
Portland State University Portland State University 

PDXScholar PDXScholar 

Institute for Natural Resources Publications Institute for Natural Resources - Portland 

5-18-2023 

Willow Abundance and Condition Mapping in Rocky Willow Abundance and Condition Mapping in Rocky 

Mountain National Park Mountain National Park 

Eric M. Nielsen 
Portland State University, emn2@pdx.edu 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/naturalresources_pub 

 Part of the Forest Biology Commons, Natural Resources and Conservation Commons, and the 

Terrestrial and Aquatic Ecology Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Nielsen, Eric M., "Willow Abundance and Condition Mapping in Rocky Mountain National Park" (2023). 
Institute for Natural Resources Publications. 48. 
https://pdxscholar.library.pdx.edu/naturalresources_pub/48 

This Report is brought to you for free and open access. It has been accepted for inclusion in Institute for Natural 
Resources Publications by an authorized administrator of PDXScholar. Please contact us if we can make this 
document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/naturalresources_pub
https://pdxscholar.library.pdx.edu/naturalresources
https://pdxscholar.library.pdx.edu/naturalresources_pub?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/91?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/168?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/20?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/naturalresources_pub/48
https://pdxscholar.library.pdx.edu/naturalresources_pub/48?utm_source=pdxscholar.library.pdx.edu%2Fnaturalresources_pub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


Willow Abundance and Condition Mapping in Rocky 

Mountain National Park 
 

 

Eric M. Nielsen 

Institute for Natural Resources, Portland State University 

Portland, Oregon 

 

 

May 2023 

 

 

 

 



 

 

  

On this page: A subalpine willow stand dominated by Salix planifolia in the Cache la Poudre River valley. Image 

credit NPS 

 

On the cover: Patchy montane willows in a wet Calamagrostis canadensis meadow in Wild Basin, near North St. 

Vrain Creek. Image credit NPS 

 

Please cite this publication as: Nielsen, E.M. 2023. Willow abundance and condition mapping in Rocky 

Mountain National Park. Report to the National Park Service, Rocky Mountain National Park. 



 

iii 

 

Contents 

Page 

Figures.................................................................................................................................................... 5 

Tables ..................................................................................................................................................... 6 

Appendices ............................................................................................................................................. 6 

Abstract .................................................................................................................................................. 7 

Acknowledgments .................................................................................................................................. 7 

Acronyms ............................................................................................................................................... 8 

1. Introduction ........................................................................................................................................ 9 

1.1. Project area .............................................................................................................................. 9 

1.2. Willows in Rocky Mountain National Park .......................................................................... 11 

1.3. Project objective .................................................................................................................... 13 

2. Methods ............................................................................................................................................ 13 

2.1. Ground-truth data .................................................................................................................. 14 

2.1.1. Existing willow field data, pre-2021 ............................................................................. 14 

2.1.2. Targeted field data collection, 2021 .............................................................................. 17 

2.1.3. Data from other field efforts .......................................................................................... 20 

2.1.4. Remote ground-truth data .............................................................................................. 24 

2.1.5. Plot totals for attributes calibration and model training ................................................ 25 

2.2. Development of training data metrics ................................................................................... 27 

2.2.1. Assignment of willow species to low- and high-elevation groups ................................ 27 

2.2.2. Plot willow cover estimation ......................................................................................... 28 

2.2.3. Plot willow height estimation ........................................................................................ 30 

2.2.4. Plot leaf area index estimation ...................................................................................... 31 

2.3. Generation of model predictor data ....................................................................................... 34 

2.3.1. Aerial imagery ............................................................................................................... 35 

2.3.2. Satellite imagery ............................................................................................................ 35 

2.3.3. Topographic data ........................................................................................................... 35 



 

iv 

 

2.3.4. Climate data ................................................................................................................... 36 

2.3.5. Resampling and data reduction ..................................................................................... 36 

2.4. Mapping of recently disturbed areas ..................................................................................... 36 

2.5. Willow mapping .................................................................................................................... 39 

2.5.1. Plausible willow habitat ................................................................................................ 40 

2.5.2. Image-based willow presence ........................................................................................ 40 

2.5.3. Fused willow presence .................................................................................................. 41 

2.5.4. Willow cover, height and leaf area index ...................................................................... 42 

2.5.5. Fusion of runs ................................................................................................................ 44 

3. Results and discussion ..................................................................................................................... 44 

3.1. Model accuracy ..................................................................................................................... 44 

3.1.1. Habitat model ................................................................................................................ 44 

3.1.2. Imagery-based presence models .................................................................................... 44 

3.1.3. Continuous willow attribute models .............................................................................. 44 

3.2. Maps ...................................................................................................................................... 45 

3.3. Leaf area summaries .............................................................................................................. 54 

3.4. Assessment against independent estimates............................................................................ 55 

3.5. Guidelines for map use .......................................................................................................... 56 

3.6. Potential for map improvement ............................................................................................. 56 

Literature Cited .................................................................................................................................... 58 

  



 

5 

 

Figures 

Page 

Figure 1. Elevation and water bodies within the mapped area ........................................................... 10 

Figure 2. Map units containing willow-dominated associations ......................................................... 12 

Figure 3. Willow field plots collected prior to 2021. .......................................................................... 16 

Figure 4. Willow field plots collected in 2021 .................................................................................... 19 

Figure 5. VCMP plots used to model plausible willow habitat and willow presence......................... 21 

Figure 6. EVMP Aspen and Rocky Mountain Network I&M wetland plots ...................................... 23 

Figure 7. Photo-interpreted plot locations. .......................................................................................... 24 

Figure 8. Relationship between species-level visual cover estimate and macroplot cover 

totals ..................................................................................................................................................... 29 

Figure 9. Relationship between height estimated using macroplot averages vs. LPI 

maximum ............................................................................................................................................. 31 

Figure 10. LPI plots used for prediction of leaf area index from cover and height data .................... 33 

Figure 11. Modeled disturbance between summer 2020 and summer 2021 ....................................... 38 

Figure 12. Plausible willow habitat. .................................................................................................... 46 

Figure 13. Summer 2021 willow presence .......................................................................................... 47 

Figure 14. Summer 2021 willow canopy height. ................................................................................ 48 

Figure 15. Summer 2021 willow canopy leaf area index. ................................................................... 49 

Figure 16. Summer 2021 willow canopy leaf area index in the KV ................................................... 50 

Figure 17. Summer 2021 willow canopy leaf area index in east side valleys. ................................... 51 

Figure 18. Summer 2021 willow canopy height in east side valleys. ................................................. 52 

Figure 19. Summer 2021 willow canopy leaf area index in Horseshoe Park ..................................... 53 

  



 

6 

 

Tables 

Page 

Table 1. Plots used to calibrate attribute estimates across different plot protocols. ............................ 25 

Table 2. Model training data source plots ........................................................................................... 26 

Table 3. Lumping of willow species into low-elevation (LE) and high-elevation (HE) 

groups. .................................................................................................................................................. 28 

Table 4. Cover, height and leaf area index characteristics of plots used to form predictive 

relationships for LAI ............................................................................................................................ 32 

Table 5. Cover and height characteristics of current-era plots with willows present .......................... 33 

Table 6. Regression results for leaf area index in terms of cover and height...................................... 34 

Table 7. Root-mean-square error (RMSE) and R2 for attributes models ............................................ 44 

Table 8. Mean willow leaf area index by moose management area .................................................... 54 

Table 9. Mean willow leaf area index with respect to modeled moose habitat status and 

over the full park .................................................................................................................................. 55 

Appendices 

Page 

Appendix A: Field protocol for willow mapping plots ........................................................................ 61 

Appendix B: Leaf point intercept sampling ......................................................................................... 67 

  



 

7 

 

Abstract 

Riparian and wetland willow species have undergone serious declines in Rocky Mountain National 

Park as a consequence of a variety of environmental changes and, most recently, damage resulting 

from moose overpopulation. To address concerns about the long-term status of willows in the park, 

we developed remote sensing-based raster maps of riparian and wetland willow species presence, 

canopy cover percentage, canopy height, and leaf area index. All outputs were produced at 3-meter 

resolution, and represent willows as they existed in 2021. The mapping was performed via random 

forests classification and regression models trained on several hundred vegetation plots from a 

variety of sampling efforts, and making use of predictive layers derived from aerial and satellite 

imagery, topographic and climatic data. The maps allowed comparison of willow abundance across 

spatial subsets of the park, including an assessment of areas within ungulate exclosures. Riparian and 

wetland willow species were mapped as present on 5.45% of the park’s total area. Across these areas, 

most of which likely represent vegetation types where willow is not dominant but only a component, 

the mean mapped willow leaf area index was 0.694. Accuracy assessment relied on cross-validated 

model error estimates. The habitat and imagery-based presence classification models with which the 

willow presence map was created had error rates of 12% and 19% respectively. The regression 

models for prediction of canopy cover, canopy height, and leaf area index explained 50%, 56%, and 

52% of the variance in the dependent variables. The maps will be used to support assessments of 

willow habitat in the park and (through allometric conversion of leaf area index to leaf biomass 

production estimates) the determination of summer seasonal moose carrying capacity. 
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1. Introduction 

1.1. Project area 

Rocky Mountain National Park (ROMO) occupies 1080 km2 (107,990 ha; 266,849 acres) in the 

Rocky Mountains Front Range, about 90 km northwest of Denver, Colorado.1 The North American 

continental divide splits the park into eastern and western portions. East of the divide, the northern 

portion of the park contains the headwaters of the north-flowing Cache la Poudre River. The three 

primary east-flowing drainages are (from north to south) the Fall River, the upper Big Thompson 

River, and North St. Vrain Creek. The headwaters of the Colorado River lie west of the divide within 

the park. The upper Colorado flows south through the Kawuneeche Valley (KV), the dominant 

feature of the western portion of the park. The southwestern park section drains into Grand Lake and 

joins the Colorado River just downstream. Elevations within the park range from 2325 m near the 

town of Estes Park to 4346 m at Longs Peak. 

Vegetation within the park is strongly stratified by elevation. According to Salas et al. (2005), the 

montane zone, found at elevations up to about 3000 m, is characterized by ponderosa pine (Pinus 

ponderosa) and mixed conifer Douglas-fir (Pseudotsuga menziesii) forests on the east side. Those 

forest types are also found on the west side, but lodgepole pine (Pinus contorta) and aspen (Populus 

tremuloides) stands are more common in this wetter environment. Above the montane zone, 

subalpine forests and woodlands dominated by Engelmann spruce (Picea engelmannii) and subalpine 

fir (Abies lasiocarpa) are predominant up to about 3320 m elevation. Above tree line, the alpine zone 

spans another 1000 m of vertical relief. Although they are characterized by upland tree-dominated 

vegetation, the montane and subalpine zones are each also host to a range of shrubland, herbaceous, 

and wetland vegetation types (Salas et al. 2005). 

We defined the mapping project area by buffering the minimum and maximum extents of the park 

out by one kilometer, splitting the resulting area into 64 rectangular tiles for parallel processing to 

increase model prediction efficiency, and keeping only those tiles of which some portion lay within 

one kilometer of the park boundary. The project area (Figure 1) occupies 1496 km2 (149,616 ha; 

369,709 acres) of which the park itself comprises 72%. 

                                                   

1 Land area and elevation data referenced in this report are derived from NPS GIS data and USGS topographic data, 

respectively. 
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Figure 1. Elevation and water bodies within the mapped area. The park boundary and highways are also 

shown. 
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1.2. Willows in Rocky Mountain National Park 

Salas et al. (2005) found that willows (Salix spp.) constituted the “most diverse and prevalent group 

of shrublands” within the park. They provided the following review of willow and related wetland 

and riparian vegetation in the park: 

Wetlands and riparian areas are abundant . . . at all elevations. . . . Near treeline, wet 

areas are usually home to communities of short willows such as Salix planifolia and 

Salix brachycarpa, which often grow mixed with Betula nana and dwarfed spruce 

and fir. Wide riparian valleys in the subalpine zone also contain this mix of shrubs, 

and often have a diverse understory of forbs and graminoids. Creeks and lakes are 

abundant in the subalpine: wet meadows and long, thin riparian strips, which often 

contain tall willows and aspens, can be found near these. In the montane zone . . . 

riparian vegetation along rivers can be dominated by Picea pungens (Colorado blue 

spruce) or by a mixture of tall willows, aspen and alder. . . . Glacial valley and 

lakeside meadows are dominated by graminoid species. . . . Willows are often present 

in strips along streams in these meadows, and occasionally whole valleys can be 

filled with mixed willow stands. 

Salas et al. (2005) identified 27 distinct vegetation associations dominated by willow species. They 

included these associations within their map units SHRUB–RIPARIAN–CROSS ZONE < 9600 FT 

(montane zone), SHRUB–RIPARIAN–CROSS ZONE > 9600 FT (subalpine zone), SHRUB UPLAND–ALPINE 

and HERBACEOUS UPLAND–ALPINE (each of these classes also contain non-willow-dominated 

vegetation types). The mapped extents of those classes, circa 2001, are shown in Figure 2. The KV 

represents the most extensive montane willow habitat in the park, and the Cache la Poudre 

headwaters in the north contributes the bulk of the subalpine willow habitat. 

Although montane and subalpine willow vegetation types intergrade, they can typically be 

distinguished based both on species composition and growth forms (D. Cooper, personal 

communication, 2021). Montane willows typically are found in clumps and primarily reproduce from 

seed. They live up to 150 years or so, and attain heights up to five meters. Subalpine willows are 

generally clonal, reproducing primarily via rhizomes. Full-grown individuals are smaller, often only 

1.25 m tall. Because of their clonal habit, subalpine willows are more likely to recover rapidly from 

disturbance than montane willows. 

Substantial degradation of riparian willows has been reported in the park since the late 20th century 

(Kaczynski et al. 2014). Resampling of plots installed in the late 1990s has shown a 30% reduction in 

willow abundance in the KV (D. Cooper, personal communication, 2021). These changes have been 

attributed to a variety of causes, such as elk and moose browse, drought, fire, change in water table 

level, and Cytospora fungal infection (see Kaczynski et al. 2014). Most recently, two large 

wildfires—the Cameron Peak and East Troublesome burns—impacted montane and subalpine 

willow habitats in the late summer and fall of 2020 (see Figure 2). 
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Figure 2. Map units containing willow-dominated associations (Salas et al. 2005), based on imagery 

collected in 2001. The perimeters of major wildfires in fall 2020 are also shown. 
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Several willow species which occur in the project area were not addressed in this work. Salix 

scouleriana, a native species primarily associated with upland habitats, and several large non-native 

tree willow species were dropped from all analyses. In general, when “willow” is referred to in this 

report, it should be taken to imply only native willows of riparian and wetland habitats. 

1.3. Project objective 

There is particular concern about the impact of moose on willow stands in the park. Moose tend to 

develop particular feeding affinities in any geographic region, and at ROMO they rely heavily on 

willow; montane and subalpine willow species make up over 90% of the summer diet in the KV 

(Dungan and Wright 2005). There is concern that long-term damage may be done to willow stands in 

the park as a result of moose overpopulation (T. Hobbs, personal communication, 2021). Better 

understanding of the willow resource can enhance park management in many other ways, as it is an 

important restoration focus both in its own right and for the habitat it provides for beaver and other 

key species (S. Esser, personal communication, 2021). The objective established for this project was 

therefore to map current willow presence, abundance, and condition within the montane and 

subalpine zones to support the assessment of willow habitat status and the determination of summer 

seasonal moose carrying capacity. 

Observed patterns of structural spatial heterogeneity from recent field data and the spatial scale at 

which available ground-truth data had been collected both suggested that a pixel-based map at finer 

than 5-meter resolution would be needed. We represented willow abundance by mapping willow live 

canopy cover fraction and willow condition by mapping stand height and mid-summer leaf area 

index (LAI).2 All outputs were created at 3-meter pixel resolution. Other possible output metrics 

(e.g., stem density, above-ground biomass, annual productivity) were considered, but were not 

feasible given the available ground-truth data. Allometric relationships based on leaf area at the 

individual or stand scale are a feasible route to producing productivity estimates suitable for use in a 

carrying capacity analysis. 

2. Methods 

The requirement for quantitative, self-consistent, and high-resolution estimates of willow abundance 

and condition suggested use of an automated data-driven remote sensing-based approach. We used 

machine learning methods to map willow canopy cover, height and leaf area index, and trained 

models using field observations accumulated from a variety of sampling efforts. The primary phases 

of the mapping process were a review and incorporation of data from existing willow field plots 

(Section 2.1.1), collection of field data specifically for this project (Section 2.1.2), supplementation 

of these datasets using data from other field efforts (Section 2.1.3), generation of additional needed 

training data via photo-interpretation (Section 2.1.4), development of metrics describing willow 

presence, abundance, and condition from the cumulative field data for use as independent model 

training data (Section 2.2), acquisition of geospatial data and creation of predictive metrics for use as 

                                                   

2 Leaf area index is a unitless quantity representing the cumulative one-sided leaf area per unit ground area. 
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model predictor data (Section 2.3), mapping of areas disturbed between summer 2020 and summer 

2021 (Section 2.4), machine learning modeling of plausible willow habitat (Section 2.5.1), willow 

presence (Section 2.5.2–3), and willow abundance and condition (Section 2.5.4), and post-

processing (Section 2.5.5). 

Because most of the available ground-truth data from the west side of the park was collected in areas 

later impacted by the 2020 wildfires, it was necessary to do two independent runs of several of the 

modeling steps (Sections 2.5.2–4). The primary run used aerial imagery collected in summer 2019 

and Sentinel-2 satellite imagery from summer 2020 before the fires occurred, and made use of all 

available field data. The secondary run, for use in burned areas, used only Sentinel-2 imagery 

collected in summer 2021, and made use only of data from plots that were not impacted by fire or 

other disturbance between summer 2020 and summer 2021. The results from the two runs were 

fused; results from the primary run were used except in the recently disturbed areas, where they were 

taken from the more poorly-parameterized secondary run. The fused results can be taken to be 

generally indicative of post-fire, 2021 conditions. Pre- and post-fire abundance and condition 

estimates were produced for areas impacted by the wildfires; thus, the impact of the fires on willow 

communities can be quantified. 

2.1. Ground-truth data 

We used ground-truth data from a variety of sources for several distinct purposes. The following 

overview of the data sources includes brief descriptions of the uses made of each dataset. Table 1 

and Table 2 in Section 2.1.5 contain a summary of the plot types used for each function and the 

criteria used to determine which plots would be used from each source. Section 2.2 and Section 2.5 

have additional information regarding the use of plot data for calibration and modeling tasks, 

respectively. 

2.1.1. Existing willow field data, pre-2021 

We began by reviewing the available field data that had been collected in the park for the purpose of 

monitoring the condition of willow stands. Two main datasets were used: Elk and Vegetation 

Management Plan (EVMP) willow monitoring plots collected by NPS (Zeigenfuss et al. 2011) and 

plots collected by Taryn Contento for her masters thesis work (Contento 2021). The pre-2021 willow 

plot locations are shown in Figure 3. 

2.1.1.1. EVMP willow monitoring plots 

These plots were established at random locations within willow communities, primarily in low-

elevation elk winter range on the park’s east side (Zeigenfuss et al. 2011). Available data relevant to 

this work included a willow species list, an assigned willow type (a categorical assessment of willow 

age and height), a set of field photos taken in four cardinal directions, and a set of measurements for 

each woody shrub with crown overlapping a four-meter square permanent plot (the macroplot). The 

macroplot data included species, percent canopy overlapping the macroplot, live canopy diameter 

measured in the widest direction and perpendicular to that direction, and the maximum height of the 

live plant. 121 of these plots had been sampled in 2018. Several additional plots were last visited in 

2013, which was too far in the past to be useful here. 



 

15 

 

The fine spatial grain of the plot data and the fine-scale heterogeneity of willow abundance and 

condition required that we be sure the plots were well-located with reference to the aerial imagery. 

NPS analysts verified and if necessary altered the location of macroplot centers by comparing field 

notes, plot diagrams, and field photos with the 2019 NAIP imagery. Plots were represented as 2.26-

meter radius circles for extraction of corresponding predictor data. 

2.1.1.2. Contento willow plots 

These plots were established in the KV to investigate the influence of herbivory, water table depth, 

and past agricultural practices on willow productivity. The field data, collected in summer 2020 

(Contento 2021), help to close the data gap in montane west-side willow stands. Contento’s coarse 

scale protocol provided data similar to that of the EVMP willow macroplots, with the exception that 

willow type was not documented. Unfortunately, the spatial accuracy of these plot locations is 

uncertain. Inspection of several plot locations against aerial imagery indicated there might be 

considerable spatial offsets. Given the apparent high degree of fine-scale spatial heterogeneity in 

willow abundance in the KV, spatial uncertainties could result in reliability problems in using these 

plots as model training data. Several of the southernmost Contento plots were disturbed by fire not 

long after data collection. Plots were represented as 2.26-meter radius circles for extraction of 

corresponding predictor data. 
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Figure 3. Willow field plots collected prior to 2021. 
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2.1.2. Targeted field data collection, 2021 

Targeted fieldwork for this project was conducted between July 22 and September 22, 2021. The 

main goals were to obtain plots representing conditions that were poorly sampled in the previously 

collected willow plots, and to collect additional data that could be used to connect the results of 

different sampling protocols with each other, allowing their use in a single merged plot dataset. 

Sampling was targeted in particular geographic areas. Plot locations were not random, but were 

opportunistically selected in the field in order to most efficiently address data gaps. Priorities 

included: 

 collection of field estimates of willow stand LAI, for use in producing modeled LAI maps 

which could be converted via allometry to measures of annual productivity; 

 collection of plot data representing riparian areas and wet meadows in which willow species 

are absent (or represent an insignificant proportion of the vegetation), for use in producing 

modeled willow presence maps; 

 collection of plot data in subalpine willow stands, which were not represented in either the 

EVMP or Contento data; 

 collection of plot data in montane west side willow stands, which were poorly represented in 

the EVMP data and represented with unknown spatial accuracy in the Contento data; 

 collection of plot data in Wild Basin, the location of some of the healthiest montane willow 

stands in the park; and 

 resampling EVMP plots located within the 2020 fire perimeters. 

In all geographic areas sampled, field crews attempted to establish plots in willow patches and also in 

similar settings which lacked willow. Accurate mapping of willow presence and abundance depended 

on having training data available that represented both willow presence and absence, and a range of 

abundance levels within presence areas. The previously collected plot data contained very few plots 

in appropriate habitat but lacking substantial willow cover. Therefore, in any particular sampling 

region, crews were instructed to attempt to collect dissimilar plots representing willow at a range of 

conditions regarding willow abundance, height, browse impact, and habitat-relevant environmental 

gradients. Plots were centrally located in homogeneous areas of at ten meters in each dimension, to 

allow for GPS error and other spatial uncertainties. 

2.1.2.1 EVMP macroplot protocol plots 

The field protocol (Appendix A) generally followed the EVMP willow monitoring methods, with 

some enhancements. One significant addition to the protocol was the inclusion of visual estimates of 

percent willow cover over the plot. This allowed the development of a relationship between visual 

cover estimates and macroplot cover totals, which allowed an increase in consistency of cover 

estimates across the entire plot dataset. 
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2.1.2.2. Leaf point intercept protocol plots 

Midway through the field season, a collective decision was made that the EVMP macroplot protocol 

was too time-consuming and would not allow an adequate number of subalpine plots to be collected. 

In order to speed the field sampling process, we replaced the macroplots with a new leaf point 

intercept protocol (LPI, see Appendix B). The LPI protocol also allowed the estimation of stand 

LAI, which at that point we had determined was the best field metric for representing annual biomass 

production (see Section 2.2). 

The LPI protocol was used in both montane and subalpine willow plots in the latter part of the 2021 

field season, and it provided the only source of field-estimated LAI available for use in the project. 

All LPI plots were collected between August 13 and September 22, 2021; these dates are reasonably 

compatible with the phenology of peak standing willow crop, which is reached during the latter half 

of August (T. Hobbs and D. Cooper, personal communication, 2021). 

Visual estimates of percent willow cover across plots were also made in LPI plots. These estimates 

allowed us to extend the link between visual cover estimates and macroplot cover totals, generated 

from the 2021 macroplots (see Figure 8), to LAI estimates from the LPI protocol. This made it 

possible to develop LAI estimates for macroplots collected before 2021 (see Table 6), greatly 

expanding the pool of LAI training plots. 

Thirteen of the LPI plots collected in the KV were revisits of plots established by Contento the 

previous year. These plots were revisited in order to locate them more precisely—if necessary 

moving them into more homogeneous adjacent areas—and to provide data for developing a 

relationship between willow canopy height estimated using the macroplot protocol (used by 

Contento) vs. that estimated using the LPI protocol.3 This relationship allowed willow canopy height 

estimates to be made reasonably consistent across the entire plot dataset, which furthermore allowed 

macroplot-estimated height to be used in developing LAI estimates for older plots. 

NPS analysts verified and adjusted the recorded plot center coordinates of all plots collected in 2021, 

by comparing field notes, plot diagrams, and field photos with the 2019 NAIP imagery.4 Plots were 

represented as 2.26-meter radius circles for extraction of corresponding predictor data. The 2021 

targeted field plot locations are shown in Figure 4. 

                                                   

3 Plot coordinates were adjusted by short distances only; field photos allowed us to be confident that the height 

estimates made in 2020 remained relevant at the new sites. 

4 Although EVMP plots are monumented, many of the coordinates were collected with non-survey-grade GPS units. 

Accurate co-registration of plot coordinates with the aerial imagery was our primary concern for use of these plots 

as model training data. 



 

19 

 

 

Figure 4. Willow field plots collected in 2021. Early in the season, the EVMP macroplot protocol was 

used. Later plots used the leaf point intercept protocol discussed in the text. 
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2.1.3. Data from other field efforts 

We imported plots collected for several other projects for use in the map modeling process. These 

plots were used to improve the delineation of plausible willow habitat within the park, to build 

models for image-based discrimination of willow presence and absence, and to enhance models of 

willow canopy cover, height and LAI. In particular, the vegetation association assignments made at 

the plots collected for the vegetation classification and mapping project (Salas et al. 2005) provided a 

large set of training samples which lay outside plausible willow habitat. There remained a shortage of 

plots located in plausible willow habitat but nonetheless lacking willow. Rocky Mountain Network 

wetland plots (Schweiger et al. 2015), EVMP aspen monitoring plots (Zeigenfuss et al. 2011) and 

additional classification and mapping project plots were helpful in filling this gap. 

2.1.3.1. Vegetation classification and mapping project plots 

NPS provided plot data collected during the 2001–2005 vegetation classification and mapping 

project (VCMP). Salas et al. (2005) describe the collection of relevé plots in 2002 that were used to 

guide mapping. The plots, most of which were 400 m2 circles, included a comprehensive species list 

with visual cover estimates and an assigned vegetation type from the National Vegetation 

Classification (NVC) as it existed at that time. Additional plots were collected in 2004 for use in 

accuracy assessment (AA). The AA plots, located in reasonably homogeneous half-hectare sampling 

areas, included species composition data and an assigned NVC association. Many AA plots were 

located outside the park boundary, in the buffer area for this project. Fieldwork for both stages was 

performed by the Colorado Natural Heritage Program and NatureServe. We obtained data for 632 

relevé plots and 1223 AA plots. Of these, a total of 1772 plots contained species cover records and a 

usable association or map unit call. 

Using the provided lookup table between associations and map units, we determined the map unit for 

each plot, and treated plots of the following map units as plausible willow habitat: BLUE SPRUCE, 

COTTONWOOD, HERBACEOUS WETLAND CROSS ZONE – MARSH, HERBACEOUS WETLAND CROSS ZONE 

– WETLAND, HERBACEOUS WETLAND SUBALPINE / ALPINE – ALPINE MEADOW, RIPARIAN ASPEN, 

SHRUB RIPARIAN CROSS ZONE < 9600 FT, SHRUB RIPARIAN CROSS ZONE > 9600 FT, UPPER MONTANE 

MIXED CONIFER RIPARIAN < 9600 FT, and UPPER MONTANE MIXED CONIFER RIPARIAN > 9600 FT. We 

also treated plots labeled as the associations Abies lasiocarpa - Picea engelmannii / Salix 

(brachycarpa, glauca) Krummholz Shrubland and Betula nana - Salix brachycarpa Shrubland, in 

the KRUMMHOLZ and SHRUB UPLAND ALPINE map units respectively, as plausible willow habitat. 

The VCMP plots used in this project are shown in Figure 5. A total of 1279 plots with valid 

association calls representing implausible willow habitat were used as negative training in the habitat 

model described in Section 2.5.1. Another 335 plots with calls representing plausible willow habitat 

and which were documented as containing native riparian or wetland willow species (Section 2.2.1) 

were used as positive training in the habitat model. Finally, 170 plots which contained valid species 

cover data but lacked these species, and which were geographically located in plausible habitat as 

mapped by the habitat model, were used as negative training in the presence model described in 
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Section 2.5.2.5 For extraction of predictor data at plot locations, plots were represented as circles of 

various radius corresponding to the scale at which the field data had been collected. 

 

Figure 5. VCMP plots used to model plausible willow habitat and willow presence. 

POS and NEG plots represent positive and negative training occurrences in the 

habitat or presence models. 

                                                   

5 Although these data were collected two decades earlier than the timeframe represented by the maps here, it is 

thought to be very unlikely that willows have expanded anywhere in the park since this time (H. Abouelezz, 

personal communication, 2022), so willows are likely still absent in these plots. 
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2.1.3.2. I&M wetland data 

NPS also provided plot data collected for the Rocky Mountain Network long-term wetland 

monitoring project (Schweiger et al. 2015). We downloaded the data from the NPS IRMA Data 

Warehouse in July 2021. We dropped older plots, limiting our review to plots collected between 

2015 and 2019. The plot locations are shown in Figure 6. 

We extracted willow cover by species from the dataset’s main vegetation table; these were ocular-

based estimates of absolute percent cover made over a ten-meter square. We extracted willow height 

by species from the woody data table. These were measured in the field at the stem scale and can be 

assumed to be relevant to the species cover estimate in the main vegetation table (W. Schweiger, 

personal communication, 2022). 

Several I&M plots were nearly coincident with EVMP or Contento plots and were dropped, as those 

were more current. A total of 68 plots were kept; 49 of those contained willows. Wetland plots with 

documented willow cover were used as positive training data in both the habitat and presence 

models; plots lacking willow were used as negative training in the presence model but were omitted 

from the habitat model. For extraction of predictor data at plot locations, these plots were represented 

as four-meter radius circles, a reasonable compromise considering the scales at which height 

information was sampled in the field. 

2.1.3.3. EVMP aspen monitoring plots 

EVMP aspen monitoring plots were collected in both riparian and upland habitats; all of them were 

revisited in 2018. Their locations are shown in Figure 6. Plots were five-meter squares; species cover 

data were only documented for aspen. We used both types of aspen plots, but for different purposes. 

The 54 upland aspen plots were used as negative training in the habitat model. Nine riparian aspen 

plots that contained dense aspen were assumed to not contain significant willow and were used as 

negative training in the presence model. Plots were represented as 2.82-meter radius circles for 

extraction of corresponding predictor data. 
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Figure 6. EVMP Aspen and Rocky Mountain Network I&M wetland plots collected from 2015 through 

2019. 
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2.1.4. Remote ground-truth data 

2.1.4.1. Photo-interpreted data 

Where it was possible to do so confidently, we supplemented the field-collected data by creating 

additional willow absence plots in land cover types poorly represented in the training data. Several of 

the alternate land cover types existed only in the buffered area surrounding the park, rather than in 

the park itself. The plots were photo-interpreted from the 2019 aerial imagery in agricultural fields, 

developed areas (pavement, golf courses, and residential areas), aspen stands with no indication of 

willow nearby, open water, unvegetated shorelines, and semi-permanently snow-covered areas. We 

approached this as an iterative process, assigning additional willow absence locations in areas that 

appeared to map poorly in previous model runs. Additional plots for the post-fire model runs were 

photo-interpreted from the 2021 Sentinel imagery to represent burned areas where it was clear no 

vegetation had survived. The photo-interpreted plot locations are shown in Figure 7. 

 

Figure 7. Photo-interpreted plot locations. 
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2.1.4.2. Lidar data 

Lidar data were available for some areas of the park. We had hoped it might be helpful for providing 

additional training data relevant to willow vegetation canopy. Unfortunately, after evaluating height 

model outputs from the Moraine Park and Lady Creek collections (visually in Moraine Park, and 

against Contento’s plot data at Lady Creek), we determined the data were likely not informative at 

the horizontal and vertical scales needed for this application. Data from other collections (e.g., Wild 

Basin) might have been more useful, had we had more time to devote to the effort.6 

2.1.5. Plot totals for attributes calibration and model training 

The total number of plots used for each of the calibration and modeling tasks, and the inclusion 

criteria used to select from each sampling effort pool, are described in the following tables. Table 1 

details the plots that were used to develop the calibrations between different estimation methods for 

cover, height, and LAI, for low- and high-elevation species where applicable. Table 2 contains the 

inclusion criteria and plot totals used to develop each of the model phases. Note that the plot counts 

for the Contento, EVMP willow and targeted datasets vary slightly between models because they 

contain redundant plots sampled at multiple dates; the most appropriate was chosen for each model. 

Table 1. Plots used to calibrate attribute estimates across different plot protocols. 

Attribute & function Type Source (years) Inclusion criteria Plot count 

Canopy cover 

Calibration of EVMP macroplot 

estimates to ocular estimates 

Section 2.2.2 

low-elevation 

species 
Targeted (2021) 

macroplot protocol, low-

elevation willows present 
11 

high-elevation 

species 
Targeted (2021) 

macroplot protocol, high-

elevation willows present 
9 

Canopy height 

Calibration of EVMP macroplot 

estimates to LPI estimates 

Section 2.2.3 

all 

Contento (2020) 
willows present, 

undisturbed in 2020–21 
6 

Targeted (2021) 

LPI protocol, revisits of 

Contento plots, willows 

present 

6 

Leaf area index 

Estimation of LAI from ocular 

cover and LPI height estimates 

Section 2.2.4 

low-elevation 

species 
Targeted (2021) 

LPI protocol, low-elevation 

willows present, at least 

one leaf hit recorded 

17 

high-elevation 

species 
Targeted (2021) 

LPI protocol, low-elevation 

willows present, at least 

one leaf hit recorded 

47 

 

                                                   

6 There are several complications that would arise in using lidar data for training in this project, in any case. 

Although high point-density lidar can be useful for estimating the structural properties of vegetation canopies as a 

whole, our mapping targets here are specifically willow species, which could prove difficult or impossible to 

separate from other woody or even taller herbaceous vegetation in mixed stands. Calibrating lidar-derived cover and 

height estimates to the estimates available from field-collected plots would present another challenge. Such a 

calibration could be best accomplished by collecting lidar data over ground-sampled plots reasonably 

simultaneously with their measurement in the field. 
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Table 2. Model training data source plots and the dates they represent. The plot counts for the Contento, 

EVMP willow and targeted datasets vary slightly between models because they contain redundant plots 

sampled at multiple dates; the most appropriate sample was chosen for each model. Where applicable, 

post-fire model run totals are shown in parentheses. 

Model(s) Label Source (reference dates) Inclusion criteria Plot count 

Plausible 

habitat 

Section 2.5.1 

positive 

VCMP (2002–04) willows present, plausible association 

call 

335 

I&M wetland (2015–19) willows present 47 

EVMP willow (2018) willows present 89 

Contento (2020) willows present 64 

Targeted (2021) willows present 108 

negative 
VCMP (2002–04) implausible association call 1279 

EVMP aspen (2018) upland type 54 

Imagery-

based 

presence 

pre-fire 

(post-fire) 

Section 2.5.2 

positive 

I&M wetland (2015–19) willows present, undisturbed in 2020–

21 (post-fire run only) 

49 (40) 

EVMP willow (2018) willows present, undisturbed in 2020–

21 (post-fire run only) 

96 (89) 

Contento (2020) willows present, undisturbed in 2020–

21 (post-fire run only) 

72 (64) 

Targeted (2021) willows present 99 (106) 

negative 

VCMP (2002–04) willows absent, mapped as plausible 

habitat (Section 2.5.1)  

170 (170) 

I&M wetland (2015–19) willows absent 13 (13) 

EVMP aspen (2018) riparian type, aspens dense 9 (9) 

EVMP willow (2018) willows absent 7 (7) 

Photo-interpreted (2019–21) willows clearly absent 85 (110) 

Contento (2020) willows absent 28 (28) 

Targeted (2021) willows absent 33 (29) 

Quantitative 

attributes 

(cover, height, 

LAI) 

pre-fire 

(post-fire) 

Section 2.5.4 

plot-based 

estimate of 

attribute 

I&M wetland (2015–19) willows present, plot-based estimate 

of attribute available, undisturbed in 

2020–21 (post-fire run only) 

48 (39) 

EVMP willow (2018) willows present, plot-based estimate 

of attribute available, undisturbed in 

2020–21 (post-fire run only) 

96 (89) 

Contento (2020) willows present, plot-based estimate 

of attribute available, undisturbed in 

2020–21 (post-fire run only) 

72 (64) 

Targeted (2021) willows present, plot-based estimate 

of attribute available 

76 (80) 

minimal 

value of 

attribute 

VCMP (2002–04) willows absent, mapped as present 

(Section 2.5.3) 

77 (44) 

I&M wetland (2015–19) willows absent, mapped as present 10 (5) 

EVMP aspen (2018) riparian type, aspens dense, mapped 

as present 

2 (2) 

EVMP willow (2018) willows absent, mapped as present 5 (0) 

Photo-interpreted (2019–21) willows clearly absent, mapped as 

present 

24 (13) 

Contento (2020) willows absent, mapped as present 28 (15) 

Targeted (2021) willows absent, mapped as present 25 (16) 



 

27 

 

2.2. Development of training data metrics 

NPS and INR agreed to map three local structural attributes of willow: live canopy cover, average 

live stem height, and peak season LAI. Cover and average height were chosen because they are key 

structural estimates produced from the EVMP willow monitoring protocol, and are available in some 

form in all the field plots. LAI was selected because of its strong logical tie to annual biomass 

production. A particular concern with both cover and height as predictors of annual production is that 

browse damage and dieback may have weakened connections between these quantities and willow 

production, and allometric relationships may therefore vary depending on disturbance history. Live 

canopy cover and live stem height may also become more difficult to estimate accurately in the field 

under conditions of crown dieback. Furthermore, LAI has the advantage of being a quantity that can 

be more directly detected in optical (i.e., multispectral) remote sensing data. There is a long history 

of successful applications mapping LAI using multispectral imagery (e.g., Curran 1983). 

Each willow attribute to be modeled across the park requires a substantial set of ground-truth 

estimates to provide training for model construction. To achieve the needed number of plots, we 

needed to use plots collected under a number of distinct field protocols. A major goal of the sampling 

in 2021 was to collect information that could serve to make attribute estimates collected under 

different protocols compatible with one another. Producing a compatible set of training estimates for 

each attribute required application of estimated conversion factors, which are detailed for each 

attribute below. 

2.2.1. Assignment of willow species to low- and high-elevation groups 

In order to make plot-level estimates of each attribute at a sufficient number of plots to support 

machine learning modeling, we used empirical methods to create compatible estimates at plots 

collected using differing field protocols. Recognizing that the differing allometric properties of 

species might impact the conversions, we lumped species into two broad groups for the purpose of 

producing compatible attribute estimates. We treated larger willow species, mostly associated with 

the montane zone, as low-elevation (LE) willows and smaller, often clonal, species of the subalpine 

and alpine zones as high-elevation (HE) willows. The LE group was typified by Salix monticola, S. 

drummondiana and S. geyeriana, while the most prominent HE species were S. planifolia and S. 

wolfii. 

Before crosswalking all willow records into one of these groups, we first standardized all species 

records to their current accepted names in the PLANTS Database (USDA NRCS 2023). In keeping 

with the project objective, we considered only native willows of riparian and wetland habitats. Large 

non-native trees and willows of upland habitats were dropped from all analysis. We placed species 

into the elevation groups based on their size, elevation range, and co-occurring species as 

documented in the various ROMO field datasets. Species entries specifying Salix at the genus level 

were assigned individually based on their size, the plot elevation and co-occurring species. Table 3 

specifies the group to which we assigned each documented species. 
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Table 3. Lumping of willow species into low-elevation (LE) and high-elevation (HE) groups. 

Species PLANTS code Group Justification for dropping 

Salix alba SAAL2 dropped large non-native tree 

Salix babylonica SABA dropped large non-native tree 

Salix bebbiana SABE2 LE  

Salix boothii SABO2 LE  

Salix brachycarpa SABR HE  

Salix drummondiana SADR LE  

Salix eriocephala SAER LE  

Salix exigua SAEX LE  

Salix geyeriana SAGE2 LE  

Salix glauca SAGL HE  

Salix lasiandra SALA5 LE  

Salix ligulifolia SALI LE  

Salix lucida ssp. caudata SALUC LE  

Salix lutea SALU2 LE  

Salix melanopsis SAME2 LE  

Salix monticola SAMO2 LE  

Salix nivalis SANI8 HE  

Salix pendulina SAPE12 dropped large non-native tree 

Salix petiolaris SAPE5 LE  

Salix petrophila SAPE18 HE  

Salix planifolia SAPL2 HE  

Salix reticulata SARE2 HE  

Salix scouleriana SASC dropped typically found in upland habitats 

Salix wolfii SAWO HE  

2.2.2. Plot willow cover estimation 

Multiple methods of estimating cover were used across the various field plot protocols. We used the 

ocular live canopy cover estimate that was made on all 2021 plots as our standard, and developed 

conversions to make estimates made via other protocols compatible. 

Cover estimates for LE and HE groups were created at LPI plots by proportionally distributing the 

total ocular cover estimate into the groups based on the number of leaves intercepted on the transects. 

For this purpose, the total number of intercepts for each group was increased by one for any member 

species documented as present in the plot but without any leaf intercepts. We did this to prevent 

either of the elevation groups from being lost in subsequent analyses by virtue of having been 

randomly missed in the intercept data. 

Macroplot cover estimates for pre-2021 willow plots—calculated as described in Zeigenfuss et al. 

(2011)—were linked by way of the 2021 macroplot protocol plots. Ocular cover at the 2021 

macroplot protocol plots was apportioned into LE and HE willow components based on their 

proportions in the macroplot cover totals. Separate regression equations were determined for LE and 
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HE willow species over the plots on which they were present (see Figure 8).7 Those equations were 

then used to convert pre-2021 macroplot cover estimates to compatible ocular live canopy cover 

estimates for LE and HE species, which were then summed. Macroplot cover estimates tended to be 

higher than visual estimates. It is not clear whether this is due to the fact that live canopy does not 

always fully occupy the ellipse measured in the macroplot protocol, or to a downward bias in the 

ocular cover estimates. The tendency was more pronounced for HE species. 

 

Figure 8. Relationship between species-level visual cover estimate and macroplot cover totals for low-

elevation (left) and high-elevation (right) willow species, from 2021 macroplot protocol plots. 

Species-level cover estimates at I&M wetland plots were made by averaging continuous-scale ocular 

estimates over six partially nested subplots (Schweiger et al. 2015). We summed these across LE and 

HE species groups. We used the dead stems and crown dieback proportion information documented 

on the woody plant transects8 to prorate the cumulative ocular cover summed across each elevation 

group. There were not sufficient co-occurring plots to allow an empirical cover correction to match 

the 2021 cover estimates, but both methods were based on ocular estimates and the results appeared 

to be compatible. 

                                                   

7 Table 1 summarizes the plots used to develop the regression for each species component. 

8 We produced low- and high-elevation group cumulative dead stem and crown dieback percentage as follows. We 

first calculated individual plant cumulative dead/dieback percentage as 100 – (ds * cd) / 100, where ds and cd are the 

field-documented dead stem and crown dieback percentages, respectively. We converted the provided individual 

plant height class to the midpoint of the vertical range for each class, and approximated the fractional cover 

contribution of each individual i on the transect toward the elevation group total as hi
2 / Σ hi

2, where hi represents the 

height midpoint of the individual i and the sum is performed over all willows in the elevation group documented on 

the transects. We then multiplied each individual’s cumulative dead/dieback percentage by its estimated fractional 

cover contribution to the group and summed across all individuals in the group. 
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2.2.3. Plot willow height estimation 

Multiple methods of estimating height were used across the various field plot protocols. We used the 

maximum LPI leaf intercept height recorded for each of the elevation species groups as our standard, 

and developed conversions to make estimates made via other protocols compatible. The maximum 

LPI height intercepted on the 16 points is a reasonable proxy for the height of the upper canopy as it 

represents an estimate of the 94th percentile top-of-canopy height. An overall stand height estimate 

was produced by combining the LE and HE groups’ height estimates proportionally to their 

representation in their adjusted leaf intercept counts. No height estimates were available for 20 of the 

88 LPI plots with willow present, because no leaves were contacted at any of the intercept points. 

Only four of these plots had ocular cover estimates of five percent or more. Two plots had cover 

estimates of ten percent. These plots were collected on September 21–22 and the willows appear to 

lack leaf cover in field photos; at each of these plots, the crew noted that willow leaves were “falling 

off,” “dead” or “dying.” 

Macroplot height estimates for pre-2021 willow plots and 2021 macroplot protocol plots were 

calculated by averaging the heights of all willows within the macroplot (Zeigenfuss et al. 2011). 

These estimates were linked to the LPI height standards by way of plots measured by Taryn Contento 

in 2020 using the EVMP macroplot protocol and resampled in 2021 using the LPI protocol. The plots 

selected for inclusion were carefully examined to ensure the resampled plots had been collected on 

the same willow stands that Contento visited in 2020. The remeasurements allowed us to generate an 

empirical relationship between the two height estimation methods (Figure 9).9 Macroplot height 

averages tended to be higher than LPI maximums, as they were derived from the maximum live 

height of each plant, while point intercepts simply represent a uniform sample of the canopy as a 

whole. 

                                                   

9 Table 1 summarizes the plots used to develop the regression. Sufficient data were not available to generate 

independent relationships for LE and HE species groups. The remeasured plots were all located in the KV. 

Additional remeasurements from other parts of the park would have been helpful. Not only was the number of plots 

limited, but the small number of samples on the point intercept transects resulted in a high sampling error. 
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Figure 9. Relationship between height estimated using macroplot 

averages vs. LPI maximum, from revisited Contento plots. 

Height estimates at I&M wetland plots were derived from the woody plant transects, along which 

individual plants were assigned height classes. We estimated the height of each individual as the 

midpoint of its height class, and summarized similarly to the macroplot data, by simply averaging all 

documented individuals. With no source of calibration data, we used the same multiplier (generated 

from Figure 9) we had used to adjust the macroplot height estimates. 

2.2.4. Plot leaf area index estimation 

Direct LAI measurements were made only at the 2021 LPI protocol plots. To generate LAI estimates 

for all other plots we used the LPI protocol data to define a predictive formula for LAI based on 

stand-level willow cover and height. We generated this relationship separately for LE and HE species 

groups because of their differing physiognomy. 

2.2.4.1. Calculation of leaf area index at LPI plots 

Stand-level LAI was estimated based on the number of leaves intercepted on the LPI transect. At 

each point, a local LAI was estimated by multiplying the leaf count by a correction factor based on 

visually estimated average leaf angle from the horizontal: 

𝐿𝐴𝐼𝑝𝑜𝑖𝑛𝑡 =
𝑐𝑝𝑜𝑖𝑛𝑡

cos(min{𝛼, 60}) 
  , 

where cpoint represents the number of leaves intercepted at the point and α is the average leaf angle 

from the horizontal, given in degrees. At very high leaf angles, the denominator becomes extremely 

small; we chose to limit the LAI estimate to realistic quantities by allowing a maximum of 60 
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degrees for the leaf angle estimate.10 The stand-level LAI was computed by averaging the 16 point 

LAI estimates. 

2.2.4.2. Estimation of leaf area index at other plots 

A total of 50 LPI plots were collected in montane habitat. LE willows were absent at 14 of these 

plots; another 17 plots had small amounts of LE willow but none recorded on the LPI transects. We 

eliminated two plots which had inconsistent data or were located in excessively heterogeneous areas. 

No subalpine habitat plots contained LE willow species. 17 plots remained for developing a 

predictive relationship for LE willow LAI in terms of cover and height. These plots had cover values 

ranging from 4% to 95%, height from 20 to 360 cm, and LAI from 0.1 to 9.9 (see Table 4). 

A total of 61 LPI plots were collected in subalpine habitat. HE willows were absent on 14 plots, and 

another eight plots had small amounts of HE willow but none recorded on the LPI transects. An 

additional eight LPI plots in the montane zone contained non-zero LAI estimates for HE willows. 47 

total plots were available for developing a predictive relationship for HE willow LAI in terms of 

cover and height. These plots had cover values ranging from 2% to 75%, height from 10 to 130 cm, 

and LAI from 0.1 to 3.2 (see Table 4).11 

For comparison to Table 4, Table 5 contains the cover and height characteristics of the current-era 

plots with low- and high-elevation willow species present. Locations of the plots used to generate the 

predictive relationship for LAI are shown in Figure 10 for both elevation species groups. 

Table 4. Cover, height and leaf area index characteristics of the plots used to form the predictive 

relationships for LAI. The low-elevation group had 17 plots; the high-elevation group had 47. 

Variable Group Minimum 1st quartile 2nd quartile (median) 3rd quartile Maximum 

Cover (%) 
LE 4 10 25 45 95 

HE 2 6 22 43 75 

Height (cm) 
LE 20 40 70 310 360 

HE 10 25 40 60 130 

Leaf area index 
LE 0.1 0.3 0.5 4.7 9.9 

HE 0.1 0.4 0.9 1.4 3.2 

                                                   

10 Limiting the leaf angle estimate to a maximum of 60 degrees from the horizontal introduces a downward bias on 

LAI estimates on the rare occasions angles greater than that limit were documented in the field. In practice, the limit 

served to counter the extreme reaction of LAI estimates to comparatively small over-estimates of angle under high 

leaf-angle conditions; affected plots retained very large LAI estimates despite the limitation. The need to estimate 

leaf angle is a major shortcoming of this sampling method; an alternative field approach is proposed in Section 3.5. 

11 Table 1 summarizes the plots used to develop the regressions for each species component. 
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Table 5. Cover and height characteristics of the current-era plots with willow species present. 

Variable Group Minimum 1st quartile 2nd quartile (median) 3rd quartile Maximum 

Cover (%) 
LE < 1 4 14 45 170 

HE < 1 2 5 18 81 

Height (cm) 
LE 19 42 75 147 410 

HE 9 25 45 73 305 

 

Figure 10. LPI plots used for prediction of leaf area index from cover and height data, for 

low- and high-elevation species groups. Four plots provided data for both groups. 
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For each elevation species group, we created linear regression models for LAI on cover and height, 

and for LAI on cover alone (Table 6). Based on the reported statistical significance of the coefficient 

estimates for the independent variables, we selected model L2 for the LE group and model H1 for the 

HE group. Therefore, the LAI of LE species at non-LPI plots was calculated based on cover alone, 

while the calculation of HE species LAI used both cover and height as predictors. 

Table 6. Regression results for dependent variable leaf area index on independent variables cover and 

height. The constant term was set to zero. The models marked with ‘*’ were selected for use in predicting 

LAI from measured quantities at all plots other than 2021 LPI protocol plots. 

Independent variable, 

parameter 

L1: Low-elev group, 

cover & height 

*L2: Low-elev 

group, cover only 

*H1: High-elev group, 

cover & height 

H2: High-elev 

group, cover only 

      

 
coefficient 

estimate 
0.0798 0.0722 0.0216 0.0360 

Cover 

(%) 
significance p < 0.001 p << 0.001 p << 0.001 p << 0.001 

 
standard error 

of estimate 
0.0172 0.0059 0.0044 0.0023 

      

 
coefficient 

estimate 
-0.0019 — 0.0109 — 

Height 

(cm) 
significance p = 0.643 — p < 0.001 — 

 

standard error 

of estimate 
0.0041 — 0.0029 — 

      

R-squared  0.9058 0.9044 0.8744 0.8360 

Adj R-squared  0.8933 0.8985 0.8689 0.8324 

Number of obs  17 17 47 47 

2.3. Generation of model predictor data 

We assembled a collection of wall-to-wall rasters for use as model predictor data. The predictors fell 

into four broad categories: (a) metrics derived from high-resolution aerial imagery, collected in 

summer 2019; (b) metrics derived from medium-resolution satellite imagery, collected in 2019–

2021; (c) topographic and hydrologic metrics developed from digital elevation models; and (d) 

climate normals over the period 1991–2020. Hydrography, soils and surface geology data were 

considered for use but ultimately rejected. We felt their use would result in mapping artifacts and add 

little predictive power, since highly correlated information was available already in the other 

predictors. Lidar data, which might be used to provide information relevant to vegetation canopies 

and more precise topographic information, are available for some areas of the park, but were not 

relevant for use in this park-wide application. 

An effective spatial resolution was estimated for each predictive metric. This quantity represents the 

responsiveness of the metric to spatial land cover heterogeneity, and is influenced both by the 

resolution of the data source and by the dimensions of any convolution kernels used in the metric 
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calculation process.12 Effective spatial resolution of metrics were used later in the predictor selection 

process to simultaneously optimize model error rate and spatial responsiveness. All analysis steps 

below were performed in Python 2.7 (Python Software Foundation 2010) or in R 4.0.2 (R 

Development Core Team 2020). 

2.3.1. Aerial imagery 

We used 4-band color-infrared imagery collected in summer 2019 by the National Agricultural 

Imagery Program (NAIP). The 60-centimeter resolution imagery was obtained as uncompressed 

quarter quads. We used the imagery to calculate a variety of metrics representing spectral response 

and spatial patterning. Two main types of metrics were produced. Reflectance metrics are calculated 

at the scale of a single imaged pixel; these represent both raw band responses and nonlinear 

multiband combinations. Multiscale nested texture metrics (Nielsen and Noone 2014) are based on 

local moving window variability in spectral response, computed on image pixels resampled to a 

variety of different image resolutions. The metrics described in Nielsen et al. (2021) were produced 

across the project area and summarized at 3-meter resolution. 

2.3.2. Satellite imagery 

Sentinel-2 satellite reflectance data were obtained for the project area using Google Earth Engine 

(Google 2021). A medioid compositing method was used to create Sentinel-2 mosaics over monthly 

intervals, removing clouds, cloud shadows and other corrupt data from the individual images. 

Composites were created for each month from June through September, and each year from 2019 

thru 2021. Images from outside the seasonal window were mostly snow-covered or had very low sun 

angles. The red, green, blue, near-infrared and two shortwave infrared bands were obtained in this 

way at their native 10-meter or 20-meter resolution. All data were resampled to 10-meter resolution 

using a cubic convolution resampling method. 

The monthly composites were visually inspected using a variety of band combinations and contrast 

stretch options. Several of the monthly composites were impacted by clouds, cloud shadows, smoke, 

snow at higher elevations, and other compositing noise. Upon review, the July 2020 and September 

2019 composites were selected as the best images for the pre-fire period, while August 2021 and 

September 2021 were the best images in the post-fire period. The July 2020 and August 2021 

composites were used for change detection over the summer 2020–summer 2021 time period. A wide 

variety of spectral indices were created from the reflectance data in the four selected composites; the 

metrics are reviewed in Nielsen et al. (2021). 

2.3.3. Topographic data 

We downloaded 10-meter resolution elevation data for the project area from the 3D Elevation 

Program (3DEP; USGS 2021). For processing efficiency, the elevation data were converted to 

integer format using a vertical unit of 0.25 feet. A wide variety of metrics describing aspects of local 

                                                   

12 For example, effective spatial resolution of a metric describing local variability in spectral response is influenced 

both by the source image resolution and by the window size over which variability is estimated. 
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topography that often influence vegetation abundance and composition were created from the 

elevation data; the metrics are reviewed in Nielsen et al. (2021). We also derived hydrological flow 

paths and a resulting channel network from the elevation data, using USGS 24k topographic quads to 

calibrate channel initiation flow thresholds. We used the resulting network and hydrological flow 

information to compute a range of additional metrics describing the local influence of hydrology. 

These metrics and their methods of creation are also reviewed in Nielsen et al. (2021). We used 

SAGA-GIS (Conrad et al. 2015) for some of the hydrological analysis. 

2.3.4. Climate data 

We downloaded a range of monthly 30-year (1991–2021) climate normals at approximately 800-

meter resolution from the PRISM Climate Group (2021), including precipitation, minimum and 

maximum temperature, mean dew point temperature, and minimum and maximum vapor pressure 

deficit. All normals were obtained for the months of January, April, July and October; for each 

metric, we averaged these four months to approximate an annual average. 

2.3.5. Resampling and data reduction 

All metrics were resampled to a fixed 3-meter resolution grid over their coincident extent. The 

resampling method used depended on the data source. We used nearest neighbor resampling to 

maintain the finest resolution possible for all metrics derived from aerial imagery; the predictor 

sampling grid was taken from these rasters to prevent any spatial shifting. Satellite imagery was 

resampled using cubic convolution, which results in less smoothing than bilinear interpolation and 

maintains crisper boundaries. The non-imagery layers were resampled using bilinear interpolation. 

We used the R caret package (Kuhn 2008) to reduce multicollinearity within each of the four 

predictor categories separately. For each pair of predictors with absolute-valued Spearman rank 

correlation above a certain threshold, the predictor with the largest mean absolute correlation (to all 

other remaining predictors) is discarded. This has the effect of removing highly correlated predictors, 

while keeping those which are most unique among the full predictor set. Correlations were calculated 

across the set of training plots, which varied for each model. The threshold correlations used were ρ 

= 0.8 (~R2 = 0.64) for climate predictors, ρ = 0.7 (~R2 = 0.49) for topographic predictors, ρ = 0.8 

(~R2 = 0.64) for satellite imagery predictors, and ρ = 0.65 (~R2 = 0.42) for aerial imagery predictors. 

Different thresholds were used to introduce some balance in the number of selected predictors 

between the different groups; all were in keeping with the range of recommended values. 

2.4. Mapping of recently disturbed areas 

The 2020 fires rendered the 2019 aerial imagery obsolete for use in making current willow maps in 

impacted areas. Because models making use of the aerial imagery were significantly more accurate 

than those relying solely on Sentinel-2 data, we aimed to minimize the extent of the project area 

mapped without aerial imagery. To accomplish this, we mapped disturbance at the pixel scale rather 

than simply using outer burn perimeters to determine which model would be used for a given 

location. Note that other minor disturbances impacted some portions of the park between summer 

2020 and summer 2021; the approach we used also handles those areas appropriately. 
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We flagged areas impacted by fire or other disturbance in the interval between July 2020 and August 

2021 using a change detection method based on Sentinel-2 imagery. We used the ArcGIS Iso-Cluster 

Unsupervised Classification function to create 50 distinct spectral clusters from a six-band stack 

consisting of the red (B04), near-infrared (B8A), and mid-infrared (B11) bands from the July 2020 

and August 2021 Sentinel-2 images, and manually assigned each of the clusters to change or no-

change based on visual inspection of the Sentinel-2 and aerial imagery. Nearly all the changed areas 

were located within the burn perimeters. Areas modeled as disturbed in the 2020–2021 interval are 

shown in Figure 11. 
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Figure 11. Shaded areas represent disturbance between summer 2020 and summer 2021. Within these 

areas, final maps were derived from models based on 2021 satellite imagery, rather than on aerial and 

satellite imagery from 2019–20. 
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2.5. Willow mapping 

The map modeling process was tackled in three phases. First, we mapped the likelihood that any 3-

meter pixel comprised plausible willow habitat, where the topographic and climatic setting are likely 

within the envelope occupied by willow species. Second, we mapped the level of confidence with 

which willows were detected in aerial and satellite imagery. We combined the results of the habitat 

and image-based willow detection models into a single joint likelihood of willow occupation at each 

pixel.13 Third, for all pixels with willows present, we mapped quantitative estimates of live canopy 

cover percent, canopy height and LAI. We performed additional runs of the willow detection and 

quantitative models to represent post-fire conditions; the outputs of these runs were used only in 

areas that were flagged as disturbed between summer 2020 and summer 2021. 

Different sets of plots were used as training data for these distinct tasks. The habitat model relied 

heavily on the VCMP plots which were collected across a wide variety of habitats in the park. For the 

imagery-based mapping tasks—the willow presence and attributes models—we identified and 

excluded from training data any plots that the disturbance mapping identified as changed between 

their sampling date and the acquisition date of the imagery used in modeling. 

For all modeling tasks, we used the R language implementation (Liaw and Wiener 2002) of the 

random forests (RF) machine learning algorithm (Breiman 2001). The RF classification algorithm 

was used for habitat and presence modeling, and the cover, height and LAI mapping used RF 

regression. We used RF because of its tendency to avoid overfitting to training data and its ability to 

isolate signals in noisy datasets (Cutler et al. 2007). We used a predictor selection algorithm that 

reduced prediction time and co-optimized model accuracy and effective spatial resolution.14 We 

made use of the R raster (Hijmans 2018) and rgdal (Bivand et al. 2014) packages throughout. 

                                                   

13 Habitat and image-based detection were modeled in two separate steps to permit the formation of well-balanced 

models trained on two distinct knowledge bases. Because willow is thought to have declined significantly since their 

collection, EVMP plots could not be used to provide positive willow presence information relevant to current 

imagery. However, relying only on modern-era plots to provide positive willow presence data to a model aware of 

environmental setting would have encouraged the mistaken conclusion that willows do not occur outside the 

environmental envelope over which the EVMP willow and I&M wetland plots were sampled. Breaking the 

modeling up into two steps allowed the use of EVMP willow occurrence data over the habitat-specific domain 

where they are relevant. 

14 For the classification models, the out-of-bag error rate for each plot was compiled over each of the forests and 

converted to an estimate of the probability of plot misclassification by a single forest. This quantity, averaged over 

all plots, was used to stepwise select for additional predictors in the model, moving successively through tiers of 

predictors ordered by their effective spatial resolution. For the regression models, predictor selection optimized 

model accuracy by minimizing the sum of out-of-bag root mean square error and mean absolute error. The predictor 

selection algorithm is described in more detail in Nielsen et al. (2021). Note that Fox et al. (2017) raise concerns 

about the use of out-of-bag performance metrics in predictor selection, at least as a means for improving model 

accuracy without negatively impacting stability. Our primary purpose was instead to reduce model prediction time 

and to improve model spatial responsiveness. A cross-validation test could be used to evaluate the model accuracy 

of the reduced-predictor model vs. the full model on independent data. We did not perform that test. 
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2.5.1. Plausible willow habitat 

We began by mapping plausible willow habitat, in order to limit over-mapping of willow arising 

from the subsequent imagery-based willow detection model. The process was designed to put a 

generous bounding extent around habitats where riparian and wetland willows might occur, and 

relied only on predictors descriptive of environmental setting (topography and climate). Positive 

training locations were provided by all current-era plots with willow presence and by VCMP plots 

with both willow presence and appropriate association calls (Section 2.1.3.1). Negative training was 

derived from upland EVMP aspen plots (Section 2.1.3.3) and by VCMP plots with inappropriate 

association calls.15 

The data reduction process (i.e., the use of caret to reduce multicollinearity) resulted in keeping six 

of the 30 climate predictors and 17 of the 32 topography predictors. The RF-guided predictor 

selection process resulted in a model based on four climate predictors and nine topography 

predictors.16 The selected predictors were used to create a RF classification model of 1001 trees, with 

each tree based on a training sample size for each class equal to the minimum number of training 

plots available for either class.17 We estimated model error rates using 1000 bootstrap samples, each 

constructed by holding out one plot from the least common class and a proportional number from the 

most common class. The model was then predicted wall-to-wall at 3-meter resolution, and the output 

probabilities were saved for later use. 

2.5.2. Image-based willow presence 

We mapped willow presence using a model which relied only on image-based predictors.18 Two runs 

were performed, one indicative of pre-fire conditions in 2019–20 and the other of post-fire conditions 

in 2021. The pre-fire run made use of NAIP imagery from 2019 and Sentinel-2 imagery from 2019 

and 2020; the post-fire run substituted 2021 Sentinel-2 imagery.19 Positive training locations were 

provided by current-era plots with willow presence, with the exception that plots sampled prior to 

2021 were excluded from the post-fire run if they were mapped as disturbed in the 2020–21 interval. 

Negative training was provided by current-era willow and wetland plots that lacked willow, by 

                                                   

15 Table 2 summarizes the plots used as training data in the plausible habitat model. 

16 Climate: ppt_jul, tdew_jan, vmin_jul, vmin_oct. Topography: cpl750, cpr750, dih_c, dih_r, dtw_c, rough270, 

rough90, tpma300, tpma7500, wet30. See Nielsen et al. (2021) for descriptions of these predictors. 

17 When the classes to be predicted are not represented evenly in the training data, the more common class has a 

tendency to be modeled with greater accuracy than the other. This effect can be alleviated by downsampling the 

more common class (see Evans and Cushman 2009). The same technique was used earlier during the predictor 

selection phase. 

18 The presence model was created independently of the habitat model; the two model outputs were combined in the 

subsequent step. 

19 Despite the 2019 NAIP imagery no longer representing current conditions for areas disturbed in late 2020, we 

found that incorporating it in 2021 modeling resulted in slightly better model performance in these locations. It is 

possible that information regarding pre-fire stand conditions was in some way helpful in diagnosing willow survival. 

The 2019 NAIP imagery was not used in 2021 attributes mapping, only for predicting willow presence. 



 

41 

 

riparian EVMP aspen plots with sufficient aspen density (Section 2.1.3.3), by photo-interpreted plots 

in various locations that clearly lacked willow (Section 2.1.4.1),20 and by VCMP plots which lay in 

areas mapped with 50% or greater probability as plausible willow habitat (Section 2.5.1) but which 

lacked willows in 2002–04.21 

For the pre-fire run, data reduction kept 108 of the 344 NAIP predictors and 11 of the 53 Sentinel-2 

predictors. The RF-guided predictor selection process resulted in models based on 18 NAIP 

predictors and one Sentinel-2 predictor.22 For the post-fire run, data reduction kept 92 of the 344 

NAIP predictors and 20 of the 58 Sentinel-2 predictors.23 The RF-guided predictor selection process 

resulted in models based on 17 NAIP predictors and five Sentinel-2 predictors.24 The model creation 

and error rate estimation tasks were done as in Section 2.5.1. 

2.5.3. Fused willow presence 

We combined the outputs of the setting-based plausible habitat model and the image-based willow 

presence model to create final willow presence maps for summer 2020 and summer 2021. We 

calculated the probability of willow presence, ppres, as the geometric mean of the probability outputs 

of the habitat and image-based presence models: 

𝑝𝑝𝑟𝑒𝑠 = √𝑝ℎ𝑎𝑏𝑖𝑡𝑎𝑡 𝑝𝑝𝑟𝑒𝑠_𝑖𝑚𝑔 

                                                   

20 A number of photo-interpreted plots were created in areas that were severely burned in late 2020, for use as 

willow absence data for the 2021 run. 

21 Table 2 summarizes the plots used as training data in the image-based presence model. VCMP plots were used 

only to provide willow absence data, based on the assumption that willow has declined in many areas since 2002–

04, but has increased in very few places. VCMP plots which lay in areas outside mapped plausible willow habitat 

were not used as negative training to avoid diverting the presence model from its focus on distinguishing presence 

from absence within plausible habitat. There is a risk in including negatives from VCMP plots but positives only 

from willow and wetland plots, in that the presence model may show bias against detection of willows in habitat that 

lay outside the EVMP willow sample universe. The use of only image-based predictors in the presence model 

effectively counters this risk, since the model has no setting-based predictors available with which to act on such a 

bias. 

22 NAIP: d6c, ddc, e4c, g1_md, ga_13, gb_26, nc_9e, rc_13, u1_mx, u1b, uc_26, vb_26, vb_6d, w1c, wb_13, wb_26, 

x1_mx, y1_mx. Sentinel-2: ndgbp (July 2020). See Nielsen et al. (2021) for descriptions of these predictors. 

23 Fewer total Sentinel-2 predictors were available for the 2020 run because the September 2019 Sentinel-2 blue 

reflectance band was impacted by smoke or haze. We dropped predictors which relied on this band from that image. 

24 NAIP: b1_mx, d2c, e2c, e6c, gc_13, gc_cf, n1_md, r2c, rb_13, rb_26, ub_13, v1_md, v1b, vb_39, vc_4c, w1b, 

x1_mx. Sentinel-2: grn (Aug. 2021); ndsi, nir, tcb, tcw (Sep. 2021). See Nielsen et al. (2021) for descriptions of 

these predictors. 
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A 3x3-cell focal mean was used to smooth the resulting 3-meter resolution presence probability. We 

treated willow as present on pixels with smoothed ppres ≥ 0.5.25 

2.5.4. Willow cover, height and leaf area index 

We used RF regression models to map continuous-valued willow attributes, including stand canopy 

cover, height and LAI.26 These models made use of both setting-based and image-based predictor 

sets. Again, two runs were performed, to represent pre-fire and post-fire conditions. The pre-fire run 

used 2019 NAIP imagery and Sentinel-2 imagery from 2019 and 2020, while the post-fire run used 

only 2021 Sentinel-2 imagery. 

Training data came from current-era plots with willow present and non-zero values for all attributes. 

The cover, height and LAI estimates were derived using the methods described in Section 2.2. To 

provide training data at very low values of the willow attributes, we used current-era plots which lay 

in areas where willow was mapped as present (Section 2.5.3) but in which no willow was found.27 

We treated these plots as having minimal cover (0.01%), height (0.01 cm), and LAI (0.01). Plots 

sampled prior to 2021 were excluded from the post-fire run if they were mapped as disturbed in the 

2020–21 interval.28 

For the pre-fire run, in addition to the 108 NAIP predictors and 11 Sentinel-2 predictors available to 

predictor selection for the presence model, data reduction kept four of the 30 climate predictors and 

21 of the 32 topography predictors. For the post-fire run, in addition to the 92 NAIP predictors and 

20 Sentinel-2 predictors available to predictor selection for the presence model, data reduction kept 

four of the climate predictors and 20 of the topography predictors. The predictors chosen during the 

predictor selection process differed for the different attributes models, discussed below. For each 

attribute, the selected predictors were used to create a RF regression model of 1001 trees. 

Over-prediction of low values and under-prediction of high values is typical of machine learning 

regression modeling and can be reduced in several ways (Zhang and Lu 2011). We used Model 2 

(reduced major axis) regression to compensate for model bias toward the mean at very low and very 

high values of the attribute variable (see Belitz and Stackelberg 2021). We derived a bias-correcting 

slope and intercept by regressing the input attribute values of all plots on the bootstrapped attribute 

predictions. After wall-to-wall prediction of each attribute, the slope and intercept derived from the 

bias-correction procedure was applied to all pixel predictions. 

                                                   

25 We used the default threshold of 0.5 because both constituent models—the habitat and imagery-based presence 

model—had well-balanced training data, and it was not clear that the costs of false positives and false negatives 

should differ for our application. 

26 We considered the use of artificial neural networks for these tasks but lacked sufficient field data to parameterize 

them. 

27 This step is similar to the process used for VCMP plots in Section 2.5.2. By only using willow absence plots 

where willow was mapped as present, we exclude the obvious cases and focus the model on the real task. 

28 Table 2 summarizes the plots used as training data in each of the attributes models. 
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For all attributes models, two raster outputs were produced. In output A, all pixels where willows 

were predicted as present in Section 2.5.3 received an attribute prediction of at least 0.001 (%, cm, or 

unitless LAI). If the bias correction resulted in a negative value, the prediction was raised to 0.001. In 

output A, willow absence pixels are indicated by the valid raster value of zero. In output B, if bias 

correction resulted in a negative value, the prediction was raised to zero. In this output, willow 

absence pixels are indicated by a nodata (invalid) raster value. 

2.5.4.1. Willow canopy cover 

For the pre-fire run, the RF-guided predictor selection process resulted in models based on 15 NAIP 

predictors, eight topography predictors, five Sentinel-2 predictors, and three climate predictors.29 For 

the post-fire run, the RF-guided predictor selection process resulted in models based on five Sentinel-

2 predictors, five topography predictors, and one climate predictor.30 Maps were generated using only 

these predictors. 

2.5.4.2. Willow canopy height 

For the pre-fire run, the RF-guided predictor selection process resulted in models based on 20 NAIP 

predictors, nine topography predictors, three Sentinel-2 predictors, and two climate predictors.31 For 

the post-fire run, the RF-guided predictor selection process resulted in models based on 11 Sentinel-2 

predictors, 11 topography predictors, and four climate predictors.32 Maps were generated using only 

these predictors. 

2.5.4.3. Willow leaf area index 

For the pre-fire run, the RF-guided predictor selection process resulted in models based on six NAIP 

predictors, four topography predictors, and four climate predictors.33 For the post-fire run, the RF-

guided predictor selection process resulted in models based on seven topography predictors, five 

Sentinel-2 predictors, and two climate predictors.34 Maps were generated using only these predictors. 

                                                   

29 NAIP: d3c, e2c, e4c, e6c, g1_md, ga_26, n1b, nc_6d, r1c, u1b, uc_13, ufb, wa_cf, x1_mx, y1_mx. Topography: 

be10, cold1500, cpl750, cpr750, dih_r, dtw_c, dtw_r, tpmi7500. Sentinel-2: grn, ndgbp, ndsi, sw1 (July 2020); grn 

(Sep. 2019). Climate: tmin_avg, vmax_apr, vmin_oct. See Nielsen et al. (2021) for descriptions of these predictors. 

30 Sentinel-2: blu, ndgrp, ndsip (Aug. 2021); blu, ndmi (Sep. 2021). Topography: be10, cold1500, dih_c, dih_r, 

rough810. Climate: tdew_jan. See Nielsen et al. (2021) for descriptions of these predictors. 
31 NAIP: d6c, e2c, e3c, e4c, g1_md, ga_13, ga_26, gb_13, gb_9e, gdc, nc_6d, r1c, rc_13, rc_cf, u1b, uc_13, vb_4c, 

vc_6d, w1c, x1_mx. Topography: be10, cold1500, cpr150, cpr30, cpr750, dih_r, dtw_r, rough810, tpma1500. 

Sentinel-2: grn, ndsi (July 2020); ndgrp (Sep. 2019). Climate: tmin_avg, vmax_apr. 

32 Sentinel-2: grn, ndgbp, ndgrp, ndmi, ndsip, ndsw (Aug. 2021); ndgb, ndgbp, ndmi, ndsi, tcw (Sep. 2021). 

Topography: be10, cold1500, cold300, cpr150, dih_c, dih_r, rough810, tpma1500, tpma300, tpma7500, tpmi7500. 

Climate: ppt_jul, tdew_jan, tmin_avg, vmin_oct. 

33 NAIP: e2c, g1_md, ga_26, r1c, ufb, x1_mx. Topography: be10, dtw_c, dtw_r, tpmi7500. Climate: ppt_apr, 

tmin_avg, vmax_apr, vmin_oct. 

34 Topography: cold1500, cold300, cpr750, dih_c, dih_r, rough810, tpma1500. Sentinel-2: blu, ndgrp, ndsip (Aug. 

2021); blu, ndmi (Sep. 2021). Climate: tdew_jan, vmin_oct. 
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2.5.5. Fusion of runs 

The final maps of willow cover, height, and LAI were produced by combining the more accurate pre-

fire model results35 with the post-fire model results. The pre-fire results were used everywhere except 

in locations which were mapped as disturbed in the 2020–21 time interval. 

3. Results and discussion 

3.1. Model accuracy 

3.1.1. Habitat model 

The bootstrapped error assessment indicated an overall error rate of 11.9% in modeling plausible 

willow habitat. The error was well-balanced, with plots labeled as implausible habitat predicted 

incorrectly at a rate of 11.4%, and plausible habitat plots predicted incorrectly 13.0% of the time. 

3.1.2. Imagery-based presence models 

The bootstrapped error assessment indicated an overall error rate of 19.3% in modeling pre-fire 

presence of willows, even at the smallest amounts. The error was well-balanced, with willow absence 

plots predicted incorrectly at a rate of 17.6%, and willow presence plots predicted incorrectly 20.9% 

of the time. The overall error rate in modeling post-fire willow presence was 15.1%. The error rate 

for willow absence plots, at 17.8%, was similar to the pre-fire model, but significantly less omission 

error was observed. Only 12.4% of willow presence plots were predicted incorrectly. The different 

results are likely not particularly meaningful, as they probably result from the inclusion of a number 

of heavily scorched photo-interpreted willow absence plots in the training dataset. 

3.1.3. Continuous willow attribute models 

The results of the model error assessments for the pre- and post-fire runs for each of the attributes are 

shown in Table 7. The post-fire models, lacking predictors based on aerial imagery, had higher error 

rates than the pre-fire models. The post-fire results are only used in locations where disturbance 

occurred between summer 2020 and summer 2021. Model error rates were evaluated over bootstrap-

aggregated samples independent from the training data. 

Table 7. Bootstrap-aggregated model root-mean-square error (RMSE) and R2 for 

the three attributes models for each of the modeled time periods. 

Attribute Time period Model RMSE Model R2 

Canopy cover 
pre-fire (2019–20) 19.2% 0.495 

post-fire (2021) 26.3% 0.345 

Canopy height 
pre-fire (2019–20) 48.9 cm 0.560 

post-fire (2021) 55.0 cm 0.469 

Leaf area index 
pre-fire (2019–20) 1.56 0.520 

post-fire (2021) 1.94 0.368 

                                                   

35 The pre-fire models were more accurate (Section 3.1) because of their inclusion of predictors derived from the 

2019 NAIP. 
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3.2. Maps 

Resulting maps for plausible willow habitat, fused willow presence, canopy height and LAI are 

shown for the full park in Figures 12–15.36 Figures 16–19 have closer views of the KV (LAI), some 

east-side valleys (LAI and height), and a full-resolution LAI image from Horseshoe Park. 

                                                   

36 Willow canopy cover is not shown because at this scale it closely resembles LAI. 
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Figure 12. Plausible willow habitat is shown in green. Much of this area would not support willow stands; 

individual willow plants may be restricted to suitable microsites. 
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Figure 13. Summer 2021 willow presence is shown in green. Many mapped willow occurrences may not 

represent stands but rather individual willow plants restricted to suitable microsites. 
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Figure 14. Summer 2021 willow canopy height. 
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Figure 15. Summer 2021 willow canopy leaf area index. 
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Figure 16. Summer 2021 willow canopy leaf area index in the KV. The 2020 fire boundaries are shown. 

Note the area of high LAI in the exclosure at the north end of the visible area. 
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Figure 17. Summer 2021 willow canopy leaf area index in some of the east side valleys. 
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Figure 18. Summer 2021 willow canopy height in some of the east side valleys. 
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Figure 19. Summer 2021 willow canopy leaf area index in Horseshoe Park. Note the color scale is 

changed in this image; Horseshoe Park includes areas mapped with LAI as high as 12.2. 
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3.3. Leaf area summaries 

Riparian and wetland willows were mapped as present37 on 5.45% of the park’s 1079.9 km2. Where 

willow was mapped as present, the mean mapped willow leaf area index was 0.694. Although this 

LAI would represent a very sparse willow stand, most of these mapped occurrences likely represent 

vegetation types where willow is not dominant but only a component. We did not attempt to 

distinguish willow-dominated stands from other vegetation in this project. 

Table 8 summarizes the mean mapped willow LAI (using output B) across the different moose 

management areas (MMAs) within the park.38 Areas inside and outside exclosure fencing are 

separated. Totaled across MMAs that have exclosures, the LAI of willows within exclosures exceeds 

that of willows outside exclosures by a factor of 3.6. The MMAs with the highest mean willow LAI 

are Cow Creek, Hollowell Park and Wild Basin. However, willow LAI within fenced areas in 

Horseshoe Park, the Kawuneeche Valley, and Endovalley rivals or exceeds those areas. 

Table 8. Mean willow leaf area index by moose management area, separated by areas inside 

and outside of exclosure fencing. Mean values apply to the entire summary unit, not only the 

portion where willow is present. 

Moose management area 

Area 

(km2) 

% of area with 

exclosures 

Mean willow leaf area index 

Outside 

exclosures 

Inside 

exclosures 

Entire 

area 

Big Meadows 1.360 0.00% 0.080 – 0.080 

Chapin Creek–Cache La Poudre 6.194 0.00% 0.191 – 0.191 

Cow Creek 0.138 0.00% 3.350 – 3.350 

Endovalley 1.410 8.89% 1.487 2.379 1.566 

Hollowell Park 0.226 0.00% 3.043 – 3.043 

Horseshoe Park 1.393 14.02% 0.985 4.575 1.488 

Kawuneeche Valley 14.253 0.51% 0.529 2.865 0.541 

Long Meadow 0.570 0.00% 0.032 – 0.032 

Moraine Park 3.617 13.08% 0.355 1.266 0.474 

North Inlet 2.212 0.00% 0.131 – 0.131 

Upper Beaver Meadows 0.964 20.79% 0.282 1.075 0.447 

Wild Basin 0.697 0.00% 2.249 – 2.249 

All management areas 33.032 3.2% 0.508 2.076 0.559 

All management areas with 

exclosures 21.636 4.9% 0.579 2.076 0.653 

                                                   

37 At 3-meter pixel scale, using non-zero values of output B to represent willow presence. 

38 Note that in both Table 8 and Table 9, in keeping with the focus of this work on producing cumulative totals, the 

mean LAI is given with reference to the total area within the summary unit, not with reference only to areas where 

willow is present (as presented in the first paragraph of Section 3.3). Map users can create LAI summaries with 

reference to willow presence by summarizing only over areas where LAI output B has values greater than zero. 
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Table 9 summarizes mapped willow LAI across several other areas of interest: modeled moose 

habitat and non-habitat within a moose count sample frame (Hobbs and Abouelezz 2023), and across 

the full extent of Rocky Mountain National Park. 

Table 9. Mean willow leaf area index summarized with respect to modeled moose habitat status, and 

over the full park. Areas inside and outside of exclosure fencing are separated in each category. Mean 

values apply to the entire summary unit, not only the portion where willow is present. 

Summary area 

Area 

(km2) 

% of area with 

exclosures 

Mean willow leaf area index 

Outside 

exclosures 

Inside 

exclosures 

Entire 

area 

Modeled habitat in sample frame 221.631 0.33% 0.093 2.196 0.100 

Modeled non-habitat in sample frame 465.886 0.04% 0.015 1.622 0.016 

Full park 1079.900 0.11% 0.036 1.997 0.038 

3.4. Assessment against independent estimates 

We assessed the realism of our results by comparing them to annual biomass production estimates 

made by Stumph (2005). In 2003–04, Stumph sampled willow species, canopy cover and height 

along transects at 33 sites in the Colorado River drainage of the park. He used this structural data to 

estimate average canopy volume by species at riparian willow communities in this region. The spatial 

extent of these communities was mapped from aerial photos, and the dry mass per unit canopy 

volume was estimated by clipping, drying and weighing all leaves from a sample of willow plants, 

none more than one meter in height.39 Stumph estimated an annual willow biomass production of 

184,128 kg across 4.579 km2 of willow communities within the KV. 

We excerpted the SHRUB–RIPARIAN–CROSS ZONE < 9600 FT map unit within the elevation 

range described by Stumph (2005) from the Salas et al. (2005) vegetation map, resulting in a 

summary zone of 4.257 km2 which likely corresponds reasonably closely to Stumph’s KV summary. 

Across this zone a total of 3.828 km2 of willow leaf area was mapped. To convert mapped leaf area 

to corresponding leaf biomass, we used a specific leaf area (SLA) estimate of 14.3 m2/kg, derived by 

averaging the estimates given for shade leaves from three plantation willow clones (see Table 2, 

Merilo et al. 2006),40 resulting in a leaf biomass estimate of 267,736 kg. 

Given the heavy dependence of SLA on depth in canopy (see Figure 1, Merilo et al. 2004), it is 

possible a higher SLA should be used to better correspond to Stumph’s biomass sampling method. 

This would bring the biomass estimates into closer agreement. At any rate, given the degree of 

uncertainty in both estimates, it is encouraging that they are in the same order of magnitude, although 

                                                   

39 Note that Stumph (2005) refers to “the poor state of some willow communities” in justifying the canopy sampling 

approach used. Significant decline had apparently occurred already by this time. 

40 Estimates were made for the species Salix viminalis and S. dasyclados, which are broadly similar in morphology 

and habitat to montane willow species in the park. We used the estimates from control (unfertilized) sites. We used 

the shade-leaf estimates to correspond more closely to the near-ground leaves sampled by Stumph (2005). 
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of course we expect to see some further decline in willows in the KV since the time of Stumph’s 

work. 

3.5. Guidelines for map use 

Output A may be preferable for attribute map graphics. In these layers, it is possible to distinguish 

between pixels where willow was modeled as absent and pixels outside the modeling area. Output B 

may be preferable for tabular summaries, since the arbitrary minimum value assigned in output A to 

pixels with willow modeled as present but at vanishingly small amounts may sum to substantial 

amounts over many pixels. 

The maps will be most reliable for relative comparison of areas with differing canopy cover, canopy 

height, and LAI. The calibration of the quantitative models to absolute values of these attributes was 

a more uncertain process, and was limited by the number, geographic representativeness and 

reliability of the field training data. No effort was spared in making the best use possible of all 

available field data, but ground-truth data availability remains a major limiting factor. Allometric 

conversions of leaf area index to annual biomass production are possible, but should be undertaken 

carefully. They may introduce a substantial additional element of uncertainty into the results. 

3.6. Potential for map improvement 

In constructing the LPI protocol, we attempted to balance the need for precise estimates at each site 

with that for a reasonably large and geographically diverse collection of plots. To address this 

tradeoff, we reduced the LPI sample density to just 16 point-intercept samples per plot.41 It appears 

that this achieved our goals, because the derived relationships between cover, height and LAI are 

plausible, we obtained enough plots to support the modeling, and the modeling results themselves 

appear plausible. However, the significant resulting sampling error contributes to substantial 

uncertainty in the calibration of the LAI model to absolute quantities. Also, bias may result from the 

uneven geographic spread of the LPI plots used to generate the relationship connecting cover and 

height to LAI, and the small number of LPI plots collected—particularly for low-elevation species—

may also weaken the reliability of that relationship. 

The most obvious fix for the above issues is to dedicate additional field effort specifically to 

increasing the number and geographic representativeness of plots with measured leaf area, while 

simultaneously either increasing the number of point-intercept samples (using the current LPI 

protocol) or developing some alternative method for field estimation of LAI. First, though, it is worth 

considering whether it may be possible to circumvent the need for leaf area field estimates by 

locating or developing relationships that allow reasonable estimation of annual production from 

canopy cover and maximum plant height measurements. We are skeptical of that possibility, 

                                                   

41 The clumped patterns frequently seen in willow canopy add to the uncertainty resulting from the small sample. In 

addition, changes in leaf orientation angle can make a large difference in LAI estimates using the LPI method. 

Crews were initially asked to estimate the angle from the horizontal of each leaf hit, but to reduce the time 

requirements we instead visually estimated the overall average leaf angle for each willow species present. 
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primarily due to a concern that the variable impacts of browse damage and other dieback will alter 

and/or weaken relationships between those attributes and biomass production, and the relationships 

would likely be inconsistent even within the park. Furthermore, live canopy cover and live stem 

height themselves may become more difficult to estimate consistently in the field under conditions of 

crown dieback. 

Given the likely difficulty of relying on allometric relationships to approximate annual production in 

variously disturbed willow stands, we recommend adding some form of leaf area estimation to 

willow field sampling protocols. The LPI protocol developed for this project might be used for this 

purpose, though we recommend two main modifications: (1) increasing the number of point-intercept 

samples on the LPI transect to reduce the sampling error to a reasonable amount, and (2) estimation 

of average leaf angle at each point. 

Another option might be to use some sort of volumetric sample; for example, by counting the number 

of leaves within a visualized cylinder surrounding each vertical cross-section. This would provide a 

larger sample, and the leaf angle would no longer be a disruptive variable. The radius of the cylinder 

could vary by plot depending on canopy density, although it should remain consistent within any 

plot. There are certainly other possibilities.42 

Whatever method is used to estimate leaf area, visual estimates of willow live canopy cover should 

be made for all species, not only the most abundant. Try to make these estimates to the nearest one 

percent, without spending time trying to do the impossible. The important thing is not to leave 

obvious information on the table. High precision of these estimates is most important, and also most 

feasible, when canopy cover is low (especially at 5% or less). 

The most efficient and reliable approach to estimating LAI is likely to rely both on visual estimates 

(which are more robust for clumped canopies) and on mechanistic sampling (because visual 

estimation of leaf area is inherently a very difficult task). For example, mechanistic leaf area 

sampling could be confined only to the portions of a plot where willow canopy is present, and the 

leaf area estimates could then be prorated by a visual cover estimate. Finally, in order to more 

reliably convert estimated leaf area to annual leaf biomass production, it seems well worth investing 

some effort in pulling leaves43 and working up good species-specific estimates of specific leaf area. 

                                                   

42 For example, various expensive devices have been created which attempt to estimate leaf area based on light flux 

through a vegetation canopy, or using an upward-facing camera. These are finicky, time-consuming, and seem 

unlikely to be well-suited to this application, but you might investigate. 

43 Leaves sampled for this purpose should be pulled from across the vertical cross-section of the willow canopy, 

because SLA varies substantially along this axis (see Merilo et al. 2004). 
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Appendix A: Field protocol for willow mapping plots 

A.1. General 

The protocol generally follows the EVMP willow monitoring protocol for macroplots with some 

adjustments to speed data collection and adds additional cover estimates. Macroplots are the same 

four-meter squares as in EVMP, with corners to the north, east, south and west of the center. 

Macroplots should be fully located within homogeneous vegetation patches. Ideally there should be a 

five meter or greater buffer on all sides of the plot while still remaining inside the patch, requiring a 

homogeneous patch of at least 14 m in each dimension. See Appendix 1 for more details. 

Compass azimuths should be oriented with respect to true north, i.e., they should be taken using 

current magnetic declination values. This applies for all purposes (laying out plots, taking cardinal 

direction photos, and doing plot diagrams). 

A.2. Plot protocol 

Plots do not need to be permanently marked, but pins and/or flags will likely be useful while 

sampling. The field crew can decide whether to lay out tapes or string along all sides or just measure 

from the center to the corners (it should be 2.83 m from plot center to each corner). Some slop on the 

corner locations is fine since the plots should be in homogeneous patches anyway. 

Plot names should be unique and should consist of the letter M (for mapping) followed by a 3-digit 

number. M001 could be the first plot collected. Crews working separately can reserve blocks of 

numbers. 

Follow the EVMP protocol to record location, observers, date, dominant willow type, ecosystem type 

and notes on beaver and moose presence. Add general comments if needed (obvious disturbance or 

any irregularities in data collection), but notes on how to revisit are not needed. 

Because we’ll be lining these up with high-resolution imagery and willow characteristics may vary 

over fine scales, spatial accuracy is key! An accurate GPS location and other spatial information for 

verifying location are very important. 

Record the location of the plot center in UTM Zone 13 coordinates (NAD83 datum), as well as the 

GPS accuracy. The submeter-accuracy GNSS Arrow should be used if possible; if a less accurate 

unit must be used, take steps to make the reading as accurate as possible (e.g., average over a couple 

of minutes).  

Fill out the Willow Plot Diagram sheet from EVMP. Please include anything in the immediate area 

that is likely to show up in aerial imagery (e.g. bare/barer patches, trees, boulders) along with an 

azimuth and distance from plot center. Vegetation should be included if it is likely to be visible in 

aerial imagery (e.g., a big conifer or dense herbaceous patch). 

Follow the EVMP protocol for plot photos (two from each corner, with and without placards).  
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For each sampling region (e.g. a group of plots all in the same valley), draw an overview map of how 

the plots relate to each other and large identifiable features in the area (e.g. streams, conifer patches, 

big boulders). Spend no more than 10 minutes on this. NOTE: This step might be helpful to complete 

while you decide in advance where different plots would be valuable (see plot selection guidance in 

Appendix 1). However if that’s not needed, and you feel the individual plot diagrams have 

documented the area sufficiently, this step can be considered optional. If the individual diagrams are 

sketchy, this could help to compensate. 

Follow the EVMP macroplot protocol to record the species, width, diameter, percent in plot, height 

to tallest bud scar, and maximum height of each shrub. To save time, only record willows that have a 

maximum diameter or height > 10cm. Non-willow shrubs don’t need measurements at all. For each 

measured willow, also estimate percent cover of live growth within the rectangle made by the max 

diameter and perpendicular diameter, excluding canopy gaps > 5 cm. 

A.3. Cover estimates 

Overview: Visual estimates of cover amounts will be used to give a reasonable idea of vegetation 

abundance and structure. The idea here is to visually estimate the aerial extent (the area that would be 

shaded by leaves and stems if the sun were straight overhead) for each functional group of plants. 

Crew calibration: Before splitting up into individual field crews, have the whole crew practice 

together to get a sense of what various covers look like on the ground. Cover estimates should be 

made independently by each crew member and then discussed to form a consensus answer, both in 

training and at each plot. 

Abiotic, dead & non-vascular vegetation: Estimate percent cover of the following abiotic and ground 

cover categories. For everything in this section, only record if there is at least 5% cover in the plot 

with a sky view—exception: water should be recorded any time it is present. 

Moss or lichen 
Only include if it has a sky view, including on rock that was counted 

already. 

Coarse dead organic matter 
Coarse woody organic material > 5 cm diameter, rooted dead or 

detached and on the ground. 

Fine dead organic matter 
Dead organic material < 5 cm diameter, rooted dead or detached and 

on the ground. Don’t include litter from the current years growth. 

Rock 
Rocks > 2.5 cm diameter. Moss and lichen cover don't count against 

the rock total.  

Bare soil Mineral soil or fine gravel, < 2.5 cm diameter. 

Water Standing or flowing water above the ground surface.  

Vascular vegetation: Estimate percent of the plot covered by live growth (leaves and current year’s 

twigs) in the following functional groups. Record the most abundant three species with at least 5% 

cover in each group. Genus level calls are ok if you don’t know the species. Please don’t spend more 
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than 5 minutes on identification per plot, it’s better to skip this step and get another plot than be sure 

on the non-willow identification. For cover purposes, a “tree” is defined as woody vegetation of a 

species that can attain 3 m or more in height and has a single main or at most only a few stems 

(willows that meet these criteria should also be excluded).  

Willow Live cover of all willow species. 

Non-willow shrubs Live cover of all non-willow shrubs. 

Conifers 
Live cover of conifers overlapping the plot, whether or not they are 

rooted in the plot. 

Deciduous trees < 2 m tall 
Live cover of non-willow deciduous trees (e.g., quaking aspen, 

narrowleaf cottonwood, birch and alder trees) < 2 m tall. 

Deciduous trees > 2 m tall 
Live cover of non-willow deciduous trees (e.g., quaking aspen, 

narrowleaf cottonwood, birch and alder trees) >= 2 m tall. 

Total forbs and ferns 
Live cover of forbs and ferns (and any other non-graminoid 

herbaceous vascular vegetation). 

Overtopped forbs and ferns 
What percent cover (of the total plot) is forbs and ferns overtopped 

by shrubs (willow or otherwise)? To the nearest 5% is fine. 

Total graminoids Cover of all graminoids (grasses, sedges and rushes). 

Overtopped graminoids 
What percent cover (of the total plot) is graminoids overtopped by 

shrubs (willow or otherwise)? 

 

 You can estimate percent cover by mentally clumping the plants into one area and figuring out 

how big it would be. For reference, a one-meter square is equivalent to about 6% of the 

macroplot, and a 40-cm square is equivalent to 1%. Keep in mind that tall skinny plants viewed 

from the side look like they cover more area than they do from above. See references for various 

arrangements of cover on the following pages.  

 The larger the cover value, the less an individual percentage point either way will make a 

difference in the end result. You are welcome to bin covers to the nearest 5% for covers over 

20%. 

 As with the EVMP line intercept, small gaps in the canopy of a larger plant (those less than 5 cm 

diameter) can be ignored, but do account for larger gaps or dead limbs. 

A.4. Plot selection guidance 

Plots should be collected in patches with willows, and also in patches apparently capable of 

supporting willows in the future (e.g., riparian or wet meadow settings, etc). 
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A good plot is centrally located within a homogenous vegetation patch of at least ten meters 

(preferably 14 m) in each dimension. Homogeneity should be considered with respect to cover of 

dominant functional groups (e.g., cover of willows and herbaceous vegetation should remain within 

20% of so of the patch mean value across the patch). Plots should have no more than 15% cover of a 

distinct inclusion (e.g. stream channel with running water, conifer, large rock). 

There should be at least a three meter buffer on each side of the macroplot while still remaining in 

the patch, and ideally five meters. Plots should be at least 20 m apart (more would be good, but only 

if homogeneous patches are large enough to permit greater separation). 

Within any particular sampling region, try to collect a variety of dissimilar plots. In general it is 

better to spend time sampling vegetation rather than traveling; also, having dissimilar plots nearby 

each other provides good training data for models because all the extraneous variation that can occur 

between different regions is minimized when plots are nearby each other. 

In any sampling region, try to locate plots to capture the range of variation present with respect to the 

variables listed below. (In general, if cover of willows or of other riparian shrubs, conifers, broadleaf 

trees, forbs or graminoids vary by 30% or more in absolute cover amounts, it is worth putting an 

additional plot in if homogeneous patches meeting the above requirements are present.) 

High priority for additional plot (first spend time on these) 

 Willow absent, but in suitable or at least borderline habitat 

 Willow cover varies by 30% (e.g., one patch has 10% cover and adjacent patch has 40%, one 

patch has 50% cover and adjacent has 80%) 

 Willow height varies by a factor of x2 (e.g., one patch has willows 1.5 m tall; adjacent has 

willow > 3 m tall or < 0.75 m tall) 

 Willow health varies dramatically (this will probably be reflected in cover variations though). 

Sad willow can be heavily browsed or has died back, with more than 30% reduction from peak 

cover. 

 Non-willow riparian shrub with > 40% cover and willows < 10% cover 

Medium priority for additional plot (spend time if available) 

 Conifers present vs absent, or with at least 30% more or less cover than in nearby plots 

 Broadleaf trees present vs absent, or with at least 30% more or less cover than in nearby plots 

 Forbs with at least 30% more or less cover than in nearby plots 

 Graminoids with at least 30% more or less cover than in nearby plots 

 Large differences in soil moisture from nearby plots 
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A.5. Cover estimate guides 
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Appendix B: Leaf point intercept sampling 

This protocol provided the only source of measured LAI available for use in the project. The 

procedure was developed for use in subalpine willow stands, but was also used in montane willow 

plots done in the latter part of the 2021 field season. 

B.1. Overall plan 

In sampling subalpine willow, we need to save time but still get some basic data that will be 

representative of willow productivity, in addition to the cover estimates that are spelled out in the 

other part of the protocol. We’ve come to the conclusion that we need to drop the regular EVMP 

protocol as it’s too time-consuming in these stands. We’re thinking that the quickest and most 

repeatable way to do this is probably going to be the following point intercept plan. 

B.2. Plot layout 

The plot can be laid out44 using 4 poles, a 14-meter long string, and a 1-2 meter long string with a 

weight tied on the end (big metal washers could work) . The poles should be at least as tall as the 

tallest willows to be sampled using this protocol—extendable hiking poles45 would be fine. The 14-

meter long string46 should be tied off in advance with a knot approximately every 1.5 m (these only 

need to be accurate within +/- 10 cm). The weighted string should be marked off in 10-cm intervals47 

in some recognizable way (different color adhesive tape? adhesive tape and marker? flagging tape 

and marker?). 

Two zigzag transects are used as in the figure below, they should be done one following the other. 

The first (Transect A, green with blue dots below) starts at the north plot corner, and the second 

(Transect B, red with orange dots) starts at the west plot corner. Each transect winds thru the 4 plot 

corners using a different path. The transects are laid out using the 14-meter long string, tied off on 

the first pole just above the level of the highest canopy in the plot (or lower if need be), and 

remaining at about that elevation above the ground along its whole route. 

                                                   

44 Feel free to sub the gear you already have for these, but see comments below about other approaches. 

45 If you’ve got some other poles you’re already using that would work by all means use them. 

46 You could use a tape measure for this purpose and sample every 1.5 meters, but it may be more difficult to lay it 

out and to make unbiased vertical projections above each sample location. 

47 You could use a graduated pole for this, but see comment below. 
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B.3. Point intercept sampling 

Point samples are taken at each pretied knot by dangling the weighted string from the knot48 so the 

weight is at ground level. The string should not interfere with the natural position of any stems or 

shoots. At each point, note the number of leaves touching the string, and the minimum and maximum 

height from the ground of the leaves contacted, rounding the height of each leaf to the nearest 10 cm. 

For example, if leaves are contacted at 23 cm, 35 cm and 48 cm from the ground, you would note 3 

leaves, in the range 20-50 cm.49 

Individual points are located at approximately the distances given in the following table from the 

beginning of the zigzag transect. The points in the first transect should be notated as A1–A8, second 

as B1–B8. 

Point # Distance (m) 

1 1.5 

2 3.0 

3 4.5 

4 6.0 

5 7.5 

6 9.0 

7 10.5 

8 12.0 

B.4. Other data 

Because leaves oriented away from the horizontal plane (i.e. sticking up in the air) will cause this 

method to underestimate leaf area, we need to have some idea whether that is an issue. So also please 

estimate the average angle away from the horizontal that leaves are oriented at50 (for example, if 

leaves were sticking almost straight up or down this might be 80 degrees, and if they were on just a 

slight angle from the horizontal this might be 10 degrees). 

In using this data in some kind of allometry, we might need to have an estimate for average leaf size. 

Similar to the leaf angle, just ballpark an overall average leaf length and width. 

                                                   

48 We’re going to use this to count the number of leaf intercepts and also know how high from the ground each is. 

You could use a graduated pole for this, but it will be more difficult to make unbiased vertical projections down 

from above (or up from the ground if using a tape measure). 

49 If it seems about as easy to do, you could just note the height of each leaf. We were concerned that sometimes 

there might be many leaves, making a range a lot easier to do. You also don’t have to round to nearest 10 cm if that 

doesn’t make things any easier. We’d appreciate your thoughts about both of those possibilities. 

50 This is a total guess, I’m not really sure what the best way to do this is, but it could be an important factor for 

estimating LAI or even in comparing plots collected at different times of day or season, if leaves start to orient to the 

vertical due to moisture stress. Would definitely appreciate feedback. I know it could be a challenge to estimate an 

average angle. Just take a guess... 
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