Portland State University [PDXScholar](https://pdxscholar.library.pdx.edu/)

[TREC Webinar Series](https://pdxscholar.library.pdx.edu/trec_webinar) Transportation Research and Education Center [\(TREC\)](https://pdxscholar.library.pdx.edu/trec)

5-12-2020

Webinar: Connected Vehicle System Design for Signalized Arterials

Xianfeng Terry Yang University of Utah

Follow this and additional works at: [https://pdxscholar.library.pdx.edu/trec_webinar](https://pdxscholar.library.pdx.edu/trec_webinar?utm_source=pdxscholar.library.pdx.edu%2Ftrec_webinar%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Transportation Commons](https://network.bepress.com/hgg/discipline/1068?utm_source=pdxscholar.library.pdx.edu%2Ftrec_webinar%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages), [Urban Studies Commons](https://network.bepress.com/hgg/discipline/402?utm_source=pdxscholar.library.pdx.edu%2Ftrec_webinar%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages), and the [Urban Studies and Planning](https://network.bepress.com/hgg/discipline/436?utm_source=pdxscholar.library.pdx.edu%2Ftrec_webinar%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages) [Commons](https://network.bepress.com/hgg/discipline/436?utm_source=pdxscholar.library.pdx.edu%2Ftrec_webinar%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Let us know how access to this document benefits you.](http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/trec_webinar/49)

Recommended Citation

Yang, Xianfeng Terry, "Webinar: Connected Vehicle System Design for Signalized Arterials" (2020). TREC Webinar Series. 49. [https://pdxscholar.library.pdx.edu/trec_webinar/49](https://pdxscholar.library.pdx.edu/trec_webinar/49?utm_source=pdxscholar.library.pdx.edu%2Ftrec_webinar%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Book is brought to you for free and open access. It has been accepted for inclusion in TREC Webinar Series by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [pdxscholar@pdx.edu.](mailto:pdxscholar@pdx.edu)

Connected Vehicle System Design for Signalized Arterials

Xianfeng Terry Yang Assistant Professor Department of Civil & Environmental Engineering The University of Utah

Outline

VBackground $\mathbf{\textcirc}$ CV System Architecture **❖ Data Collection** ◆ Dynamic Signal Control ❖ Smart Traffic Signal Control **V**More Discussions

Outline

v**Background**

❖ CV System Architecture **V** Data Collection ◆ Dynamic Signal Control vSmart Traffic Signal Control **V**More Discussions

Background: Connected Vehicle (CV)

- Connectivity technologies
	- DSRC
	- C-V2X
	- 5G
	- DMB
	- V2X : V2V, V2I, V2P,
	- Etc.

Background: Automated & Autonomous Vehicle (AV)

• **Six levels of vehicle automation**

Background: Connected Automated Vehicle (CAV)

- \triangleright The connectivity technology of CAVs allows the exchange of traffic information between vehicles and infrastructure.
- \triangleright The automated driving system (ADS) will control the vehicle trajectory based on the realtime data from on-board sensors and CV communication.

Outline

VBackground *❖* **CV System Architecture V** Data Collection ◆ Dynamic Signal Control vSmart Traffic Signal Control **V**More Discussions

System Architecture

Control Levels

Outline

VBackground ❖ CV System Architecture v**Data Collection** ❖ Dynamic Signal Coordination ❖ Smart Traffic Signal Control **V**Multi-Modal Systems **V**More Discussions

Data Collection: DSRC v.s. C-V2X

At present, there are two very different technologies enabling V2X:

- **DSRC** stands for dedicated short-range communications. It is also called ITS-G5 in Europe. In the US, DSRC is contained in a 75 MHz segment of the 5.9 GHz band. It is often used for direct communications in a local environment.
- **C-V2X** stands for cellular V2X. It utilizes cellular technology to provide the link between the vehicle and the rest of the world, including other vehicles and the traffic control system.

Data Collection: The Engineer's Dilemma

- \Box In the midst of a platform war, engineers must choose which platform to commit their development time and costs to.
- \square Possible solution: combining DSRC and C-V2X

Data Collection: Other Challenges

Communication Jam/Congestion

 \Box Imaging all vehicles on the road are CV and CAVs...

 \square Some communication priorities may be given to CAVs.

Outline

VBackground **❖ CV System Architecture V** Data Collection v**Dynamic Signal Control** vSmart Traffic Signal Control **V**More Discussions

Dynamic Traffic Signal Coordination: Concept

CAV Speed Harmonization

- Design vehicle trajectories and corresponding signal timing (i.e., final boundary conditions)
- Maximize throughput and driving comfort, minimize energy consumption, ensure safety
- Core problem Trajectory planning + Scheduling

Dynamic Traffic Signal Control: System Design

Intersection Level: Signal Timing Optimization

The input information of vehicle arrival and departure at intersections are crucial.

Installation and maintenance

Market penetration rate (MPR) :

the ratio of the number of CAVs to the number of traffic travelling through the network over a period of time.

When the market penetration rate is low:

$$
q_{l,i}(j) = \frac{q_{l,i}^c(j)}{p_{l,i}(j)}
$$

O.W.

$$
p_{l,i}(j) = \frac{N_{c,l}}{N_{all,l}}
$$

Number of CAVs and all vehicles waited in the queue:

Can be observed $N_{c,l}$

$$
N_{all,l}
$$
 Can be estimated by $N_{all,j} = \frac{L_{q,j}}{L_{eff}}$

Three queuing cases with CAVs and non-CAVs

Case 1: More than one CV in the queue

Case 2: Only one CV in the queue

$$
L_{q,l} = L_{c1,l} + L_u
$$

$$
L_{u} = v_{q,l} * (t - t_{c1,l})
$$

$$
v_{q,l} = \frac{L_{c1,l}}{t_{c1,l} - t_{r,l}}
$$

Case 3: No CVs in the queue

ا1113
*ما*مبر the only information that can be used is the historical information. We simplify the lane flow of current cycle under this condition by the average lane flow of previous several cycles.

Model 1

$$
\min d_i(j) \tag{1}
$$

$$
d_i(j) = \sum_{l=1}^L \sum_{k=1}^c Q_{l,i}(k,j) * \Delta t \qquad \forall l,j
$$

$$
Q_{l,i}(k,j) = \max(Q_{i,j}(k-1,j) + \mu_{l,i}(k,j) - r_{l,i}(k,j),0) \quad \forall l,j \quad (3)
$$

$$
\mu_{l,i}(k,j) = \frac{1}{c} * q_{l,i}(j) \quad \forall l, j \tag{4}
$$

$$
r_{l,i}(k,j) = \begin{cases} s_{l,i} * \Delta t & \forall l, j \\ 0 & \forall l, j \end{cases}
$$
 (5)

$$
Q_{l,i}(0,j) = \tau_{l,i}(0,j-1) \quad \forall l,j
$$
 (6)

$$
\sum_{p=1}^{p=N} (g_{i,p}(k) + l_{i,p}(k)) = c(k)
$$
\n(7)
\n
$$
g_{i,m}(k-1) - \Delta g_i \le g_{i,m}(k) \le g_{i,m}(k-1) + \Delta g_i
$$
\n(8)
\n
$$
g_{min} \le g_{i,m}(k) \le g_{max}
$$
\n(9)

(2)

- Total intersection delay
- Queue length
- Vehicle arrival rate
- Saturation flow rate

Timing plan constraints

Dynamic programming

Basic features: stage; state variable; decision variable; value function

Algorithm

Stage: discrete time step.

State variable: total allocated time to each phase.

 $S_i(p, j) = \{ \max(g_{min}, g_{i,p}(j-1) - \Delta g_i) + l_{i,p}(j)$, … $\min(g_{max}, g_{i,p}(j-1) + \Delta g_i) + l_{i,p}(j) \}$

Decision variable: green time allocated to each phase.

$$
X_i(p,j) = \{ \max(g_{min}, g_{i,p}(j-1) - \Delta g_i), \dots \min(g_{max}, g_{i,p}(j-1) + \Delta g_i) \}
$$

Value function: total delay.

Step 1: define $p = 1, v_i(0) = 0;$

Step 2: $p = p + 1$; update value function $v_i(s_i(p, j)) = \{v_{i-1}(s_i(p-1, j)) +$ $d_i(x_i(p, j))|x_i(p, j) \in X_i(p, j)$ and determine the optimal value function; Then find the optimal solution at this stage, denoted as $\theta_i^*(j)$.

Step 3: if $i < N_i$, go to step 2; Else, trace back to find the optimal solution for each stage.

Traditional Two-way Signal Progression

vehicles can pass the intersections without any stops.

Multi-Path Progression

Modeling Concept: simplified formulation

The outbound & inbound green band along one critical path

Modeling Concept: Potential Issues

Non-continuous of green band in two directions

THE UNIVERSITY
OF UTAH®

$$
t_{l,p,i}(h) = \sum_{m} \sum_{n} \beta_{m,p,i} * \varphi_{m,n} * g_{i,m}(h) + \theta_i(h)
$$

$$
t_{r,p,i}(h) = \sum_{m} \sum_{n} \beta_{m,p,i} * \varphi_{m,n} * g_{i,m}(h) + \sum_{m} \beta_{m,p,i} * g_{i,m}(h) + \theta_i(h)
$$

L

02 green band for critical start and end of the path

Arterial Level: Model & Algorithm

Solution Algorithm

Stage: index of intersections

State variable: feasible new offset of each control period at each intersection

$$
S_i(h) = \{ \theta_i(h-1) - \Delta\theta_i, \theta_i(h-1) - \Delta\theta_i + 1, \dots, \theta_i(h-1) + \Delta\theta_i \}
$$

Value function: Total green bandwidth

Step 1: define $i = 1$, $\theta_1(h) = 0$, and $V_i(0) = 0$; Step 2: $i = i + 1$; update value function with Eq. (33) and determine the optimal value function $V_i(\theta_i^*(h)) = min_{\theta_i(k)} \{V_{i-1}(\theta_{i-1}^*(h)) + B_i(\theta_i(h)) | \theta_i(h) \in S_i(h)\}$; Find the optimal solution at this stage, denoted as $\theta_i^*(j)$. Step 3: if $i < N_i$, go to step 2; Else, trace back to find the optimal solution for each stage.

Numerical Examples: Case Setup

Four intersections on State Street, Salt Lake City, UT

Numerical Examples: Critical Paths

Four intersections on State Street, Salt Lake City, UT

Numerical Examples: Results

Time-Dependent Travel Time along Paths

Numerical Examples: Results

Network Performance

Proposed control system v.s. adaptive control system

Proposed control system v.s. dynamic progression control system

Numerical Examples: Results

Path-flow Performance

Performance Index ACS 100% MPR 75% MPR 50% MPR 25% MPR Average delay 175.27 89.32 (-49.04%) 108.79 (-37.93) 109.86 (-37.32%) 123.95 (-29.28%) **Average number of stops** 2.48 1.69 (-31.85%) 2.09 (-15.73%) 2.07 (-16.53%) 2.36 (-4.84%)

Proposed control system v.s. adaptive control system

Proposed control system v.s. dynamic progression control system

Outline

VBackground **❖ CV System Architecture V** Data Collection vDynamic Signal Coordination v**Smart Traffic Signal Control V**More Discussions

Smart Traffic Signal Control: background

Intersection Safety

• Two types of crashes at intersections

Side-Angle Crash Rear-End Crash

Dilemma Zone Protection System (DZPS)

Advanced Warning Systems(AWS)

Intersection Safety & Mobility

- The prevention of rear-end collision at intersections is still an unsolved problem.
- Traffic safety and mobility are usually implemented with different control devices, and thus often compete for the limited available resources.
- Integration of control devices for both operations so as to concurrently achieve the effectiveness on those two regards has not been well- addressed yet.

Smart Traffic Signal Control: background

The proposed system

Modules:

Module 1: Dilemma Protection

This study aims to predict vehicles' passing probability at *ε* seconds before the end of yellow interval, where ε indicates the time needed for data transition and all-red extension activation:

$$
P_{\text{pass}}(i, t_{\varepsilon}) = Max(\frac{1}{1 - e^{-\beta_0 - \beta_1 v_i(t_{\varepsilon}) - \beta_2 d_i(t_{\varepsilon})}}, \delta_i(t_{\varepsilon}))
$$

where $\delta_i(t_\varepsilon)$ is a binary variable which indicates whether vehicle *i* intends to accelerate:

$$
\delta_i(t_\varepsilon) = \begin{cases} 1 & \text{if } v_i(t_\varepsilon) \ge v_i(t_\varepsilon - 1) \\ 0 & \text{o.w.} \end{cases}
$$

Then the required all-red extension time, ARE, can be calculated by:

$$
ARE = \max_{i} \{ \frac{d_i(t)}{v_i(t)} - \varepsilon - AR + \sigma \}
$$

Module 2: Queue Length Estimation

: the location of vehicles

: the trajectory of CVs

Module 3: Signal Coordination & CV Speed Harmonization

$$
\zeta_{out,i} = \max(\theta_{i} + \max_{j \in \Psi_{out}(i)} \{\tau_{j}\} - \frac{L_{out,i} - \max_{j \in \Psi_{out}(i)} \{q_{j} + \lambda_{j} \tau_{j}\}}{\nu_{out,i}}, 0)
$$

$$
\zeta_{in,i} = \max(-\theta_i + \max_{j \in \Psi_{out}(i)} \{\tau_j\} - \frac{L_i - \max_{j \in \Psi_{out}(i)} \{q_j + \lambda_j \tau_j\}}{\nu_{in,i}}, 0)
$$

Module 4: Rear-end Crash Prevention

Sub-Modules:

- Submodule 1 vehicles are arriving with insufficient sight distance while intersection has uncleared initial queue after onset of green.
- Submodule 2 vehicles are arriving with insufficient sight distance while intersection has uncleared initial queue after onset of red.
- Submodule 3 some vehicles within the detection zone are predicted to be stopping during yellow and all-red time

System Control Logic and Actions

Xianfeng Yang*, Zhao Zhang, Gang-Len Chang, & Pengfei Li, (2019), "Smart Signal Con-trol System for Accident Prevention and Arterial Speed Harmonization under Connected Vehicle Environment", Journal of Transportation Research Board: Transportation Research Record. vol 2673 (5), pp: 61-71.

The arterial segment includes five intersections and it is a part of the CV corridor operated by UDOT. All intersections are installed with DSRC RSUs for supporting V2I communications

Scenario Settings

Basic Settings:

- 40% regular vehicles' compliance rate to VSL
- 10% CV penetration rate

Control Types for Comparison:

- Pre-timed traffic control
- Dilemma zone protection system (safety module only)
- Proposed system (safety module + mobility module)

Performance Evaluations

OSafety MOEs

- Average number of vehicles trapped in the dilemma zone per signal cycle;
- Average number of potential side-angle crashes per signal cycle measured by vehicle trajectories;
- Average number of potential real-end crashes per signal cycle measured by the number of hard-braking vehicles (deceleration rate > 10 ft/s²);
- Average number of red-light running vehicles per signal cycle.

UMobility MOEs:

- Average number of stops;
- Average of vehicle delay.

Safety Performance

Mobility Performance

Outline

VBackground **❖ CV System Architecture V** Data Collection vDynamic Signal Coordination vSmart Traffic Signal Control v**More Discussions**

More Discussions

Roles of Governments?

- Do nothing Let the operations of AVs without connection
- Promote CAVs
	- CV pilot program
	- CAV (Connected Vehicles) demonstration grants
	- CARMA platform
	- Utah CV corridor
	- Standard & regulations
- Opportunities vs. liabilities
	- Demonstrate benefits of CAV over AV alone
	- Construct, manage and maintain CV infrastructure
	- Potential liabilities of providing CV data
	- AV/CAV "drivers license"
	- Data management from CAV/AV

More Discussions

More to come…

CARMA 1tenth

CARMA Cloud

Acknowledgement

Thanks & Questions?

Xianfeng Terry Yang, Ph.D. Assistant Professor in Civil Engineering, University of Utah Email: [x.yang@utah.edu](http://utah.edu)

