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Bayesian and Related Methods
Techniques based on Bayes’ Theorem

Mehmet Vurkaç, 5/18/2012



Outline

• Introduction & Definitions
• Bayes’ Theorem
• MAP Hypothesis & Maximum Likelihood
• Bayes Optimal & Naïve Bayes Classifiers
• Bayesian Decision Theory
• Bayesian Belief Nets
• Other “Famous” Applications



Introduction

• Motivation for Talk
• Numerical way to weigh evidence
• Medicine, Law, Learning, Model Evaluation
• Outperform other methods?
• Priors (Base Rates)
• Computationally expensive



Machine Learning

• Space of hypotheses
• Find “best”

• Most likely true / underlying
• Given data or domain knowledge



Definitions

• initial prob. that h holds
• likelihood of observing a set of data, D
• likelihood of observing D given some 

set of circumstances (universe/context) where 
h holds

ML goal is to rate and select hypotheses:
• probability that h holds GIVEN that D

were observed



Conditional Prob. & Bayes’ Theorem

•

Rearranging:

•

•



Bayes’ Theorem



Maximum-a posteriori Hypothesis



Maximum-Likelihood Hypothesis



Example: Cancer test

• Existing data
• Imperfect test
• New patient gets a positive result.
• Should we conclude s/he has this cancer?



Example: Cancer test

• Test gives true positives in 98% of cases of 
cancer.

• Test gives true negatives in 97% in cases 
without cancer.

• 0.8% of population on record has this cancer.



Example: Inventory of Information

• P(cancer) = 0.008
• P(¬cancer) = 0.992
• P(+|cancer) = 0.980
• P(–|cancer) = 0.020
• P(+|¬cancer) = 0.030
• P(–|¬cancer) = 0.970



Goal: Find MAP hypothesis

• “P(cancer|+)” = P(+|cancer)P(cancer) = 
(0.980)(0.008) = 0.0078

• “P(¬cancer|+)” = P(+|¬cancer)P(¬cancer) = 
(0.0030)(0.992) = 0.0298

• 0.0298 > 0.0078; diagnosis: no cancer
• And how likely is that to be true?



Human Aspect



Example: Probability Tree



Bayes Optimal Classifier

• Adds the ensemble of hypotheses to MAP.
• Contexts

• Assume we know:
• P(h1|D) = 0.40
• P(h2|D) = 0.30
• P(h3|D) = 0.30

• h1 is the MAP hypothesis, so conclude +?
• P(+) = 0.40      P(–) = 0.60



Bayes Optimal Classifier

• Classifying data into one of many categories
• Under several hypotheses
• Categories: v1, v2, v3, …, vi, …, vm

• Hypotheses: h1, h2, h3, …, hj, …, hn

• and



Bayes Optimal (BOC) & Gibbs
• No other method can outperform BOC on 

average.
• BOC must calculate every posterior, and 

compare them all.
• Gibbs

• picks one h from H for each instance
• weighted  similarly to roulette wheel in GAs



Working with Features
• Typically, we work with multiple features
• Mathematically the same as multiple 

hypotheses.
• Vector of features: 
• Categories: 
• To make a MAP decision given a feature vector



Features & MAP

• which, by Bayes’ Theorem, equals

• We  can use the MAP simplification to get



MAP Computational Cost

• To estimate these probabilities, we need 
numerous copies of every feature-value 
combination for each category.

• many examples
×

• feature combinations
×

• categories



Reducing Computational Cost, Naively

• Assume features are independent.
• P(observing a vector)

becomes
• product of P(observing each feature)

• Rarely true!



Reducing Computational Cost, Naively

• Assume features are independent.
• P(observing a vector)

becomes
• product of P(observing each feature)

• Rarely true!



Quick Naïve-Bayes Example

• Student deciding what to do
• Invited to a party: Y / N
• Deadlines: Urgent / Near / None
• Lazy: Y / N
• Output classes: PARTY, HW, TV, BARS



Example: The Data
Deadlines? Invited? Lazy? DECISION

Urgent Y Y PARTY
Urgent N Y HW
Near Y Y PARTY
None Y N PARTY
None N Y BARS
None Y N PARTY
Near N N HW
Near N Y TV
Near Y Y PARTY

Urgent N N HW
Near N N BARS
None Y Y TV
None N N BARS

Urgent N N HW
Near Y N PARTY
None N N BARS

Urgent Y Y HW
None Y Y TV
None N Y TV

Urgent Y N PARTY



Example: The Data
• “Probabilities”

• P(HW) = 5/20
• P(PARTY) = 7/20
• P(Invited) = 10/20
• P(Lazy) = 10/20
• P(PARTY|Lazy) = 3/10
• P(Lazy|PARTY) = 3/7



Classify a new instance
• Urgent / Invited / Lazy

• P(decidePARTY) =
P(PARTY) × P(Urgent|PARTY) × P(Invited|PARTY) ×

P(Lazy|PARTY)
=  (7/20) × (2/7) × (7/7) × (3/7) = 0.042857…
• P(decideHW) = (5/20) × (4/5) × (1/5) × (2/5) = 

0.016
• P(decideBARS) = (4/20) × (0/4) × (0/4) × (1/4) = 0
• P(decideTV) = (1/10) × (0/1) × (0/1) × (1/1) = 0



Bayesian Decision Theory
• Errors don’t carry the same risk.

• Loss penalties for decisions with risk
• We can also have an action of not deciding.
• Categories: 
• Actions: 
• Loss function:                           
• Conditional risk is expected loss for an action:

• This time, argmin over the actions…



Minimax, Neyman-Pearson, ROC
A risky decision may need be taken under different 

conditions, different priors:
• Factories in different locations
• Seasons for biological studies
• Strategies for different competitor actions

• Design a classifier to minimize worst-case risk.
• Minimize overall risk subject to a constraint.
• In detecting a small stimulus, judge the quality of a 

threshold choice.



Receiver Operating Characteristic
• Plot hits (true positives) against false alarms.
• For choices of threshold, the same data give different 

curves.
• The areas under ROC curves correspond to a ranking of 

the probabilities that each threshold will allow correct 
identification of the small stimulus.



Receiver Operating Characteristic

http://www-psych.stanford.edu/~lera/psych115s/notes/signal/



Bayesian Belief Nets
• Probabilistic reasoning

• Using directed acyclic graphs
• Variables determine state of a system.

• Some are causally related; some are not.
• Specified in conditional-probability tables

• associated with each node (variable)
• Classification of caught fish (Duda, Hart, and Stork)



Bayesian Belief Nets

Duda, Hart, Stork: Pattern Classification



Other Applications
• Bayesian learning is recursive

• Spam filters that continue to learn after being 
deployed

• Scientific investigation: new data update models
• HMM: Time-dependent BBN with unknown Markov state
• Viterbi: Most likely sequence of states
• Kalman: Next-state prediction, observation, correction by 

weighting the error computation with current trust in 
predictions – updated after more observations.

• PNN: kernel neural net implements MAP.
• The list goes on.



Bayes’ Theorem
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