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Bottom Topography Mapping via Nonlinear Data Assimilation
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Center for Maritime Systems, Stevens Institute of Technology, Hoboken, New Jersey

(Manuscript received and in final form 18 April 2011)

ABSTRACT

A variational data assimilation method is described for bottom topography mapping in rivers and estuaries

using remotely sensed observations of water surface currents. The velocity field and bottom topography are

related by the vertically integrated momentum and continuity equations, leading to a nonlinear inverse

problem for bottom topography, which is solved using a Picard iteration strategy combined with a nonlinear

line search. An illustration of the method is shown for Haverstraw Bay, in the Hudson River, where the known

bottom topography is well reconstructed. Once the topography has been estimated, currents and water levels

may be forecast. The method makes feasible 1) the estimation of bottom topography in regions where in situ

data collection may be impossible, dangerous, or expensive, and 2) the calibration of barotropic shallow-water

models via control of the bottom topography.

1. Introduction

Knowledge of bottom topography or water depth is of

practical importance to marine navigation and other ac-

tivities within rivers and estuaries, and is a crucial com-

ponent of all realistic hydrodynamic models as well. In

geophysical flows the role of bottom topography is sig-

nificant at nearly all length scales, ranging from the to-

pographic beta effect on large scales to boundary layer

and kinematic effects on small scales. For example, in the

earliest work with large-scale diagnostic ocean models

a great sensitivity to the alignment of the bottom slope

with respect to the vertically integrated baroclinic pres-

sure gradient was found, the so-called Joint Effect of

Baroclinicity and Relief (JEBAR) term (e.g., Sarkisyan

and Ivanov 1971). Bottom topography also strongly in-

fluences the generation and propagation of both surface

and internal gravity waves. These effects are of demon-

strable practical importance in storm surge modeling

(Heemink et al. 2002), regional ocean modeling (Hirose

2005), and coupled ocean–estuary modeling (Blumberg

and Georgas 2008).

It is precisely the wide range of significant length

scales that makes the determination of topography by

direct methods (e.g., depth-finding sonar) a challenging

and costly endeavor, and provides the impetus for the

present work. Our focus here is on the determination of

bottom depth using remotely sensed observations of

currents at the water surface, such as may be obtained

from a variety of measurement systems. The basic prin-

ciple of these systems is to measure the Doppler shift of

the surface waves induced by the horizontal component

of the near-surface water velocity. The representative site

considered here is Haverstraw Bay, within the Hudson

River estuary system, where surface current data have

been obtained using the Airborne Remote Optical Spot-

light System (AROSS; Dugan et al. 2001a,b). Emphasis is

on the use of surface currents to map bottom topography

on horizontal scales of 100 m or more, over a 10 km 3

50 km area.

Previous work has focused on using water level data to

calibrate hydrodynamic model parameters, including bot-

tom topography (e.g., Das and Lardner 1991; Lardner et al.

1993; Ten-Brummelhuis et al. 1993; Heemink et al. 2002).

For example, Heemink et al. (2002) utilize observations of
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water level to adjust values of bottom depth, roughness

coefficient, vertical viscosity, and open boundary condi-

tions. Their formulation utilizes the adjoint of a hydro-

dynamic model to efficiently calculate the gradient of

an objective function, consisting of the sum-of-squared

residuals of observed and predicted water levels. Con-

trol variables are treated as spatially constant within

discrete subdomains; hence, calibrated values of bot-

tom depth, etc., are spatially discontinuous using their

approach.

Losch and Wunsch (2003) conduct a theoretical study

to identify large-scale bottom topography from sea sur-

face height data using adjoint-based methods. Constraints

on spatial regularity (smoothness) are found necessary

when the surface observations contain realistic levels of

error. The importance of a priori information, the first-

guess topography, is also emphasized because the surface

data do not uniquely determine the bottom topography

where there are regions of weak flow or when the data are

noisy.

Mourre et al. (2004) consider the estimation of bottom

topography from water elevation measurements in the

context of tidal modeling. A statistical model for the

spatial distribution of errors is hypothesized, and an

ensemble of plausible bottom topography fields is cre-

ated in order to determine the cross correlation between

water elevation and bottom depth. Statistical lineariza-

tion is invoked to estimate bottom topography consis-

tent with observed water levels.

Hirose (2005) utilizes observations from a ship-mounted

acoustic Doppler current profiler (ADCP) to calibrate

bottom topography in a coastal ocean model. The ap-

proach is somewhat different from those described

previously in that the linear combination of four dif-

ferent gridded bathymetry datasets is found, which

minimizes the misfit between the observed and mod-

eled currents.

The estimation of topography from surface currents in

this paper follows the adjoint-based approaches just dis-

cussed, but with some differences in solver structure and

implementation. For example, the minimization algorithm

used here consists of an inner linear solver, based on an

expansion in terms of representer functions (Bennett 1992,

2002), and an outer series of functional, or Picard, iter-

ations that decouple the nonlinearity from the inner solver.

This approach permits flexibility in the number and quality

of data to be assimilated; thus, it is not necessary to pro-

vide observations at every model grid point or to reduce

the number of topography parameters to be estimated, as

has been done previously. The solver architecture natu-

rally lends itself to an analysis of the conditioning, sen-

sitivity, and properties of the observational array, and

posterior errors may be estimated.

The outline of this paper is as follows. In section 2 the

topography estimation problem is defined, the solution al-

gorithm is outlined, and an idealized example is presented

to illustrate the performance of the solver. In section 3

the central scientific issue is addressed, namely, how to

assign reasonable bounds to the accuracy and spatial

covariance of the prior topography. A proof-of-concept

demonstration is described for an estuary with known

topography in section 4. Finally, sections 5 and 6 dis-

cuss important remaining questions and summarize

our results.

2. Formulation and implementation

There are two features of the topography estimation

problem that make it a challenge. First, the coupling be-

tween bottom depth and water velocity is strongly non-

linear, arising from both kinematics (mass continuity) and

dynamics (vertically integrated pressure gradient), as al-

ready mentioned. Second, the unknown bottom topog-

raphy is a continuous field; in order to estimate it from

a finite number of observations it is necessary to hypo-

thesize a model for statistics of the topography, mini-

mally, its mean and (spatial) autocovariance function.

An estimator for the bottom topography is proposed

that is the minimizer of a quadratic form, or objective

function, which is the weighted sum of squared misfits

between a set of predicted and observed currents, an in-

tegral over the deviation of the topography from a first

guess, and an integral over dynamical error. Although the

objective function is quadratic in the above-mentioned

error terms, it is a nonquadratic (and nonconvex) func-

tion of the bottom depth because of the nonlinear cou-

pling between current and bottom depth in both the

momentum and continuity equations. The strategy for

handling the nonlinearity is based on functional itera-

tion using a sequence of linear inverse problems solved

by standard methods of variational data assimilation.

a. Problem formulation

It is assumed that the dominant influence of the bot-

tom topography on the currents is well represented by

barotropic shallow-water dynamics. Thus, baroclinic cur-

rents caused by variations in water density are neglected,

and the pressure is assumed to be in hydrostatic balance,

consistent with the small aspect ratio of the flow. Typical

applications are weakly stratified bays or estuaries, with

water depth ranging from a fraction of a meter to some

tens of meters and topography variations on scales from

hundreds of meters to kilometers.

In practice, the hydrodynamic model is solved in gen-

eral orthogonal curvilinear coordinates, but for simplicity
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Cartesian coordinates are used below, with x and y de-

noting the zonal and meridional coordinates, respectively,

and D denoting the spatial domain. The time dimension

is denoted as t 2 [0, T], so that (x, y, t) 2 D 3 [0, T]. It is

assumed that the boundary of the domain ›D is composed

of closed and open boundary segments, ›D1 and ›D2, re-

spectively. Within D the dependent variables are water

elevation (referenced to equilibrium) h, zonal velocity u,

and meridional velocity y. Bottom topography, the un-

disturbed water depth, is denoted as H; it is assumed to be

constant in time; and the total water depth at any instant is

D 5 H 1 h.

Following the general approach of weak-constraint var-

iational data assimilation, it is assumed that all of the

governing equations, including boundary and initial con-

ditions, contain error. The errors are denoted by l̂*, with

the superscript * indicating within which equation the

error appears. Allowing for these errors, the barotropic

shallow-water equations are

ht 1 (uD)x 1 (yD)y 5 l̂h, (1)

(Du)t 1 (Duu 2 2DAmux)x 1 [Dyu 2 DAm(uy 1 yx)]y

(2)

2fDy 1 gDhx 1 Cd(u2 1 y2)1/2u 5 l̂u, (3)

(Dy)t 1 [Duy 2 DAm(uy 1 yx)]x 1 (Dyy 2 2DAmyy)y

(4)

1 fDu 1 gDhy 1 Cd(u2 1 y2)1/2
y 5 l̂y, (5)

D 5 H 1 h 1 l̂D, (6)

H 5 H0 1 l̂H , (7)

where H0 is an initial guess of the topography, Am is the

horizontal eddy viscosity, Cd is the bottom drag coefficient,

f is the Coriolis parameter, and g is the acceleration of

gravity. Note that, in the numerical implementation, Am

is a nonlinear function of the local strain rate via the

Smagorinsky–Lilly scheme (Smagorinsky 1963; Lilly 1967),

Cd is spatially constant, and f is a function of geographic

latitude.

Boundary conditions are approximately no slip on closed

(material) boundaries,

(u, y) 5 (l̂›D
1
u, l̂›D

1
y) on ›D1. (8)

On open boundaries the surface elevation hd is specified as

h 5 hd 1 l̂›D
2 on ›D2, (9)

and no stress is assumed for the horizontal viscous terms.

Initial conditions, which may also contain errors, are given

by (u0, y0, h0) for the horizontal velocity components and

surface elevation

(u, y, h) 5 (u0, y0, h0) 1 (l̂u
0 , l̂y

0 , l̂h
0 ). (10)

As mentioned above, the unknown corrections to the

dynamics, initial, and boundary conditions are denoted

by the l̂* terms. The hypothesized second-order statistics

(covariances) of these unknowns are denoted C*, where

the superscript * indicates the corresponding field. The

bottom topography will be found, which minimizes a

weighted sum of squares of the error terms, with the

weights being the inverse of the respective covariances.

In addition to the dynamical information, specified

above, there are observational data consisting of a set of

M discrete measurements of surface currents. Each

measurement is represented as the projection of the

velocity field onto a measurement kernel (mi, ni), plus an

unknown measurement error �i,

ui 5

ðT

0
dt

ð
D

dx dy(mi, ni) � (u, y) 1 �i, (11)

for i 5 1, . . . , M. Measurement operators (mi, ni) here

consist of averaging kernels defined by the footprint of

the remote sensing system. As noted in the introduction,

the measurements are obtained by a Doppler technique

that measures orthogonal components of the surface

current over spatial patches of approximately 128 m 3

128 m, with an averaging time of approximately 30 s

(Dugan et al. 2001b; Dugan and Piotrowski 2003). Other

measurements may be assimilated, for example, mea-

surements of water elevation h or in situ measurements

of H, and these are included in the implementation de-

scribed below.

The topographic estimation problem is posed by seek-

ing fields (u, y, h, H), which minimize the weighted sum

of squared errors in the dynamics and the data, denoted

J . When the errors are normally distributed with known

covariance, the minimizer of J is a maximum likelihood

estimator (Bennett 2002). Knowledge of the bottom to-

pography and dynamical error statistics is extremely lim-

ited in the present case, so the least squares formulation

is regarded as a useful expedient for finding a regular-

ized estimate of H, consistent with both the dynamics and

the data. Although the C* operators will be referred to as

‘‘covariances,’’ they are constructed from rough estimates

of the magnitude and correlation scales of the corre-

sponding terms.

The objective function J to be minimized is

1608 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 28



J (u, y, h, H) 5

ðT

0
dt

ð
D

dx dy[ht 1 (uD)x 1 (yD)y]lh

1

ðT

0
dt

ð
D

dx dyf(Du)t 1 (Duu 2 2DAmux)x 1 [Dyu 2 DAm(uy 1 yx)]y 2 fDy 1 gDhx

1 Cd(u21y2)1/2uglu

1

ðT

0
dt

ð
D

dx dyf(Dy)t 1 Duy 2 DAm(uy 1 yx)x 1 (Dyy 2 2DAmyy)y 1 fDu 1 gDhy

1 Cd(u2 1 y2)1/2
ygly

1

ðT

0
dt

ð
D

dx dy(D 2 H 2 h)lD

1

ð
D

dx dy(H 2 H0)lH

1

ðT

0
dt

ð
›D

1

dl(u, y) � nl›D
1

1

ðT

0
dt

ð
›D

2

dl(h 2 hd)l›D
2

1

ð
D

dx dy[(u, y, h) 2 (u0, y0, h0)] � (lu0, ly0, lh0)

1 �
M

i51v

�ðT

0
dt

ð
D

dx dy(mi, ni) � (u, y) 2 ui

�2�
s2

i , (12)

where the adjoint variables l* and the fields l̂* in (1)–

(10) are related by Bennett (1992),

l̂* 5 C*+*l* ; (13)

hence, the terms in the sum (12) are implicitly weighted

by the corresponding (C*)21. Note that each C* is

a function of two sets of space–time arguments, and the

inner product +* depends on the domain on which l̂* is

defined. For example, on ›D2, let l parameterize the

distance along the open boundary (l, t) 2 ›D2 3 [0, T];

then, the inner product o›D2 is defined as

l̂›D
2 (l, t) 5 C›D

2 +›D
2 l›D

2

5

ðT

0
dt9

ð
›D

2

dl9C›D
2 (l, t; l9, t9)l›D

2 (l9, t9). (14)

For simplicity, it has been assumed that the observa-

tion errors are uncorrelated, and the standard deviation

of the ith measurement is si. Likewise, the separate

components of the model errors are assumed to be un-

correlated, for example, the expected value of l*lw is

zero for components * 6¼ w.

The first-order extremal conditions for the objective

function are found by setting to zero the variation with

respect to each of the dependent variables. Nonlinear

Euler–Lagrange equations (E–L) are obtained, which ex-

press the first-order optimality conditions for J . Direct

solution of the E–L equations for the optimal bottom

topography is difficult, although the discretized equations

may be solved by quasi-Newton methods when relatively

few values of H are to be estimated (Heemink et al. 2002;

Losch and Wunsch 2003). In the next section we derive

a solution algorithm that utilizes the intrinsic number of

degrees of freedom in the estimation problem, namely, the

number of (u, y) measurements M, to obtain a topography

solver whose conditioning is essentially independent of

the number of grid unknowns.

b. Solution algorithm

The key practical difficulty with solving the E–L system

is the nonlinear coupling between H and the other vari-

ables. If the system were linear, the E–L system could be

reduced to an M-dimensional linear system using the well-

known duality between the state–space and observation–

space representations of variational data assimilation

(Bennett 1992; Courtier 1997). We exploit this duality by

approximating the solution of the nonlinear E–L system

with the limit of a sequence of linear E–L systems con-

structed using Picard iteration.

There are no general proofs of convergence for Picard

iteration applied to nonlinear E–L systems, but three
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basic principles were utilized in developing a solver.

First, each linear approximation to the nonlinear E–L

system should itself be an E–L system, representing the

extremal conditions for a quadratic (strictly convex) ob-

jective function. Second, the corresponding linear dy-

namics should be chosen in order to possess a bounded

energy-like integral, which simplifies the development

of stable and accurate numerics for the E–L equations.

And, third, rather than taking the solution of the linear

E–L system as an approximation to the minimum of J
directly, it is used to define the search direction for a line-

search optimization. The first two of these principles were

suggested by Bennett (2002) for nonlinear data assimila-

tion. The third principle was adopted in order to accom-

modate the errors caused by linearization; it ensures that

the linearized solver does at least yield a nonincreasing

sequence of J .

After a systematic search of linear approximations

possessing energy-like integrals, we found the following

system could be integrated stably:

hn11
t 1 (un11D)x 1 (yn11D)y 1 [u(Hn11 2 H)]x

1 [y(Hn11 2 H)]y 5 l̂h (15)

(Dun11)t 1 (Duu 2 2DAmux)x 1 [Dy u 2 DAm(uy1 yx)]y

2 f Dy 1 gDhn11
x 1 g(Hn11 2 H)hx

1 Cd(u2 1 y2)1/2un11 5 l̂u (16)

(Dyn11)t 1 [Duy 2 DAm(uy 1 yx)]x 1 (Dyy 2 2DAmyy)y

1 f Du 1 gDhn11
y 1 g(Hn11 2 H)hy

1 Cd(u2 1 y2)1/2
yn11 5 l̂y (17)

Hn11 5 H0 1 l̂H , (18)

where superscript n denotes the Picard iteration count

[which is omitted from both l̂* and (u, y, h, H) terms for

readability]. The overbar denotes the background field

used in the linear approximation; it is the result of a line

search from the previous iteration, for example,

(un11, yn11, hn11, Hn11)5 (un, yn, hn, Hn)(1 2 an)

1 (un11, yn11, hn11, Hn11)an,

(19)

where scalar an is chosen to minimize J considered as a

function of an alone. Note that, consistent with previous

approximations, the turbulent viscosity Am is a function

of (un, y n) as well.

Boundary conditions for the linearized system are

given by

(un11, yn11)

5 (l̂›D
1
u, l̂›D

1
y) on ›D1 (closed boundary),

and (20)

hn11 5 hd 1 l̂›D
2 on ›D2 (open boundary). (21)

Initial conditions are

(un11, yn11, hn11) 5 (u0, y0, h0) 1 (l̂u0, l̂y0, l̂h0). (22)

Finally, the first iteration for the background field

(u1, y1, h1, H1) is computed from (1) to (10) with l̂* 5 0.

The so-called adjoint model, which consists of the E–L

equations for the extremum of the quadratic objective

function J n11, is given by

2l
h
t 2 (gDlu)x 2 (gDly)y 5 0 (23)

2Dlu
t 2 Dlh

x 1 Cd(u2 1 y2)1/2
lu

5 2�
M

i51
mi/s

2
i

�ðT

0
dt

ð
D

dx dy(mi, ni) � (un11, yn11) 2 ui

�
(24)

2Dly
t 2 Dlh

y 1 Cd(u2 1 y2)1/2
ly

5 2�
M

i51
ni/s

2
i

�ðT

0
dt

ð
0

dx dy(mi, ni)(un11, yn11y) 2 ui

�
,

(25)

with a no-normal-flow-like boundary condition on ›D1,

gD(lu, ly) � n 5 0, (26)

where n is the outer normal, and a homogeneous elevation-

like boundary condition on ›D2,

Dlh 5 0. (27)

At t 5 T, the final conditions are lh 5 lu 5 ly 5 0.

Corrections to the bottom topography are computed by

solving for lH,

lH 5 2

ðT

0
dt(2ulh

x 2 ylh
y 1 gluhx 1 glyhy), (28)

and using l̂H 5 CH+DlH to obtain Hn11 in (18). Once

the stopping criteria have been reached, the estimated

topography will be denoted H
est

5 Hn11.

There are many implementation details. The forward

and adjoint models are discretized following Blumberg and

Mellor (1987) on an approximately orthogonal curvilinear
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grid. Nonlinear terms proportional to grid curvature

(Blumberg and Herring 1987) are nonconservative when

linearized and are omitted from the linear E–L system;

however, they are retained in J and the nonlinear line

search. Integration of the linearized system uses space-

and time-dependent background fields (u, y, h); for

computational efficiency these have been temporally

subsampled and reconstructed as needed by linear in-

terpolation. The solver for (15)–(27) is implemented with

the indirect representer algorithm (Bennett 2002, section

3.1.5; Chua and Bennett 2001) using a generalized con-

jugate residual (GCR) solver. GCR, a Krylov subspace

method applicable to nonsymmetric linear systems (de

Sturler 1994), was chosen because the implementation of

Eqs. (23)–(27) is not the discrete adjoint of (15)–(22).

Brent’s method (Brent 1973) is the line search algorithm

for an. In practice, an acceptable topography estimate is

usually obtained after two to four iterates. The compu-

tational effort necessary is equivalent to 40–120 model

integrations, depending on the geometry of the domain,

the assumed level of error in the first-guess topography

and surface current data, and the correlation scales of the

actual and assumed errors.

Figure 1 shows a functional schematic of the solution

algorithm and software components. The topography

solver was implemented as an extension to the Inverse

FIG. 1. Solution Algorithm. Left: Schematic of nonlinear data assimilation algorithm. Beginning at the top, with the execution of the

nonlinear model (_NLM), the Picard iteration proceeds counterclockwise. Measured data are denoted d, and ‘‘ICs, BCs’’ denote initial

conditions and boundary conditions, respectively. The inner-loop, shown with unlabeled boxes, is enlarged on the right. Right: The

indirect representer algorithm, the solver for the linear E–L system, (15)–(27), is shown. The outer Picard iteration index is denoted n,

while the inner GCR iteration is denoted k. The leading underscore, _NLM, _ fwdExt, etc., denotes software components using the

notation of the IOM system (Bennett et al. 2008; Muccino et al. 2008).
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Ocean Model (IOM; see Bennett et al. 2008; Muccino

et al. 2008), a software toolkit for developing variational

data assimilation methods.

To reduce the impact of the first-guess topography

H0, a modification of the above algorithm has been im-

plemented. The algorithm has been modified to make

H0 a function of the Picard iteration number H0/Hn
0 ,

where Hn
0 is set equal to the optimized topography ob-

tained from the previous Picard iteration Hn
0 5 Hn. This

change in the algorithm makes the solver analogous to the

method of successive corrections (Cressman 1959), but it

breaks the relationship to conventional least squares esti-

mation. Although we have no formal justification for this

procedure, we have found that it works well in practice.

Table 1 lists the range of parameter values used in the

numerical model and topography solver.

c. Solver validation

To validate the solver described above, a series of ex-

periments were conducted to verify that the true topog-

raphy could be reconstructed within an idealized domain.

These experiments provided the opportunity to validate

the forward and adjoint solvers, profile computational

performance, and test a variety of linearization strategies.

Furthermore, identical twin experiments were conducted

with a straight channel and a curved channel to analyze

the impact of measurement noise, domain geometry, and

other factors on the accuracy of the solutions.

As a basic demonstration, consider the problem of iden-

tifying the bottom topography in a 10-km-wide curved

channel with tidal forcing provided at one end. The ge-

ometry of the channel is a half-annulus, the curvilinear

grid is aligned with the radial and azimuthal directions,

and the true topography consists of a ‘‘navigational chan-

nel,’’ which obliquely crosses the annulus (see Fig. 2). In

this and subsequent examples, all model, initial condition,

and boundary errors are zero, l̂* 5 0, except for l̂H , which

is the correction to the first-guess bottom topography.1 The

first-guess depth is H0 5 8 m, and CH, the spatial autoco-

variance function of H0, is a bell-shaped (Gaussian) func-

tion with principle axes aligned with the curvilinear

coordinates,

CH(x1, y1, x2, y2) 5 (DH)2 exp

3

"
2

1

2

(x12x2)2

L2
x

1
(y12y2)2

L2
y

 !#
,

(29)

where xi and yi are across- (radial) and along- (azimuthal)

channel coordinates. Correlation scales are Lx 5 1.8 km

and Ly 5 14.0 km, and the amplitude is scaled with DH 5

5 m. Measurement error is simulated with Gaussian noise

s 5 0.5 cm s21 added to the true currents.

Figure 2 shows the reconstructed bottom depth when

water data are assimilated at a single time within the swath

indicated, and the measured currents are being observed

from an identical twin model containing the known to-

pography. The depth field is well reconstructed within and

nearby the swath of observations. The reconstruction loses

accuracy away from the observations, especially at the

closed end of the annulus, where currents are lower. An

examination of Eq. (28) indicates that corrections to the

bottom depth require that either of the terms (ulh
x 1 ylh

y )

or (luh
x

1 lyh
y
) are nonzero (provided the terms do not

cancel). Hence, topographic adjustments are generally

largest where either currents (u, y) or the surface pressure

gradient ($h) is large. Near the closed end of the channel

(and far from the data) all of the terms are small, and the

first-guess topography is not corrected. Closer to the

measurement sites, the measurement kernels provide im-

pulses to the (lu, ly) equations, resulting in nonzero lh

via the adjoint continuity Eq. (23). Because significant

currents are present, the terms in Eq. (28) are large,

yielding corrections to H.

This example demonstrates in an idealized setting that it

is possible to obtain useful information about the bottom

depth, for example, the approximate location and depth of

a navigational channel, using a very poor first guess, a rel-

atively small amount of water current data, and no in situ

data except for the water line (i.e., the lateral boundary of

the domain) and elevation at the open boundary.

In practice, the key determinants of the accuracy of

the estimated topography are the quality of the first

TABLE 1. Representative parameters for experiments.

Parameter Symbol Value or range

Cross-channel resolution Dx 0.1–0.2 km

Along-channel resolution Dy 0.2–4 km

Time step Dt 5 s

Integration time T 36 h

Bottom drag coefficient Cd 2.5 3 1023

Subsampling interval 300 s

u measurement error s 0.1–0.2 m s21

Initial guess topography H0 5–15 m

Topography error magnitude DH 2–20 m, 0:25H

Topography error correlation length Lx, Ly 0.2–15 km

Inner loop convergence criterion 0.02–0.2

Line search convergence criterion 0.1–0.25

Maximum Picard iterations 5–10

Wall-clock model run time 3–30 min

Wall-clock H estimation 1–24 h

1 Because CH is the sole nonzero error covariance function, l̂H is

the only nonzero inhomogeneity to appear on the right-hand side of

(1)–(10). The other l* terms are Lagrange multipliers in this case.
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guess H0 and its nominal or assumed covariance CH. We

next look more systematically at these two factors.

3. Specification of priors H0 and CH

The first-guess bottom depth H0 and its assumed spatial

covariance CH are key determinants of the topography

estimated from the surface currents. Poor choices of H0 can

initiate the algorithm in a local minimum ofJ , making it

either difficult or impossible for the algorithm to find an

acceptable bottom topography. The spatial structure

and smoothness of CH is crucial to regularizing the to-

pographic estimates; without it, nonlinearity causes in-

creasingly smaller scales to arise in the Picard iterates,

which cause computational instability. In all cases we

wish to avoid generating spurious spatial structure in Hest.

The topographic problem is inherently underdetermined,

since one generally has thousands of gridded depth values

to adjust in order to match a few hundred observations of

surface current. It is the choices of H0 and CH that remove

the indeterminacy. The estimated bottom depth is biased

toward H0, which would be the expected value of the

unknown depth in formal statistical estimation, and the

spatial structure of deviations from H0 are determined by

CH through Eq. (28). Because there is only one realization

of the true bottom depth, the assumptions of statistical

estimation cannot be justified, and it is best to regard H0

and CH as parameters for regularizing the inversion, re-

moving the indeterminacy in H and biasing its spatial

structure according to assumed values of H0 and CH.

a. First-guess topography H0

In the absence of in situ bathymetry, we have con-

sidered two approaches to specifying H0. The first ap-

proach utilizes morphologic and morphodynamic scaling

relationships determined in estuarine and riverine settings.

For example, h(y) } y20.8, is the relationship between depth

h(y) and upstream position y in tidal estuaries (Prandle

2004), and other empirical relationships have been ob-

served in prismatic tidal rivers, alluvial funnel-shaped

estuaries, and meandering river systems (e.g., Prandle

et al. 2006; Savenije 2005; deSwart and Zimmerman

2009; Frascati and Lanzoni 2009). Note that these scal-

ings are expressed as dimensionally inhomogeneous

power laws, but practical application requires that spe-

cific, dimensionally consistent formulas be derived for the

different morphologic types. Initial efforts in the Haver-

straw Bay inversions, discussed below, did utilize a scaling

FIG. 2. Idealized curved channel. Software validation was performed with experiments in an idealized curved

channel, where flow is driven by tidal forcing at the open boundary (near x 5 55 km, y 5 0 km). (a) True topography.

Data are assimilated in a swath from approximately x 5 0 km to x 5 40 km in the channel; every other data site is

shown. Also, for reference, every other grid cell is shown near open boundary. (b) Estimated topography; H0 5 8 m

was the initial guess in this experiment. (c) True topography, as in (a), enlarged to show just the swath where data

were assimilated. (d) Estimated topography in the data swath.
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relationship expressing a cross-sectional area as a power of

distance upstream from the Manhattan Battery, tuned to

the known large-scale bathymetry of the Hudson River.

Attempts to apply this formalism to other domains dem-

onstrated that it was not generalizable, being overtuned to

the Hudson River case. Hence, because of the subjective

interpretations of morphologic type, unknown dimen-

sional prefactors, and anthropic influences on morphology

(dredging), we do not currently utilize scaling laws to

determine H0.

A second approach has been found to be more gener-

ally applicable. It consists of using the measured currents

and a highly reduced dynamics to make a first guess of

the bottom topography. The basic approach, formally

valid for steady, low Froude number barotropic flow,

assumes a balance between the surface pressure gradient

and the bottom stress, for example, in the along-channel

direction

gDhy 5 2Cd(u2 1 y2)1/2
y. (30)

Assuming h � H, one may replace D with H and esti-

mate the bottom depth as

H 5
Cd

gjhyj
(u2 1 y2)1/2jyj. (31)

In practice, only crude estimates for the pressure gra-

dient are available, so we instead regard it as constant

and set the spatial structure of H proportional to jujmax

(juj, jyj), where the constant of proportionality is de-

termined by the prescribed maximum depth. In detail,

the definition of H0 is

f(x, y) 5 Hmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u(x, y)2

1 y(x, y)2
q

3 max

�
ju(x, y)j

u2
max

,
jy(x, y)j

y2
max

�

H0(x, y) 5 max[f(x, y), Hmin], (32)

where spatial dependence on (x, y) has been written

explicitly. The function max(a, b) selects the maximum

value of a or b, Hmax is the maximum depth (typically

obtained at an open-ocean boundary, where H is known),

Hmin is the minimum depth, and u2
max is given by

u2
max 5 sup

(x,y)2D
(u2 1 y2)1/2juj, (33)

with y2
max defined analogously.

In the applications discussed below, velocity measure-

ments are distributed irregularly in space throughout one

or more tidal cycles, so the above method is incomplete.

To apply (32) one must obtain (u, y) fields throughout the

domain, which is done here by smoothly interpolating the

data with (approximately) radial basis functions in space

and harmonic functions in time. For the u component of

velocity the expansion is

u(x, y, t) 5 �
M

k51
�
L

l51
au

klRk(x, y) exp(2ivlt), (34)

where k 2 f1, . . . , Mg indexes the u measurement sites,

l 2 f1, . . . , Lg indexes the harmonic basis functions, vl is

lth frequency (mean and semidiurnal are used), Rk(x, y) 5

R(x 2 xk, y 2 yk) is the basis function associated with

measurement site (xk, yk), and R(x, y) is a bell-shaped

Gaussian with correlation scales ‘x and ‘y in the nominal

across- and along-channel directions (aligned with the

curvilinear coordinates). An analogous expansion is used

for y(x, y). The coefficients au
kl are determined by mini-

mizing the objective function

U(au; g) 5 �
M

k51
[u(xk, yk, tk) 2 uk]2 1g2 �

M

k51
�
L

l51

(au
kl)

2

b2
l (su)2

,

(35)

which is a function of coefficients au 5 fau
klg

M,L
k51,l51 as

well as a regularization parameter g, which controls the

smoothness of the fit to the measurements. Coefficients

bl are chosen to partition the variance among the mean

and semidiurnal frequencies in the ratio 0.05: 0.8, and

(su)2 is the mean square of the measurements �(uk)
2
/M.

The regularization parameter g, which has units of ve-

locity, is selected by minimizing the generalized cross

validation estimate of the prediction error (Craven and

Wahba 1979; Wahba 1990)

V2
GCV 5 M21 �

M

k51
[u(k)(xk, yk, tk) 2 uk]2, (36)

where u(k)(x, y) is the interpolant (34) computed by

minimizing U excluding the datum at site k. In cases with

M . 1500 data sites, the above-described approach is

modified to use a reduced basis (Parker 1994) in (34),

with all M sites still used in the first term of (35).

To summarize, the first-guess bottom topography is

obtained from the measured currents in a two-step pro-

cess. In the first step, the measurements are mapped onto

the model grid by forming a regularized interpolant (or

smoother) for the data. The degree of smoothness is

controlled by the choice of spatial basis functions and

harmonic (constant plus sinusoidal) temporal basis func-

tions, with the fidelity to the data determined by a cross-

validation procedure. In the second step, an assumed

1614 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 28



balance between bottom drag and pressure gradient at

the time of maximum current is used to transform the

gridded currents into bottom depth estimates. Finally, this

gridded field is taken as H0.

The first-guess topography depends on a number of

parameters, in addition to the data values uk, which are

listed in Table 2. Influential parameters are the spatial

scales of the radial basis functions lx and ly, which set

how the interpolant decays away from data sites. We have

had good success with (lx, ly) ’ 2(Dx, Dy) in situations

with several snapshots of densely spaced measurements.

More precise values can be justified by optimizing VGCV

as a function of (lx, ly), which has also been done and leads

to similar values.

Additionally, currents in the Hudson River are domi-

nated by semidiurnal tidal currents, and the partitioning

of the variance according to 0.05:0.8 for mean:semidiurnal

was guided by an inspection of the currents at several

well-sampled sites.

Figure 3 shows an example of first-guess bottom topog-

raphy computed from AROSS observations at Haverstraw

Bay in the Hudson River, bordering New York and New

Jersey. Measured surface currents were mapped onto

model grid points as shown in Fig. 3a, and the above al-

gorithm was applied using parameter values reported in

Table 2 to H0 in Fig. 3b. The good pattern correlation

between the true topography Htrue and H0 is apparent. A

quantitative comparison of the two fields, restricted to

the region of (u, y) measurements, indicates a root-mean-

square (rms) error of 3.3 m and a correlation coefficient of

0.6. Figure 3c shows the generalized cross-validation pa-

rameter VGCV and the rms residual as a function of l. The

VGCV statistic selects l ’ 0.1 m s21 as the optimal value.

Figure 4a shows how the accuracy of H0 depends on

the quantity and timing of the measured currents with

data from the same series of AROSS collections obtained

in Haverstraw Bay. The dataset, consisting of 12 separate

flyovers, has been subsampled in two ways to demon-

strate the dependence on the timing and quantity of data

TABLE 2. First-guess topography parameters.

Parameter Symbol Value (range)

Cross-channel correlation scale lx 1 km (2–4Dx)

Along-channel correlation scale ly 1.75 km (2–5Dy)

Temporal basis functions L 3(2–3)

Temporal priors bl 0.05, 0.8, 0.15

Maximum depth Hmax 20 m (10–25 m)

Minimum depth Hmin 2 m (3–10 m)

Minimum topographic error D00 0 m (1–2 m)

Fractional topographic error g 0.1 (0.1–0.5)

FIG. 3. First-guess topography H0 in Haverstraw Bay. (a) Sites of (u, y) data used to compute H0; inset

shows distribution of data over a tidal cycle. Color scale shows depth of the true topography, which is

known for this site in the Hudson River. (b) H0 computed via the method described in section 3a. (c) The

r2 statistic, the first term on the right-hand-side of (35), and the generalized cross-validation statistic VGCV

vary with g, the regularization parameter.
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as measured by the rms error in topography h(Htrue 2

H0)2i1/2, where brackets indicate spatial average over

Haverstaw Bay (41819–418149). In the first case (dashed

line) the data are accumulated from 15-min windows.

One can see that the error in H0 with a single window of

data is about 4.6 m rms. As subsequent data windows are

included, the error decreases to between 3 and 3.5 m rms.

The second way of subsampling is shown by the solid line,

in which the entire dataset has been thinned uniformly in

space and time. A rapid decrease in error occurs with

increasing data. In the absence of any data, M 5 0, we

have taken H0 5 Hmin, with an rms error of 5.6 m.

Figure 4b shows the same data as those in Fig. 4a, ex-

cept that the values have been nondimensionalized. The

rms error in H0 is scaled by a term proportional to the

average kinetic energy of the measured currents

rH 5
gHmin

q

Fr2
0

Cd

h(Htrue 2 H0)2i1/2

h(Htrue 2 Hmin)2i1/2
,

where Fr0 5 1022 is a nominal Froude number and

q 5 M21�u2
k is twice the average kinetic energy of the

measurements. Also, the number of measurements M is

nondimensionalized by NH 5 230, the number of H grid

cells in Haverstraw Bay. For small M one can see that

the difference between the two subsetting methods

collapses, which is consistent with the scaling H0 } q

suggested by (31). Measurements during times of peak

currents have more favorable signal-to-noise ratios than

measurements at other times.

Figure 4 also shows that the accuracy of H0 is little im-

proved by making more than one spatial snapshot. For

M . 2NH there is no systematic reduction in the rms

error of H0. A similar conclusion could be obtained from

plots of the (Htrue, H0) correlation coefficient, which at-

tains a maximum value of about 0.7 when M 5 2NH. For

M , 2NH, there is a suggestion of M21/2 scaling for the

rms error, but for M . 2NH systematic error dominates.

Presumably the systematic errors are due to incorrect

values of Hmax and Hmin in (32), finite Froude number or

nonuniform pressure gradient effects in (31), and map-

ping error resulting from the assumed parameterization

(34).

b. Spatial covariance CH

The spatial autocovariance of the bottom topography

is modeled as

FIG. 4. Dependence of H0 on data quantity. The rms error of H0 as the number of (u, y)

measurements is varied in (a) dimensional and (b) nondimensional form. The rms error when

the measurements are uniformly subsampled in space (solid line) and time (circles) are shown,

as is the error when the measurements are subsampled in time, where each x indicates the data

accumulated over 15-min intervals (dashed line). (b) The curves in (a) collapse when the rms

error is nondimensionalized using the kinetic energy of the measured currents, and the first

guess is not substantially improved by taking more than a single snapshot of the domain,

0.5M/NH . 1.
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cH(x1, y1, x2, y2) 5 DH(x1, y1)DH(x2, y2)

3 cH(x1, y1, x2, y2), (37)

where cH(x1, y1, x2, y2) is a positive, definite correlation

function, and DH is a spatially dependent function, nom-

inally, the standard error of H0. The spatial correlation

function has been chosen with a bias toward smoothness,

cH(x1, y1, x2, y2) ’ exp

"
2

(x1 2 x2)2

2L2
x

2
(y1 2 y2)2

2L2
y

#
,

(38)

where Lx and Ly are the across- and along-channel

correlation scales. The above expression is approxi-

mate because it does not satisfy boundary conditions.

In practice, cH+lH is computed by time stepping a dif-

fusion equation (Derber and Rosati 1989; Weaver and

Courtier 2001) with boundary conditions that are ap-

propriate to maintain positive definiteness on bounded

irregular domains (either Neumann or Robin boundary

conditions may be selected).

More complex models of the spatial correlation have

been contemplated, but in the absence of compelling ar-

guments we use (38). In the case of Haverstraw Bay, the

spatial cross correlation of H0 and Htrue can be computed,

but the results are noisy and suggest Lx ’ 1 km and Ly ’

10 km from the zero crossings of the sample correlation.

In an effort to develop a more refined state-dependent

model, the method of Riishojgaard (1998) was imple-

mented in which the minor axis of correlation is aligned

with $H0. This approach magnified spurious features in

the first guess, and it has not been pursued.

It has been found useful to treat DH as a state-

dependent function, in the sense that it depends on Hn

at each Picard iteration. We choose a linear function,

DH 5 D00 1 gHn, (39)

for constants D00 and g, which permits larger topo-

graphic correction in deep water. Once again, there are

insufficient data to make a strong argument for this

form, but it is not contradicted by the empirical spread of

H0 versus Htrue values, which show errors increasing

with depth.

4. Proof-of-concept demonstration: Haverstraw
Bay, Hudson River, New York

To provide a proof of concept, the preceding formu-

lation has been applied to a river estuary system for

which the bottom topography is well known from in situ

observations.

On 15 October 2008, from 1300 to 2100 UTC, surface

current data were collected by the AROSS remote sens-

ing system described in Dugan et al. (2001b). The raw

observations consisted of vector currents on a grid of ap-

proximately 128 m 3 128 m horizontal resolution, with

gaps caused by boat wakes and other image anomalies.

A series of airborne collections were obtained, which may

be regarded as 12 synoptic snapshots of surface currents.

Preprocessing data for assimilation consisted of applying

an empirically derived scaling to convert the surface cur-

rent into an equivalent depth average current, with the

coefficient being obtained from a linear regression of

surface and depth average currents simulated by the New

York Harbor Observation and Prediction System

(NYHOPS; Bruno et al. 2006). The observed currents

were mapped onto the hydrodynamic model grid, rotating

the vectors from geographic coordinates into the curvi-

linear coordinate system of the model, and the observa-

tion kernels (mi, ni) were defined as spatial averages over

grid cells at each observation time. Figure 3a shows the

locations of all of the observations, and it can be seen that

they cover a swath approximately 6 km wide. Figure 5

shows a representative sample of individual snapshots,

which illustrates the nonuniform temporal sampling.

Each dot corresponds to up to four individual measure-

ments that have been averaged onto the computational

grid.

Measurement error consists of instrumentation error

in the raw currents, processing error in the transformation

of the surface to the depth average current, remapping

error from mapping and averaging observations onto

model grid nodes, and errors of representation. The in-

strumentation error is approximately 0.1 m s21 and 58 for

current speed and direction, respectively, which are values

determined by independent calibration of the AROSS-

measured surface currents (J. Dugan 2010, personal com-

munication; Piotrowski and Dugan 2002). The processing

error is between 0.1 and 0.15 m s21, as determined by the

residual of the surface to the depth average current re-

gression. Remapping errors are believed to be less than

0.01 m s21 because of the similarity of the observational

and numerical model grids. Representation error is caused

by signals in the observations resulting from boundary

currents or transient eddies that are not resolved in the

numerical model; intercomparison of the observed cur-

rents with NYHOPS model simulations (which utilizes

the known bathymetry of the Hudson River) suggests that

the representation error is approximately 0.1 m s21. It is

difficult to make any of these error estimates more pre-

cise, and, in fact, the VGCV statistic shown previously sug-

gests that the instrumental error might be smaller, about

6 cm s21 (cf. Fig. 3). In light of these considerations we

adopt an error model consisting of 0.1 m s21 for speed
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and 58 for direction. This representation accommodates

separate assumed errors for the across- and along-channel

components of velocity, which are generally aligned with

the model grid.

The first guess for bottom topography H0 and its error

covariance CH were discussed in section 3, above. The

inversion shown below uses the values Lx 5 0.5 km and

Ly 5 3 km for the CH correlation scales, and DH is set

with state-dependent formula [Eq. (39)], taking D00 5

0 and g 5 0.1, with the latter being comparable to the

fractional error in the velocity measurements.

The results of the inversion are summarized in Fig. 6.

Because the corrections to the topography are predom-

inantly local to the observation sites, the quantitative

comparisons have been restricted to the grid nodes con-

taining velocity measurements. Likewise, the figures dis-

play Haverstraw Bay, although the modeled domain

extends 270 km, starting from Manhattan Battery, and

ending at Troy, New York.

Figure 6a illustrates the true Haverstraw Bay topog-

raphy, which contains a single channel that crosses the Bay

from east to west, going northward. The depth varies from

over 20 m, at the north and south ends of the Bay, to shoals

only a few meters deep (truncated at 2 m in the numerical

model). The first-guess topography (Fig. 6b) shows a sim-

ilar structure, but the depth of the channel is reduced be-

tween 41889 and 418139. Also, H0 contains a spurious deep

area located east of the true channel at the north end of the

Bay. Analysis of the model fields has indicated a phase lag

in current between the shoals and deeper areas, and this

anomalous pit in the north is due to ill-timed and sparse

data over the shoals.

The topography obtained by nonlinear data assimilation

is shown in Fig. 6c. It has improved the first-guess signifi-

cantly in terms of both topographic accuracy, which can be

computed since the topography is known here, and in

terms of predicted currents. Figure 7 compares the actual

and estimated topography at the grid nodes where (u, y)

measurements were obtained. The rms error in the first

guess is 3.6 m, which is reduced to 2.5 m in the optimized

topography. Residuals in the currents are reduced from

rms values of (9, 16) to (7, 10) cm s21, for the (u, y)

FIG. 5. Haverstraw Bay measurements. Locations of surface current measurements at (left to right)

three representative times are shown. AROSS data have been averaged onto model grid cells, and only

sites of y component velocity are shown. For reference, the inset shows the water elevation from 1200 to

2400 UTC 15 Oct 2008, with the time of the observations (dark vertical line) and times of other obser-

vations (light shading) shown; vertical range is 60.75 m.
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velocity components, with the latter values being com-

parable to measurement error.

The value of the optimized objective function provides

a basis for assessing the consistency of the hypothesized

dynamics and error models. If the hypothesized priors are

correct, and the errors are normally distributed, the op-

timized value of J is a x2 variable with M degrees of

freedom. Hence, the expected value of J is M, where

M 5 1314 in this case. Figure 8 plots the optimized value

of J /M for the 10 Picard iterates computed (solid line,

circles). One can see that J ’ M for the second Picard

iteration, which suggests that this solution is consistent with

the hypothesized errors, and it contains the smoothest to-

pography necessary to explain the surface current mea-

surements. Figure 8 also shows the error compared to the

known topography (dashed line, squares). One sees that

the accuracy of the topography changes little between

Picard iterates 1–6, which is consistent with the compar-

ison between iterates 1 and 2 shown previously in Fig. 7.

The value of J /M is decreased in subsequent iterates, but

one sees that the rms topography error increases. This figure

demonstrates that extending the Picard iteration to fur-

ther minimizeJ is futile, because one would add spurious

structure to the topography merely to fit noise in the data.

5. Discussion

Whereas previous attempts at topographic estima-

tion by variational data assimilation have either relied

on reductions in the degrees of freedom to be estimated

(Heemink et al. 2002) or have considered idealized prob-

lems where the number of data were equal to the number

of depth grid points (Losch and Wunsch 2003), the present

approach finds an optimal estimate of bottom depth in

computational domains of arbitrary size, using actual

data. Of course, the identifiability of the bottom topogra-

phy conforms to the general principle that the number of

degrees of freedom that can be identified are equal to the

number of independent data. The estimation procedure is

successful because, at each linear iteration step, bottom

topography is optimized over just the observable degrees

of freedom.

FIG. 6. Haverstraw Bay topography. (a) The known topography Htrue obtained from in situ bathymetric

surveys. (b) First-guess topography H0 computed from the AROSS measurements as described in section

3a. (c) Estimated topography Hest obtained after two Picard iterations.

DECEMBER 2011 Z A R O N E T A L . 1619



Nonetheless, the estimated topography depends on

a large number of factors including the parameters of

the solution algorithm, the covariance CH, the geometry

of the domain, the distribution of observations in space

and time, etc. This section considers several factors that

influence the accuracy and utility of the estimated to-

pography.

a. Timing and accuracy of observations

Because of the presence of background currents (u, y)

in the topography updating Eq. (28), the assimilation

accuracy is dependent on the timing of the observations

relative to the strength of the background currents. In

tidally forced estuaries, for example, this suggests that the

currents ought to be measured during the times of peak

ebb or flood, if possible. This result is foreshadowed by

Fig. 4, where it was shown that, for small M, the accuracy

of the first guess is related to kinetic energy of the ob-

served flow.

Figure 9a illustrates the impact of data timing obtained

from identical twin experiments in the idealized channel

model (section 2c) using a single snapshot of observa-

tions. The observation time is varied in 1-h increments,

denoted 1–7 in the figure. Error is plotted as a function of

the average kinetic energy to emphasize the timing rel-

ative to the tidal cycle. One sees that the relationship be-

tween accuracy and timing of observation is not as simple

as for H0, and 1-h changes in the observation time lead to

more than factor of 2 changes in error (e.g., going from

times 3 to 4 and from 6 to 5). In fact, the data do collapse

to nearly a straight line if the error is plotted as a func-

tion of kinetic energy leading the observations by 1 h.

As might be anticipated, results depend on the phases of

$h and (u, y) relative to the observations in (28).

Figure 9b shows how topography error depends on the

measurement error in the same idealized model. The error

(Hest 2 Htrue) is proportional to su, except for both large

and small values. At the extremes of the range of su

the error in the estimated topography is determined by

the formally unobservable, or unidentifiable, degrees of

freedom. Thus, for small su, the error is determined by

the topography away from the observed swath, where

terms in (28) are small (where the topography is un-

observable by surface currents). For large su, the data

have little impact, and the error is determined by the first

guess.

FIG. 7. Topographic error vs depth. Estimated depth is plotted as a function of the true depth at grid

nodes within Haverstraw Bay. The shading for H , Htrue (light gray) and H . Htrue (dark gray) classify

the depth errors, according to the hypothetical impact on navigation safety, which strongly favors errors

of the form H , Htrue. (left) Large scatter of the first-guess H0 compared to true topography Htrue;

correlation is 0.6. (middle) Scatter is largely reduced after a single Picard iteration and (right;) there is

very little change from iteration 1. Correlation with true topography is 0.8 for iteration 2.

FIG. 8. Errors vs Picard iterate. The value of the optimized ob-

jective function scaled by the number of measurements, J /M is

shown with the solid line (circles) as a function of Picard iteration.

Iteration 0 corresponds to no assimilation. The expected value of

J /M is 1 (dash–dot line), which is achieved for the second Picard

iteration, and indicates that the estimated topography and hydro-

dynamic model explain all the nonnoise variance in the measure-

ments. The rms residual between the estimated (dashed line) and

true topography (squares) is shown. One sees that the rms error

does decrease very slightly from Picard iteration 2 to 4, but it in-

creases after that (indicating overfitting of velocity data for these

and subsequent Picard iterations).
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b. Parameter dependence

The estimated topography depends on Lx, Ly, lx, and

ly, which are unknown parameters that control the

spatial correlation of the topography. Although expe-

rience is limited, we have found that even extreme

misspecifications of these parameters lead to, at most,

factor of 2 degradations compared to optimal values. Re-

spectively, Lx and Ly are the across- and along-channel

correlation scales of the topographic corrections, and it

is essential that these be greater than grid spacing in

respective directions; lx and ly play a similar role in de-

termining the first guess H0, and they should be at least

as large as the average spacing between the data in the

respective directions.

Another level of parametric dependence to consider is

the form of the first-guess topography (32). It may be

possible to obtain an improved first guess using other

techniques to smoothly grid the measured currents. For

example, Vennell and Beatson (2006) formulate the

gridding of sparse vector currents as a streamfunction

estimation problem. While their approach discards in-

formation in the divergent part of the horizontal veloc-

ity, it may provide a more stable and less parameterized

alternative to the procedure described in section 3a,

possibly interpolating better through data voids.

The estimated topography also depends on the values

of Hmin and Hmax that are used in the first-guess pa-

rameterization, which are set equal to the minimum and

maximum depth, respectively, on the open boundary.

Experiments have been conducted using the idealized

channel model of section 2c by simply taking H0 5 H00,

a constant value. In these experiments it was found that

varying H00 between Hmin and Hmax led to factor of 3

changes in the rms error in Hest, and it is believed that

the values of Hmin and Hmax represent the largest source

of uncertainty in the first guess in realistic domains.

c. Nonlocal effects

Equations (23)–(27) indicate that information is car-

ried through the domain by gravity wave dynamics sub-

ject to bottom friction, but frictional damping is not small,

as evidenced by the success of the reduced dynamics in

section 3a. Bottom friction makes the assimilation prob-

lem largely local, because information cannot propagate

far from measurement sites before being damped and lost

from the system. Away from the measurements the cor-

rections to the first-guess topography are generally small,

exceptions occurring, for example, at narrows or flow con-

strictions where changes in depth strongly influence tidal

transport and currents throughout the river.

A canonical decomposition (McIntosh 1987; Bennett

1992) of the data assimilation system has been used to

quantify the stability of the inverse and analyze the to-

pographic degrees of freedom constrained by the cur-

rent measurements. Because the inversion problem is

nonlinear, the canonical decomposition is applied to the

linear system defined by the final Picard iteration. The

results of this analysis when applied to Haverstraw Bay

agree with the qualitative comments above. The depth

estimates depend most strongly on nearby data, with the

domain of influence determined by Lx and Ly. The in-

version is stable, with Ns ’ 40 significant degrees of

freedom, where Ns is approximately equal to the area of

Haverstraw Bay divided by the area of influence, Lx 3

Ly. There is substantial redundancy in the measurement

array, which contributes to good stability of the identi-

fied topography.

FIG. 9. Sensitivity to measurement time and accuracy. Panels indicate how the rms error of the estimated to-

pography, h(Hest 2 Htrue)2i1/2, depends on measurement (a) timing and (b) error in the idealized channel model (see

section 2c). (a) Error at seven different measurement times separated by 1 h during half a tidal cycle (dots, 1–7).

Kinetic energy is shown on the x axis to emphasize timing relative to maximum current. (b) Error in the estimated

topography as a function of measurement error si 5 su.
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6. Summary

Accurate hydrodynamic modeling of rivers, bays, es-

tuaries, etc., requires that bottom topography be known.

In many places it is not practical to obtain in situ bathym-

etry on a regular basis sufficient to resolve time-varying bed

forms or channel in fill; also, natural and anthropic haz-

ards may make it too dangerous or expensive to conduct

in situ surveys at the desired spatial resolution. In these

situations is it desirable to estimate bottom topography

from remotely sensed information.

The results of this paper demonstrate that bottom

topography may be estimated using methods of variational

data assimilation. Remotely sensed surface currents,

obtained from an analysis of georeferenced airborne im-

agery (Dugan et al. 2001b), have been assimilated into

a barotropic shallow-water model. A solution technique

has been developed using extensions of linear varia-

tional data assimilation methods. The practicability of

the method depends on the geometry of the domain and

dynamical balances involved, but we find that the equiv-

alent of 40–120 model integrations is sufficient to stably

estimate the topography near the site of the remotely

sensed observations. Depending on the application, fewer

(e.g., 20) model integrations may be necessary if a less

precise estimate is required.

It is assumed that the bottom topography and currents

are coupled by barotropic shallow-water dynamics. The

measured surface currents are transformed into equiva-

lent vertical average currents using an empirical scaling,

close to what is obtained using unstratified law-of-

the-law-type dynamics. In principle, stratified three-

dimensional dynamics could be used directly as the basis

for the estimation of bottom topography, but this would

require enough data to well constrain the baroclinic pro-

cesses. Without in situ data to assist in estimating the

baroclinic pressure gradient, attempts at using three-

dimensional assimilation seem premature, and our expe-

rience indicates that barotropic dynamics are adequate

for applications to tidally forced rivers and estuaries.

Hence, the three-dimensional coupling is left as an av-

enue of future research.

The methodology employed is applicable with other

forms of data, for example, water elevation or tide gauge

measurements, and with models of larger geographic ex-

tent. Application to smaller scales where there is significant

wetting and drying, or where advection dominates waves

(e.g., high Froude number dynamics), may prove more

challenging because these constraints add additional

nonlinearity. Wetting and drying algorithms are gener-

ally not differentiable (Ji et al. 2001), so the variational

methods that are used here may need to be augmented

with inequality constraints.
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