
Portland State University Portland State University 

PDXScholar PDXScholar 

Computer Science Faculty Publications and 
Presentations Computer Science 

1995 

Optimizing Object Invocation Using Optimistic Optimizing Object Invocation Using Optimistic 

Incremental Specialization Incremental Specialization 

Jon Inouye 
Oregon Graduate Institute of Science & Technology 

Andrew P. Black 
Oregon Graduate Institute of Science & Technology, black@cs.pdx.edu 

Charles Consel 
Oregon Graduate Institute of Science & Technology 

Calton Pu 
Oregon Graduate Institute of Science & Technology 

Jonathan Walpole 
Oregon Graduate Institute of Science & Technology 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac 

 Part of the Computer Engineering Commons, and the OS and Networks Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Jon Inouye, Andrew Black, Charles Consel, Calton Pu and Jonathan Walpole, "Optimizing Object 
Invocation Using Optimistic Incremental Specialization," Oregon Graduate Institute of Science & 
Technology. [1995] 

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer 
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if 
we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/53
mailto:pdxscholar@pdx.edu


(POSITION PAPER) 

Optimizing Object Invocation 
Using Optimistic Incremental Specialization * 

Jon Inouye, Andrew Black, Charles Consel, Calton Pu, and Jonathan Walpole 

Department of Computer Science and Engineering 
Oregon Graduate Institute of Science & Technology 

1 Introduction 

To make object invocation efficient, it is important to minimize overhead. In general, overhead is in­
curred in order to maintain transparency; with the advent of mobile computer systems, persistence, 
increasing security and privacy concerns, transparency becomes more expensive and overhead is 
increasing. Invocation mechanisms maintain transparency by finding objects, choosing communica­
tion media, performing data translation into common formats (e.g., XDR), marshalling arguments, 
encrypting confidential data, etc. Performing all of these operations on every invocation would 
lead to unacceptable performance, so designers often avoid operations by specializing object invo­
cation for more restricted environments. For example, the Emerald compiler [9] performs several 
optimizations when an object is known to be always local: the object is referenced with a location­
dependent pointer that saves both space and access time and the invocation code performs no 
residency checks. Additionally, if the concrete type of the implementation is known, operations 
on the object can be in-lined. Unfortunately, if the object cannot be guaranteed to be local at 
compile-time, the Emerald compiler cannot perform any of these optimizations. 

Contemporary distributed object systems remove overhead by building invocation mechanisms 
out of multiple modules. Each module provides functionality for a specific situation. Run time 
checks are inserted into the invocation path to interpret the situation and select the appropriate 
module. COOL [12] optimizes local invocation by making use of the C++ virtual function mecha­
nism to convert from remote calls to direct calls and vice-versa. During every invocation 1 COOL 
implicitly checks the server's location. When the client and server are located in the same address 
space, the private virtual pointer of the interface object is modified to point directly to the virtual 
table of the server's class. The problem with this approach is that the invocation interface has to 
interpret the caller's context in order to choose the appropriate specializations. 

This paper advocates a general technique, called optimistic incremental specialization, that 
addresses two limitations mentioned previously. First, can we optimize on "invariants" that are not 
guaranteed? Second, can we use specialized implementations and avoid inserting run-time checks 
in the invocation path? Section 2 describes optimistic incremental specialization and section 3 
discusses our current status and open issues. We review, related research in section 4 and summarize 
in section 5. 

"This research is partially supported by ARPA grant NOOOI4-94-1-0845 and grants from the Hewlett-Packard 
Company. 

I Checks on every invocation are performed only on COOL systems that support mobility. 

1 



2 Optimistic Incremental Specialization 

Optimistic incremental specialization (OIS) has its conceptual roots in the programming language 
field of partial evaluation [5, 6]. Partial evaluation is a program transformation technique aimed at 
specializing a program with respect to parts of its input that are invariant. It provides the basis for 
a simple and automatic approach for specializing programs. OIS extends partial evaluation in two 
ways. First, it allows specializing over time, and second, it allows specialization on assumptions. 

Specializing over time. The term incremental in OIS refers to specialization after the com­
pilation stage. With 015, specialization may take place at any time when information becomes 
available, including compile, boot, link, and execution time. Long-lived systems, like operating 
systems, gather information from a variety of sources not available to a compiler. As invariants 
become known, the system can use that information to optimize itself. 

Specializing on assumptions. OIS also allows specialization on assumptions that may not be 
true at all times; we refer to these assumptions as quasi-invariants. In a distributed object system, 
there are many things that are likely to be constant for long periods of time, but may occasionally 
vary. For example, object location might be considered a quasi-invariant. When a object becomes 
resident, it is likely to remain resident for a significant amount of time. 015 specializes using these 
quasi-invariants by assuming they will remain true. 

Preserving correctness. If specialized code is generated and used, based on quasi-invariants 
that hold most of the time, then performance should improve. However, the system must correctly 
handle the cases where the quasi-invariants do not hold. Correctness can be preserved by check­
ing, or guarding, every place where quasi-invariants may become false. Thus 015 still performs 
checks, but it moves the checks out of the frequently traversed paths into sporadically used paths. 
In the example above, rather than place the residency guard in the object invocation path, we 
place the guard in the module that supports object mobility, where it is less likely to be executed 
(since objects are probably invoked more frequently than they are moved). These guards are pure 
software constructs, Le., guards do not require processor hardware to detect the invalidation of 
quasi-invariants.2 

Re-specialization. If the guard is triggered, the object invocation mechanism must be "unspe­
cialized", either to the completely generic routine (with the run-time checks) or, more accurately, 
to another specialized version that still capitalizes on the other invariants and quasi-invariants that 
remain valid. We call the process of replacing one version of a routine by another replugging. 

Potential Rewards. If the optimistic assumptions about a program's behavior are correct, the 
specialized code will function correctly. If one or more of the assumptions become false, the special­
ized code must be replugged. This transformation will be a net performance win if the specialized 
code is executed many times, i.e., if the savings that accrue from the optimistic assumption being 
right, weighted by the probability that it is right, exceed the additional costs of the replugging step, 
weighted by the probability that it is necessary, plus the initial specialization cost. 

\./OJ)¥-4)n-'wn'te memory is an optimistic technique that uses hardware features of the processor's memory man­
agement unit (MMU) to detect writes to logically separate, but physically shared, pages. 

2 



Application to Distributed Object Systems Consider the case of an object that is heavily 
used but rarely modified. COOL optimizes object invocation by mapping called objects into the 
address space of the calling object. COOL relies on the Chorus Distributed Virtual Memory server 
to maintain consistency between the replicated objects. OIS provides an alternative solution. 
Objects can be assumed immutable and replicated on demand. Guards can be placed in methods 
that may modify the object; triggering a guard initiates a replugging operation that invalidates 
remote replicas. The differences between OIS and COOL are that the OIS mechanism requires 
no virtual memory support from the operating system and provides consistency at the object-level 
rather than at the page level. If the replicated objects are rarely modified, this will lead to higher 
availability and more local invocations. However, if the objects are modified frequently, the system 
will generate too many invalidation actions and performance will suffer. 

3 Discussion 

Optimistic incremental specialization is a general methodology that combines both compiler and 
operating system technology. We are currently experimenting by applying OIS by hand to both 
a commercial file system [4] and the COOL [10] object invocation module. We are using this 
experience to develop tools for automating this process. 

Current Status. Automating OIS involves building several tools including compile- and run-time 
specializers for C programs and a guard tracker that assists in identifying locations where quasi­
invariants can be invalidated and supports run-time re-specialization. We currently have a static 
partial evaluator that specializes C programs with respect to invariants known at compile-time. We 
are completing the development of a dynamic partial evaluator that specializes C programs with 
respect to invariants known at run-time. It includes a template generator and dynamic linker. 

Open Issues. There are a number of difficult problems that we have not yet resolved. Included 
are issues involving quasi-invariant selection, classifying invariants, and run-time support for guards 
and replugging. Identifying good quasi-invariants often requires domain knowledge. In our last 
example, if objects were assumed immutable and yet frequently modified, specialization would 
probably degrade object invocation. We really want to replicate only those objects unlikely to be 
modified; this can be difficult for a compiler to do without having some form of profiling information. 
One solution would be to use a meta-interface [11], that would allow the programmer to inform the 
compiler and system that selected objects are unlikely to be modified. Another solution would be 
to use software feedback [14]. 

Invariants. Different types of invariants require different optimization strategies. Actual invari­
ants, those that are guaranteed, are specialized without guards. Quasi-invariants that are changed 
infrequently, can be specialized are unstable to different degrees. Some quasi-invariants are rarely 
invalidated, while others are invalidated quite frequently but are restricted to a small set of values 
in their range. For example, an integer value changes at each invocation, but only between the 
values of 0, 1, and 2. It is also possible to specialize on such a highly-unstable quasi-invariant but 
a different type of specialization is required. 

Guard Placement. Preserving correctness requires guarding all the places where quasi-invariants 
can become false. As we have mentioned previously, OIS attempts to move checks out of the fre-

3 



quently used paths into infrequently used paths. Object-oriented languages provide strong data 
encapsulation that facilitates guard placement. Quasi-Invariants, e.g., data values, can be made 
accessible only through well-defined interfaces. It is important for the programmer to code in a man­
ner where each quasi-invariant is encapsulated as a predicate on an object. Some quasi-invariants, 
such as those associated with the semantics of a particular systems, need to be explicitly encoded 
as data values. 

Replugging. Run-time support for replugging needs to be carefully implemented. In order for 
re-specialization to be efficient, the compiler and run-time system need to have some form of 
agreement on how code segments will be replaced. Code cannot be safely replaced while it is being 
used. The dynamic specializer also needs to take into account which quasi-invariants are being 
used, i.e., guards left by previous unrelated specializations should not be removed by the current 
specialization. 

4 Related Work 

There has already been a considerable amount of research in optimizing local communication in­
cluding the Firefly RPC [15], LWRPC [3], and L3 [13] implementations. This work has concentrated 
on developing a specialized implementation for specific situations and does not address minimizing 
the overhead involved in analyzing the current situation. 

Of all object invocation architectures, Zenith's "management by exception" technique is the 
most similar to optimistic incremental specialization [7]. Zenith is a persistent mobile object system 
in which object invocation is tailored to an active stationary object. Zenith maintains an ordered 
list of address hints; the first hint is always used. If this reference fails, the exception handler 
will clean things up. The Zenith exception handler is similar to the OIS guard in that it must 
resolve the problem and "do the right thing". The primary difference is the Zenith exception 
handler may have little semantic information passed to it. In terms of detecting invalid references, 
a hardware fault is passed back up to the TLB miss handler which fails to handle it and passes it 
to the page fault handler, etc., until it finally reaches the application. Layering is used to rebuild 
semantic information; this fault was caused because something the programmer thought might 
happen really did occur. An OIS guard and replugger performs the same operation above the 
operating system without having to go through all the preprocessing in the operating system. 

There has been considerable interest in allowing user-specified modules to replace system mod­
ules. Two other object invocation models, the Substrate Object Model [2, 1] and the Kernel Tool Kit 
(KTK) [8] allow an invocation implementation to be extended or replaced using a meta-interface. 
In this paper, we have concentrated on removing overhead for efficient object invocation given a 
fixed set of implementations. Substrates and KTK objects allow new implementations to be added 
dynamically, which complicates the use of OIS. Interoperability with binary modules is another 
open issue we need to consider. 

5 Summary 

We believe optimistic incremental specialization will be effective in minimizing overhead in object 
invocation implementations. Reducing invocation overhead will become more important as dis­
tributed object systems continue to maintain various forms of transparency in dynamically diverse 
environments. 

4 



OIS is a novel optimization methodology based on both compiler and operating system tech­
nology. It is this combination that allows OIS to perform specializations over time in addition to 
specializing on quasi-invariants. While the technology is still at an early stage of development, 
it has great potential for being applied to a wide variety of areas where interpretation costs are 
significant. 

References 
[1] Arindam Banerji and David L. Cohn. An Infrastructure for Application-Specific Customization. In Proceedings 

oj the ACM European SIGOPS Workshop, September 1994. 

[2] Arindam Banerji, Dinesh Kulkarni, John Tracey, and David L. Cohn. The Substrate Object Model and Archi­
tecture. In Proceedings oj International Workshop on Object. Orientation in Operating Systems, Asheville, NC, 
December 1993. 

[3] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska., and Henry M. Levy. Lightweight Remote 
Procedure Call. In Proceedings oj the 12th ACM Symposium on Operating Systems Principles, pages 102-113, 
December 3-6 1989. 

[4] Andrew Black, Charles Consel, Calton Pu, Jonathan Walpole, Crispin Cowan, Tito Autrey, Jon Inouye, Lakshmi 
Kethana, and Ke Zhang. Dream and Reality: Incremental Specializatoin in a Commercial Operating System. 
Technical Report CSE-95-001, Department of Computer Science and Engineering, Oregon Graduate Institute of 
Science & Technology, March 1995. 

[5] Charles Consel and Olivier Danvy. Tutorial Notes on Partial Evaluation. In A CM Symposium on Principles oj 
Programming Languages, pages 493-501, 1993. 

[6] Charles Consel, Calton Pu, and Jonathan Walpole. Incremental Partial Evaluation: The Key to High Perfor­
mance, Modularity, and Portability in Operating Systems. In Proceedings oj the A CM Symposium on Partial 
Evaluation and Semantics.Based Program Manipulation, Copenhagen, June 1993. 

[7] N. Davies, M. Davy, G. S. Blair, and J. A. Mariani. Object Invocation and Management in Distributed Multi­
media Systems. Technical Report MPG-92-09, Department of Computing, Lancaster University, 1992. 

[8] Ahmed Gheith, Bodhisattwa Mukherjee, Dilma Silva, and Karsten Schwan. KTK: Configurable Objects and 
Invocations. In Proceedings oj Third International Workshop on Object Orientation in Operating Systems, pages 
236-240, Asheville, NC, December 1993. 

[9} Norman Hutchinson. Emerald: An Object. Based Languagejor Distributed Programming. PhD thesis, Department 
of Computer Science, University of Washington, January 1987. Also available as technical report 87-01-01. 

[10] C. Jacquemont, F. Herrman, P. S. Jenson, P. Gautren, J. Mukerji, H. G. Baumgarten, and H. Hartlage. COOL: 
The CHORUS CORBA Compliant Framework. In Proceedings oj the IEEE Computer Conjerence (COMPCON), 
pages 132-141, San Francisco, California, February 1994. 

[11] Gregor Kiczales and John Lamping. Operating Systems: Why Object-Oriented? In Proceedings oj Third 
International Workshop on Object Orientation in Operating Systems (IWOOOS-IlI), pages 25-30, Asheville, 
NC, December 1993. 

[12] Rodger Lea, Christian Jacquemont, and Eric Pillevesse. COOL: System Support for Distributed Programming. 
Communications oj the ACM, 36(9):37-46, September 1993. 

[13] Jochen Liedtke. Improving IPC by Kernel Design. In Proceedings oj the 14th ACM Symposium on Operating 
Systems Principles, pages 175-188, December 5-8 1993. 

[14] H. Massalin and C. Pu. Fine-grain adaptive scheduling using feedback. Computing Systems, 3(1):139-173, 
Winter 1990. Special Issue on selected papers from the Workshop on Experiences in Building Distributed 
Systems, Florida, October 1989. 

[15] Michael D. Schroeder and Michael Burrows. Performance of Firefly RPC. ACM Transactions on Computer 
Systems, 8(1):1-17, February 1990. 

5 


	Optimizing Object Invocation Using Optimistic Incremental Specialization
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1390865524.pdf.5iDWQ

