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Fluttering fountains: Stability criteria 
Lee W. Casperson 
Department of Electrical Engineering, Portland State University, PO. Box 751, Portland, 
Oregon 97207-0751 

(Received 18 November 1993; accepted for publication 19 January 1994) 

The fluttering oscillations that have long been seen in falling sheets of water have recently been 
subjected to detailed theoretical analysis. In this study stability criteria for these oscillations are 
derived and discussed. These criteria provide insight into the physical mechanisms of the instability 
and may be employed in the design of fluttering waterfall systems. 

I. INTRODUCTION 

Fluttering oscillations are known to occur in the falling 
sheets of water associated with some dams and waterfall 
fountains.‘12 While this effect has long been known, it usu- 
ally goes unnoticed unless the observer has been appropri- 
ately sensitized to its possible occurrence. The many-hertz 
frequency of typical oscillations is a little high for obtaining 
a clear visual picture of the interesting dynamics; but, on the 
other hand, this frequency is a little low to be associated with 
an audible tone. In fact, most published investigations have 
been initiated because of the window-rattling vibrations 
caused by larger systems rather than because of any interest 
in the physics involved. 

As noted previously, the fluttering fountain oscillations 
are often highly periodic and represent feedback oscillations 
of the air-water system. Small displacements of the water 
sheet are amplified by the Helmholtz mechanism as the sheet 
moves downward through the surrounding air.3 The large- 
amplitude wave motions at the bottom tend to compress or 
expand the trapped air, which in turn pulls in our pushes out 
on the water surface at the top. This combination of gain and 
feedback can lead to sustained periodic and possibly chaotic 
oscillations. 

In previous studies of fluttering fountain oscillations a 
theoretical model has been developed which provides at least 
qualitative agreement with available experimental data. 
However, the existence of a successful model does not mean 
that all of the important questions relating to this stability 
have been answered. Of particular interest are the stability 
criteria that indicate the conditions under which the fluttering 
oscillations will be observed. The model in this case is suf- 
ficiently complicated that meaningful stability criteria can 
only be obtained from numerical solutions. The purpose of 
this study is to derive and discuss the stability boundaries 
that correspond to the most likely ranges of experimental 
parameters. These results provide further insight into the un- 
derlying physics, and they also make possible the rational 
design of fountains which do or do not exhibit this effect. 

The theoretical model for the fluttering fountain idstabil- 
ity is briefly reviewed in Sec. II. Stability criteria are ob- 
tained in Sec. III showing the maximum flow rates for which 
the oscillations can be observed as a function of the fountain 
height. Other parameters explored in the stability plots in- 
clude the depth of the air chamber behind the water sheet, the 
initial velocity of the water as it leaves the weir, and the 
velocity of any wind in the surrounding atmosphere. Quali- 

tatively, it is found that a given system always’ becomes less 
stable as the height is increased, as the flow rate is decreased, 
as the depth of the air chamber is decreased, as the initial 
velocity of the water is increased, and as the velocity of any 
wind upward along the face of the fountain is increased. 

II. MODEL 

The fluttering fountains have been idealized to a nearly 
vertical water sheet flowing across a rectangular chamber 
which represents the air confined behind the water. The water 
becomes free of the weir and subject to air pressure fluctua- 
tions starting at the height y. with downward velocity uo. 
The air chamber has a horizontal depth x0. The equations 
that have been developed to describe this configuration are’ 

Apf(t)+paou(y) 

Wy,t) Wr,t) - =u(y,t)+u(y) ay , dt 

where u(y,t) is the time and height dependent x component 
of the velocity, and D(y,t) is the displacement in the x di- 
rection. 

In Eq. (1) b,-(t) is the time-dependent pressure differ- 
ence across the sheet due to possible compression or expan- 
sion of the air in the chamber behind the water, and this 
pressure can be related approximately to the displacement 
by2 

APf(t)= -2 
I ~“W)dy . 

The downward velocity of the water sheet is represented by 
u(y), which can be written 

u(y) = uo[ 1 - 2g(y -yo)lup’2 . (4) 
The other parameters appearing in these equations include 
the air density pa, the water density p,,,, the flow rate per 
unit of weir length F, the radian frequency of the oscillations 
o, the upward velocity of any wind against the waterfall u, , 
the acceleration of gravity g, the specific heat ratio of the air 

4892 J. Appl. Phys. 75 (lo), 15 May 1994 0021-8979/94/75(10)/4892/3/$6.00 0 1994 American institute of Physics 

Downloaded 06 Aug 2012 to 131.252.4.4. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



0.0 0.4 0.8 1.2 1.6 2.0 
Yo 

FIG. 1. Threshold water flow rate F in /‘m-k’ as a function of the 
fountain height y. in m for various values of the air chamber depth x0 in m. 
The initial water velocity is assumed to be uo= 1 m SC’, and the air velocity 
is u,=O m s-‘. 

7, the background atmospheric pressure PO, and the cross- 
sectional area of the air chamber in the absence of oscilla- 
tions A = xoyo . 

The equations given as Eqs. (l)-(4) form a complete set. 
Numerical solutions have been shown to provide good agree- 
ment with the waveforms and frequencies of the fluttering 
oscillations exhibited by the water sheets of two fountains in 
Dunedin, New Zealand. Other features of the experimental 
results such as hysteresis and possibly chaotic behavior 
would require a more complicated nonlinear model. 

The purpose of this study is to obtain detailed stability 
criteria for the fluttering fountain oscillations. These criteria 
show the conditions under which a fountain can produce this 
oscillatory behavior. The easiest conditions to vary experi- 
mentally include the fountain height and the water flow rate. 
Accordingly, the stability criteria that we have obtained are 
displayed as plots of the flow rate at the oscillation threshold 
versus the fountain height for various values of the other 
parameters of interest. In this procedure numerical solutions 
of Eqs. (l)-(4) corresponding to an initially perturbed foun- 
tain are obtained as a function of time for a period of time 
longer than the oscillation period. If the oscillations are 
found to be growing in time, the flow rate is increased and 
the computations are continued. If the oscillations are dimin- 
ishing in time, the flow rate is decreased. In this way one can 
determine the value of the flow rate at the oscillation thresh- 
old. This procedure is the basis for the stability criteria de- 
scribed in the following section. 

HI. RESULTS 

It is true, of course, that the reduction in feedback with 
increasing chamber depth must also have some effect on the 
threshold boundaries. However, our numerical experiments 
show that this effect is imperceptible for any reasonable val- 
ues of the depth. Thus, for purposes of this instability effect 
the air behind the water sheet acts much like an incompress- 
ible fluid, and the depth of the air chamber has little effect on 
the feedback. This also means that the stability boundaries 
are almost independent of the specific heat ratio y and the 
pressure PO, which also enter into the pressure feedback. 

For our first set of stability boundaries, we explore the The practical consequence of the above discussion is that 
dependence of the threshold flow rate F on fountain height one could sometimes assume that the appropriate instability 
y. for various values of the depth of the air chamber behind boundary would be independent of x0 and in this case would 
the fountain x0. The results are plotted in Fig. 1. For a given correspond approximately to the x0 = 1 curve in Fig. 1. This 
value of the height and depth, oscillations occur for flow is so because one would not want the chamber depth to be 
rates below the corresponding plotted contours, and the be- very small compared to the height. For too small a depth the 
havior is stable for flow rates above the contours. These plots water sheet tends to hit the back wall of the chamber and 
extend over a range of heights from 0 up to 2 m, and this sometimes be drawn against it by the air-pumping action of 
range includes most fountains that one is likely to encounter. the flowing water. In modeling most practical fountains one 
The depth parameter values in this plot extend from 0.05 to 1 might also be able to simplify the theoretical analysis by 

m, and again these values include most practical cases. There 
are, of course, many other parameters in the model given 
above in Eqs. (l)-(4), but it is not possible in a single plot to 
represent all of the possible values for all of these param- 
eters. Thus, for Fig. 1 it has been assumed that the problem 
of interest involves water (p,= lo3 kg me3) flowing through 
air (p, = 1.225 kg rne3, y=1.4, Po=1.013X105 N rnm2) in a 
gravitational field (g =9.8 m sw2). Also, the initial velocity of 
the water as it leaves the weir is 1 m s-l, and the air velocity 
in front of the fountain is zero. 

It is clear from Fig. 1 that the threshold value of the flow 
rate increases as the height of the fountain increases. This is 
mainly a result of the tendency for the overall Helmholtz 
gain to increase with height and decrease with increasing 
flow rate. It may also be seen from the figure that for a given 
height the threshold flow rate increases as the depth of the air 
chamber decreases. This effect is due to two separate physi- 
cal phenomena. 

First, as discussed by Rayleigh, the Helmholtz gain is 
always enhanced by the presence of the back wall on the air 
chamber; and this effect is represented by the coth function 
in Eq. (1).4 The smaller the value of x0 the larger the value of 
this function. Second, it follows from Eq. (3) and the defini- 
tion of the area A that smaller values of x0 will also lead to 
larger values of the pressure feedback. It turns out from our 
numerical solutions that these two effects are not very simi- 
lar in magnitude or consequences. 

As suggested by the figure, for decreasing values of x0 
all of the curves in Fig. 1 approach the same limit. This limit 
is very close to the x0= 1 curve in the figure. We find that the 
departure of the other curves from this curve is due almost 
entirely to the x0 dependence in the coth function. One can 
work out from the figure that as long as the fountain height is 
not more than about five times larger than the fountain depth 
the stability boundary is not raised by the presence of the 
back wall of the air chamber. This simply means that as long 
as the depth is not too small compared to the oscillation 
wavelength (fountain height) the back wall is almost irrel- 
evant. 

J. Appt. Phys., Vol. 75, No. 10, 15 May 1994 Lee W. Casperson 4893 

Downloaded 06 Aug 2012 to 131.252.4.4. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



8 

6 
F 

4 

0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0 
YO YO 

FIG. 2. Threshold water flow rate .F in /m-%-l as a function of the FIG. 3. Threshold water flow rate F in / m-‘s-’ as a function of the 
fountain height y, in m  for various values of the initial water velocity be in fountain height ya in m  for various values of the air velocity u, in m  s-‘. 
m  s-l. The coth function in Eq. (1) has been approximated by unity, and the The coth function in Eq. (1) has been approximated by unity, and the initial 
air velocity is u,=O m s-‘. water velocity is no==1 m s-‘. 

replacing the coth function with unity. This approximation 
was made in Ref. 2 in extracting approximate solutions for 
the fluttering fountain waveforms, and it is also made for the 
remainder of the results described here. 

With the above approximation it becomes possible to 
display the stability boundaries with some other parameter as 
a variable. In Fig. 2 is a set of plots of the threshold flow rate 
as a function of height for various values of the initial veloc- 
ity ua. The curve labeled vo=l is the same as the curve 
labeled x0=1 in Fig. 1. For lower values of the initial flow 
rate the fountain is more stable, and lower values of the flow 
rate are necessary to reach the instability. For higher values 
of the flow rate the fountain is less stable. This effect is due 
to the velocity dependence of the basic Helmholtz amplifi- 
cation mechanism. 

Another parameter that can affect the instability bound- 
aries is the air velocity on the outer surface of the water 
sheet. The Helmholtz gain results from the relative motion of 
the water and the adjacent air. If the air in front of the foun- 
tain is moving upward there is an increase in the gain, and if 
the air is moving downward the gain is decreased. The ef- 
fects of such air motion are represented approximately by the 
term u, in Eq. (1). In Fig. 3 is a plot of the threshold flow 
rate as a function of the fountain height for various values of 
the upward air velocity u, in front of the fountain. The initial 
downward water velocity is again uo=l m s-l for all of 
these plots. It is clear from this figure that, as one should 
expect, the presence of a modest wind can have a substantial 
effect toward the encouragement or discouragement of the 
fluttering oscillations. Such wind effects were conspicuous in 
our studies of the Dunedin fountains,’ and Schwartz has also 
reported that the draft from a fan could induce oscillations in 
an otherwise stable nappe.’ 

IV. CONCLUSION 

Many of the features of the fluttering oscillations some- 
times seen in waterfall fountains can be interpreted by means 
of a mathematical model consisting of coupled differential 

equations. One of the most important questions relating to 
these oscillations concerns the stability criteria for their oc- 
currence, and these criteria can be extracted by means of 
numerical solutions. We have carried out such solutions, and 
the results have been presented here in the form of stability 
contours. These contours are in qualitative agreement with 
available experimental data and should permit the rational 
design of systems which do or do not display this effect. 

Qualitatively, one finds that a given system always be- 
comes less stable as the height is increased, as the flow rate 
is decreased, as the depth of the air chamber is decreased, as 
the initial velocity of the water is increased, and as the ve- 
locity of any wind upward along the face of the fountain is 
increased. The depth of the air chamber has been shown to 
be most important for relatively shallow chambers, which 
also are at risk of having the sheet hit or attach to the back 
wall of the chamber. For many practical systems this depth 
would be too great to be a significant factor. It has also been 
shown that for practical fountain conditions the air in the 
chamber is compressed very little and acts as if it were in- 
compressible in providing feedback for the oscillations. 
While the results described here are strictly applicable to 
fountains involving nearly plane water sheets moving verti- 
cally through air, the underlying principles should also pro- 
vide guidance for the design of oscillators based on different 
fluids or having different geometries. 
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