
(d) D = {m+1/n : m,n ∈ N}.

5.1.7 Let S = [0,∞). Classify each subset of S below as open in S, closed in S, neither or both.
Justify your answers.

(a) A = (0,1).
(b) B = N.
(c) C =Q∩A.
(d) D = (−1,1].
(e) E = (−2,∞).

5.2 Continuity and Compactness
Recall from Definition 5.1.3 that a subset A of R is compact if and only if every sequence {an}

in A has a subsequence {ank} that converges to a point a ∈ A.
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Theorem 5.2.1 Let D be a nonempty compact subset of R and let f : D → R be a continuous
function. Then f (D) is a compact subset of R. In particular, f (D) is closed and bounded.

Proof: Take any sequence {yn} in f (D). Then for each n, there exists an ∈ D such that yn = f (an).
Since D is compact, there exists a subsequence {ank} of {an} and a point a ∈ D such that

lim
k→∞

ank = a ∈ D.

It now follows from Theorem 3.3.2 that

lim
k→∞

ynk = lim
k→∞

f (ank) = f (a) ∈ f (D).

Therefore, f (D) is compact.
The final conclusion follows from Theorem 5.1.5 □

We now prove the Extreme Value Theorem in our more general context.

Theorem 5.2.2 — Extreme Value Theorem. Suppose f : D → R is continuous and D is a compact
set. Then f has an absolute minimum and an absolute maximum on D.

Proof: Since D is compact, A = f (D) is closed and bounded (see Theorem 5.1.5). Let

m = infA = inf
x∈D

f (x).

In particular, m ∈ R. For every n ∈ N, there exists an ∈ A such that

m ≤ an < m+1/n.

For each n, since an ∈ A = f (D), there exists xn ∈ D such that an = f (xn) and, hence,

m ≤ f (xn)< m+1/n.

By the compactness of D, there exists an element x0 ∈ D and a subsequence {xnk} that converges to
x0 ∈ D as k → ∞. Because

m ≤ f (xnk)< m+
1
nk

for every k,

by the squeeze theorem (Theorem 2.1.3) we conclude limk→∞ f (xnk) = m. On the other hand, by
continuity we have limk→∞ f (xnk) = f (x0). We conclude that f (x0) = m ≤ f (x) for every x ∈ D.
Thus, f has an absolute minimum at x0. The proof is similar for the case of absolute maximum. □

Remark 5.2.1 The proof of Theorem 5.2.2 can be shortened by applying Theorem 5.1.4. However,
we have provided a direct proof instead.

The version of the Extreme Value Theorem presented in Chapter 3 is now a simple corollary of
the more general version.

Corollary 5.2.3 If f : [a,b]→ R is continuous, then it has an absolute minimum and an absolute
maximum on [a,b].

Corollary 5.2.3 follows immediately from Theorem 5.2.2, and the fact that the interval [a,b] is
compact (see Example 5.1.4).

The following theorem shows one important case in which continuity implies uniform continuity.
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Theorem 5.2.4 Let f : D →R be a continuous function. Suppose D is compact. Then f is uniformly
continuous on D.

Proof: Suppose by contradiction that f is not uniformly continuous on D. Then there exists ε0 > 0
such that for any δ > 0, there exist u,v ∈ D with

|u− v|< δ and | f (u)− f (v)| ≥ ε0.

Thus, for every n ∈ N, there exist un,vn ∈ D with

|un − vn| ≤ 1/n and | f (un)− f (vn)| ≥ ε0.

Since D is compact, there exist u0 ∈ D and a subsequence {unk} of {un} such that unk → u0 as
k → ∞. Then

|unk − vnk | ≤
1
nk
,

for all k and, hence, we also have vnk → u0 as k → ∞. By the continuity of f ,

f (unk)→ f (u0) and f (vnk)→ f (u0). (5.1)

Therefore, { f (unk)− f (vnk)} converges to zero, which is a contradiction. The proof is now com-
plete. □

We conclude this section with a second proof of Theorem 3.4.5 that does not depend on
Theorem 3.4.4, but, instead, relies on the Nested Intervals Theorem (Theorem 2.3.2).

Second Proof of Theorem 3.4.5: We construct a sequence of nested intervals as follows. Set
a1 = a, b1 = b, and let I1 = [a,b]. Let c1 = (a+b)/2. If f (c1) = γ , we are done. Otherwise, either

f (c1)> γ or

f (c1)< γ.

In the first case, set a2 = a1 and b1 = c1. In the second case, set a2 = c1 and b2 = b1. Now set
I2 = [a2,b2]. Note that in either case,

f (a2)< γ < f (b2).

Set c2 = (a2 +b2)/2. If f (c2) = γ , again we are done. Otherwise, either

f (c2)> γ or

f (c2)< γ.

In the first case, set a3 = a2 and b3 = c2. In the second case, set a3 = c2 and b3 = b2. Now set
I3 = [a3,b3]. Note that in either case,

f (a3)< γ < f (b3).

Proceeding in this way, either we find some cn0 such that f (cn0) = γ and, hence, the proof is complete,
or we construct a sequence of closed bounded intervals {In} with In = [an,bn] such that for all n,
(i) In ⊃ In+1,
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(ii) bn −an = (b−a)/2n−1, and
(iii) f (an)< γ < f (bn).
In this case, we proceed as follows. Condition (ii) implies that limn→∞(bn −an) = 0. By the Nested
Intervals Theorem (Theorem 2.3.2, part (b)), there exists c ∈ [a,b] such that

⋂
∞
n=1 In = {c}. Moreover,

as we see from the proof of that theorem, an → c and bn → c as n → ∞.
By the continuity of f , we get

lim
n→∞

f (an) = f (c) and

lim
n→∞

f (bn) = f (c).

Since f (an)< γ < f (bn) for all n, condition (iii) above and Theorem 2.1.2 give

f (c)≤ γ and

f (c)≥ γ.

It follows that f (c) = γ . Note that, since f (a) < γ < f (b), then c ∈ (a,b). The proof is now
complete. □

Exercises
5.2.1 ▷ Let I be an interval and f : I → R be a continuous functions. Prove that f (I) is an interval.

5.3 Limit Superior and Limit Inferior of Functions
We extend to functions the concepts of limit superior and limit inferior. For this it will be

convenient to introduce a new notation for a ball without its center.

Definition 5.3.1 Given x0 ∈ R and δ > 0, we denote by B0(x0,δ ) the set

B0(x0;δ ) = B(x0;δ )\{x0}= B−(x0;δ )∪B+(x0;δ ) = (x0 −δ ,x0)∪ (x0,x0 +δ ).

With this notation the point x0 is a limit point of the set D if for all δ > 0, the set B0(x0;δ )∩D ̸= /0.

Definition 5.3.2 Let f : D → R and let x0 be a limit point of D. The limit superior of the function f
at x0 is defined by

limsup
x→x0

f (x) = inf
δ>0

sup
x∈B0(x0;δ )∩D

f (x).

Similarly, the limit inferior of the function f at x0 is defined by

liminf
x→x0

f (x) = sup
δ>0

inf
x∈B0(x0;δ )∩D

f (x).

Consider the extended real-valued function g : (0,∞)→ R∪{∞} defined by

g(δ ) = sup
x∈B0(x0;δ )∩D

f (x). (5.2)

It is clear that g is increasing and

limsup
x→x0

f (x) = inf
δ>0

g(δ ).
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Remark 5.3.1 The infimum of the extended real-valued function g on (0,∞) is defined as follows.
If g(δ ) = ∞ for all δ > 0, then infδ>0 g(δ ) = ∞. In the case where there exists δ0 > 0 such that
g(δ0)< ∞, we have g(δ ) ∈ R for all 0 < δ < δ0 and

inf
δ>0

g(δ ) = inf
0<δ<δ0

g(δ )

due to the increasing nature of g on (0,∞).

We say that the function f is locally bounded around x0 if there exists δ > 0 and M > 0 such that

| f (x)| ≤ M for all x ∈ B0(x0;δ )∩D.

Clearly, if f is locally bounded around x0, then limsupx→x0
f (x) is a real number. Similar discussion

applies for the limit inferior.

Theorem 5.3.1 Let f : D → R, let x0 be a limit point of D, and let ℓ be a real number. Then
ℓ= limsupx→x0

f (x) if and only if the following two conditions hold:

(i) For every ε > 0, there exists δ > 0 such that

f (x)< ℓ+ ε for all x ∈ B0(x0;δ )∩D;

(ii) For every ε > 0 and for every δ > 0, there exists x̂ ∈ B0(x0;δ )∩D such that

ℓ− ε < f (x̂).

Proof: Suppose ℓ= limsupx→x0
f (x). Then

ℓ= inf
δ>0

g(δ ),

where g is defined in (5.2). For any ε > 0, there exists δ > 0 such that

ℓ≤ g(δ ) = sup
x∈B0(x0;δ )∩D

f (x)< ℓ+ ε.

Thus,

f (x)< ℓ+ ε for all x ∈ B0(x0;δ )∩D,

which proves condition (i). Next note that for any ε > 0 and δ > 0, we have

ℓ− ε < ℓ≤ g(δ ) = sup
x∈B0(x0;δ )∩D

f (x).

Thus, there exists x̂ ∈ B0(x0;δ )∩D with

ℓ− ε < f (x̂).

This proves (ii).
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Let us now prove the converse. Suppose (i) and (ii) are satisfied. Fix any ε > 0 and let δ > 0
satisfy (i). Then

g(δ ) = sup
x∈B0(x0;δ )∩D

f (x)≤ ℓ+ ε.

This implies

limsup
x→x0

f (x) = inf
δ>0

g(δ )≤ ℓ+ ε.

Since ε is arbitrary, we get

limsup
x→x0

f (x)≤ ℓ.

Again, take any ε > 0. Given δ > 0, let x̂ be as in (ii). Then

ℓ− ε < f (x̂)≤ sup
x∈B0(x0;δ )∩D

f (x) = g(δ ).

This implies

ℓ− ε ≤ inf
δ>0

g(δ ) = limsup
x→x0

f (x).

It follows that ℓ≤ limsupx→x0
f (x). Therefore, ℓ= limsupx→x0

f (x). □

Corollary 5.3.2 Suppose ℓ = limsupx→x0
f (x), where ℓ is a real number. Then there exists a

sequence {xk} in D such that {xk} converges to x0, xk ̸= x0 for every k, and

lim
k→∞

f (xk) = ℓ.

Moreover, if {yk} is a sequence in D that converges to x0, yk ̸= x0 for every k, and limk→∞ f (yk) = ℓ′,
then ℓ′ ≤ ℓ.
Proof: For each k ∈ N, let εk =

1
k . By Condition (i) of Theorem 5.3.1, there exists δk > 0 such that

f (x)< ℓ+ εk for all x ∈ B0(x0;δk)∩D. (5.3)

Let δ ′
k = min{δk,

1
k}. Then δ ′

k ≤ δk and limk→∞ δ ′
k = 0. From Condition (ii) of Theorem 5.3.1, there

exists xk ∈ B0(x0;δ ′
k)∩D such that

ℓ− εk < f (xk).

Moreover, f (xk)< ℓ+ εk by (5.3). Therefore, {xk} is a sequence that satisfies the conclusion of the
corollary.

Now let {yk} be a sequence in D that converges to x0, yk ̸= x0 for every k, and limk→∞ f (yk) = ℓ′.
For any ε > 0, let δ > 0 be as in Condition (i) of Theorem 5.3.1. Since yk ∈ B0(x0;δ )∩D when k is
sufficiently large, we have

f (yk)< ℓ+ ε

for such k. This implies ℓ′ ≤ ℓ+ ε . It follows that ℓ′ ≤ ℓ. □
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Remark 5.3.2 Let f : D → R and let x0 be a limit point of D. Suppose limsupx→x0
f (x) is a real

number. Define

A = {ℓ ∈ R : ∃{xk} ⊂ D,xk ̸= x0 for every k,xk → x0, f (xk)→ ℓ}.

Then the previous corollary shows that A ̸= /0 and limsupx→x0
f (x) = maxA.

Theorem 5.3.3 Let f : D → R and let x0 be a limit point of D. Then

limsup
x→x0

f (x) = ∞

if and only if there exists a sequence {xk} in D such that {xk} converges to x0, xk ̸= x0 for every k,
and limk→∞ f (xk) = ∞.

Proof: Suppose limsupx→x0
f (x) = ∞. Then

inf
δ>0

g(δ ) = ∞,

where g is the extended real-valued function defined in (5.2). Thus, g(δ ) = ∞ for every δ > 0. Let
δk =

1
k for k ∈ N. Since

g(δk) = sup
x∈B0(x0;δk)∩D

f (x) = ∞,

there exists xk ∈ B0(x0;δk)∩D such that f (xk)> k. Therefore, limk→∞ f (xk) = ∞.
Let us prove the converse. Since limk→∞ f (xk) = ∞, for every M ∈ R, there exists K ∈ N such

that

f (xk)≥ M for every k ≥ K.

For any δ > 0, we have

xk ∈ B0(x0;δ )∩D

whenever k is sufficiently large. Thus,

g(δ ) = sup
x∈B0(x0;δ )∩D

f (x)≥ M.

This implies g(δ ) = ∞, and hence limsupx→x0
f (x) = ∞. □

Theorem 5.3.4 Let f : D → R and let x0 be a limit point of D. Then

limsup
x→x0

f (x) =−∞

if and only if for any sequence {xk} in D such that {xk} converges to x0, xk ̸= x0 for every k, it
follows that limk→∞ f (xk) =−∞. The latter is equivalent to limx→x0 f (x) =−∞.
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Proof: Suppose limsupx→x0
f (x) =−∞. Take any sequence {xk} in D such that {xk} converges to

x0 and xk ̸= x0 for every k. Fix any M ∈ R. By the definition of limit superior, there exists δ > 0
such that

g(δ ) = sup
x∈B0(x0;δ )∩D

f (x)< M,

which implies that f (x)< M for all x ∈ B0(x0;δ )∩D. Since {xk} ⊂ D converges to x0 and xk ̸= x0
for every k, there exists K ∈ N such that

xk ∈ B0(x0;δ )∩D for all k ≥ K.

This implies

f (xk)< M for all k ≥ K.

Therefore, limk→∞ f (xk) =−∞.
To prove the converse, we assume that for any sequence {xk} in D such that {xk} converges

to x0, xk ̸= x0 for every k, it follows that limk→∞ f (xk) = −∞. Then it is not hard to show that
limx→x0 f (x) =−∞. Thus, for any M ∈ R, there exists δ > 0 such that

f (x)≤ M for all x ∈ B0(x0;δ ),

which implies that

g(δ ) = sup
x∈B0(x0;δ )∩D

f (x)≤ M.

Then limsupx→x0
f (x) = infδ>0 g(δ ) ≤ M. Therefore, limsupx→x0

f (x) = −∞ since M is arbitrary.
□

Following the same arguments, we can prove similar results for inferior limits of functions.

Theorem 5.3.5 Let f : D → R, let x0 be a limit point of D, and let ℓ be a real number. Then
ℓ= liminfx→x0 f (x) if and only if the following two conditions hold:

(i) For every ε > 0, there exists δ > 0 such that

ℓ− ε < f (x) for all x ∈ B0(x0;δ )∩D;

(ii) For every ε > 0 and for every δ > 0, there exists x ∈ B0(x0;δ )∩D such that

f (x)< ℓ+ ε.

Corollary 5.3.6 Suppose ℓ= liminfx→x0 f (x), where ℓ is a real number. Then there exists a sequence
{xk} in D such that xk converges to x0, xk ̸= x0 for every k, and

lim
k→∞

f (xk) = ℓ.

Moreover, if {yk} is a sequence in D that converges to x0, yk ̸= x0 for every k, and limk→∞ f (yk) = ℓ′,
then ℓ′ ≥ ℓ.
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Remark 5.3.3 Let f : D → R and let x0 be a limit point of D. Suppose liminfx→x0 f (x) is a real
number. Define

B = {ℓ ∈ R : ∃{xk} ⊂ D,xk ̸= x0 for every k,xk → x0, f (xk)→ ℓ}.

Then B ̸= /0 and liminfx→x0 f (x) = minB.

Theorem 5.3.7 Let f : D → R and let x0 be a limit point of D. Then

liminf
x→x0

f (x) =−∞

if and only if there exists a sequence {xk} in D such that {xk} converges to x0, xk ̸= x0 for every k,
and limk→∞ f (xk) =−∞.

Theorem 5.3.8 Let f : D → R and let x0 be a limit point of D. Then

liminf
x→x0

f (x) = ∞

if and only if for any sequence {xk} in D such that {xk} converges to x0, xk ̸= x0 for every k, it
follows that limk→∞ f (xk) = ∞. The latter is equivalent to limx→x0 f (x) = ∞.

Theorem 5.3.9 Let f : D → R, let x0 be a limit point of D, and let ℓ be a real number. Then

lim
x→x0

f (x) = ℓ

if and only if

limsup
x→x0

f (x) = liminf
x→x0

f (x) = ℓ.

Proof: Suppose
lim

x→x0
f (x) = ℓ.

Then for every ε > 0, there exists δ > 0 such that

ℓ− ε < f (x)< ℓ+ ε for all x ∈ B0(x0;δ )∩D.

Since this also holds for every 0 < δ ′ < δ , we get

ℓ− ε < g(δ ′)≤ ℓ+ ε.

It follows that

ℓ− ε ≤ inf
δ ′>0

g(δ ′)≤ ℓ+ ε.

Therefore, limsupx→x0
f (x) = ℓ since ε is arbitrary. The proof for the limit inferior is similar. The

converse follows directly from (i) of Theorem 5.3.1 and Theorem 5.3.5. □
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Exercises
5.3.1 Let D⊂R, f : D→R, and x0 be a limit point of D. Prove that liminfx→x0 f (x)≤ limsupx→x0

f (x).

5.3.2 ▷ Find each of the following limits:

(a) limsupx→0 sin
(

1
x

)
.

(b) liminfx→0 sin
(

1
x

)
.

(c) limsupx→0
cosx

x
.

(d) liminfx→0
cosx

x
.

5.4 Lower Semicontinuity and Upper Semicontinuity
The concept of semicontinuity is convenient for the study of maxima and minima of some

discontinuous functions.

Definition 5.4.1 Let f : D → R and let x0 ∈ D. We say that f is lower semicontinuous (l.s.c.) at x0
if for every ε > 0, there exists δ > 0 such that

f (x0)− ε < f (x) for all x ∈ B(x0;δ )∩D. (5.4)

Similarly, we say that f is upper semicontinuous (u.s.c.) at x0 if for every ε > 0, there exists δ > 0
such that

f (x)< f (x0)+ ε for all x ∈ B(x0;δ )∩D.

Figure 5.1: Lower semicontinuity.

It is clear that f is continuous at x0 if and only if f is lower semicontinuous and upper semicon-
tinuous at this point.

Theorem 5.4.1 Let f : D → R and let x0 ∈ D be a limit point of D. Then f is lower semicontinuous
at x0 if and only if

liminf
x→x0

f (x)≥ f (x0).
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Figure 5.2: Upper semicontinuity.

Similarly, f is upper semicontinuous at x0 if and only if

limsup
x→x0

f (x)≤ f (x0).

Proof: Suppose f is lower semicontinuous at x0. Let ε > 0. Then there exists δ0 > 0 such that

f (x0)− ε < f (x) for all x ∈ B(x0;δ0)∩D.

This implies

f (x0)− ε ≤ h(δ0),

where

h(δ ) = inf
x∈B0(x0;δ )∩D

f (x).

Thus,

liminf
x→x0

f (x) = sup
δ>0

h(δ )≥ h(δ0)≥ f (x0)− ε.

Since ε is arbitrary, we obtain liminfx→x0 f (x)≥ f (x0).
We now prove the converse. Suppose

liminf
x→x0

f (x) = sup
δ>0

h(δ )≥ f (x0)

and let ε > 0. Since

sup
δ>0

h(δ )> f (x0)− ε,

there exists δ > 0 such that h(δ )> f (x0)− ε . This implies

f (x)> f (x0)− ε for all x ∈ B0(x0;δ )∩D.

Since this is also true for x = x0, the function f is lower semicontinuous at x0.
The proof for the upper semicontinuous case is similar. □
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Theorem 5.4.2 Let f : D → R and let x0 ∈ D. Then f is l.s.c. at x0 if and only if for every sequence
{xk} in D that converges to x0,

liminf
k→∞

f (xk)≥ f (x0).

Similarly, f is u.s.c. at x0 if and only if for every sequence {xk} in D that converges to x0,

limsup
k→∞

f (xk)≤ f (x0).

Proof: Suppose f is l.s.c. at x0. Then for any ε > 0, there exists δ > 0 such that (5.4) holds. Since
{xk} converges to x0, we have xk ∈ B(x0;δ ) when k is sufficiently large. Thus,

f (x0)− ε < f (xk)

for such k. It follows that f (x0)− ε ≤ liminfk→∞ f (xk). Since ε is arbitrary, it follows that f (x0)≤
liminfk→∞ f (xk).

We now prove the converse. Suppose liminfk→∞ f (xk)≥ f (x0) and assume, by way of contra-
diction, that f is not l.s.c. at x0. Then there exists ε̄ > 0 such that for every δ > 0, there exists
xδ ∈ B(x0;δ )∩D with

f (x0)− ε̄ ≥ f (xδ ).

Applying this for δk =
1
k , we obtain a sequence {xk} in D that converges to x0 with

f (x0)− ε̄ ≥ f (xk) for every k ∈ N .

This implies

f (x0)> f (x0)− ε̄ ≥ liminf
k→∞

f (xk).

This is a contradiction. □

Definition 5.4.2 Let f : D → R. We say that f is lower semicontinuous on D (or lower semicontinu-
ous if no confusion occurs) if it is lower semicontinuous at every point of D.

Theorem 5.4.3 Suppose D is a compact set of R and f : D → R is lower semicontinuous. Then f
has an absolute minimum on D. That means there exists x0 ∈ D such that

f (x)≥ f (x0) for all x ∈ D.

Proof: We first prove that f is bounded below. Suppose by contradiction that for every k ∈ N, there
exists xk ∈ D such that

f (xk)<−k.

Since D is compact, there exists a subsequence {xkℓ} of {xk} that converges to x0 ∈ D. Since f is
l.s.c., by Theorem 5.4.2

liminf
ℓ→∞

f (xkℓ)≥ f (x0).
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This is a contraction because liminfℓ→∞ f (xkℓ) =−∞. This shows f is bounded below. Define

γ = inf{ f (x) : x ∈ D}.

Since the set { f (x) : x ∈ D} is nonempty and bounded below, we see that γ ∈ R.
Let {uk} be a sequence in D such that { f (uk)} converges to γ . By the compactness of D, the

sequence {uk} has a convergent subsequence {ukℓ} that converges to some x0 ∈ D. Then

γ = lim
ℓ→∞

f (ukℓ) = liminf
ℓ→∞

f (ukℓ)≥ f (x0)≥ γ.

This implies γ = f (x0) and, hence,

f (x)≥ f (x0) for all x ∈ D.

The proof is now complete. □

The following theorem can be proved by a similar way.

Theorem 5.4.4 Suppose D is a compact subset of R and f : D → R is upper semicontinuous. Then
f has an absolute maximum on D. That is, there exists x0 ∈ D such that

f (x)≤ f (x0) for all x ∈ D.

We now proceed to characterize upper and lower semicontinuity of a function f in terms of
preimages of certain intervals under f .

Given f : D → R, for every a ∈ R define

La( f ) = {x ∈ D : f (x)≤ a}= f−1((−∞,a])

and

Ua( f ) = {x ∈ D : f (x)≥ a}= f−1([a,∞)).

Theorem 5.4.5 Let f : D → R. Then f is lower semicontinuous if and only if La( f ) is closed in D
for every a ∈ R. Similarly, f is upper semicontinuous if and only if Ua( f ) is closed in D for every
a ∈ R.

Proof: Suppose f is lower semicontinuous. Using Corollary 5.1.11, we will prove that for every
sequence {xk} in La( f ) that converges to a point x0 ∈ D, we get x0 ∈ La( f ). For every k, since
xk ∈ La( f ), f (xk)≤ a.

Since f is lower semicontinuous at x0,

f (x0)≤ liminf
k→∞

f (xk)≤ a.

Thus, x0 ∈ La( f ). It follows that La( f ) is closed.
We now prove the converse. Fix any x0 ∈ D and ε > 0. Then the set

G = {x ∈ D : f (x)> f (x0)− ε}= D\L f (x0)−ε( f )

is open in D and x0 ∈ G. Thus, there exists δ > 0 such that

B(x0;δ )∩D ⊂ G.
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It follows that

f (x0)− ε < f (x) for all x ∈ B(x0;δ )∩D.

Therefore, f is lower semicontinuous. The proof for the upper semicontinuous case is similar. □

For every a ∈ R, we also define

La( f ) = {x ∈ D : f (x)< a}= f−1((−∞,a))

and

Ua( f ) = {x ∈ D : f (x)> a}= f−1((a,∞)).

Corollary 5.4.6 Let f : D → R. Then f is lower semicontinuous if and only if Ua( f ) is open in D
for every a ∈ R. Similarly, f is upper semicontinuous if and only if La( f ) is open in D for every
a ∈ R.

Theorem 5.4.7 Let f : D → R. Then f is continuous if and only if for every a,b ∈ R with a < b,
the set

Oa,b = {x ∈ D : a < f (x)< b}= f−1((a,b))

is an open set in D.

Proof: Suppose f is continuous. Then f is lower semicontinuous and upper semicontinuous. Fix
a,b ∈ R with a < b. Then

Oa,b = Lb ∩Ua.

By Theorem 5.4.6, the set Oa,b is open since it is the intersection of two open sets La and Ub.
Let us prove the converse. We will only show that f is lower semicontinuous since the proof of

upper semicontinuity is similar. For every a ∈ R, we have

Ua( f ) = {x ∈ D : f (x)> a}=
⋃

n∈N
f−1((a,a+n))

Thus, Ua( f ) is open in D as it is a union of open sets in D. Therefore, f is lower semicontinuous by
Corollary 5.4.6. □

Exercises
5.4.1 Let f be the function given by

f (x) =

{
x2, if x ̸= 0;
−1, if x = 0.

Prove that f is lower semicontinuous.

5.4.2 Let f be the function given by

f (x) =

{
x2, if x ̸= 0;
1, if x = 0.

Prove that f is upper semicontinuous.
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5.4.3 Let f ,g : D → R be lower semicontinuous functions and let k > 0 be a constant. Prove that
f +g and k f are lower semicontinous functions on D.

5.4.4 ▶ Let f : R→ R be a lower semicontinuous function such that

lim
x→∞

f (x) = lim
x→−∞

f (x) = ∞.

Prove that f has an absolute minimum at some x0 ∈ R.

5.5 Convex Functions and Derivatives
We discuss in this section an interesting class of functions that plays an important role in convex

optimization problems. Throughout this section, we assume that I is a nonempty interval in R.

Definition 5.5.1 Let I be an interval in R and let f : I → R. We say that f is convex on I if

f (λu+(1−λ )v)≤ λ f (u)+(1−λ ) f (v)

for all u,v ∈ I and for all λ ∈ (0,1).

Figure 5.3: A Convex Function.

■ Example 5.5.1 The following functions are convex.

(a) f : R→ R, f (x) = x. This is straightforward.
(b) f : R→ R, f (x) = x2. Here note first that 2xy ≤ x2 + y2 for all real numbers x,y. Then, if

0 < λ < 1 and x,y ∈ R, we get

f (λx+(1−λ )y) = (λx+(1−λ )y)2

= λ
2x2 +2λ (1−λ )xy+(1−λ )2y2

≤ λ
2x2 +λ (1−λ )(x2 + y2)+(1−λ )2y2

= λ (λx2 +(1−λ )x2)+(1−λ )(λy2 +(1−λ )y2)

= λx2 +(1−λ )y2

= λ f (x)+(1−λ ) f (y).

(c) f : R→ R, f (x) = |x|. This follows from the triangle inequality and other basic properties of
absolute value.
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Theorem 5.5.1 Let I be an interval in R. A function f : I → R is convex if and only if for every
λi ≥ 0, i = 1, . . . ,n, with ∑

n
i=1 λi = 1 (n ≥ 2) and for every xi ∈ I, i = 1, . . . ,n,

f

(
n

∑
i=1

λixi

)
≤

n

∑
i=1

λi f (xi). (5.5)

Proof: Since the converse holds trivially, we only need to prove the implication by induction. The
conclusion holds for n = 2 by the definition of convexity. Let k be such that the conclusion holds
for n = k with 2 ≤ k. We will show that it also holds for n = k+1. Fix λi ≥ 0, i = 1, . . . ,k+1, with
∑

k+1
i=1 λi = 1 and fix every xi ∈ I, i = 1, . . . ,k+1. Then

k

∑
i=1

λi = 1−λk+1.

If λk+1 = 1, then λi = 0 for all i = 1, . . . ,k, and (5.5) holds. Suppose 0 ≤ λk+1 < 1. Then, for each
i = 1, . . . ,k, λi/(1−λk+1)≥ 0 and

k

∑
i=1

λi

1−λk+1
= 1.

It follows that

f

(
k+1

∑
i=1

λixi

)
= f

[
(1−λk+1)

∑
k
i=1 λixi

1−λk+1
+λk+1xk+1

]
≤ (1−λk+1) f

(
∑

k
i=1 λixi

1−λk+1

)
+λk+1 f (xk+1)

= (1−λk+1) f

(
k

∑
i=1

λi

1−λk+1
xi

)
+λk+1 f (xk+1)

≤ (1−λk+1)
k

∑
i=1

λi

1−λk+1
f (xi)+λk+1 f (xk+1)

=
k+1

∑
i=1

λi f (xi),

where the first inequality follows from the definition of convexity (or is trivial if λk+1 = 0) and the
last inequality follows from the inductive assumption. The proof is now complete. □

Theorem 5.5.2 Let I be an interval in R and let f : I → R be a convex function. Then f has a local
minimum at x0 if and only if f has an absolute minimum at x0.

Proof: Clearly if f has a global minimum at x0, then it also has a local minimum at x0.
Conversely, suppose that f has a local minimum at x0. Then there exists δ > 0 such that

f (u)≥ f (x0) for all u ∈ B(x0;δ )∩ I.

For any x ∈ I, we have xn = (1− 1
n)x0+

1
n x → x0. Thus, xn ∈ B(x0;δ )∩ I when n is sufficiently large.

Thus, for such n,

f (x0)≤ f (xn)≤ (1− 1
n
) f (x0)+

1
n

f (x).
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This implies that for a sufficient large n, we have

1
n

f (x0)≤
1
n

f (x)

and, hence, f (x0)≤ f (x). Since x was arbitrary, this shows f has an absolute minimum at x0. □

Theorem 5.5.3 Let I be an open interval in R and let f : I → R be a convex function. Suppose f is
differentiable at x0. Then

f ′(x0)(x− x0)≤ f (x)− f (x0) for all x ∈ I. (5.6)

Proof: For any x ∈ I and t ∈ (0,1), we have

f (x0 + t(x− x0))− f (x0)

t
=

f (tx+(1− t)x0)− f (x0)

t

≤ t f (x)+(1− t) f (x0)− f (x0)

t
= f (x)− f (x0).

Since f is differentiable at x0,

f ′(x0)(x− x0) = lim
t→0+

f (x0 + t(x− x0))− f (x0)

t
≤ f (x)− f (x0),

which completes the proof. □

Corollary 5.5.4 Let I be an open interval in R and let f : I → R be a convex function. Suppose f is
differentiable at x0. Then f has an absolute minimum at x0 if and only if f ′(x0) = 0.
Proof: Suppose f has an absolute minimum at x0. By Theorem 4.2.1, f ′(x0) = 0. Let us prove the
converse. Suppose f ′(x0) = 0. It follows from Theorem 5.5.3 that

0 = f ′(x0)(x− x0)≤ f (x)− f (x0) for all x ∈ I.

This implies

f (x0)≤ f (x) for all x ∈ I.

Thus, f has an absolute minimum at x0. □

Lemma 5.5.5 Let I be an interval in R and suppose f : I → R is a convex function. Fix a,b,x ∈ I
with a < x < b. Then

f (x)− f (a)
x−a

≤ f (b)− f (a)
b−a

≤ f (b)− f (x)
b− x

.

Proof: Let

t =
x−a
b−a

.

Then t ∈ (0,1) and

f (x) = f (a+(x−a)) = f
(

a+
x−a
b−a

(b−a)
)
= f (a+ t(b−a)) = f (tb+(1− t)a).
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By convexity of f , we obtain

f (x)≤ t f (b)+(1− t) f (a).

Thus,

f (x)− f (a)≤ t f (b)+(1− t) f (a)− f (a) = t[ f (b)− f (a)] =
x−a
b−a

( f (b)− f (a)).

Equivalently,

f (x)− f (a)
x−a

≤ f (b)− f (a)
b−a

.

Similarly,

f (x)− f (b)≤ t f (b)+(1− t) f (a)− f (b) = (1− t)[ f (a)− f (b)] =
x−b
b−a

[ f (b)− f (a)].

It follows that

f (b)− f (a)
b−a

≤ f (b)− f (x)
b− x

.

The proof is now complete. □

Theorem 5.5.6 Let I be an open interval in R and let f : I → R be a differentiable function. Then f
is convex if and only if f ′ is increasing on I.

Proof: Suppose f is convex. Fix a < b with a,b ∈ I. By Lemma 5.5.5, for any x ∈ (a,b), we have

f (x)− f (a)
x−a

≤ f (b)− f (a)
b−a

.

This implies, taking limits, that

f ′(a)≤ f (b)− f (a)
b−a

.

Similarly,

f (b)− f (a)
b−a

≤ f ′(b).

Therefore, f ′(a)≤ f ′(b), and f ′ is an increasing function.
Let us prove the converse. Suppose f ′ is increasing. Fix x1 < x2 and t ∈ (0,1). Then

x1 < xt < x2,

where xt = tx1 +(1− t)x2. By the Mean Value Theorem (Theorem 4.2.3), there exist c1 and c2 such
that

x1 < c1 < xt < c2 < x2
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with

f (xt)− f (x1) = f ′(c1)(xt − x1) = f ′(c1)(1− t)(x2 − x1);

f (xt)− f (x2) = f ′(c2)(xt − x2) = f ′(c2)t(x1 − x2).

This implies

t f (xt)− t f (x1) = f ′(c1)t(1− t)(x2 − x1);

(1− t) f (xt)− (1− t) f (x2) = f ′(c2)t(1− t)(x1 − x2).

Since f ′(c1)≤ f ′(c2), we have

t f (xt)− t f (x1) = f ′(c1)t(1− t)(x2−x1)≤ f ′(c2)t(1− t)(x2−x1) = (1− t) f (x2)−(1− t) f (xt).

Rearranging terms, we get

f (xt)≤ t f (x1)+(1− t) f (x2).

Therefore, f is convex. The proof is now complete. □

Corollary 5.5.7 Let I be an open interval in R and let f : I → R be a function. Suppose f is twice
differentiable on I. Then f is convex if and only if f ′′(x)≥ 0 for all x ∈ I.
Proof: It follows from Proposition 4.3.2 that f ′′(x) ≥ 0 for all x ∈ I if and only if the derivative
function f ′ is increasing on I. The conclusion then follows directly from Theorem 5.5.6. □

■ Example 5.5.2 Consider the function f : R → R given by f (x) =
√

x2 +1. Now, f ′(x) =
x/
√

x2 +1 and f ′′(x) = 1/(x2 + 1)3/2. Since f ′′(x) ≥ 0 for all x, it follows from the corollary
that f is convex.

Theorem 5.5.8 Let I be an open interval and let f : I → R be a convex function. Then it is locally
Lipschitz continuous in the sense that for any x0 ∈ I, there exist ℓ≥ 0 and δ > 0 such that

| f (u)− f (v)| ≤ ℓ|u− v| for all u,v ∈ B(x0;δ ). (5.7)

In particular, f is continuous.

Proof: Fix any x0 ∈ I. Choose four numbers a,b,c,d satisfying

a < b < x0 < c < d with a,d ∈ I.

Choose δ > 0 such that B(x0;δ )⊂ (b,c). Let u,v ∈ B(x0;δ ) with v < u. Then by Lemma 5.5.5, we
see that

f (b)− f (a)
b−a

≤ f (u)− f (a)
u−a

≤ f (u)− f (v)
u− v

≤ f (d)− f (v)
d − v

≤ f (d)− f (c)
d − c

.

Using a similar approach for the case u < v, we get

f (b)− f (a)
b−a

≤ f (u)− f (v)
u− v

≤ f (d)− f (c)
d − c

for all u,v ∈ B(x0;δ ).

Choose ℓ≥ 0 sufficiently large so that

−ℓ≤ f (b)− f (a)
b−a

≤ f (u)− f (v)
u− v

≤ f (d)− f (c)
d − c

≤ ℓ for all u,v ∈ B(x0;δ ).

Then (5.7) holds. The proof is now complete. □
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Exercises
5.5.1 (a) Let I be an interval in R and let f ,g : I → R be convex functions. Prove that c f , f +g,

and max{ f ,g} are convex functions on I, where c ≥ 0 is a constant.
(b) Find two convex functions f and g on an interval I in R such that f ·g is not convex.

5.5.2 Let f : R→ R be a convex function. Given a,b ∈ R, prove that the function defined by

g(x) = f (ax+b), for x ∈ R

is also a convex function on R.

5.5.3 ▶ Let I be an interval and let f : I → R be a convex function. Suppose that φ is a convex,
increasing function on an interval J that contains f (I). Prove that φ ◦ f is convex on I.

5.5.4 ▷ Prove that each of the following functions is convex on the given domain:

(a) f (x) = ebx,x ∈ R, where b is a constant.
(b) f (x) = xk, x ∈ [0,∞) and k ≥ 1 is a constant.
(c) f (x) =− ln(1− x), x ∈ (−∞,1).

(d) f (x) =− ln
(

ex

1+ ex

)
, x ∈ R.

(e) f (x) = xsinx, x ∈ (−π

4 ,
π

4 ).

5.5.5 ▷ Prove the following:

(a) If a,b are nonnegative real numbers, then

a+b
2

≥
√

ab.

(b) If a1,a2, . . . ,an, where n ≥ 2, are nonnegative real numbers, then

a1 +a2 + · · ·+an

n
≥ (a1 ·a2 · · ·an)

1/n.

5.6 Nondifferentiable Convex Functions and Subdifferentials
In this section, we introduce a generalized differentiation concept that is useful in the study of

optimization problems in which the objective functions may fail to be differentiable.

Definition 5.6.1 Let f : R→ R be a convex function. A number u ∈ R is called a subderivative of
the function f at x0 if

u · (x− x0)≤ f (x)− f (x0) for all x ∈ R . (5.8)

The set of all subderivatives of f at x0 is called the subdifferential of f at x0 and is denoted by
∂ f (x0).
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Figure 5.4: A nondifferential convex function.

■ Example 5.6.1 Let f (x) = |x|. Then

∂ f (0) = [−1,1].

Indeed, for any u ∈ ∂ f (0), we have

u · x = u(x−0)≤ f (x)− f (0) = |x| for all x ∈ R .

In particular, u ·1 ≤ |1|= 1 and u · (−1) =−u ≤ |−1|= 1. Thus, u ∈ [−1,1]. It follows that

∂ f (0)⊂ [−1,1].

For any u ∈ [−1,1], we have |u| ≤ 1. Then

u · x ≤ |u · x|= |u||x| ≤ |x| for all x ∈ R .

This implies u ∈ ∂ f (0). Therefore, ∂ f (0) = [−1,1].

Lemma 5.6.1 Let f : R→ R be a convex function. Fix a ∈ R. Define the slope function φa by

φa(x) =
f (x)− f (a)

x−a
(5.9)

for x ∈ (−∞,a)∪ (a,∞). Then, for x1,x2 ∈ (−∞,a)∪ (a,∞) with x1 < x2, we have

φa(x1)≤ φa(x2).

Proof: This lemma follows directly from Lemma 5.5.5. □

Theorem 5.6.2 Let f : R→ R be a convex function and let x0 ∈ R. Then f has a left derivative and
a right derivative at x0. Moreover,

sup
x<x0

φx0(x) = f ′−(x0)≤ f ′+(x0) = inf
x>x0

φx0(x),

where φx0 is defined in (5.9).
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Figure 5.5: Definition of subderivative.

Proof: By Lemma 5.6.1, the slope function φx0 defined by (5.9) is increasing on the interval (x0,∞)
and bounded below by φx0(x0 −1). By Theorem 3.2.4, the limit

lim
x→x+0

φx0(x) = lim
x→x+0

f (x)− f (x0)

x− x0

exists and is finite. Moreover,

lim
x→x+0

φx0(x) = inf
x>x0

φx0(x).

Thus, f ′+(x0) exists and

f ′+(x0) = inf
x>x0

φx0(x).

Similarly, f ′−(x0) exists and

f ′−(x0) = sup
x<x0

φx0(x).

Applying Lemma 5.6.1 again, we see that

φx0(x)≤ φx0(y) whenever x < x0 < y.

This implies f ′−(x0)≤ f ′+(x0). The proof is complete. □

Theorem 5.6.3 Let f : R→ R be a convex function and let x0 ∈ R. Then

∂ f (x0) = [ f ′−(x0), f ′+(x0)]. (5.10)

Proof: Suppose u ∈ ∂ f (x0). By the definition (5.8), we have

u · (x− x0)≤ f (x)− f (x0) for all x > x0.

This implies

u ≤ f (x)− f (x0)

x− x0
for all x > x0.
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Thus,

u ≤ lim
x→x+0

f (x)− f (x0)

x− x0
= f ′+(x0).

Similarly, we have

u · (x− x0)≤ f (x)− f (x0) for all x < x0.

Thus,

u ≥ f (x)− f (x0)

x− x0
for all x < x0.

This implies u ≥ f ′−(x0). So

∂ f (x0)⊂ [ f ′−(x0), f ′+(x0)].

To prove the reverse inclusion, take u ∈ [ f ′−(x0), f ′+(x0)]. By Theorem 5.6.2

sup
x<x0

φx0(x) = f ′−(x0)≤ u ≤ f ′+(x0) = inf
x>x0

φx0(x).

Using the upper estimate by f ′+(x0) for u, one has

u ≤ φx0(x) =
f (x)− f (x0)

x− x0
for all x > x0.

It follows that

u · (x− x0)≤ f (x)− f (x0) for all x ≥ x0.

Similarly, one also has

u · (x− x0)≤ f (x)− f (x0) for all x < x0.

Thus, (5.8) holds and, hence, u ∈ ∂ f (x0). Therefore, (5.10) holds. □

Corollary 5.6.4 Let f : R→ R be a convex function and let x0 ∈ R. Then f is differentiable at x0 if
and only if ∂ f (x0) is a singleton. In this case,

∂ f (x0) = { f ′(x0)}.

Proof: Suppose f is differentiable at x0. Then

f ′−(x0) = f ′+(x0) = f ′(x0).

By Theorem 5.6.3,

∂ f (x0) = [ f ′−(x0), f ′+(x0)] = { f ′(x0)}.

Thus, ∂ f (x0) is a singleton.
Conversely, if ∂ f (x0) is a singleton, we must have f ′−(x0) = f ′+(x0). Thus, f is differentiable at

x0. □
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■ Example 5.6.2 Let f (x) = a|x−b|+ c, where a > 0. Then f is a convex function and

f ′−(b) =−a, f ′+(b) = a.

Thus,

∂ f (b) = [−a,a].

Since f is differentiable on (−∞,b) and (b,∞), we have

∂ f (x) =


{−a}, if x < b;
[−a,a], if x = b;
{a}, if x > b.

Definition 5.6.2 Let A and B be two nonempty subsets of R and let α ∈ R. Define

A+B = {a+b : a ∈ A,b ∈ B} and αA = {αa : a ∈ A}.

Figure 5.6: Set addition.

Theorem 5.6.5 Let f ,g : R→ R be convex functions and let α > 0. Then f +g and α f are convex
functions. In addition, for any x0 ∈ R we have

∂ ( f +g)(x0) = ∂ f (x0)+∂g(x0)

∂ (α f )(x0) = α∂ f (x0).

Proof: It is not hard to see that f +g is a convex function and

( f +g)′+(x0) = f ′+(x0)+g′+(x0)

( f +g)′−(x0) = f ′−(x0)+g′−(x0).

By Theorem 5.6.3,

∂ ( f +g)(x0) = [( f +g)′−(x0),( f +g)′+(x0)]

= [ f ′−(x0)+g′−(x0), f ′+(x0)+g′+(x0)]

= [ f ′−(x0), f ′+(x0)]+ [g′−(x0),g′+(x0)]

= ∂ f (x0)+∂g(x0).

The proof for the second formula is similar. □
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■ Example 5.6.3 Let a1 < a2 < · · ·< an and let µi > 0 for i = 1, . . . ,n. Define

f (x) =
n

∑
i=1

µi|x−ai|.

Then f is a convex function. By Theorem 5.6.5, we get

∂ f (x0) =

{
∑ai<x0 µi −∑ai>x0 µi, if x0 /∈ {a1, . . . ,an}
∑ai<x0 µi −∑ai>x0 µi +[−µi0 ,µi0 ], if x0 = ai0 .

Theorem 5.6.6 Let fi : R→ R, i = 1, . . . ,n, be convex functions. Define

f (x) = max{ fi(x) : i = 1, . . . ,n} and I(u) = {i = 1, . . . ,n : fi(u) = f (u)}.

Then f is a convex function. Moreover,

∂ f (x0) = [m,M],

where

m = min
i∈I(x0)

f ′i−(x0) and M = max
i∈I(x0)

f ′i+(x0).

Proof: Fix u,v ∈ R and λ ∈ (0,1). For any i = 1, . . . ,n, we have

fi(λu+(1−λ )v)≤ λ fi(u)+(1−λ ) fi(v)≤ λ f (u)+(1−λ ) f (v).

This implies

f (λu+(1−λ )v) = max
1≤i≤n

fi(λu+(1−λ )v)≤ λ f (u)+(1−λ ) f (v).

Thus, f is a convex function. Similarly we verify that f ′+(x0) = M and f ′−(x0) = m. By Theorem
5.6.3,

∂ f (x0) = [m,M].

The proof is now complete. □

Remark 5.6.1 The product of two convex functions is not a convex function in general. For instance,
f (x) = x and g(x) = x2 are convex functions, but h(x) = x3 is not a convex function.

The following result may be considered as a version of the first derivative test for extrema in the
case of non differentiable functions.

Theorem 5.6.7 Let f : R→ R be a convex function. Then f has an absolute minimum at x0 if and
only if

0 ∈ ∂ f (x0) = [ f ′−(x0), f ′+(x0)].
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Proof: Suppose f has an absolute minimum at x0. Then

f (x0)≤ f (x) for all x ∈ R .

This implies

0 · (x− x0) = 0 ≤ f (x)− f (x0) for all x ∈ R .

It follows from (5.8) that 0 ∈ ∂ f (x0).
Conversely, if 0 ∈ ∂ f (x0), again, by (5.8),

0 · (x− x0) = 0 ≤ f (x)− f (x0) for all x ∈ R .

Thus, f has an absolute minimum at x0. □

■ Example 5.6.4 Let k be a positive integer and a1 < a2 < · · ·< a2k−1. Define

f (x) =
2k−1

∑
i=1

|x−ai|,

for x ∈R. It follows from the subdifferential formula in Example 5.6.3 that 0 ∈ ∂ f (x0) if and only if
x0 = ak. Thus, f has a unique absolute minimum at ak.

Figure 5.7: Subdifferential of f (x) = ∑
2k−1
i=1 |x−ai|.

Figure 5.8: Subdifferential of g(x) = ∑
2k
i=1 |x−ai|.
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Similarly, if a1 < a2 < · · ·< a2k and

g(x) =
2k

∑
i=1

|x−ai|.

Then 0 ∈ ∂g(x0) if and only if x0 ∈ [ak,ak+1]. Thus, g has an absolute minimum at any point of
[ak,ak+1].

The following theorem is a version of the Mean Value Theorem (Theorem 4.2.3) for nondifferen-
tiable functions.

Figure 5.9: Subdifferential mean value theorem.

Theorem 5.6.8 Let f : R→ R be a convex function and let a < b. Then there exists c ∈ (a,b) such
that

f (b)− f (a)
b−a

∈ ∂ f (c). (5.11)

Proof: Define

g(x) = f (x)−
[

f (b)− f (a)
b−a

(x−a)+ f (a)
]
.

Then g is a convex function and g(a) = g(b). Thus, g has a local minimum at some c ∈ (a,b) and,
hence, g also has an absolute minimum at c. Observe that the function

h(x) =−
[

f (b)− f (a)
b−a

(x−a)+ f (a)
]
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is differentiable at c and, hence,

∂h(c) = {h′(c)}=
{
− f (b)− f (a)

b−a

}
.

By Theorem 5.6.7 and the subdifferential sum rule,

0 ∈ ∂g(c) = ∂ f (c)−
{

f (b)− f (a)
b−a

}
.

This implies (5.11). The proof is now complete. □

Corollary 5.6.9 Let f : R→ R be a convex function. Then f is Lipschitz continuous if and only if
there exists ℓ≥ 0 such that

∂ f (x)⊂ [−ℓ,ℓ] for all x ∈ R .

Proof: Suppose f is Lipschitz continuous on R. Then there exists ℓ≥ 0 such that

| f (u)− f (v)| ≤ ℓ|u− v| for all u,v ∈ R .

Then for any x ∈ R,

f ′+(x) = lim
h→0+

f (x+h)− f (x)
h

≤ lim
h→0+

ℓ|h|
h

= ℓ.

Similarly, f ′−(x)≥−ℓ. Thus,

∂ f (x) = [ f ′−(x), f ′+(x)]⊂ [−ℓ,ℓ].

Conversely, fix any u,v ∈ R with u ̸= v. Applying Theorem 5.6.8, we get

f (v)− f (u)
v−u

∈ ∂ f (c)⊂ [−ℓ,ℓ],

for some c in between u and v. This implies

| f (u)− f (v)| ≤ ℓ|u− v|.

This inequality obviously holds for u = v. Therefore, f is Lipschitz continuous. □

Exercises
5.6.1 ▷ Find subdifferentials of the following functions:

(a) f (x) = a|x|, a > 0.
(b) f (x) = |x−1|+ |x+1|.

5.6.2 Find the subdifferential of the function

f (x) = max{−2x+1,x,2x−1}.
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5.6.3 ▶ Let f (x) = ∑
n
k=1 |x− k|. Find all absolute minimizers of the function.

5.6.4 Let f : R→ R be a convex function. Fix a,b ∈ R and define the function g by

g(x) = f (ax+b), for x ∈ R

Prove that ∂g(x0) = a∂ f (ax0 +b).

5.6.5 ▷ Let f : R→ R be a convex function. Suppose that ∂ f (x)⊂ [0,∞) for all x ∈ R. Prove that
f is monotone increasing on R.
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Solutions and Hints for Selected Exercises

SECTION 1.1

Exercise 1.1.2. Applying basic rules of operations on sets yields

(X \Y )∩Z = Y c ∩Z = Z \Y.

and

Z \ (Y ∩Z) = (Z \Y )∪ (Z \Z) = (Z \Y )∪ /0 = Z \Y.

Therefore, (X \Y )∩Z = Z \ (Y ∩Z).

SECTION 1.2

Exercise 1.2.1. (a) Let A ⊂ X . For any a ∈ A, we have f (a) ∈ f (A) and, so, a ∈ f−1( f (A)). This
implies A ⊂ f−1( f (A)). Note that this inclusion does not require the injectivity of f . Now fix
any a ∈ f−1( f (A)). Then f (a) ∈ f (A), so there exists a′ ∈ A such that f (a) = f (a′). Since f is
one-to-one, a = a′ ∈ A. Therefore, f−1( f (A))⊂ A and the equality holds.

(b) Fix any b ∈ f ( f−1(B)). Then b = f (x) for some x ∈ f−1(B). Thus, b = f (x) ∈ B and, hence,
f ( f−1(B))⊂ B. This inclusion does not require the surjectivity of f . Now fix b ∈ B. Since f is onto,
there exists x ∈ X such that f (x) = b ∈ B. Thus, x ∈ f−1(B) and, hence, b ∈ f ( f−1(B)). We have
shown that B ⊂ f ( f−1(B)) and the equality holds.

Without the injectivity of f , the equality in part (a) is no longer valid. Consider f (x) = x2, x ∈ R,
and A = [−1,2]. Then f (A) = [0,4] and, hence, f−1( f (A)) = [−2,2], which strictly contains A. It is
also not hard to find an example of a function f and a set B for which the equality in part (b) does
not hold true.
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SECTION 1.3
Exercise 1.3.5. For n = 1,

1√
5

[1+
√

5
2

− 1−
√

5
2

]
=

1√
5

2
√

5
2

= 1.

Thus, the conclusion holds for n = 1. It is also easy to verify that the conclusion holds for n = 2.
Suppose that

ak =
1√
5

[(1+
√

5
2

)k
−
(1−

√
5

2

)k]
for all k ≤ n, where n ≥ 2. Let us show that

an+1 =
1√
5

[(1+
√

5
2

)n+1
−
(1−

√
5

2

)n+1]
. (5.12)

By the definition of the sequence and the induction hypothesis,

an+1 = an +an−1

=
1√
5

[(1+
√

5
2

)n
−
(1−

√
5

2

)n]
+

1√
5

[(1+
√

5
2

)n−1
−
(1−

√
5

2

)n−1]
=

1√
5

[(1+
√

5
2

)n−1(1+
√

5
2

+1
)
−
(1−

√
5

2

)n−1(1−
√

5
2

+1
)]

.

Observe that

1+
√

5
2

+1 =
3+

√
5

2
=
(1+

√
5

2

)2
and

1−
√

5
2

+1 =
3−

√
5

2
=
(1−

√
5

2

)2
.

Therefore, (5.12) follows easily.

In this exercise, observe that the two numbers
1+

√
5

2
and

1−
√

5
2

are the roots of the quadratic
equation

x2 = x+1.

A more general result can be formulated as follows. Consider the sequence {an} defined by

a1 = a;

a2 = b;

an+2 = αan+1 +βan for n ∈ N .

Suppose that the equation x2 = αx+β has two solutions x1 and x2. Let c1 and c2 be two constants
such that

c1x1 + c2x2 = a;

c1(x1)
2 + c2(x2)

2 = b.

Then we can prove by induction that

xn = c1(x1)
n + c2(x2)

n for all n ∈ N .
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This is a very useful method to find a general formula for a sequence defined recursively as above.
For example, consider the sequence

a1 = 1;

a2 = 1;

an+2 = an+1 +2an for n ∈ N .

Solving the equation x2 = x+2 yields two solutions x1 = 2 and x2 = (−1). Thus,

xn = c12n + c2(−1)n,

where c1 and c2 are constants such as

c1(2)+ c2(−1) = 1;

c1(2)2 + c2(−1)2 = 1.

It is not hard to see that c1 = 1/3 and c2 =−1/3. Therefore,

an =
1
3

2n − 1
3
(−1)n for all n ∈ N .

Exercise 1.3.7. Hint: Prove first that, for k = 1,2, . . . ,n, we have(
n
k

)
+

(
n

k−1

)
=

(
n+1

k

)
.

SECTION 1.4
Exercise 1.4.7. In general, to prove that |a| ≤ m, where m ≥ 0, we only need to show that a ≤ m and
−a ≤ m.

For any x,y ∈ R,

|x|= |x− y+ y| ≤ |x− y|+ |y|,

This implies

|x|− |y| ≤ |x− y|.

Similarly,

|y|= |y− x+ x| ≤ |x− y|+ |x|,

This implies

−(|x|− |y|)≤ |x− y|.

Therefore,

||x|− |y|| ≤ |x− y|.
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SECTION 1.5
Exercise 1.5.4.

Let us first show that A+B is bounded above. Since A and B are nonempty and bounded above,
by the completeness axiom, supA and supB exist and are real numbers. In particular, a ≤ supA for
all a ∈ A and b ≤ supB for all b ∈ B.

For any x∈A+B, there exist a∈A and b∈B such that x= a+b. Thus, x= a+b≤ supA+supB,
which shows that A+B is bounded above.

We will now show that supA+ supB is the supremum of the set A+B by showing that supA+
supB satisfies conditions (1’) and (2’) of Proposition 1.5.1.

We have just shown that supA+ supB is an upper bound of A+B and, hence, supA+ supB
satisfies condition (1’).

Now let ε > 0. Using ε

2 in part (2’) of Proposition 1.5.1 applied to the sets A and B, there exits
a ∈ A and b ∈ B such that

supA− ε

2
< a and supB− ε

2
< b.

It follows that

supA+ supB− ε < a+b.

This proves condition (2’). It follows from Proposition 1.5.1 applied to the set A+B that supA+
supB = sup(A+B) as desired.

SECTION 1.6

Exercise 1.6.2. Let x =
1
r

. By Theorem 1.6.2(iv), there exists m ∈ Z such that

m−1 ≤ 1
r
< m.

Since 1/r > 1, we get m > 1 and, so, m ≥ 2. It follows that m−1 ∈ N. Set n = m−1 and then we
get

1
n+1

< r ≤ 1
n
.

SECTION 2.1
Exercise 2.1.16. (a) Suppose that limn→∞ an = ℓ. Then by Theorem 2.1.6,

lim
n→∞

a2n = ℓ and lim
n→∞

a2n+1 = ℓ. (5.13)

Now suppose that (5.13) is satisfied. Fix any ε > 0. Choose N1 ∈ N such that

|a2n − ℓ|< ε whenever n ≥ N1,

and choose N2 ∈ N such that

|a2n+1 − ℓ|< ε whenever n ≥ N2.
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Let N = max{2N1,2N2 +1}. Then

|an − ℓ|< ε whenever n ≥ N.

Therefore, limn→∞ an = ℓ.

This problem is sometimes very helpful to show that a limit exists. For example, consider the
sequence defined by

x1 = 1/2,

xn+1 =
1

2+ xn
for n ∈ N .

We will see later that {x2n+1} and {x2n} both converge to
√

2− 1, so we can conclude that {xn}
converges to

√
2−1.

(b) Use a similar method to the solution of part (a).

Exercise 2.1.12. Consider the case where ℓ > 0. By the definition of limit, we can find n1 ∈ N such
that

|an|> ℓ/2 for all n ≥ n1.

Given any ε > 0, we can find n2 ∈ N such that

|an − ℓ|< ℓε

4
for all n ≥ n2.

Choose n0 = max{n1,n2}. For any n ≥ n0, one has∣∣∣∣an+1

an
−1
∣∣∣∣= |an −an+1|

|an|
≤ |an − ℓ|+ |an+1 − ℓ|

|an|
<

ℓε
4 + ℓε

4
ℓ
2

= ε.

Therefore, limn→∞
an+1
an

= 1. If ℓ < 0, consider the sequence {−an}.
The conclusion is no longer true if ℓ= 0. A counterexample is an = λ n where λ ∈ (0,1).

SECTION 2.2

Exercise 2.2.3. (a) The limit is calculated as follows:

lim
n→∞

(√
n2 +n−n

)
= lim

n→∞

(√
n2 +n−n

)(√
n2 +n+n

)
√

n2 +n+n

= lim
n→∞

n√
n2 +n+n

= lim
n→∞

n√
n2(1+1/n)+n

= lim
n→∞

1√
1+1/n+1

= 1/2.
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(b) The limit is calculated as follows:

lim
n→∞

(
3
√

n3 +3n2 −n
)
= lim

n→∞

(
3
√

n3 +3n2 −n
)(

3
√

(n3 +3n2)2 +n 3
√

n3 +3n2 +n2
)

3
√
(n3 +3n2)2 +n 3

√
n3 +3n2 +n2)

= lim
n→∞

3n2

3
√

(n3 +3n2)2 +n 3
√

n3 +3n2 +n2

= lim
n→∞

3n2

3
√

n6(1+3/n)2 +n 3
√

n3(1+3/n)+n2

= lim
n→∞

3n2

n2
(

3
√

(1+3/n)2 + 3
√

(1+3/n)+1
)

= lim
n→∞

3(
3
√

(1+3/n)2 + 3
√
(1+3/n)+1

) = 1.

(c) We use the result in par (a) and part (b) to obtain

lim
n→∞

(
3
√

n3 +3n2 −
√

n2 +1) = lim
n→∞

(
3
√

n3 +3n2 −n+n−
√

n2 +1
)

= lim
n→∞

(
3
√

n3 +3n2 −n
)
+ lim

n→∞

(
n−
√

n2 +1
)
= 1−1/2 = 1/2.

Using a similar technique, we can find the following limit:

lim
n→∞

(
3
√

an3 +bn2 + cn+d −
√

αn2 +βn+ γ

)
,

where a > 0 and α > 0.

SECTION 2.3

Exercise 2.3.1. (a) Clearly, a1 < 2. Suppose that ak < 2 for k ∈ N. Then

ak+1 =
√

2+ak <
√

2+2 = 2.

By induction, an < 2 for all n ∈ N.

(b) Clearly, a1 =
√

2 <
√

2+
√

2 = a2. Suppose that ak < ak+1 for k ∈ N. Then

ak +2 < ak+1 +2,

which implies √
ak +2 <

√
ak+1 +2.

Thus, ak+1 < ak+2. By induction, an < an+1 for all n ∈N. Therefore, {an} is an increasing sequence.

(c) By the monotone convergence theorem, limn→∞ an exists. Let ℓ = limn→∞ an. Since an+1 =√
2+an and limn→∞ an+1 = ℓ, we have

ℓ=
√

2+ ℓ or ℓ2 = 2+ ℓ.
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Solving this quadratic equation yields ℓ=−1 or ℓ= 2. Therefore, limn→∞ an = 2.

Define a more general sequence as follows:

a1 = c > 0,

an+1 =
√

c+an for n ∈ N .

We can prove that {an} is monotone increasing and bounded above by
1+

√
1+4c
2

. In fact, {an}

converges to this limit. The number
1+

√
1+4c
2

is obtained by solving the equation ℓ =
√

c+ ℓ,
where ℓ > 0.

Exercise 2.3.2. (a) The limit is 3.
(b) The limit is 3.
(c) The limit is 1.
(d) We use the well-known inequality

a+b+ c
3

≥ 3
√

abc for a,b,c ≥ 0.

By induction, we see that an > 0 for all n ∈ N. Moreover,

an+1 =
1
3
(2an +

1
a2

n
) =

1
3
(an +an +

1
a2

n
)≥ 1

3
3

√
an ·an ·

1
a2

n
= 1.

We also have, for n ≥ 2,

an+1 −an =
1
3

(
2an +

1
a2

n

)
−an =

−a3
n +1

3a2
n

=
−(an −1)(a2

n +an +1)
3a2

n
< 0.

Thus, {an} is monotone deceasing (for n ≥ 2) and bounded below. We can show that limn→∞ an = 1.
(e) Use the inequality x+y

2 ≥√
xy for x,y ≥ 0 to show that an+1 ≥

√
b for all n ∈ N. Then follow

item (c) to show that {an} is monotone decreasing. The limit is
√

b.

Exercise 2.3.3. (a) Let {an} be the given sequence. Observe that an+1 =
√

2an. Then show that
{an} is monotone increasing and bounded above. The limit is 2.
(b) Let {an} be the given sequence. Then

an+1 =
1

2+an
.

Show that {a2n+1} is monotone decreasing and bounded below; {a2n} is monotone increasing and
bounded above. Thus, {an} converges by Exercise 2.1.16. The limit is

√
2−1.

Exercise 2.3.7. Observe that

bn+1 =
an +bn

2
≥
√

anbn = an+1 for all n ∈ N .
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Thus,
an+1 =

√
anbn ≥

√
anan = an for all n ∈ N,

bn+1 =
an +bn

2
≤ bn +bn

2
= bn for all n ∈ N .

It follows that {an} is monotone increasing and bounded above by b1, and {bn} is decreasing and
bounded below by a1. Let x = limn→∞ an and y = limn→∞ bn. Then

x =
√

xy and y =
x+ y

2
.

Therefore, x = y.

SECTION 2.4
Exercise 2.4.1. Here we use the fact that in R a sequence is a Cauchy sequence if and only if it is
convergent.

(a) Not a Cauchy sequence. See Example 2.1.7.
(b) A Cauchy sequence. This sequence converges to 0.
(c) A Cauchy sequence. This sequence converges to 1.
(d) A Cauchy sequence. This sequence converges to 0 (see Exercise 2.1.6).

SECTION 2.5
Exercise 2.5.3. (a) Define

αn = sup
k≥n

(an +bn), βn = sup
k≥n

ak, γn = sup
k≥n

bk.

By the definition,

limsup
n→∞

(an +bn) = lim
n→∞

αn, limsup
n→∞

an = lim
n→∞

βn, limsup
n→∞

bn = lim
n→∞

γn.

By Exercise 2.5.2,
αn ≤ βn + γn for all n ∈ N .

This implies
lim
n→∞

αn ≤ lim
n→∞

βn + lim
n→∞

γn for all n ∈ N .

Therefore,
limsup

n→∞

(an +bn)≤ limsup
n→∞

an + limsup
n→∞

bn.

This conclusion remains valid for unbounded sequences provided that the right-hand side is well-
defined. Note that the right-hand side is not well-defined, for example, when limsupn→∞ an = ∞ and
limsupn→∞ bn =−∞.

(b) Define
αn = inf

k≥n
(an +bn), βn = inf

k≥n
ak, γn = inf

k≥n
bk.

Proceed as in part (a), but use part (b) of Exercise 2.5.2.

(c) Consider an = (−1)n and bn = (−1)n+1.
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SECTION 3.1
Exercise 3.1.11. (a) Observe that when x is near 1/2, f (x) is near 1/2 no matter whether x is rational
or irrational. We have

| f (x)−1/2|=

{
|x−1/2|, if x ∈Q;
|1− x−1/2|, if x ̸∈Q.

Thus, | f (x)−1/2|= |x−1/2| for all x ∈ R.
Given any ε > 0, choose δ = ε . Then

| f (x)−1/2|< ε whenever |x−1/2|< δ .

Therefore, limx→1/2 f (x) = 1/2.

(b) Observe that when x is near 0 and x is rational, f (x) is near 0. However, when f is near 0 and x
is irrational, f (x) is near 1. Thus, the given limit does not exists. We justify this using the sequential
criterion for limits (Theorem 3.1.2). By contradiction, assume that

lim
x→0

f (x) = ℓ,

where ℓ is a real number. Choose a sequence {rn} of rational numbers that converges to 0, and choose
also a sequence {sn} of irrational numbers that converges to 0. Then f (rn) = rn and f (sn) = 1− sn

and, hence,
ℓ= lim

n→∞
f (rn) = 0

and
ℓ= lim

n→∞
f (sn) = lim

n→∞
(1− sn) = 1.

This is a contradiction.

(c) By a similar method to part (b), we can show that limx→1 f (x) does not exists.
Solving this problem suggests a more general problem as follows. Given two polynomials P and

Q, define the function

f (x) =

{
P(x), if x ∈Q;
Q(x), if x ̸∈Q.

If a is a solution of the equation P(x) = Q(x), i.e., P(a) = Q(a), then the limit limx→a f (x) exists
and the limit is this common value. For all other points the limit does not exist.

Similar problems:

1. Determine all a ∈ R at which limx→a f (x) exists, where

f (x) =

{
x2, if x ∈Q;
x+2, if x ∈ x ̸∈Q.

2. Consider the function

f (x) =

{
x2 +1, if x ∈Q;
−x, if x ̸∈Q.

Prove that f does not have a limit at any a ∈ R.
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SECTION 3.2
Exercise 3.2.5. The given condition implies that if both x1 and x2 are close to x0, then they are close
to each other and, hence, f (x1) and f (x2) are close to each other. This suggests the use of the Cauchy

criterion for limit to solve the problem. Given any ε > 0, choose δ =
ε

2(k+1)
. If x1,x2 ∈ D\{x0}

with |x1 − x0|< δ and |x2 − x0|< δ , then

| f (x1)− f (x2)| ≤ k|x1 − x2| ≤ k(|x1 − x0|+ |x2 − x0|)< k(δ +δ ) = 2k
ε

2(k+1)
< ε.

Therefore, limx→x0 f (x) exists.

SECTION 3.3
Exercise 3.3.6. (a) Observe that f (a) = g(a) = h(a) and, hence,

| f (x)− f (a)|=

{
|g(x)−g(a)|, if x ∈Q∩ [0,1];
|h(x)−h(a)|, if x ∈Qc ∩ [0,1].

It follows that

| f (x)− f (a)| ≤ |g(x)−g(a)|+ |h(x)−h(a)| for all x ∈ [0,1].

Therefore, limx→a f (x) = f (a) and, so, f is continuous at a.
(b) Apply part (a).

Exercise 3.3.13. At any irrational number a ∈ (0,1], we have f (a) = 0. If x is near a and x is
irrational, it is obvious that f (x) = 0 is near f (a). In the case when x is near a and x is rational,
f (x) = 1/q where p,q ∈ N. We will see in part (a) that for any ε > 0, there is only a finite number
of x ∈ (0,1] such that f (x)≥ ε . So f (x) is close to f (a) for all x ∈ (0,1] except for a finite number
of x ∈Q. Since a is irrational, we can choose a sufficiently small neighborhood of a to void such x.

(a) For any ε > 0,

Aε = {x ∈ (0,1] : f (x)≥ ε}=
{

x =
p
q
∈Q : f (x) =

1
q
≥ ε

}
=

{
x =

p
q
∈Q : q ≤ 1

ε

}
.

Clearly, the number of q ∈ N such that q ≤ 1
ε

is finite. Since 0 < p
q ≤ 1, we have p ≤ q. Therefore,

Aε is finite.

(b) Fix any irrational number a ∈ (0,1]. Then f (a) = 0. Given any ε > 0, by part (a), the set Aε is
finite, so we can write

Aε = {x ∈ (0,1] : f (x)≥ ε}= {x1,x2, . . . ,xn},

for some n ∈N, where xi ∈Q for all i = 1, . . . ,n. Since a is irrational, we can choose δ > 0 such that
xi /∈ (a−δ ,a+δ ) for all i = 1, . . . ,n (more precisely, we can choose δ = min{|a−xi| : i = 1, . . . ,n}).
Then

| f (x)− f (a)|= f (x)< ε whenever |x−a|< δ .
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Therefore, f is continuous at a.
Now fix any rational number b = p

q ∈ (0,1]. Then f (b) = 1
q . Choose a sequence of irrational

numbers {sn} that converges to b. Since f (sn) = 0 for all n ∈ N, the sequence { f (sn)} does not
converge to f (b). Therefore, f is not continuous at b.

In this problem, we consider the domain of f to be the interval (0,1], but the conclusion remain valid
for other intervals. In particular, we can show that the function defined on R by

f (x) =


1
q
, if x =

p
q
, p,q ∈ N,where p and q have no common factors;

1, if x = 0;
0, if x is irrational,

is continuous at every irrational point, and discontinuous at every rational point.

Exercise 3.3.7. Consider

f (x) =

{
(x−a1)(x−a2) · · ·(x−ak), if x ∈Q;
0, if x ∈Qc.

SECTION 3.4
Exercise 3.4.6. Let α = min{ f (x) : x ∈ [a,b]} and β = max{ f (x) : x ∈ [a,b]}. Then

f (x1)+ f (x2)+ · · ·+ f (xn)

n
≤ nβ

n
= β .

Similarly,

α ≤ f (x1)+ f (x2)+ · · ·+ f (xn)

n
.

Then the conclusion follows from the Intermediate Value Theorem.

Exercise 3.4.7. (a) Observe that

| f (1/n)| ≤ 1/n for all n ∈ N .

(b) Apply the Extreme Value Theorem for the function g(x) =
∣∣∣ f (x)

x

∣∣∣ on the interval [a,b].

Exercise 3.4.8. First consider the case where f is monotone decreasing on [0,1]. By Exercise 3.4.5,
f has a fixed point in [0,1], which means that there exists x0 ∈ [0,1] such that

f (x0) = x0.

Since f is monotone decreasing, f has a unique fixed point. Indeed, suppose that there exists
x1 ∈ [0,1] such that f (x1) = x1. If x1 < x0, then x1 = f (x1)≥ f (x0) = x0, which yields a contradiction.
It is similar for the case where x1 > x0. Therefore, x0 is the unique point in [0,1] such that f (x0) = x0.
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Since f (g(x)) = g( f (x)) for all x ∈ [0,1], we have

f (g(x0)) = g( f (x0)) = g(x0).

Thus, g(x0) is also a fixed point of f and, hence, g(x0) = x0 = f (x0). The proof is complete in this
case.

Consider the case where f is monotone increasing. In this case, f could have several fixed points on
[0,1], so the previous argument does not work. However, by Exercise 3.4.5, there exists c ∈ [0,1]
such that g(c) = c. Define the sequence {xn} as follows:

x1 = c,

xn+1 = f (xn) for all n ≥ 1.

Since f is monotone increasing, {xn} is a monotone sequence. In fact, if x1 ≤ x2, then {xn} is
monotone increasing; if x1 ≥ x2, then {xn} is monotone decreasing. Since f is bounded, by the
monotone convergence theorem (Theorem 2.3.1), there exists x0 ∈ [0,1] such that

lim
n→∞

xn = x0.

Since f is continuous and xn+1 = f (xn) for all n ∈ N, taking limits we have f (x0) = x0.
We can prove by induction that g(xn) = xn for all n ∈ N. Then

g(x0) = lim
n→∞

g(xn) = limxn = x0.

Therefore, f (x0) = g(x0) = x0.

SECTION 3.5
Exercise 3.5.2. (a) Let f : D →R. From Theorem 3.5.3 we see that if there exist two sequences {xn}
and {yn} in D such that |xn − yn| → 0 as n → ∞, but {| f (xn)− f (yn)|} does not converge to 0, then
f is not uniformly continuous on D. Roughly speaking, in order for f to be uniformly continuous on
D, if x and y are close to each other, then f (x) and f (y) must be close to each other. The behavior
of the graph of the squaring function suggests the argument below to show that f (x) = x2 is not
uniformly continuous on R.

Define two sequences {xn} and {yn} as follows: xn = n and yn = n+
1
n

for n ∈ N. Then

|xn − yn|=
1
n
→ 0 as n → ∞. However,

| f (xn)− f (yn)|=
(

n+
1
n

)2

−n2 = 2+
1
n2 ≥ 2 for all n ∈ N .

Therefore, {| f (xn)− f (yn)|} does not converge to 0 and, hence, f is not uniformly continuous on R.

In this solution, we can use xn =

√
n+

1
n

and yn =
√

n for n ∈ N instead.

(b) Use xn =
1

π/2+2nπ
and yn =

1
2nπ

,n ∈ N.

(c) Use xn = 1/n and yn = 1/(2n).
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It is natural to ask whether the function f (x) = x3 is uniformly continuous on R. Following the

solution for part (a), we can use xn =
3

√
n+

1
n

and yn = 3
√

n for n ∈N to prove that f is not uniformly

continuous on R. By a similar method, we can show that the function f (x) = xn, n ∈N, n ≥ 2, is not
uniformly continuous on R. A more challenging question is to determine whether a polynomial of
degree greater than or equal to two is uniformly continuous on R.

Exercise 3.5.7. Hint: For part (a) use Theorem 3.5.5. For part (b) prove that the function can be
extended to a continuous function on [a,b] and then use Theorem 3.5.5.

Exercise 3.5.8. (a) Applying the definition of limit, we find b > a such that

c−1 < f (x)< c+1 whenever x > b.

Since f is continuous on [a,b], it is bounded on this interval. Therefore, f is bounded on [a,∞).
(b) Fix any ε > 0, by the definition of limit, we find b > a such that

| f (x)− c|< ε

2
whenever x > b.

Since f is continuous on [a,b+ 1], it is uniformly continuous on this interval. Thus, there exists
0 < δ < 1 such that

| f (u)− f (v)|< ε

2
whenever |u− v|< δ ,u,v ∈ [a,c+1].

Then we can show that | f (u)− f (v)|< ε whenever |u− v|< δ , u,v ∈ [a,∞).
(c) Since limx→∞ f (x) = c > f (a), there exists b > a such that

f (x)> f (a) whenever x > b.

Thus,
inf{ f (x) : x ∈ [a,∞)}= inf{ f (x) : x ∈ [a,b]}.

The conclusion follows from the Extreme Value Theorem for the function f on [a,b].

SECTION 4.1

Exercise 4.1.10. Use the identity

lim
n→∞

(
f (a+ 1

n)

f (a)

)n

= lim
n→∞

exp(n[ln( f (a+
1
n
))− ln( f (a)]).

Exercise 4.1.11. (a) Using the differentiability of sinx and Theorem 4.1.2, we conclude the function
is differentiable at any a ̸= 0. So, we only need to show the differentiability of the function at a = 0.
By the definition of the derivative, consider the limit

lim
x→a

f (x)− f (a)
x−a

= lim
x→0

x2 sin(1/x)+ cx
x

= lim
x→0

[xsin(1/x)+ c].
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For any x ̸= 0, we have

|xsin(1/x)|= |x| |sin(1/x)| ≤ |x|,

which implies

−|x| ≤ xsin(1/x)≤ |x|.

Since limx→0(−|x|) = limx→0 |x|= 0, applying the squeeze theorem yields

lim
x→0

xsin(1/x) = 0.

It now follows that

f ′(0) = lim
x→a

f (x)− f (a)
x−a

= lim
x→0

[xsin(1/x)+ c] = c.

Using Theorem 4.1.2 and the fact that cosx is the derivative of sinx, the derivative of f can be written
explicitly as

f ′(x) =

2xsin
1
x
− cos(1/x)+ c, if x ̸= 0;

c, if x = 0.

From the solution, it is important to see that the conclusion remains valid if we replace the
function f by

g(x) =

xn sin
1
x
, if x ̸= 0;

0, if x = 0,

where n ≥ 2, n ∈ N. Note that the function h(x) = cx does not play any role in the differentiability
of f .

We can generalize this problem as follows. Let ϕ be a bounded function on R, i.e., there is
M > 0 such that

|ϕ(x)| ≤ M for all x ∈ R .

Define the function

f (x) =

{
xnϕ(1/x), if x ̸= 0;
0, if x = 0,

where n ≥ 2, n ∈ N. Then f is differentiable at a = 0.

Similar problems:

1. Show that the functions below are differentiable on R:

f (x) =

{
x3/2 cos(1/x), if x ≥ 0;
0, if x < 0
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and

f (x) =

{
x2e−1/x2

, if x ̸= 0;
0, if x = 0.

2. Suppose that ϕ is bounded and differentiable on R. Define the function

f (x) =

{
xnϕ(1/x), if x ̸= 0;
0, if x = 0.

Show that if n ≥ 2, the function is differentiable on R and find its derivative. Show that if n = 1 and
limx→∞ ϕ(x) does not exists, then f is not differentiable at 0.

(b) Hint: Observe that

f ′
(

1
2nπ

)
=−1+ c < 0 and f ′

(
1

(2n+1)π

)
= 1+ c > 0.

SECTION 4.2

Exercise 4.2.1. Define the function

h(x) = f (x)−g(x).

Then h has an absolute maximum at x0. Thus,

h′(x0) = f ′(x0)−g′(x0) = 0,

which implies f ′(x0) = g′(x0).

Exercise 4.2.3. The inequality holds obviously if a = b. In the case where a ̸= b, the equality can be
rewritten as∣∣∣∣sin(b)− sin(a)

b−a

∣∣∣∣≤ 1.

The quotient
∣∣∣∣sin(b)− sin(a)

b−a

∣∣∣∣ is the slope of the line connecting (a, f (a)) and (b, f (b)). We need

to show that the absolute value of the slope is always bounded by 1, which can also be seen from
the figure. The quotient also reminds us of applying the Mean Value Theorem for the function
f (x) = sin(x).

Consider the case where a < b and define the function f : [a,b]→ R by f (x) = sin(x). Clearly,
the function satisfies all assumptions of the Mean Value Theorem on this interval with f ′(x) = cos(x)
for all x ∈ (a,b).

By the Mean Value Theorem, there exists c ∈ (a,b) such that

f (b)− f (a)
b−a

= f ′(c) = cos(c),
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Figure 5.10: The function f (x) = sin(x).

which implies∣∣∣∣ f (b)− f (a)
b−a

∣∣∣∣= |cos(c)| ≤ 1.

It follows that | f (a)− f (b)| ≤ |a−b|. The solution is similar for the case where a > b.
It is essential to realize that the most important property required in solving this problem is the

boundedness of the derivative of the function. Thus, it is possible to solve the following problems
with a similar strategy.
1. Prove that |cos(a)− cos(b)| ≤ |a−b| for all a,b ∈ R.

2. Prove that | ln(1+ e2a)− ln(1+ e2b)| ≤ 2|a−b| for all a,b ∈ R.

Exercise 4.2.4. Let us define f : [−π,π]→ R by

f (x) = x+
n

∑
k=1

(ak sinkx+bk coskx).

We want to find c ∈ (−π,π) such that f (c) = 0.
Now, consider the function

g(x) =
x2

2
+

n

∑
k=1

(
−ak

cos(kx)
k

+bk
sin(kx)

k

)
.

Observe that g(−π) = g(π) and g′ = f . The conclusion follows from Rolle’s Theorem.

Exercise 4.2.5. Use the identity

1
g(b)−g(a)

∣∣∣∣ f (a) f (b)
g(a) g(b)

∣∣∣∣= f (a)g(b)− f (b)g(a)
g(b)−g(a)

=

f (a)
g(a) −

f (b)
g(b)

1
g(a) −

1
g(b)

.

Then apply the Cauchy mean value theorem for two functions φ(x) = f (x)
g(x) and ψ(x) = 1

g(x) on the
interval [a,b].
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Exercise 4.2.6. 1. Apply Rolle’s theorem to the function

f (x) = a1x+a2
x2

2
+ · · ·+an

xn

n

on the interval [0,1].
2. Apply Rolle’s theorem to the function

f (x) =
n

∑
k=0

sin(2k+1)x
2k+1

on the interval [0,π/2].

Exercise 4.2.8. (a) Given ε > 0, first find x0 large enough so that a− ε/2 < f ′(x) < a+ ε/2 for
x > x0. Then use the identity

f (x)
x

=
f (x)− f (x0)+ f (x0)

x− x0 + x0
=

f (x)− f (x0)
x−x0

+ f (x0)
x−x0

1+ x0
x−x0

,

and the mean value theorem to show that, for x large,

a− ε <
f (x)

x
< a+ ε.

(b) Use the method in part (a).
(c) Consider f (x) = sin(x).

SECTION 4.3
Exercise 4.3.2. (a) We can prove that f is uniformly continuous on R by definition. Given any ε > 0,

choose δ =

(
ε

ℓ+1

) 1
α

and get

| f (u)− f (v)| ≤ ℓ|u− v|α < ℓδ α = ℓ
ε

ℓ+1
< ε

whenever |u− v|< δ . Note that we use ℓ+1 here instead of ℓ to avoid the case where ℓ= 0.

(b) We will prove that f is a constant function by showing that it is differentiable on R and f ′(a) = 0
for all a ∈ R. Fix any a ∈ R. Then, for x ̸= a,∣∣∣∣ f (x)− f (a)

x−a

∣∣∣∣≤ ℓ|x−a|α

|x−a|
= ℓ|x−a|α−1.

Since α > 1, by the squeeze theorem,

lim
x→a

f (x)− f (a)
x−a

= 0.
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This implies that f is differentiable at a and f ′(a) = 0.

(c) We can verify that the function f (x) = |x| satisfies the requirement.

From this problem, we see that it is only interesting to consider the class of functions that satisfy
(4.7) when α ≤ 1. It is an exercise to show that the function f (x) = |x|1/2 satisfies this condition
with ℓ= 1 and α = 1/2.

Exercise 4.3.3. Define the function

h(x) = g(x)− f (x).

Then h′(x) = g′(x)− f ′(x)≥ 0 for all x ∈ [x0,∞). Thus, h is monotone increasing on this interval. It
follows that

h(x)≥ h(x0) = g(x0)− f (x0) = 0 for all x ≥ x0.

Therefore, g(x)≥ f (x) for all x ≥ x0.

Exercise 4.3.5. Apply the mean value theorem twice.

Exercise 4.3.6. Use proof by contradiction.

SECTION 4.4

Exercise 4.4.5. Suppose that
P(x) = a0 +a1x+ · · ·+anxn.

Then apply L’Hospital’s rule repeatedly.

Exercise 4.4.6. We first consider the case where n = 1 to get ideas for solving this problem in the
general case. From the standard derivative theorems we get that the function is differentiable at any
x ̸= 0 with

f ′(x) = 2x−3e−
1

x2 =
2
x3 e−

1
x2 .

Consider the limit

lim
x→0

f (x)− f (0)
x−0

= lim
x→0

e−
1

x2

x
.

Letting t = 1/x and applying L’Hospital rule yields

lim
x→0+

e−
1

x2

x
= lim

t→∞

t
et2 = lim

t→∞

1
2tet2 = 0.

Similarly,

lim
x→0−

e−
1

x2

x
= 0.
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It follows that f is differentiable on R with

f ′(x) =


2
x3 e−

1
x2 , if x ̸= 0;

0, if x = 0.

In a similar way, we can show that f is twice differentiable on R with

f ′′(x) =


(

6
x4 +

2
x6

)
e−

1
x2 , if x ̸= 0;

0, if x = 0.

Based on these calculations, we predict that f is n times differentiable for every n ∈ N with

f (n)(x) =

P
(

1
x

)
e−

1
x2 , if x ̸= 0;

0, if x = 0,

where P is a polynomial. Now we proceed to prove this conclusion by induction. The conclusion is
true for n = 1 as shown above. Given that the conclusion is true for some n ∈ N, for x ̸= 0 we have

f (n+1)(x) =−x−2P′
(

1
x

)
+

2
x3 P

(
1
x

)
e−

1
x2 = Q

(
1
x

)
e−

1
x2 ,

where Q is also a polynomial. It is an easy exercise to write the explicit formula of Q based on P.
Moreover, successive applications of l’Hôpital’s rule give

lim
x→0+

f (n)(x)− f (n)(0)
x−0

= lim
x→0+

1
x

P
(

1
x

)
e−

1
x2 = lim

t→∞

tP(t)
et2 = 0.

In a similar way, we can show that

lim
x→0−

f (n)(x)− f (n)(0)
x−0

= 0.

Therefore, f (n+1)(0) = 0. We have proved that for every n ∈ N, f is n times differentiable and, so,
f ∈Cn(R). Here we do not need to prove the continuity of f (n) because the differentiability of f (n)

implies its continuity.
In a similar way, we can also show that the function

f (x) =

{
e−

1
x , if x > 0;

0, if x ≤ 0

is n times differentiable for every n ∈ N.

SECTION 4.5
Exercise 4.5.1. Let f (x) = ex. By Taylor’s theorem, for any x > 0, there exists c ∈ (0,x) such that

f (x) = ex =
m

∑
k=0

f (k)(0)
k!

xk +
f (m+1)(c)
(m+1)!

cm+1

=
m

∑
k=0

xk

k!
+

ec

(m+1)!
cm+1 >

m

∑
k=0

xk

k!
.
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Exercise 4.5.5. (a) Observe that a simpler version of this problem can be stated as follows: If f is
differentiable on (a,b) and x0 ∈ (a,b), then

lim
h→0

f (x0 +h)− f (x0)

h
=

f ′(x0)

1!
.

This conclusion follows directly from the definition of derivative.
Similarly, if f is twice differentiable on (a,b) and x0 ∈ (a,b), then

lim
h→0

f (x0 +h)− f (x0)− f ′(x0)
h
1!

h2 =
f ′′(x0)

2!
.

We can prove this by applying the L’Hospital rule to get

lim
h→0

f (x0 +h)− f (x0)− f ′(x0)
h
1!

h2 = lim
h→0

f ′(x0 +h)− f ′(x0)

2h
=

f ′′(x0)

2!
.

It is now clear that we can solve part (a) by using the L’Hospital rule as follows:

lim
h→0

f (x0 +h)− f (x0)− f ′(x0)
h
1! − f ′′(x0)

h2

2!
h3 = lim

h→0

f ′(x0 +h)− f ′(x0)− f ′′(x0)
h
1!

3h2 =
f ′′′(x0)

3!
.

Note that the last equality follows from the previous proof applied to the function f ′.

(b) With the analysis from part (a), we see that if f is n times differentiable on (a,b) and x0 ∈ (a,b),
then

lim
h→0

f (x0 +h)−∑
n−1
k=0

f (k)(x0)hk

k!
hn+1 =

f (n)(x0)

n!
.

This conclusion can be proved by induction. This general result can be applied to obtain the Taylor
expansion with Peano’s remainder in Exercise 4.5.6.

SECTION 5.1
Exercise 5.1.3. Suppose A and B are compact subsets of R. Then, by Theorem 5.1.5, A and
B are closed and bounded. From Theorem 5.1.2(iii) we get that A∪B is closed. Moreover, let
MA,mA, MB,mB be upper and lower bounds for A and B, respectively. Then M = max{MA,MB}
and m = min{mA,mB} are upper and lower bounds for A∪B. In particular, A∪B is bounded. We
have shown that A∪B is both closed and bounded. It now follows from Theorem 5.1.5 that A∪B is
compact.

SECTION 5.2
Exercise 1.5.1. Consider both sup f (I) and inf f (I). These may be real numbers of either ∞ or −∞.
When sup f (I) ∈ R or inf f (I) ∈ R you will also need to determine whether they belong to f (I) or
not.

SECTION 5.3

Exercise 5.3.2. (a) Consider the sequence {xn} with xn =
1

π

2 +2nπ
.
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SECTION 5.4
Exercise 5.4.4. Since limx→∞ f (x) = limx→−∞ f (x) = ∞, there exists a > 0 such that

f (x)≥ f (0) whenever |x|> a.

Since f is lower semicontinuous, by Theorem 5.4.3, it has an absolute minimum on [−a,a] at some
point x0 ∈ [−a,a]. Obviously,

f (x)≥ f (x0) for all x ∈ [−a,a].

In particular, f (0)≥ f (x0). If |x|> a, then

f (x)≥ f (0)≥ f (x0).

Therefore, f has an absolute minimum at x0.
Observe that in this solution, we can use any number γ in the range of f instead of f (0). Since

any continuous function is also lower semicontinuous, the result from this problem is applicable for
continuous functions. For example, we can use this theorem to prove that any polynomial with even
degree has an absolute minimum on R. Since R is a not a compact set, we cannot use the extreme
value theorem directly.

SECTION 5.5
Exercise 5.5.3. We apply the definition to solve this problem. Given any u,v ∈ I and λ ∈ (0,1), we
have

f (λu+(1−λ )v)≤ λ f (u)+(1−λ ) f (v)

by the convexity of f .
Since f (u), f (v) ∈ J and J is an interval, λ f (u) + (1− λ ) f (v) ∈ J. By the nondecreasing

property and the convexity of φ ,

φ( f (λu+(1−λ )v))≤ φ(λ f (u)+(1−λ ) f (v))≤ λφ( f (u))+(1−λ )φ( f (v)).

Therefore, φ ◦ f is convex on I.
The result from this problem allows us to generate convex functions. For example, consider

f (x) = |x| and φ(x) = xp, p > 1. We have seen that f is convex on R. The function φ is convex
and increasing on [0,∞) which contains the range of the function f . Therefore, the composition
g(x) = |x|p, p > 1, is convex on R. Similarly, h(x) = ex2

is also a convex function on R.
Observe that in this problem, we require the nondecreasing property of φ . A natural question is

whether the composition of two convex functions is convex. The answer is negative. Observe that
f (x) = x2 and φ(x) = |x−1| are convex, but (φ ◦ f )(x) = |x2 −1| is nonconvex.

Exercise 5.5.4. Use Theorem 5.5.6 or Corollary 5.5.7.

Exercise 5.5.5. (a) Use the obvious inequality

(
√

a−
√

b)2 ≥ 0.
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Alternatively, consider the function f (x) = − ln(x), x ∈ (0,∞). We can show that f is convex on
(0,∞). For a,b ∈ (0,∞), one has

f
(

a+b
2

)
≤ f (a)+ f (b)

2
.

This implies

− ln(
a+b

2
)≤ − ln(a)− ln(b)

2
=− ln(

√
ab).

Therefore,
a+b

2
≥
√

ab.

This inequality holds obviously when a = 0 or b = 0.
(b) Use Theorem 5.5.3 for the function f (x) =− ln(x) on (0,∞).

SECTION 5.6
Exercise 5.6.1. (a) By Theorem 5.6.5,

∂ f (x) =


{−a}, if x < 0;
[−a,a], if x = 0;
{a}, if x > 0.

(b) By Theorem 5.6.5,

∂ f (x) =



{−2}, if x <−1;
[−2,0], if x =−1;
{0}, if x ∈ (−1,1);
[0,2], if x = 1;
{2}, if x > 1.

Exercise 5.6.3. To better understand the problem, we consider some special cases. If n = 1, then
f (x) = |x−1|. Obviously, f has an absolute minimum at x = 1. If n = 2, then f (x) = |x−1|+ |x−2|.
The graphing of the function suggests that f has an absolute minimum at any x ∈ [1,2]. In the case
where n = 3, we can see that f has an absolute minimum at x = 2. We then conjecture that if n is
odd with n = 2m−1, then f has an absolute minimum at x = m. If n is even with n = 2m, then f
has an absolute minimum at any point x ∈ [m,m+1].

Let us prove the first conclusion. In this case,

f (x) =
2m−1

∑
i=1

|x− i|=
2m−1

∑
i=1

fi(x),

where fi(x) = |x− i|. Consider x0 = m. Then

∂ fm(x0) = [−1,1], ∂ fi(x0) = {1} if i < m, ∂ fi(x0) = {−1} if i > m.

The subdifferential sum rule yields ∂ f (x0) = [−1,1] which contains 0. Thus, f has an absolute
minimum at x0. If x0 > m, we can see that ∂ f (x0)⊂ (0,∞), which does not contain 0. Similarly, if
x0 < m, then ∂ f (x0)⊂ (−∞,0). Therefore, f has an absolute minimum at the only point x0 = m.
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The case where n is even can be treated similarly.

Exercise 5.6.5. Fix a,b ∈ R with a < b. By Theorem 5.6.8, there exists c ∈ (a,b) such that

f (b)− f (a)
b−a

∈ ∂ f (c)⊂ [0,∞).

This implies f (b)− f (a)≥ 0 and, hence, f (b)≥ f (a). Therefore, f is monotone increasing on R,
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