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Abstract 

 Trace gases can have a significant impact on the Earth’s climate, and the analysis 

of changes in these gases and an understanding of how much of these changes are a result 

of human activity is important for understanding global climate change. Methane (CH4) 

is the second only to CO2 in radiative forcing over the last 200 years, and its 

concentration in the atmosphere has more than doubled since 1750. Sources and sinks of 

CH4 have characteristic isotopic effects, which shift the relative concentration of the 

methane isotopologues. Spectroscopic techniques for of analysis the isotopic composition 

of methane have been evolving since the early 1990’s, and promise real-time, in-situ 

measurements that would provide unprecedented information on the methane 

atmospheric cycle. Here we present our development and results of a new optical 

spectroscopic isotope ratio instrument using cavity ringdown spectroscopy in the near IR 

region using the ν2+2ν3 overtone band. This region has limited interference from other 

molecules, and an advantageous juxtaposition of a 13CH4 triplet, and a single 12CH4 peak, 

allowing near-simultaneous measurement of both isotopologues. We present the results 

of two datasets showing high linearity over a wide range of isotope ratios, which 

achieved a precision of ±4‰. We present analysis of the data and consider the effects of 

temperature and molecular interference. 
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I. Introduction/Background 

The analysis of trace gases in the atmosphere provides valuable information on 

mankind’s effect on Earth’s climate. Methane (CH4) is the most important 

anthropogenically influenced greenhouse gas after carbon dioxide (CO2) (Ramanathan, 

1985), and has more than doubled in concentration since the industrial revolution 

(Rasmussen, 1984). Ice-core measurements of CH4 concentrations indicate that levels 

have varied between 0.4 ppm and 0.8 ppm over the 650,000 years leading up to the 

industrial revolution. In contrast, CH4 concentrations have been increased from 0.700 

ppm in 1750, to a level of 1.774 ppm in 2007 (IPCC, 2007, Ch. 2). This substantial 

change has been attributed to anthropogenic contributions: estimates of CH4 sources in 

1750 attribute 10% of the CH4 emissions to anthropogenic sources, while present day 

estimates suggest total CH4 emissions have nearly doubled since 1750, and anthropogenic 

sources now account for 60% of the emissions (IPCC, 2007, Ch. 7).  

In recent decades the rate of increase in CH4 concentration has exhibited a 

decrease from about 1%/yr (or 14 ppb/yr) in 1985 to almost 0%/yr in 2005. The growth 

rate during this period shows high interannual variability, with a maximum of 14 ppb/yr 

in 1998 and a minimum of -4 ppb/yr in 2004 (IPCC, 2007, Ch. 2). These recent changes 

in CH4 growth rate remain incompletely understood and are the subject of debate (see 

e.g., Simpson, 2002; Dlugokencky, 2003; Bousquet, 2006). This adds significant 

uncertainty to projections of future CH4 concentrations, and the applicability of some 

IPCC’s scenarios which predict CH4 concentrations will increase to levels between 2 and 

3.5 ppmv by the end of the century (IPCC, 2007)).  
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 CH4 has a significant greenhouse effect, with a strong absorption band at 7.66 

µm in the mid-IR region. It is in this region (~10 µm) where the Earth’s radiative heat 

emission peaks, preventing energy from radiating into space, and the atmospheric CH4 re-

emits more than half of the energy towards the surface.  Increasing concentrations result 

in increased absorption of this energy, which then raises the temperature of the earth. If 

we assume a steady state condition in the energy balance prior to the industrial 

revolution, then the radiative forcing (W/m2) reflects the impact of this change on the 

energy balance due to changes in atmospheric constituents, and can be negative (cooling) 

or positive (warming). The best estimate of radiative forcing for CH4 is 0.48 W/m2, 

which is significant compared to estimates of 1.66 W/m2 for CO2 and a total for all low-

level greenhouse gases (not including H2O) of 2.6 W/m2 (IPCC, 2007). 

In addition to the direct effect of IR absorption, the oxidation of CH4 can have 

significant impacts on both the troposphere and stratosphere. CH4 reacts with OH, and 

therefore can lower the OH concentration. Since OH is the major oxidizer of many 

molecules in the atmosphere, such as non-methane hydrocarbons, sulfur containing 

compounds, and halocarbons, and many other pollutants and greenhouse gases, reduction 

in OH concentrations due to reaction with increased concentrations of CH4 can increase 

the atmospheric lifetimes of these other molecules (Weubbles, et.al., 2000). This 

amplifies their effects in the atmosphere. In addition, oxidation of CH4 produces CO2, 

H2O (this reaction is the major source of stratospheric H2O), and CO (producing 

approximately 25% of tropospheric levels), and formaldehyde (CH2O). It also indirectly 

impacts O3 levels in areas with high concentrations of NOx molecules (Wuebbles, 2000). 
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The major emissions of CH4 are from bacterial sources in a variety of 

environments: anoxic soils (wetlands, rice paddies), animal (including livestock and 

termites) ruminant, and waste. Thermogenic methane sources (fossil fuel activities 

including natural gas losses, oil drilling, and coal processing) and biomass burning are 

the next major sources of CH4. In addition to these two major groups of sources, there are 

also minor contributions from oceans and methane clathrate hydrates (Tyler et.al., 2007; 

Whiticar, 2000; Reeburgh, 2003). Many of the important CH4 sources and their 

respective contributions are shown in Table 1. The IPCC (2007) summarized the latest 

publications (2000-2007) estimating CH4 sources and showed a range of 264-428 Tg/yr 

for anthropogenic sources and 145-260 Tg/yr for natural sources. These sources will be 

discussed in more detail in Section I.3. At steady-state the rate of production is balanced 

by the rate of consumption by the CH4 sinks (approximately 70% is consumed by  

tropospheric reaction with OH), which will be discussed in the Section I.4. If CH4 is not 

in a steady state condition, then there will be a net increase or decrease in the atmospheric 

CH4 concentration. This increase leads to the increased absorption of outgoing IR 

radiation and results in radiative forcing. 
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Table 1 CH4 sources, their annual emissions and isotopic signatures. Data taken from (Tyler 
et.al., 2007) and supplemented (grayed values in table) by (Whiticar, 2000). 

  

 

I.2  Isotopic analysis 

Isotopic analysis of atmospheric CH4, determining the isotopic compositions of its 

elements to a high degree of accuracy and precision, provides insight into the processes 

that produce (sources) and processes that consume (sinks) CH4, and their relative impacts 

on atmospheric concentrations.  This is because each source and each sink imparts a 

characteristic isotopic “fingerprint” to emitted or consumed CH4. 

A detailed theoretical explanation of isotopic effects due to molecular reactions 

can be found in Wolfsberg (1972) and Bigeleisen and Wolfsberg (1958). Briefly, the 

mass difference between the isotopes causes a change in the relative reaction rate for 

different isotopologues. At temperatures on the order of 300K, the most significant effect 

the isotope substitution has on the reaction rate is due to the change in the vibrational 
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zero-point energy of the two reactant molecules. The larger mass will have a lower 

energy, since 

€ 

E0,V ∝ µ− 12  (where µ is the reduced mass for the molecular bond) if we 

assume harmonic motion, and therefore will require more energy to reach the transition 

state. For CH4, we expect a substitution of D for H (86% increase in µ) to have a more 

significant effect on the reaction rates than the substitution of 13C for 12C (0.6% increase 

in µ). Additional factors that affect the reaction rates are: changes in the bond strength 

(force constant) of the bond with isotopic substitution, higher level vibrational state 

contributions to the partition function, and quantum tunneling, which is especially 

important for hydrogen. This difference between the abundant and rare isotopes results in 

a change in the ratio of isotopes between the reactants and the products. The terms 

enrichment and depletion imply an increase and decrease in the amount of the rarer 

isotope, respectively. 

Isotopic ratios (rare isotope/most abundant isotope) are expressed relative to an 

internationally recognized standard reference ratio—the deviation from the standard is 

given by the δ-notation, e.g., for 13C/12C: 

 

€ 
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Where 

€ 

13C[ ]
12C[ ]
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sample

 and 
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13C[ ]
12C[ ]
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standard

 are the ratio of the concentrations of 13C to 12C for 

the sample and standard, respectively; and 

€ 

D[ ]
H[ ]
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⎠ 
⎟ 
sample

 and 

€ 

D[ ]
H[ ]

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
standard

 are the ratio of 

concentrations of D to H for the sample and standard, respectively. The factor of 1000 

indicates that values are given in “per mil” (‰) and this notation has been adopted for 

stating δ values, where the standard for δ13C is the Vienna Peedee Belemnite (VPDB) 

ratio of 0.0112372, and the standard for δD is the Vienna Surface Mean Ocean Water 

(VSMOW) ratio of 0.00015574 (de Laeter, et.al., 2003). Current background δ13C-CH4 

values are -47.4‰ for the northern hemisphere and -47.2‰ for the southern hemisphere 

(Stevens and Wahlen, 2000). Similarly, the δD-CH4 for background atmosphere is -86‰ 

for the southern hemisphere and -96‰ for the northern hemisphere (Stevens and Wahlen, 

2000). 

 

I.3  Isotopic signatures of CH4 Sources 

From Table 1 we can see that bacterial production of CH4 is responsible for 

approximately 75% of the CH4 emission. The process by which organic matter is 

converted to methane by bacteria is qualitatively shown in Figure 1, and involves the 

breakdown of organic matter along two different paths, and different bacteria perform 

each of the three different steps. The production of CH4 via CO2 reduction accounts for 

approximately 30% of the production in anoxic soils and sediments (acetate fermentation 

accounts for the remaining 70%), and nearly 100% of the production from animals 
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(Boone, 2000). There are two major factors that determine the isotopic signature of 

biological sources: (1) enzymatic reactions tend to be faster for the lighter isotopes 

(higher reaction rate constant), and therefore produce CH4 that is depleted (more negative 

δ13C) than its reactants, and (2) the δ13C of the organic matter and other reactants (Boone, 

2000) which are used to produce CH4. Organic matter will be depleted with respect to the 

standard (geologic) carbon, with δ13C ranging from -35‰ to -10‰. The methanogenesis 

process further reduces the δ13C, giving biogenic source δ13C values in the range -70‰ to 

-45‰ (Boone, 2000; Tyler, 1991). 

For bacterial sources the δD depends on the pathway that generates the CH4. For 

CO2 reduction, the H (or D) atoms come from H2O, and therefore δD depends on the KIE 

for the reduction reaction and the δD of the reacted H2O. For acetate fermentation, the 

methyl (CH3) remains intact, and therefore only 25% may be directly related to the δD in 

the formation H2O (Whiticar, 1999). However, one expects the organic matter itself to 

have a δD related to the reacted H2O as well. 
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Figure 1 Diagram depicting the different microbial 
processes for converting organic matter to CH4 (adapted 
from Boone, 2000). 

 

Thermogenic methane sources (fossil fuel activities including natural gas losses, 

oil drilling, and coal processing) and biomass burning are the next major sources of CH4. 

Similar to the discussion above, the isotopic signature of the fossil fuels and biomass 

burning will be depleted with respect to the geologic δ13C, since they are derived from 

organic matter, with values ranging from -45‰ to -20‰. The significant depletion 

evident in the δD (-250‰ to -100‰) of these thermogenic sources from their organic 

origins has been attributed for fossil CH4 coming into hydrogen exchange equilibrium 

during the conversion from organic material to CH4 (Schoell, 1980). In addition to these 

major groups of sources, there are also minor contributions from oceans (δ13C = -40‰, 
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δD =-220‰) and methane clathrate hydrates (δ13C = -52‰, δD =-240‰) (Tyler et.al., 

2007; Whiticar, 2000; Reeburgh, 2003). 

A useful way of visualizing the isotopic signatures is to plot both the δ13C and δD 

simultaneously, as shown in Figure 2. This highlights the separation between the different 

sources, as well as a comparison to the current measured background levels. CH4 emitted 

from the various sources have distinctive isotope ratios, which are significantly different 

from the background atmosphere. In fact, looking at the mass weighted average of the 

source isotopic signatures (shown in Figure 2), it is apparent that the ambient isotope 

ratio (also shown in Figure 2) cannot be achieved solely through direct mixing of the 

sources. The isotope effects of the CH4 sinks play a significant role in moving from 

source to background levels (Whiticar, 2000).  



 10 

 

Figure 2 Isotopic signatures of methane sources listed in Table 1. The anthropogenic 
sources (fossil fuel, biomass burning, and landfills) are discernible from the natural 
sources and the ambient background. The size of the circle indicates the emission 
strength (Tg/yr) of individual sources. Data taken from (Tyler et.al., 2007) and 
supplemented (grayed values in table) by (Whiticar, 2000). For reference, the weighted 
average of the sources and the background atmosphere are also shown. 

I.4  CH4 sinks and their isotopic effects 

 According to their assessment in 2007, the IPCC reports that there is currently 

only a +1 Tg/yr difference (imbalance) between CH4 source and sinks, and the major CH4 

sink (more than 70%) is the reaction with OH in the troposphere (see reaction R1). The 

remaining sinks of atmospheric CH4 are (a) methanotrophic bacteria which aerobically 

oxidize CH4 in oxic soils (in forest areas and grasslands, for example), and (b) transport 

to the stratosphere and subsequent reactions with OH, Cl (reaction R2), and O(1D) 

(reaction R3). 
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€ 

CH4 +OH→CH3 +H2O  (R1) 

 

€ 

Cl+CH4 →HCl+CH3  (R2) 

 

€ 

O 1D( ) +  CH4 →  CH3 +  OH  (R3) 

 

The kinetic isotope effect (KIE), α, is defined as the ratio of the reaction rate coefficients 

for the abundant isotope to the rare isotope. These effects are dominated by mass-

dependent isotope fractionation, in which the lighter isotope reacts faster (has a higher 

rate constant) than the heavier isotope, and therefore generally α > 1, which leaves the 

remaining CH4 less depleted (higher delta = more enriched). Thus, in general the 

enrichment process in the oxidation of CH4 opposes the depletion of the production cycle, 

as one might expect. The actual fractionation factors for each process are difficult to 

determine accurately, and small uncertainties have a significant impact on the 

interpretation of source and sink effects. More detailed laboratory studies of the KIEs are 

necessary to more fully characterize the effect of the sinks on atmospheric δ13C and δD. 

For the three oxidation reactions given above, the best estimates for the sink effects on 

CH4 are shown in Table 2. The amount of CH4 removed by each process is also shown. 

The loss to the stratosphere is the amount of CH4 transported across the tropopause (one-

way transport). 
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Table 2 Kinetic Isotope effects for the various CH4 sinks in the troposphere and stratosphere. The strengths 
of each sink is also included, as well as references for each value. Significant differences in the KIEs from 
different sources are evident. 

 

CH4 Sink 

Strength, 

Tg/yr 

(IPCC-2007) 

€ 

αC =
k 12C
k 13C

 

€ 

αH =
kH
kD

 
 

KIE Reference 

Losses in Troposphere 

€ 

CH4 +OH→CH3 +H2O  
 

428-511 

1.0039±0.0004 

1.0054±0.0009 

1.294±0.018 

 

1.25± 

Saueressig et.al., 2001 

Cantrel et.al. 1990 

Gierczak, 1997 

     

 Aerobic Microbial 

oxidation (forest and 

grassland soils) 

 

 

26-34 

1.022±0.004 

1.022 and 1.025 

1.0181±0.0004 

1.0173±0.001 

 

 

1.099±0.03 

1.066±0.007 

Tyler, et.al., 1995 

Snover, et.al., 2000 

Snover and Quay, 1999 

Loss to Stratosphere         30-45  

€ 

CH4 +OH→CH3 +H2O  

 1.0039±0.0004 

1.0054±0.0009 

1.294±0.018 Saueressig et.al., 2001 

Cantrel et.al. 1990 

€ 

Cl+CH4 →HCl+CH3   1.0621 ± 0.0004 

1.066 ± 0.002 

 

1.474±0.026 

 

1.508±0.041 

Tyler, et.al., 2000 

Saueressig, et.al., 1995 

Saueressig, et.al., 1996 

€ 

O 1D( ) +CH4 →CH3 +OH
 

 
1.013 1.06 Saueressig, et.al., 2001 

 

I.5  Conventional isotopic analysis 

Conventional isotopic ratio measurements of CH4 are made on specially designed 

isotope ratio mass spectrometers (IRMS). The highest precision δ13C and δD 
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measurements reported to date are ± .04 ‰ and ±1‰ (1σ) (Rice et.al., 2001). This level 

of precision is sufficient to allow tracking of isotopic ratio changes in the “background” 

ambient atmosphere (i.e., far away from sources) Variations in δ13C and δD, as measured 

by Tyler et.al. (2007) show an approximate amplitude of 0.5‰ and 15 ‰, respectively 

and inter-hemispheric variations of 0.2‰ and 10‰, respectively (Quay, 1999). Modern 

state-of-the-art measurements of atmospheric CH4 use gas chromatography/isotope ratio 

mass spectrometry (GC/IRMS) on 50-100 ml (STP) whole air grab samples and take 20-

30 min per analysis (Rice et.al., 2001). These measurements, however, currently require 

on-line sample preparation and large expensive laboratory-based instrumentation. Due to 

significant power requirements, size, and weight of IRMS instruments, field-based 

measurements are impractical using this methodology. 

 

I.6  Spectroscopic techniques for isotopic analysis 

Spectroscopic techniques show promise for providing true in-situ measurements 

with little sample preparation and faster analyses. Spectroscopic measurement of the CH4 

isotope ratio using various types of absorption techniques began in the 1990’s. CH4 has 

fundamental vibrational modes in the 3.3 µm (ν3=3019 cm-1) and 7.6 µm (ν4=1311 cm-1) 

mid infrared (IR) regions, and much of the work was performed in these regions. There 

are also CH4 vibrational overtones of ν2 + 2ν3 ~7500 cm-1 and 2ν3 ~6000 cm-1 in the near 

IR (1.2-1.7 µm), but the absorption in this region is orders of magnitude lower than the 

fundamental modes (Hippler and Quack, 2002; Rothman, 2004). Since different 

isotopologues of CH4 will absorb at different frequencies, due to mass effects on the ro-
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vibrational modes, a determination of the quantities of 13CH4, CH3D, and CH4 can be 

made, and the isotopic ratios can be calculated. However, the precision of recent 

spectroscopic measurements of isotope ratios at background CH4 levels was poor for 

δ13C-CH4 (±11‰), and δD-CH4 measurements have only been done on pure CH4 samples 

or pre-concentrated samples to achieve reasonable precision. Such data is not sufficient to 

detect changes in ambient CH4 and would only roughly characterize sources. The 

following is a timeline of the research on this subject: 

   

1992:  Webster and May (1992) used a tunable diode laser absorption spectrometer 

(TDLAS) system, known as the Balloon-borne Laser In Situ Sensor (BLISS), to 

make in-situ stratospheric (altitude of 30-35 km) measurements of CH4, 13CH4 

(and thus δ13C), as well as N2O, and OC18O. Their system operated at 

wavelengths near the ν4 fundamental, used a long (200m) open path, and used 

frequency modulation combined with second harmonic detection. A reference cell 

of CH4 was used for wavelength calibration, and concentration was determined by 

comparison with published linestrengths. They measured a δ13C of -45‰ (close to 

the the tropospheric background of -47.2‰), but their precision was ±90‰ (at 

0.82 ppm CH4 concentration), making it inadequate for detecting changes in 

background stratospheric isotope ratios. 

1993:  The following year, a group at the Max Planck Institute measured δ13C using a 

liquid nitrogen-cooled Pb-salt TDLAS operating at the ν3 fundamental (tuning 

range ~0.2 cm-1), with a 36 cm single pass absorption cell operated at 23 torr, and 
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temperature controlled to within 0.1 K (Schupp et.al., 1993). They used three 

absorption cells to simultaneously measure the sample, an isotopic ratio standard, 

and pure 13CH4--allowing them to determine the sample spectra as a combination 

of the reference and the pure 13CH4. The laser was frequency modulated at 40 kHz 

and a lock-in amplifier used to obtain the 2nd harmonic (2f) signal. They achieved 

a precision of ±1‰ on samples with concentrations of 25,000 ppm. 

1994:  Bergamaschi et.al. (1994), from the same Max Planck Institute group improved 

the TDLAS system with a 1.5 m multi-pass White cell (213 m effective length) 

for the sample (but kept single pass cells for the reference gases). They also 

expanded their scope to include δD measurements using pure CH3D and a second 

Pb-salt TDLAS laser. The pressure and 12CH4 concentration of the sample cell 

was controlled automatically so that a consistent concentration was maintained 

(controlled by the addition of N2). The same 2f technique was used with a 

modulation frequency of 10kHz. Both the precision and CH4 concentration limits 

were improved. The new system achieved a precision of ±0.44‰ for δ13C (CH4 

concentration in the cell was 50 ppm) and ±5.1‰ for δD (CH4 concentration in 

the cell was 2000 ppm).  

1997:  Waltman et.al., (1997) consisting of joint work between NIST and the Rice 

Quantum Institute at Rice University improved on Webster and May’s ambient 

level measurements with a precision of ±44 ‰ (factor of two better), and claimed 

their precision would be on the same order (±1‰) as Bergamaschi et.al. at 

comparable concentrations. Their method also involved a multipass cell (18 m 
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path length) and used a difference-frequency generation scheme with a 806 nm 

grating-tuned (e.g., Littman configuration) extended cavity diode laser (ECDL) 

and a Nd:YAG providing 1064 nm wavelength. With this configuration they were 

able to generate 1 µW of power at the desired wavenumber (3019 cm-1, 

corresponding to ~3.3 µm), sweeping over a 10 GHz span. 

1999:  Furthering the work at the Rice Quantum Institute, A. A. Kosterev used a 

cryogenically cooled mid-infrared (8.1 µm) quantum cascade laser to measure 

CH4, 13CH4, and CH3D lines within a 3 cm-1 span (laser current scanning) in 

combination with a 43 cm absorption cell. Their detection limit on CH4 

concentration was approximately 0.5 ppm. For their isotope ratio measurements 

they used 16.9 torr of CH4. They do not provide precision values for their isotope 

ratio measurements, and were only able to obtain a δ13C value relative to the 

HITRAN data since they had no independent measurements for the isotope ratio. 

Due to the limitations of the wavelength of the laser, they could not tune to the 

maximum intensity CH4 lines, and had to use lines that were approximately 1/6 of 

that intensity. 

2000:  Bergamaschi and others at the Max Planck Institute used their multi-pass cell 

TDLAS instrument developed in 1993-1994 to make long term (2 years) 

measurements of δD trends at the Global Atmospheric Watch station at Izaña, 

Tenerife. Precise measurement of δD using their system required concentrations 

of approximately 3000 ppm, and therefore collection of large volumes of air 

samples followed by preconcentration was necessary. The collection system 
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involved: (1) pressurization of ambient air (heated +5-10K to reduce 

condensation) accumulated during the nighttime hours over a two-week period; 

(2) a drying step (at 40°C to further reduce condensation); (3) expansion of dry 

sample air to STP into two separate 500 L sample bags; (4) at the end of the two-

week period, the samples were compressed into aluminum cylinders to a final 

pressure of ~1700 psig. Prior to the preconcentration, several traps were used to 

remove contaminant molecules. The preconcentration involved two stages of 

adsorption of CH4 onto activated charcoal at 77K followed by desorption at 373K 

(stage 1) and ~300K (stage 2). Their overall precision (including the errors due to 

the preconcentration stages) was reported as ±1.0‰.  

2001:  The highest (reported) precision isotope ratio measurements at ambient 

concentrations for CH4 using spectroscopic techniques were made by Dahnke, 

et.al. (2001), at the Universität Düsseldorf. Their system was the first to 

implement the cavity ringdown technique, which is the approach we are also 

using, as explained in Section II. Their measurements were taken on natural air 

samples (ambient concentration measured to be 1.921 ± 0.011 ppm), using a CO 

overtone laser electro-optically modulated to generate 10 GHz sidebands with 50 

µW of power in the 3.3 µm CH4 absorption region, and a 50 cm cavity. Their 

isotope ratio precision was ±11‰, a factor of four (4) improvement over that 

reported by Waltman four years earlier. 

2001:  During the same yearm Uehara, et.al. (2001), at Keio University achieved high 

precision (±0.3‰) δ13C  measurements on pure CH4 samples. A tunable 
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semiconductor laser near 1.66 µm (locked using a CH4 reference cell and a 

second harmonic stabilization technique) and a multi-pass absorption cell system 

with a long (100x) pathlength for the 13CH4 absorption wavelength, compensated 

for the lower relative concentration (~1% of 12CH4). This enabled them to use the 

same vibrational mode for both isotopologues, significantly reducing the 

temperature effects on the relative intensities that occur when the absorption lines 

have different ground states. Finally, they claim their precision could still be 

maintained at concentrations as low as 1% CH4 by increasing the pressure in the 

cell assuming no interference from other molecules. Their measurement results 

were obtained using 2 calibrated standards with known δ13C  (from GC-MS 

measurements), one standard was used as a initial reference, followed by two 

subsequent measurements of each standard.  

2002:  Furthering the Uehara work, Yamamoto and Yoshida (2002) improved the 

precision on pure samples by including measurements of CH3D concentration 

(and therefore δD). The improved precision was due to the removal of CH3D 

interference on the 13CH4 measurement (and vice versa). This required the use of 

a new cell with longer path length. The final precision on pure CH4 was ±0.027‰ 

for δ13C and ±0.7‰ for δD. In this case, the precision was made using an initial 

measurement of 2 standards to obtain the correction coefficients, followed by 3-5 

measurements of an unknown. 

2006:  NOAA’s Earth System Research Laboratory, NASA’s Jet Propulsion Laboratory, 

Brazil’s Instituto Nacional de Metrologica, and NIST (Trudeau, et.al., 2006) used 
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difference frequency generation similar to that of Waltman et.al. (1997). In 

addition, they made use of a cryogenic column preconcentration process to 

measure ambient CH4 levels, with a concentration enrichment factor of 2540 (CH4 

concentration in the instrument is 4480 ppm) for δ13C measurements, and 540 

times (CH4 concentration at the instrument is 1020 ppm) for δD measurements. 

The precision of these measurements was reported as ±12‰ for both δ13C and δD. 

Carbon isotope measurement precision required the use of experimentally 

measured reference cell spectra (as opposed to HITRAN database reference) as 

part of the experiment in order to “correct for variations in instrument response.” 

The δD measurements did not use the reference cell, and therefore reference the 

average of all their samples to determine precision.   

2008:  Los Gatos Research, Inc. introduced a commercially available CH4 isotope ratio 

analyzer using an integrated cavity output spectroscopic technique in the near-IR 

region (1650 nm). According to the specification sheet, the system has a reported 

±1‰ precision for δ13C. Although the concentration requirements for that 

precision are ambiguous, the system requires CH4 concentrations in the range 

200-10,000 ppm, with a 10-second response time. The high concentration 

requirements limit the applicability of the system to high concentration sources 

such as hydrothermal vents. 
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I.7  Motivation 

A portable field-deployable instrument capable of detecting small isotopic ratio 

changes in the background atmosphere as well as near sources and sinks would enable 

unprecedented measurement campaign capabilities, by providing real-time in-situ CH4 

isotope measurements. In-situ measurements allow one to immediately detect changes in 

isotopic composition and collect data more intelligently. These measurements would also 

allow the tracking of isotopic ratio changes over time, to determine both seasonal changes 

and long-term trends, and by location to provide “maps” of CH4 isotopic ratios in the 

Earth’s atmosphere. Since the isotopic ratio indicates the relative effects of sources and 

sinks, it would provide a large amount of data to improve atmospheric models, and 

ultimately provide valuable information on their impact on the concentrations of CH4 in 

the atmosphere. Airborne measurement campaigns in the free troposphere and 

stratosphere (e.g., using NASA’s ER-2, Global-Hawk, Proteus, or weather balloons) 

would greatly expand our understanding of CH4, its sources and sinks, and its effect on 

the environment. Stratospheric isotope information, in particular, is currently limited due 

to the difficulty of obtaining air samples, but large-scale measurements would enable 

better understanding of the effect of stratospheric photochemistry on atmospheric CH4 

(Rice et.al., 2003). Of the above optical techniques, CRD (e.g., Dahnke, 2001) is one of 

the most promising in terms of sensitivity because (1) it is immune to amplitude noise of 

the laser, which limits the sensitivity of direct absorption techniques which must measure 

the input and ouput power of the sample cell, and (2) the high-finesse cavity generates a 

long effective path length (and therefore the number of molecules the photons can 
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interact with) which increases the absorption signal. While CRD has the potential to 

provide advances in instrumentation for isotopic ratio measurements, significant gains in 

precision must be made before it is useful. 
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II. Methods 

II.1 Experimental approach 

 CRD spectroscopy uses the exponential decay of light intensity emitted from a 

high finesse resonant cavity to measure the concentration of gases within the cavity, that 

absorb at the specific frequency of the circulating light. When the frequency of the laser 

matches a mode of the cavity, the light intensity inside the cavity (and therefore the signal 

from an output photodiode at the end of the cavity) increases. At a pre-selected threshold 

signal level, a feedback circuit shuts off the light going to the cavity, and this initiates the 

decay (ringdown) of the signal from within the cavity. The output signal S(t)—the small 

fraction transmitted by the output mirror—is proportional to the intensity within the 

cavity, and is given by:  

 ( ) teStS β−= 0  (3) 

 

Where S0 is the level of the detected signal at time t = 0, and β is the decay constant (1/τ, 

where τ is the ring-down time). β can be decomposed into β = βsample + β0, where βsample 

(1/τsample) is the contribution from the absorption strength of the sample, and β0 (1/τ0) is 

the background absorption of the light due to mirror transmission, absorption, and 

scattering, background gases, etc. In theory, β0 is constant and can be obtained by 

measuring a ring-down without the sample of interest in the cavity. Subtracting out β0 
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leaves βsample from which we determine the sample concentration using the Beer-Lambert 

Law. Typical signal decays corresponding to β0 and βsample (13CH4 in this example) are 

shown in Figure 3. Scanning in frequency and determining each decay constant results in 

an absorption spectrum. Absorption strengths can be obtained by matching absorption to 

a database such as HITRAN (Rothman et.al., 2005), but empirical measurements using 

calibration standards of known isotopic ratio improve the accuracy and precision of the 

measurements. Isotopic ratio measurements only require a stable relative measurement of 

the concentrations of the isotopologues, but CRDS allows us to obtain δ13C, δD, and CH4 

concentration with the same instrument. For our initial studies we focused on δ13C over 

δD due to larger absorption signals resulting from a higher abundance of 13C (~1%) 

relative to D (~0.08%).  

 

Figure 3 Cavity ringdown traces for a baseline and with an absorbing sample. The 
exponential fits are obtained using the Fast Fourier Transform components (see 
Equation (4)). 
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While previous efforts at spectroscopy-based isotopic ratio measurements focused 

mainly on the mid-IR region spectrum for CH4 (3000-4000 nm, or 2500-3333 cm-1), we 

used the near-IR region (1280-1340 nm, or 7463-7812 cm-1). This region is attractive 

from a design standpoint because of the availability of low-cost, robust, and high-

resolution tunable diode lasers. It is also attractive from a spectroscopic standpoint 

because the near-IR is a region with a large number of spectroscopic lines for CH4, but a 

small number for other trace atmospheric gases. This is a region of overtone vibrational 

frequencies, specifically the ν2 + 2ν3 overtone. In this region the spectral line intensities 

of the major (12CH4) lines are of the order 10-22 cm-1/(molec/cm2). Figure 4 shows a 

simulation of the spectra for ambient CH4 and other common atmospheric gases using 

information from the HITRAN database. We can further reduce contamination effects 

(due to H2O, CO2, O3, other hydrocarbons, or atmospheric particulate matter) using low 

temperature traps, chemical adsorbents, and/or filters to pretreat the air sample, if 

required. 
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Figure 4: Simulation of the pressure-broadened (760 torr) absorption spectra of the 
ambient atmosphere (with 1ppm H2O and all others at their ambient concentrations) using 
the 2004 HITRAN database. Green: CH4 (1.8 ppm), blue: H2O (1ppm), red: CO2 (383 
ppm). Other potenial interferers shown in the legend are too small to be visible. This plot 
depicts several possible regions where there will not be interference from other gases.  
 

II.2 Experimental setup 

 
The following subsections describe the individual components of our laboratory 

setup. These components can be seen in the system diagram in Figure 5, and also in the 

photograph in Figure 6. 

Cell/Cavity: The absorption cell (L = 85 cm), consists of a glass tube with inlet 

and outlet ports, sealed with o-ring compression fittings. Two 2-¾” stainless steel flanges 

on either end hold the mirrors, with approximately 9 cm of flexible vacuum hose between 

the mirrors and the glass cell. Each flange/mirror assembly is held in a 2-axis optical 

mount to enable alignment of the mirrors. The cavity mirrors are 1” concave mirrors 

(Newport SuperMirrorsTM, Part #:10CV00SR.60F: nominal reflectivity: R>99.97%; 
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transmission: T<300 ppm; loss:  <100 ppm, rcurv = 1 m, = 1320 nm). Baseline noise 

levels in our experiments show a typical cavity loss of 200 ppm/pass, which is less than 

the total expected mirror losses (800 ppm), and implies a cavity finesse of F >30,000. 

The free spectral range (spacing between cavity TEM00 modes) of a resonant cavity is 

€ 

FSR = c 2L( ), so our cavity FSR = 175 MHz (0.0058 cm-1). This determines the 

minimum step size of our system, assuming only the TEM00 mode is excited. 

Cavity Tuning: To give truly continuous laser scanning, one of the flange/mirror 

mount assemblies is attached to a piezo-electric transducer (PZT) translation stage,  

allowing the cavity length to be modulated over one FSR. Modulating the cavity length 

ensures that the cavity and laser are mode-matched to achieve resonance at each 

frequency step. The PZT stage is controlled using a triangle wave from a frequency 

generator, with a typical frequency of 12 Hz. 

Laser: The laser source (New Focus Velocity Tunable Diode Laser, Model 6324), 

provides a coarse tunable range of 1280-1340 nm (0.01 nm resolution), and a fine tuning 

range of ±0.2 nm (~10 MHz resolution). The fine-tuning is accomplished using a PZT 

inside of the laser head that changes the mirror tilt angle (a modified Littman-Metcalf 

configuration), which tunes the laser by smaller increments than the coarse screw drive 

provides. The resolution is determined by the noise of the applied tuning voltage, with a 

minimum precision of about 10 MHz. The laser is linearly polarized (900:1 polarization 

ratio), and has an elliptical beamshape (approximately 3 mm:1 mm at the laser exit 

aperture). 
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 Beam Shaping: Since the beam profile of the laser is not Gaussian, we focus the 

beam onto a 100-micron pinhole and re-collimate to improve beam quality, which 

improves the efficiency of coupling to the cavity. 

Laser Tuning: The laser PZT is fine tuned using a Measurement Computing USB-

1208FS DAQ module connected to the system computer. Noise levels on this voltage 

output limited our frequency tuning to approximately 75 MHz. The coarse tuning is 

performed through GPIB control of the laser. 

Frequency Measurement (Etalon and Detector #2): Due to nonlinearities in the 

fine tuning of the laser, it is necessary to accurately determine the frequency scale. In our 

setup we use an etalon (FSR = 0.222 cm-1, or 6.66 GHz) and a second photodetector 

(Thorlabs PDA255). Details of this setup and procedure are given in the analysis section.  

HeNe Laser (Alignment): To aid the alignment with the cavity, a HeNe laser 

(Uniphase, Model 1011) is co-aligned with the IR TDL beam using an optical flat. 

Detector #1: The output beam of the cavity is focused onto a New Focus Model 

1811 High Speed Photoreceiver, which has a conversion gain of 2.4x104 V/W, bandwidth 

of 10 MHz, a noise voltage of 5.9 mVrms (total noise equivalent power = 0.246 µWrms), 

and has a maximum (linear) input power of 53 µW. 

Acousto-Optic Modulator (AOM): In order to record the exponential decay from 

the cavity output, it is necessary to shut off the beam. A Brimrose Model IPM-400-100-

1320 acousto-optic (amplitude) modulator is used. The modulator acts as a switch and 

attenuates the beam by >15 dB—enough to remove any contribution to the cavity output. 

The AOM driver (Brimrose FFA-400-B2(400)-F1.2) has a rise time of 3.5 ns, which is 
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four orders of magnitude faster than the time constant of the cavity (~15-20 µs). The 

AOM is controlled via a triggering circuit, which compares the cavity output signal to a 

threshold. 

PC (Data Acquistion and Control): The exponential decay signal is captured using 

a data acquisition card (Gage Applied Sciences, Inc., Model CS8012) mounted in a PC. 

Custom Labview code collects and processes the cavity output signal, controls and 

monitors the laser, captures the etalon signal for frequency calibration, and saves the data 

files for post-processing in Excel and Matlab. 

Gas flow System: For system testing, CH4, 13CH4, and 12CH4 concentrations in the 

cell are controlled by the flow rates of the various prepared samples used. Three Tylan 

mass flow controllers, with different flow ranges, are used: (1) a 0-500 sccm for High 

Purity N2 for dilution, (2) 0-300 sccm for controlling a diluted (with N2) CH4 standard, 

and (3) 0-10 sccm for a diluted 13CH4 standard, prepared from a 99% 13CH4 standard 

(Sigma-Aldrich). Enrichment of CH4 is performed by adding (3) to (2), with relative flow 

rates adjusted to get the desired enrichment. Total CH4 concentration can be adjusted by 

adding N2 to the system. The cell pressure, measured using a Teledyne-Hastings Model 

2002 Dual Sensor Vacuum Gauge, is adjusted using a valve in the path to the Edwards 

two-stage high vacuum rotary vane Pump. 
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Figure 5 Schematic of our current Cavity Ring Down setup. Discussion of 
components of CRD system can be found in the text. 
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Figure 6 Laboratory setup used for initial studies on the CRD spectroscopy isotope ratio 
measurements. Photodetector is in the lower left, laser and AOM are in the upper right. 
Extraneous portions are grayed out for clarity. 

 

II.3 Obtaining absorption spectra 

To determine the decay time constant of the ringdown, we have implemented a 

Discrete Fourier Transform (DFT)-based algorithm (Mazurenka, 2005; Everest and 

Atkinson, 2008), because the exponential decay constant can be determined (see 

Equation (4)) from the ratio of the real to the imaginary part of any non-zero frequency 

component in the Fourier Transform, X(ω). For the best estimate of β it is desirable to use 

the component with the maximum SNR, which is typically the first frequency 

component. When a DFT is used on real (discrete) data, Equation (4) is an approximation 
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(Everest and Atkinson, 2008), but is sufficiently accurate (<0.1% error) for our current 

study. 

 

€ 

β = −ω
Re X ω( )( )
Im X ω( )( )

  (4) 

 

To determine a decay constant, each ringdown is sampled at 50 MSPS for 4096 

points. This is sufficient length (102.4 µs) to capture the entire ringdown event since it is 

greater than 5 of the (empty) cavity time constants, τ0. Each data point on the absorption 

spectrum is then based on an average of 32 of these decay constants.  Figure 7 and Figure 

8 show our measured spectra for standard CH4 and 13CH4 in the near-IR region for two 

sets of peaks. Our data compares very well with the simulated spectra using the HITRAN 

database (shown in red).  

The HITRAN database does not contain spectral lines for the isotopologues of 

CH4 in the near-IR region. In order to identify these lines, we use 99% pure 13CH4 diluted 

in N2 and/or zero-grade air. Because sweeping the entire spectral region in high 

resolution would take an inordinate amount of time, we used the 12CH4 lines, the 

fundamental vibrational frequencies and transition assignments (Hippler and Quack, 

2002), to calculate the theoretical vibrational and rotational frequency changes due to 

isotopic substitution (Herzberg, 1945), and therefore predicted the locations for the 13CH4 

peaks. This approach is necessary since even the most advanced spectroscopic models 

(e.g., SpecView from The Ohio State University, and STDS from Institut Carnot de 

Bourgogne) are not capable of simulating lines in this spectral region. We can calculate 
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the energy levels of the anharmonic oscillator to first order using the correction factors, 

which have been estimated for CH4, and the following equation (Califano, 1976): 

The correction factors, xij, represent the interaction between the ith and jth vibrational 

modes, and can be conveniently expressed as elements of a (symmetric) matrix: 

  

€ 

 x =

−64.6 0 −65.0 0
0 0 −15.0 −11.2

−65.0 −15.0 −17.5 −12.0
0 −11.2 −12.0 −6.0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
 

 Where the values are those reported by Califano (1976). h is Planck’s constant, c 

is the speed of light, ωi, vi, and di are the harmonic vibration frequency, quantum number, 

and degeneracy for the ith vibration mode, respectively. The values for 12CH4 and 13CH4 

are listed in Table 3, where the ωi are based on the results from Boudon et.al. (2006). We 

can then calculate the energies for the ground state E(0,0,0,0) and excited state E(0,1,2,0) 

using Equation (11), and the wavenumber (in cm-1) for the overtone is then given by 

€ 

˜ ν =
1
hc

E 0,0,0,0( ) − E 0,1,2,0( )[ ]. 

 

Table 3 Fundamental modes of 12CH4 and 13CH4 

 

 

 
 (5) 
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Our calculations predict a shift of -19.8 cm-1 (+3.5 nm) for the ν2 + 2ν3 overtone 

due to the substitution of 13C for 12C, and assuming that to first order the entire ro-

vibrational spectrum shifts by that amount. Therefore we scanned the regions 15-20 cm-1 

higher than the two largest peaks in the 12CH4 spectra (1331 nm and 1324 nm). Results of 

this search are also shown in Figure 7(b) and Figure 8(b) where prominent 13CH4 lines 

were found 17.0 cm-1 (3.0 nm) above their respective 12CH4 lines, which compares well 

with our estimate (16% error). Further theoretical study to address additional minor 

isotopic effects should help to resolve the 0.45 nm discrepancy. Note that the theoretical 

lines in Figure 7(b) and Figure 8(b) are taken from the HITRAN database, and are 

currently assigned to 12CH4. Therefore, one additional product of this work is the 

identification of 13CH4 lines for HITRAN. Since the current HITRAN data was obtained 

using a sample of “standard” CH4 (Brown, 2005) with an unknown isotopic ratio, the 

exact line intensities for the 13CH4 lines need to be further verified, but agree with the 

expected ~1.1% relative 13CH4 concentration. This same technique will be applied to 

obtaining CH3D lines, although the change in the symmetry of the molecule due to a 

single H to D substitution complicates the calculation of the isotopic shifts. 
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Figure 7 (a) The largest 12CH4 spectra for the ν2 + 2ν3 overtone and (b) the 
corresponding and 13CH4 spectra isotopically shifted by 17 cm-1. Blue: 
Experimental data from CRD system, Red: Theoretical spectra using the 
HITRAN database. The 13CH4 spectra is complicated by overlapping 12CH4 lines. 

 

 

(a) 12CH4 

(b)13CH4 
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Figure 8 Spectra for (a) 20 ppm 12CH4  and (b) 13CH4 for a high absorption triplet 
showing an isotopic shift of (17 cm-1). Blue: Measured data for 20 ppm CH4 and  using 
99% 13CH4; Red: Pressure broadened lines from the HITRAN database. The additional 
peak in (b) at 7535.87 cm-1 is a weaker 12CH4 line from the database, which enables us to 
make isotope ratio measurements using a single high resolution scan of the CRDS (~0.8 
cm-1). 

 

(a) 12CH4 

     (b) 13CH4 
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The highest intensity peaks shown in Figure 7 are about a factor of two times larger than 

those in Figure 8, but are less suitable for accurate isotope ratio measurement due to the 

large number of 12CH4 and 13CH4 which overlap. This makes curve fitting and individual 

absorption estimates more difficult. On the other hand the peaks shown in Figure 8 show 

significant separation, and there are three 13CH4 peaks and an isolated 12CH4 peak. This 

arrangement makes it much simpler to determine the absorption of 13CH4 and 12CH4 

individually. A large water peak is also observed, but it is possible to reduce that 

significantly using an H2O trap into the gas inlet system. Difficulties due to this H2O peak 

will be discussed in the Results section. 

 

II.4 Isotope ratio sample generation 

 Having found suitable 13CH4 lines, it was then possible to conduct preliminary 

isotope ratio measurements on a standard CH4 and enriched samples. Mixtures of ultra 

high purity CH4 (Matheson Tri-Gas) and 99% 13CH4 (Sigma-Aldrich) were prepared, 

with concentrations measured on a GC-FID system operated by the Khalil laboratory here 

at Portland State University. The CH4 and 13CH4 mixtures had measured concentrations 

of [CH4]STD,0 = 1987 ± 4 ppm, and [13CH4]STD,1 = 43.6 ± 0.2 ppm. Because this method 

could only increase the concentration of 13CH4, our experiments only represent isotopic 

enrichment starting at the CH4 isotope ratio in our standard which was measured to be -

38.9‰ using an IRMS. Furthermore, since our system is a dynamic flow system, rather 

than a static cell design, the ratios of the CH4 and 13CH4 mixtures are controlled using 

mass flow controllers, which were calibrated using an Alltech Digital Flow Check meter 
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(Model DFC-HR). The cell inlet and outlet flows were set to obtain a pressure of 110 torr 

inside the cell for the baseline CH4 measurement (the addition of 13CH4 increased the 

pressure slightly due to additional inflow, but the outflow was not adjusted). 13CH4 

enrichments of 1-10% were performed (0.2-2 ppm additional 13CH4), which correspond 

to a δ13C range of approximately -40‰ to +30‰. 

The percent enrichments are calculated by assuming that under steady state 

conditions the ratios of partial pressures of the gas standards are equivalent to the flow 

rates into the cell. Starting with the δ13C of the standard (δ13CSTD,0), we obtain the ratio of 

the concentrations of 13CH4 and 12CH4 for the standard, Δ13CSTD,0:  

 

where [13CH4]STD,0 and [12CH4]STD,0 are the concentrations of 13CH4 and 12CH4 for our 

standard, respectively. These can then be calculated for the standard: 

  

With a δ13CSTD,0 = -38.9‰ and a PDB standard 13C ratio of 0.0112372, we obtain 

[13CH4]STD,0 = 21.28 ppm and [12CH4]STD,0 = 1970.72 ppm. The concentrations of 12CH4 

and 13CH4 inside the cell ([12CH4]cell and [13CH4]cell, respectively) are then calculated 

using the relative flow rates of the standards: 

  

 (6) 

  
 (7) 
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   (8) 

and  

   (9) 

Where fCH4 and f13CH4 are the flow rates for the prepared CH4 and 13CH4 gas standards, 

respectively. The percent enrichment, E, is then: 

   (10) 

and, finally, the predicted isotope ratio in the cell, δ13Ccell, is: 

  
 (11) 

The calculations of predicted carbon isotope ratios, using Equation (11), for the two data 

sets presented in this paper are shown in Table 4. 

 

Table 4 Expected δ13C for experimental conditions. These are calculated using the equations in the text, 
based on the flow rates, isotopic composition and concentrations of the CH4 standards. 
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II.5 Frequency calibrations 

 To obtain the high-resolution absorption spectra for these experiments, we use the 

fine-tuning mode of the TDL laser. Unfortunately, this tuning is not linear with the 

applied voltage, and does not remain constant. It is more linear in the middle of the 

tuning range, and becomes less so as you approach the extremes of the tuning range. 

Thus it is desirable to center the spectra in the tuning range. However, due to longer-term 

drifts in the laser wavelength, over the course of several gas samples (several hours), the 

spectra will tend to drift towards one extreme or another. 

External calibration of the frequency is therefore required. In our configuration 

we use an etalon with a FSR of 

€ 

Δ ˜ ν FSR= 0.222 cm-1 (6.66 GHz). This means 38 of our 

cavity modes are within one FSR of the etalon. The etalon is uncoated glass, giving it a 

reflectivity of R ≈ 3.5% (Best fit estimates R = 3.378%). At this low reflectivity the 

etalon exhibits a nearly sinusoidal shape for the output amplitude, Aet, but the exact form 

is well known (Tammela, 1997). The frequency scale for our scans, as a function of 

applied voltage, is obtained using a nonlinear fit, based on the theoretical etalon 

transmission function, to the etalon output: 

 

 

 

(12) 
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where 

€ 

ˆ A et is the estimate of the etalon output voltage, Aet, R is the reflectivity of the 

mirrors, Vapp is the voltage applied to the laser for frequency control, Δ

€ 

˜ ν FSR is the FSR of 

the etalon, O(Vapp) is a 2nd order polynomial (with coefficients ai) for the amplitude offset 

and laser power drift, 

€ 

˜ ν (Vapp) is a 5th order polynomial (with coefficients bi) for the 

frequency, and Aet,0 is a scaling factor. After the fit to the measured etalon output, the 

function 

€ 

˜ ν (Vapp) then provides the frequency scale for the acquired absorption spectrum. 

A comparison of the modeled etalon output, using Equation (12), and the 

measured etalon output using the frequency calibration 

€ 

˜ ν (Vapp )  is shown in Figure 9. In 

our experiments, the etalon output is measured prior to each ringdown (4096 points 

sampled at 25 ksps), and the frequency is calculated based on the average during all the 

ringdowns at that frequency setting. Known frequencies for the absorption peaks (from 

the HITRAN database, e.g.) can provide the absolute frequency reference; however, for 

our measurements, the exact location of the peaks is unimportant. 
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Figure 9 Etalon calibration results showing the corrected frequency (x-axis) and the 
modeled etalon output. Red, circles: measured etalon output is shown, blue modeled etalon 
output for R = 3.378%  

 

II.6 CH4 concentration determination 

For our initial study, in order to determine the relative concentrations of 12CH4 

and 13CH4, we fit a Lorentzian lineshape to the measured peaks (e.g., Figure 8) using a 

nonlinear fit routine written in Matlab (R2009a, V7.8, The Mathworks, Inc.). From the fit 

parameters we can immediately obtain a value that is proportional to the concentration, 

and can therefore accurately determine relative changes in concentration of the 

isotopologues. Following the HITRAN documentation (Rothman, 1996): 

 

€ 

Ae ˜ ν ( ) = Ae,pk
γ 2

γ 2 + ˜ ν − ˜ ν 0( )2 = Ae,pkπγ ⋅ f ˜ ν , ˜ ν 0( )

where :

f ˜ ν , ˜ ν 0( ) =
1
π

γ

γ 2 + ˜ ν − ˜ ν 0( )2 : Normalized Lorentz Lineshape function 1
cm-1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Ae ˜ ν ( ) : Absorbance (base e)

γ        :  Linewidth cm-1( )

 
(13) 
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€ 

f ˜ ν , ˜ ν 0( ) =
1
π

γ

γ 2 + ˜ ν − ˜ ν 0( )2

 

(14) 

Ae,pk is the peak absorbance of for that peak, 

€ 

˜ ν 0 is the wavenumber of the center of the 

peak (cm-1), Ae(

€ 

˜ ν ) is the absorbance at wavenumber 

€ 

˜ ν , and γ is the linewidth (half-width 

at half-maximum, in cm-1). 

€ 

f ˜ ν , ˜ ν 0( ) is the normalized Lorentz lineshape (1/cm-1), which 

has the property that it is unity at the peak, (i.e., 

€ 

f ˜ ν 0, ˜ ν 0( )  = 1). Equation (13) is used to 

find the parameters that minimize the mean-square error. Because of potential errors in 

our frequency scale, we calculate the error in both the frequency (using an inverse 

Lorenztian function) and the absorbance axes, as: 

 

€ 

MSE =
1
N

1
σA

2 Ae,i − ˆ A e,i( )
2

+
1
σν

2 ν e,i − ˆ ν e,i( )2⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

i=1

N

∑  
(15) 

 

€ 

ˆ ν e,i =ν0 ±
Ae,pkγ

2

Ae,i
− γ 2

 

(16) 

Where the data for the peak are the i=1..N points (

€ 

νe,i ,

€ 

Ae,i), 

€ 

ˆ A e,i  is the estimated 

absorbance at 

€ 

νe,i  using the Lorentizian function, 

€ 

ˆ ν e,i  is the estimated frequency for 

€ 

Ae,i  

using the inverse Lorentzian shown in Equation (16), and 

€ 

σA
2  and 

€ 

σν
2 are the variances of 

the absorbance and the frequency, respectively, which are used to normalize the error in 

each dimension. The fit parameters are the peak height (Ae,pk), the half-width at half-

maximum linewidth (γ), and the center frequency (ν0). The spectral line intensity, S, 

scaled by the concentration, c (molec/cm3), and the path length, L (cm), is equal to the 

integral of the Lorentzian, which is Ae,pkπγ, as shown in Equation (17).  
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It is possible to determine the concentration directly using the spectral line 

intensities from the HITRAN database—however our initial interest is only in changes 

from the standard, so that proportionality is sufficient. Moreover, without knowing the 

exact isotopic ratio of the CH4 used to obtain the HITRAN data, the true spectral line 

intensity of the 13CH4 lines we found cannot be accurately known. The fit algorithm is 

applied to each peak individually, treating everything else as the background. In this case 

the background consists of the contributions of the other peaks present in the spectra. 

Prior to fitting the peak of interest, the background peaks are also fit using a Lorentz 

lineshape function, and those portions below the peak of interest are subtracted. Once all 

the background peaks are removed, a final non-linear fit is performed on the peak of 

interest. This final fit involves varying each initial condition and selecting the parameters 

corresponding to minimum error. This helps to ensure our fit is not due to a local 

minimum near our initial condition.  

 

€ 

c LS( ) = Ae,pkπγ  (17) 
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III. Results and discussion 

Using the procedure described in the previous section, the concentration change 

of both 13CH4 and 12CH4 can be calculated. Figure 10 shows the results for a typical scan, 

which uses the data from 17 Oct with a predicted enrichment of 0.99% to a δ13C of -

37.9‰ (See Table 4). A scan usually requires about 45 minutes to acquire approximately 

250 data points, including system configuration. The green circles in the figure represent 

the measured absorbance data for this scan. Peak A (the 13CH4 peak, which is the same as 

Peak A shown in Figure 8(b)) is the peak of interest for which the background will be 

subtracted. First, an estimate of Peak A is subtracted to leave the background peaks. The 

data points for one background peak are selected and a Lorentzian fit is subtracted from 

the raw data. This process is repeated until all background peaks are removed. In the 

figure, the black dashed line represents the total background. The non-linear portion 

below Peak A shows the advantage of this background subtraction to a more typical 

linear baseline subtraction as it will produce a more symmetric resultant lineshape. After 

the background is subtracted a final Lorentzian fit is applied to Peak A, and consists of 

the 14 data points shown with red circles). The final best fit is shown as the red solid line, 

and its parameters are used to determine the concentration using Equation (17). The MSE 

for the fit from Equation (15) is 0.118, the mean square error for just the absorbance (y-

axis only) is 4.5e-13, and the area under the Lorenztian curve (proportional to 

concentration) is 1.005e-6. If we assume a near-background isotope ratio of 0.011 for the 

HITRAN lines, the true spectral line intensity is 1.69e-22 cm-1/(molec/cm2). Using this 
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intensity, pressure, cell length, and area under the curve we obtain a concentration of 

13CH4 of 20.6 ppm, which agrees with the predicted concentration in Table 4 of 21.2 

ppm. The blue line in Figure 10 is the sum of the background fit and the peak fit which, 

as expected, matches closely with the measured data.  

 

 

Figure 10 A typical scan showing Lorentzian line fit with background subtraction for 
the 13CH4 peak (Peak A). Green circles: Measured CRD spectra; Black, dashed: 
Background for 13CH4 peak; Red dash: Lorentzian fit to 13CH4 peak (Peak A) with 
background subtracted; Blue: combination of Lorentzian fit and background. Peak C is 
an H2O line which makes a significant contribution to the background of the 12CH4 
peak (Peak B). 

 

In our experiment there were contributions from an H2O line (Peak C) that, due to 

a small leak on the inlet system, varied significantly over the course of the experiment. 

We could not correct for all of the H2O interference on the 12CH4 peak and this caused 

A.13CH4 

Peaks 
B.12CH4 

Peaks 

C. H2O 

Peaks 
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the 12CH4 peak to fluctuate more than expected. Temperature effects may also have 

contributed to these variations, and will be discussed below. Therefore we made the 

assumption that the 12CH4 concentration was constant, and considered only the change in 

the 13CH4 peak (from our un-enriched CH4 standard) when calculating δ13C.  

We measured spectra for a each of the trials described in Table 4, plus a spectra of 

the unenriched standard for each day. Analysis similar to that shown in Figure 10 was 

repeated for each trial, and the δ13C for each trial was calculated. The results for both 

datasets are shown in Figure 11 and Figure 12. The plot of measured versus predicted 

δ13C shows high linearity, with R2 > 0.99 for both data sets. Thus, the system is linear 

over a δ13C range of ~90‰ which encompasses the range of isotopic values of CH4 

sources on Earth. The current precision of our measurements can be estimated by the 

standard error of the linear and results in a precision of ±3.9‰ and 5.6‰. Though 

insufficient to measure small changes in δ13C in the air, these results indicate that this 

approach could be useful for field measurements of CH4 sources where concentrations 

are well above ambient levels (e.g., hydrothermal systems, anoxic sediments). 
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Figure 11 δ13C enrichment results for 14 October 09 (details listed in Table 4), 
along with a linear best-fit. The best-fit line has a slope of 2.0, and an R2 = 0.996.   

 

 

Figure 12 δ13C results for 17-Oct (details listed in Table 4). The data point for 
1% enrichment was determined to be unreliable in its predicted δ13C of -30 ‰ 
(see text), and therefore was omitted for the linear fit. The best-fit line has a slope 
of 1.5 and an R2 = 0.991. 
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The results in Figure 11 and Figure 12 show that there are issues with the performance of 

the system. First, as previously mentioned, the 12CH4 line strength varied significantly, 

and we were not able to use it to calculate the 12CH4 concentration. Our data showed an 

inter-day difference of averages of 1.7%, normalized standard deviations in 12CH4 

intensity for the two days of 3.3% and 4.9%, and a change in the ratio of the baseline 

intensities for 13CH4 to 12CH4 of 5.3% between the two datasets. Also, the datasets exhibit 

significantly different slopes (1.5 for 17-October and 2.0 for 14-October) despite the fact 

that the experimental conditions (flow rates, cell pressure, and gas standards) were the 

same. These variations most likely resulted from (1) residual errors in frequency scaling 

between the data sets—which affect the linewidths used to calculate the line intensity 

using Equation (17), (2) shifts in the background decay constant, β0, which affects the 

baseline 13CH4 value used to calculate the δ13C, (3) errors in the flow rates for enrichment 

of the CH4, either through mass flow controller problems or a leak in the gas inlet system, 

(4) contaminant molecules such as H2O or CO2 interfering with the 13CH4 lines, and/or 

(5) temperature dependent absorbance effects. The last two items are discussed in more 

detail in the next sub-sections. 

There is one final issue concerning the 17 October dataset, and that relates to the 

datapoint corresponding to a predicted value of -30‰ δ13C, which is a 1% enrichment of 

13CH4 (see Figure 12, and Table 4). This datum provided a measured δ13C value 

approximately 30‰ higher than predicted, roughly 6 standard deviations outside of the 

best fit regression produced by the other three data and was removed from the analysis. 



 49 

Though it is included in Figure 12, there are two reasons why this point was excluded. 

First, the 1% enrichment measurement was made after the highest enrichment of 6% 

enrichment measurement was performed, which is atypical for these analyses. Since the 

time interval between the 6% enrichment and the 1% enrichment was less than 15 

minutes, it is likely that there was significant residual 13CH4 in the system during the 1% 

scan to cause the value to be enriched. Second, a 1% enrichment required a 0.5 sccm flow 

rate, which is somewhat below the lower limit of the linear range of the mass flow 

controller (note that for the 14 October experiment, this low flow regime was not 

attempted). Thus the actual flow rate was likely higher than the target 0.5 sccm, and 

would again increase the actual δ13C measured inside the cell.   

III.1 Interference of other molecules 

Analysis of the effects of the spectral interference on our measurements revealed 

that the only significant H2O line was the large peak 0.2 cm-1 higher than the 12CH4 peak, 

while the CO2 line in the region has an intensity 3 orders of magnitude below that of CH4, 

as shown in Figure 13. The largest CO2 peak is shown in the figure, and those not shown 

are at least another order of magnitude smaller. According to the HITRAN database, 

other potential absorbers in this region are NO and OH, but their intensities are at least 25 

orders of magnitude below CH4, and with concentrations well below CH4 they would not 

contribute. Therefore H2O and CO2 do not seem to be affecting the 13CH4 peak. However, 

the water peak likely did contribute to the variations in the 12CH4 peak, as it the H2O line 

intensity was found to vary by 20% during the course of the experiment on 14 October. 

This water contamination was traced to a leak in the inlet system, but computer hardware 
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and DAQ problems prevented us from re-investigating this issue. The inclusion of a trap 

to reduce the water concentration seems prudent for future experiments. Several smaller 

peaks that are evident in the experimental spectra (see Figure 10) are unidentified at this 

point and are from other contaminants species (e.g., non-methane hydrocarbons). 

 

Figure 13 Spectral lines from the HITRAN database for blue: CH4 (Peaks A 
and B), red: H2O (Peak C) and green: CO2 (Peak D), for the spectral region for 
Figure 10 and Figure 8(b), with the corresponding peaks labeled consistently.  

  

III.2 Temperature Dependence 

Spectral line intensities have a temperature dependence, which results from 

changes in the population densities of the molecular energy states with temperature. 

Since the cell temperature varied with the ambient room temperature, we assume 

fluctuations on the order of 1 K. Line intensity is proportional to the ratio of the 

population densities of the initial and final states of the transition (Rothman, 1996): 

A.13CH4 

Peaks 
B.12CH4 

Peaks 

C. H2O 

Peaks 

D. CO2 
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 (18) 

Here c2 = hc/k =1.4388 cm·K, Tref is the temperature corresponding to S listed in the 

HITRAN database, 

€ 

Eη  is the ground state energy for the transition, ν is the wavenumber 

of the transition, and Q(T) is the total internal partition function for energy levels Ei at 

temperature T: 

 
 

(19) 

Since we used only the 13CH4 peak (Peak A) for determining δ13C, the temperature 

dependence does not depend on the relative temperature dependence of the two lines, as 

is typical in spectroscopic techniques, but only on the 13CH4 peak. Gamache et. al. (2000) 

approximated Q(T) with a 3rd order polynomial for many of the molecules of atmospheric 

interest: 

  (20) 

With the following coefficients for 13CH4: A = -52.956, B=2.3113, C=0.0053659, 

D=0.30232x10-5. The transition for the major 12CH4 transition in Figure 8(a) is known 

and the ground state energy 

€ 

Eη  = 62.87 cm-1 (Hippler, 2002). There is a small change in 

ground state energy between 12CH4 and 13CH4 (as discussed in Section I.2), but it will not 

have a significant impact on the temperature dependence. Using this value for the ground 

state energy in Equation (18), we calculate an estimated temperature dependence on the 
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13CH4 spectral line intensity of 0.43%/K. This suggests that the day-to-day change in 

temperature would account for less than a 0.5% change in the slope for a 1 K change in 

temperature, and a 20‰ shift in the intercept value (less critical). Furthermore, a linear 

variation (constant increase or decrease) of 1 K in temperature over the course of the 

experiment would only result in a 0.3% change in the slope with only a 1‰ shift in the 

intercept. Therefore, we conclude that the temperature dependence does not seem to be 

the major contributor to the slope variation and cannot alone account for the differences 

observed between October 14 and October 17 results. 

We next considered the variations in the 12CH4 line intensity (Peak B in Figure 

10), which prevented us from using it to calculate the δ13C. Since the spectral line 

intensity of the 12CH4 must be ~1% of the spectral line intensity, the ground state energy 

(and thus the temperature dependence) could be significantly different from that of the 

major lines used for 13CH4, but since this particular line has not been assigned, the ground 

state energy is unknown. As an example of the potential magnitude of the temperature 

dependence, we used a value of 2%/K dependence for the 12CH4 line-strength in our 

experiments, which applies to similar relative linestrengths at 3.3 µm fundamental mode 

(Bergamaschi, 1994; Trudeau, 2006). In this case, a 1 K temperature variation could 

account for at least a significant portion of the 3-5% changes observed in our data, and 

explain why we could not use the 12CH4 spectral lines to accurately determine δ13C. 
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IV. Conclusion 

Here we presented new cavity ringdown spectroscopic measurements of the 

isotopic ratio of CH4 using a previously unused overtone band in the near-IR region at 

7536 cm-1, that exhibits minimal interference from other molecules. We identified a set of 

strong 13CH4 lines that had previously been assigned to 12CH4. These were close enough 

to a single weak 12CH4 line to enable (in principle) concentration measurements of both 

isotopologues in a single, high-resolution scan. We were able to achieve a precision of 

±4‰, and our results shows high linearity (R2>0.99) over a wide range of isotope ratios. 

Our precision can be achieved despite the observed long-term changes in slope by 

performing a two-point calibration prior to the measurement. The optimal frequency of 

this calibration would be determined empirically. The exact causes of the variations in the 

slope of the datasets are still unknown. In comparison to other spectroscopic techniques, 

our prototype has a precision within a factor of 5 of the commercial Los Gatos 

instrument. However, our instrument operates in a spectral region with a spectral line 

intensity an order of magnitude lower. We expect that improvements such as temperature 

stability and removal of contaminant molecules will improve the precision, and produce 

more consistent calibration curves.  
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