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PHYSICAL REVIEW A VOLUME 44, NUMBER 5 1 SEPTEMBER 1991

Field-equation approximations and amplification in high-gain lasers: Analytical resu&ts

Lee W. Casperson'
Department ofPhysics, Uniuersity of Otago, P. O. Box 56, Dunedin, Neur Zealand

(Received 24 January 1991)

In a related study the equations governing a high-gain laser amplifier have been solved numerically
without making the usual slowly-varying-amplitude derivative approximation in Maxwell s equations,
and thus the field amplitudes are not restricted to vary negligibly in a distance of one wavelength. The
results reveal an instability that involves reflections and oscillatory growth of perturbations away from
steady state. In the present study steady-state solutions of the field equations are obtained analytically,
and transformations are described for converting the equations to alternative intensity-equation sets.
These intensity equations are linearized and solved for the growth rate and oscillation period of the per-
turb ations.

I. INTRODUCTION

Most models of laser amplifiers incorporate first-order
differential equations for the electric field or equivalently
first-order rate equations for the intensity or photon den-
sity. However, the derivation of these equations from
Maxwell's equations requires the elimination of a spatial
derivative, and this simplification may not be justified for
all laser amplifiers. In a companion study, a theoretical
model for laser amplification has been developed that in-
corporates Maxwell's equations without approximation
[1]. Numerical solutions of that model have been ob-
tained, and those solutions reveal reAection and oscillato-
ry instability of a propagating light signal.

The purpose of this study is to explore analytically the
same amplifier model that was developed and investigat-
ed numerically in Ref. [1]. The model can be written in
several different forms, each of which may have advan-
tages for certain types of investigation. The original
model in which the field variables appear explicitly is rel-
atively dificult to work with, but any solutions to that
model contain the most complete information about the
propagating waves. Much simpler equation sets are also
possible involving quadratic functions of the field vari-
ables, such as intensities and energy densities, as the
dependent variables. These intensity equations contain
no information about the phases of the field components,
but they lead more directly to the other quantities of
practical interest. Various analytic solutions are obtained
for steady-state loss-limited propagation in laser
amplifiers and for the complex oscillation frequencies of
perturbations away from steady state. The complete z-

dependent solutions are reviewed for the simpler models
that incorporate the slowly-varying-amplitude derivative
approximation in Maxwell's equations.

Steady-state solutions of the general field-equation
model are derived in Sec. II. These solutions include ex-
plicit formulas for the steady-state field energy and wave-
length. In Sec. III it is shown how the model may be re-
formulated in terms of variables that are quadratic in the
field amplitudes, and the most practical of these models
involve the intensities and energy densities of the propa-
gating waves. Advantages of these formulations include
a reduced number of independent equations and a simpler
form of the saturation denominators. In Sec. IV an inten-
sity model is linearized and solved to obtain stability cri-
teria for perturbations away from the steady-state solu-
tion. One of the solutions of the resulting eigenvalue
equation is a negative real quantity, which corresponds to
the same damped behavior that is obtained for the con-
ventional amplifier models that include the slowly-
varying-amplitude derivative approximation in Maxwell s
equations. The other two solutions are a complex-
conjugate pair with positive real part, and these solutions
show that steady-state propagation in a laser amplifier is
unstable with respect to oscillatory growth of any pertur-
bations.

II. STEADY-STATE SOLUTIONS

The formalism on which this study is based was dis-
cussed in detail in Ref. [1],and a range of numerical solu-
tions were described. The starting point for this analysis
is the non-Doppler inhomogeneously broadened version
of the set of equations given in Ref. [1]as Eqs. (80)—(83):

dB (0)
2(1 f ) A„(g)+6[(y+z&)A,.(—g) —(yo+zo)B, (g)]

2(y+zo) „(y—U) A, (g) —A„(g)+ Do( U, g)dU
zo — 1+(y —U) + A (g)+ A,. (g)
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dB;(g)
2(1—f ) A;(g) —5[(y+zo)A„(g) —(yo+zo)B„(g)]

2(y+zo ) „(y—U) A„(g)+ A,. (g)
Do(U, g)dU

zo —~ 1+ y —U +2, +3,.
dA„(g) = —I2fB„(g)+5[(y+zo)B;(g)—(yo+zo)A, .(g)]j,
d A,.(g)

d

(2)

(3)

(4)

where g =y, z /c, is a normalized distance with

c, =(p,e, )
' the background speed of light and

y, =o/2ei the electric-field decay rate. The variables
A„(g) and A;(g) are, respectively, the real and imaginary
parts of the normalized electric field, B„(g)and B;(g) are
the corresponding parts of the normalized magnetic field,
5=y/y, is a dimensionless decay rate ratio with y the
decay rate of the off-diagonal density-matrix elements,
y =(co—coo)/y is the normalized lasing frequency offset
from some frequency mo that is characteristic of the tran-
sition, yo=(Q —coo)/y is the normalized offset of the fre-
quency 0=k(p, e, )

' that defines the arbitrarily
chosen propagation constant k or wavelength X=2m/k in
the amplifier, zo=coo/y is the normalized characteristic
frequency of the transition, U=(co —coo)/y is the nor-
malized frequency offset of the laser transition for
members of an atomic or molecular class a, Do( U, g) is
the normalized unsaturated population difference distri-
bution for the non-Doppler inhomogeneously broadened
medium, and the factor f allows an arbitrary fraction of
the losses to be associated with the magnetic field while
not affecting the overall normalization.

Equations (1)—(4) reduce to a much simpler model in
the limit of zo approaching infinity. It follows from Eqs.
(3) and (4) that in this limit the electric- and magnetic-
field components approach equality. Then if one substi-
tutes Eqs. (3) and (4) into Eqs. (1) and (2) and uses the
equalities just mentioned, the magnetic variables can be
eliminated, and Eqs. (1) and (2) reduce to the set

dA„(g)
A„(g)+5(y —yo) A;(g)

(y —U) A;(g) —A„(g)

1+ y —U +3 +A.

XDO( U, g)d U

dA;(g)
A;(g) —5(y —

yo ) A„(g)

(y —U)A„(g)+ A;(g)
—~ 1+ y —U +A„+2;

These are also the amplifier equations that one obtains by
making at the outset the derivative approximation that is
being investigated here. Thus a primary purpose of this
investigation will be to examine analytically any
differences between the predictions of Eqs. (1)—(4) and
Eqs. (5) and (6).

One of the most significant differences between the be-
havior of the two models that have just been summarized
is the dramatic spatial instability of the more rigorous
model, and this instability was explored numerically in
Ref. [1]. It would be especially desirable for practical ap-
plications to also obtain analytical criteria for the onset
and growth of this instability. The first step toward this
goal is to look for any steady-state solutions of the model
which may be tested for stability. Steady-state behavior
of a laser amplifier corresponds to the loss-limited condi-
tion in which the laser gain is exactly balanced by distri-
buted losses. To establish a background for this study,
we will first look for steady-state solutions of the approxi-
mate model given in Eqs. (5) and (6).

In looking for steady-state solutions of Eqs. (5) and (6)
the derivatives will be set to zero, and the field variables
and pump rate will be assumed to be independent of the
distance g. In this limit the equations reduce to

0= A„+5(y —yo) A;

(y —U) A; —A„+ Do( U)d U,
1+(y —U) + A„+ A,

0= A; —5(y —yo) A„

(y —U) A„+ A;
Do(U)dU .—~ 1+(y —U) + A„+ A,

(7)

(8)

0= A, —5(y —yo) A„—a(y, A„, A,. ) A„b(y, A„, A;) A;, —

An obvious solution of these equations is the zero-field
case 2, = 2; =0. The more interesting loss-limited case
is obtained from a simultaneous solution of the nonlinear
equations.

To obtain nonzero solutions of Eqs. (7) and (8) it is
helpful to first simplify the notation to

0= A„+5(y —yo) A;+a(y, A„, A,. ) A, —b(y, A„, A;) A„,

X DO( U, g)dU (6)
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where the new inhomogeneous integral functions are
defined by

a(y, A„, A,. )=I Do(U)dU,
1+(y —U) + A„+ A,

b(y, A„, A;)= I z Do( U)d U .—~ 1+(y —U) +A, +A;

(12)

Nontrivial solutions of Eqs. (9) and (10) are only possible
if the determinant of the coefficients of the field variables
is zero:

1 b(y—, A„, A;)
—5(y —yo) —a(y, A„, A, )

5(y —yo)+a(y, A„, A;)
1 b(y—, A„, A;)

=0. (13)

Expanding the determinant yields the equation

[1 b(y, A—„,A;)] + [5(y —yo)+a(y, A„, A;)] =0 .

With Eq. (15) it follows from Eq. (19) that the electric en-
ergy density is

(14) U, =r —1 —y (20)

The squared terms in this equation must individually
equal zero, and one obtains the two conditions

With Eqs. (17), (18), and (20), the parameter yo can be
written

b(y, A„, A, )=1,
a(y, A„, A, )= —5(y —yo) .

(15)

(16) yr
yo y

yo=y+a(y, A„, A;)/5 . (17)

With the definition of yo given above, it is clear that Eq.
(17) establishes the value of the wavelength A, such that
the phase of the fields is constant. If the inhomogeneous
population difference function Do( U) were a Gaussian,
for example, the energy density and wavelength would be
obtained from implicit equations involving error func-
tions. For brevity only the limit of homogeneous
broadening will be considered in detail.

For a homogeneously broadened laser amplifier, the
population difference function Do( U) may be replaced by
a 5 function in U times the constant population difference
Do. This parameter Do may also be replaced by the
threshold parameter r, which is the ratio of the pumping
rate to its value when the unsaturated gain at line center
is just sufftcient to make the field derivatives vanish [1].
With these substitutions Eqs. (11) and (12) reduce to

a(y, A„, A, )=
1+y +U,

b(y, A„, A, )=
+ 2+ (19)

With Eq. (12) it is clear that Eq. (15) is basically an
equation determining the electric energy density of the
nontrivial loss-limited solution, and this energy density
will be defined here as U, = A, + A; [1]. The meaning of
the electric energy density will be discussed further in
Sec. III. With this quantity determined, Eqs. (11) and
(16) can be interpreted as determining the value of the pa-

rameter yo according to

=y(1+5 ') . (21)

Equatio n (21) shows, in effect, that the steady-state wave-
length differs from its background value A, =2m.c&/co if 5
is not large compared to unity.

Equations (20) and (21) give the solutions for the
steady-state energy density and wavelength in a loss-
limited laser amplifier where the usual approximation of
small gain per wavelength has been employed. The same
basic techniques are also applicable to the more rigorous
laser model given in Eqs. (1)—(4). For steady-state
operation these equations become

0=2(1 f )A„+5[(y+—zo)A, (yo+zo)B;]-
+2(y+zo)a A,. /zo —2(y +zo)b A„/zo,

0=2(1 f ) A, —5[(y+zo) A„——(yo+zo)B„]
—2(y +zo )a A„/zo —2(y+zo )b A; /zo,

0=2fB„+5[(y+zo )B;—(yo+zo ) A; ],
0=2fB, —5[(y+zo)B„—(yo+. zo) A„],

(22)

(23)

(24)

(25)

where the integral notation introduced in Eqs. (11) and
(12) has again been employed, and for brevity the depen-
dent variables in the integral functions have not been
shown. Like the simplified set discussed above, these
equations also have the obvious solution in which all of
the field components are equal to zero. Nontrivial solu-
tions of Eqs. (22)—(25) are only possible when the deter-
minant of the coefficients of the field variables is equal to
zero:
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5(yo+zo )

2(1 f—) —2(y+zo)b /zo (y+zo)(5+2a /zo) 0
—(y+zo)(5+2a/zo) 2(1—f ) —2(y+zo)b/zo 5(yo+zo)

0 —5(yo+z, ) 2f
0 —5(y+zo)

—5(yo+zo)
0

5(y+zo )
=0.

2f

(26)

Expanding the determinant yields the equation

[5 (y +zo ) +4f ][2( 1 f ) ——2(y +zo )b /zo ] +4f5 (y o +zo ) [2( 1 f ) ——2(y +zo )b /zo ]

+[5 (y+zo) +4f ][(y+zo)(5+2a/zo)] —25 (y+zo)(yo+zo) [(y+zo)(5+2a/zo)]+5 (yo+zo) =0 . (27)

Equation (27) may be written as the sum of two squares:

I[5 (y+zo) +4f ][2(1—f )
—2(y+zo)b/zo]+2f5 (yo+zo) ]2

+ I[5 (y+zo) +4f ][(y+zo)(5+2a/zo)] —5 (y+zo)(yo+zo) } =0 . (28)

Again, the squared terms must individually vanish, and
one obtains the conditions

[5 (y+zo) +4f ][2(l—f ) —2(y+zo)b/zo]
= —2f5 (yo+zo), (29)

For a homogeneously broadened laser, the functions
a (y, A „,A; ) and b (y, A „,A, ) are given in Eqs. (18) and
(19), and Eq. (32) can be solved for the electric energy
density:

[5 (y+zo) +4f ][(y +zo)(5+2a /zo )]

=5 (y+zo)(yo+zo)

[5(y+zo ) 2fy ]r-
U, = 1

6zo
(33)

2(1 —f ) —2(y+zo)b/zo
(y +zo )(5+2a /zo )

2f
5(y+zo)

(31)

Cross-multiplying and simplifying, this reduces to

5(y+zo)b =5zo+2fa . (32)

These equations are conditions determining the electric
energy density U, and the normalized frequency parame-
ter yo. In the limit of large zo they reduce, respectively,
to the approximate results given in Eqs. (15) and (16).
The parameter yo may be eliminated by dividing the two
equations, and the result is

It is clear that in the limit of large zo this exact result
reduces to the approximation given above in Eq. (20). It
is interesting to notice that agreement with the approxi-
mation is also obtained at line center (y =0). In general,
however, the exact energy density may be either larger or
smaller than the approximate value. For large detunings
(y )zo ) and large pump rates (r ))1) the discrepancy be-
tween the exact and approximate formulas may be sub-
stantial.

After the energy density is known, the parameter yo
can be determined from either Eq. (29) or (30). The result
is

yo=
[5 (y+zo) +4f ][5(y+zo)+2y(1 f)]—

5'[5(y+zo) —2fy ]
zo o (34)

One can show that for large values of zo this result ap-
proaches the approximate formula given in Eq. (21).
With line center tuning (y =0), the exact and approxi-
mate results are not the same. In general, no nontrivial
steady-state solution is possible if yo is set equal to zero at
the outset.

The absolute phase of the steady-state solution is in-
determinate in the absence of any boundary conditions.
Therefore any one of the four field components can be

specified arbitrarily. For example, the component
could be set equal to zero, and A„could be determined
from the electric energy density given in Eq. (33). Then
the magnetic-field components could be readily obtained
from the solution of Eqs. (24) and (25).

III. INTENSITY FORMAI. ISMS
After the steady-state values of the field components

are known, one can begin to address the question of per-
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turbation stability. In principle, the stability of the
steady-state amplifier solution can be assessed by lineariz-
ing Eqs. ( 1 ) —(4 ) near steady state and then substituting
in a complex exponential trial solution. In practice, how-
ever, this approach is cumbersome for general values of
the amplifier parameters, and it leads to a quartic equa-
tion for the complex oscillation frequencies. A somewhat
simpler approach is to first transform the field equations
to a new set of equations governing intensities and energy
densities. Such a new set will be found to contain three
equations rather than four, and it can still describe the in-
tensity instability revealed numerically in Ref. [1].

There are various quadratic intensity- and energy-
related quantities that can form the basis of the transfor-
mation mentioned above. As a first example, we will

adopt the set

I(g) = &„(g)&„(g)+&;(g)&;(g),

I*(g)= &„(g)&;(g)—&;(g)&„(g),

U, (g)= A, (g)+ 3; (g),
U (g)=&„'(g)+&; (g) .

(35)

(36)

(37)

(38)

The intensity I and energy densities U, and U were
defined previously in Eqs. (72)—(74) of Ref. [1], and the
conjugate intensity I* will be shown to provide a con-
venient closure of the equation set. Using Eqs. (1)—(4)
and (35)—(38), a set of equations for the intensities and
energy densities can be written in the form

2(y+zo)U, ( )
2(1 f ) U, (g—)+2fU (g) — f Do(U, ()dU

dg Z0 —~ 1+(y —U) + U, (g)
(39)

dI*(g)
5(y+zo)[U (g) —U, (g)]—

2(y+zo)U, (g) f Do(U, g)dU
zo —~ 1+(y —U) + U, (g)

(40)

dU, (g)
d

= —2[2fI(g)+5(y+zo )I*(g)],

dU (g) = —2 2(1 f)—2(y+zo) f" Do(U, g)dU I(g)
zo — 1+(y —U) + U, (g)

(41)

—(y+z ) 5+ f y Do(U, g)dU I*(~) . .
zo — 1+(y —U) + U, (g)

(42)

While these new equations are by definition consistent
with Eqs. (1)—(4), the two sets are not equivalent. In
particular, information about the phase of the propaga-
ting wave has been lost in Eqs. (39)—(42), and it is
significant that the wavelength determining parameter y0
has now dropped out of the model.

For some purposes the disadvantage of losing phase in-
formation is more than compensated by the much greater
simplicity of the model. One finds, for example, that the

four intensity and energy variables defined in Eqs.
(35)—(38) are not independent of each other but must
satisfy the constraint

U, (g)U (g)=I (g)+I* (g) . (43)

Therefore any one of the equations in the set of Eqs.
(39)—(42) may be regarded as redundant and may be el-
iminated. If Eq. (43) is used to eliminate the variable
U (g), for example, the remaining equations are

2(1 —f ) U, (g)+2f — f Do( U, g)d U
dg U(g) zo —~ 1+(y —U) + U, (g)

(44)

I (j)+I* (g) —U, (g)

dU, (g)
d

= —2[2fI(g)+5(y +zo )I*(g)] .

2(y+z, )U, (g) f „
Do( U, g)dU

z0 1+(y —U) + U, (g)
(45)

Thus the g dependence of the intensity in an amplifier can
be obtained by solving only three equations instead of
four as done in Ref. [1].

It is useful to consider again the limit z0= ~, in which
the standard derivative approximation becomes exact. In

this limit Eqs. (44) —(46) reduce to a single familiar equa-
tion for the z dependence of the intensity in a laser
amplifier. Details of this reduction and a summary of the
resulting analytic solutions is included in the Appendix.
As a further check on Eqs. (44)—(46) and for later use,
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we consider again the problem of loss-limited steady-state
propagation in a laser amplifier. In this limit the equa-
tions can be written

1+2y /[o(y+zo) 2—fy ]

1+[2f/5(y+zo)]

0=2(1 f )U—, +2f(I +I* )
2(y+zo ) U,

b(y, U, ),
zp

[5(y +zo ) —2fy ]r
X y2

5zp

and Eq. (52) is

(54)

0=5(y+zo)(I +I* U, ) ——2(y+zo) U,
a(y, U, ),

zp

(48)

1+2y/[5(y+z ) 2fy ]—

1+ [5(y +zo ) /2f ]

[5(y+z ) 2fy]r—
X y2

6zp
(55)

0=2fI+5(y +zo)I*, (49)

I'+I*' y+zo 1 f-
b(y, U, )—

U2
(50)

I2+I+2
a(y, U, )+1 .

6zp
(51)

Equating the right-hand sides of these equations yields
again Eq. (32). Thus the steady-state electric energy pre-
dicted by this form of the model is the same as the pre-
diction of the original amplitude equations, and for
homogeneous broadening the energy density is given by
Eq. (33).

Steady-state solutions for the intensity variables can
also be readily obtained. From Eq. (49) the conjugate in-
tensity I* is related to the intensity I by

2 I
5(y+zo )

(52)

Equations (51) and (52) may be combined to obtain an
equation for the intensity in terms of the energy density

1+(2/5zo)a(y, U, )I= (53)1+[2f /5(y+zo)]
U, .

For a homogeneously broadened laser the function
a(y, U, ) is given by Eq. (18), and the energy density U, is
given by Eq. (33). With these substitutions Eq. (53) be-
comes

where the coefficients a(y, U, ) and b(y, U, ) are updated
from Eqs. (11) and (12). Equations (47) and (48) may each
be solved for the quantity (I +I" )/U, , and the results
are, respectively,

For some purposes it is useful to decompose the inten-
sity into plus and minus intensity components. As shown
in Ref. [1],a useful definition of these components is

I+(g)=—,'[ A„(g)+B„(g)] + —,'[ A;(()+B;(g)]

(g)= —,'[ A„(g)—B„(g)]'+—,'[ A;(g) —B;(g)]' .

(56)

(57)

Fortunately, it is not necessary to know the individual
field components in order to determine the plus and
minus intensities. From a comparison of the definitions
given in Eqs. (35), (37), (38), (56), and (57), one finds that
the plus and minus intensities can be determined from the
quantities predicted by Eqs. (43)—(46) by means of the
relationships

I (g)= +U, (g)+ U (g) I(g)
24

U, (g)+ U (g)
4

I(g)
2

I (g)=

(58)

(59)

u(g)= —,'[A„'(g)+ A (g) —B„'(g)—B (g)],

u *(g)= —,
' [B„(g)A;(g) —A„(g)B;(g)] .

(60)

(61)

In terms of these functions, Eqs. (1)—(4) may be used to
derive the new set

Thus the reduced amplifier model may be used to deter-
mine all intensity and energy related aspects of the propa-
gating waves in a medium with arbitrarily high gain or
loss.

It is perhaps appropriate to note that other quadratic
transformations can also be used to reduce the field equa-
tions. One can, for example, use the definitions in Eqs.
(56) and (57) together with the new definitions

2 I+(g)+(1 2f) (g)+ f D (U g)dU
dg zo —~ 1+(y —U) +I+(g)+I (g)+2u(g)

(g)(g)+(12f)(g)yo f~(y —U)u*(g)+ I (g)+u(g)
dg zo — 1+(y —U)'+I (g)+I (g)+2u(g)

(63)
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dg
(1 2—f )[I (g) —I+(g) ]—25(y+zo )u *(g)

y+~Q 2 y —U u* +I —I+
zo —~ 1+(y —U) +I+(g)+I (g)+2u(g)

du*(g) y+zo J ~ (y —U)[I+(g)+I (g)+2u(g)]
dg zo —~ 1+(y —U) +I+(g)+I (g)+2u(g)

(64)

(65)

I+(g)I (g)=u (g)+u* (g) . (66)

As with the set given above in Eqs. (39)—(42) the phase-
related parameter yQ does not appear in these equations.
Also, it may be noted that these equations are not all in-
dependent. Thus one finds from Eqs. (56), (57), (60), and
(61) that the dependent variables are related by

(69)
dU, (g)

dg
= —2[2fI(g)+5(y+zo)I*(g)] .

In the simplest case all of the losses are associated with
the electric fields, and the parameter f may be set equal
to zero. Then, for a uniformly pumped amplifier Eqs.
(67)—(69) reduce to

While Eqs. (62)—(66) provide an alternative basis for
any calculation concerning energy density or intensity,
these equations and other possible sets have no obvious
computational advantages over the set given above in
Eqs. (43)—(46). That previous set is generally easier to
work with; and, with U, (g) as a variable, it has the sim-
plest possible form of the saturation denominators. How-
ever, as noted in the Appendix, the set given in Eqs.
(62)—(66) can provide a connection between the basic
rate equation treatments of two-directional laser
amplifiers and the more exact models emphasized here.

= —2U, (g) 1—
dg

+ZQ r
zo 1+y + U, (g)

2(y+zo) U, (g)

ZQ

dU, (g)

dg
= —25(y+zo)I*(g) .

yr
1+y + U, (g)

dI~(g) I (g)+I' (g) U, (g)—
(70)

(71)

(72)

IV. STABILITY CRITERIA

In Ref. [1] it was shown by means of numerical solu-
tions that the propagation of electromagnetic waves in
high-gain amplifying media may be unstable. This insta-
bility leads, for example, to oscillatory growth of pertur-
bations of the steady-state loss-limited intensity and,
viewed differently, to reAection of a propagating wave.
The purpose of this section is to derive analytic expres-
sions for the instability behavior for certain illustrative
special cases. The starting point for this analysis is the
homogeneous limit of Eqs. (44)—(46):

J= l+ 2

5(y+zo)

I*=0,

(y+zo)
T 1

ZQ
(73)

(74)

U =
e

(y+zo)
r —1 —y

ZQ
(75)

The stability of the loss-limited intensity can be evalu-
ated by examining the behavior of small perturbations
away from the steady-state solutions. From Eqs. (33),
(54), and (55), the steady-state solutions of Eqs. (70)—(72)
are

2(y+zo) U, (g)

ZQ
Do( )

1+y +U, (g)

dI+(g) I (g)+I* (g) U,(g)—
2(y+zo) U, (g)

dI(g) 2(1 f)U, (g)+2f I (g)+I* (g)
d U, (g)

(67)

I(g) =I+I'(g),
I"(g) =I*+I*'(g),

U, (g) = U, + U,'(g) .

(76)

(77)

(78)

When Eqs. (76)—(78) are substituted into Eqs. (70)—(72)
and the results linearized, one obtains the linear equation
set

The g-dependent perturbations away from steady-state
are defined by the equations

ZQ 1+y + U, (g)

(68)

dI'(g) 2zo

dg (y+zo)r
(y+zo)

r —1 —y U,'(g),
ZQ

(79)
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' 1/2~=—25(+ ) 1+ y I'
dg 5(y+zo)

tracting those roots are well known. In one analytical ap-
proach, the roots can be written in the form [2]

+ 25(y+zo)

+2y 1+ (1+y )
y+zo r U,'(g),

F+G F —G
s2 — + 3 s,

F+G F —G
S3 2 2

3 l

(94)

(95)

(80) where for the present example the parameters F and G
are given by

d U,'(0)
d

= —25(y+zo)I* '(g), (81)
1/2 1/3

d(r —1) d (r —1) d+ +
r r2 27

(96)

where the steady-state parameter values have been elim-
inated using Eqs. (73)—(75).

The derivatives in Eqs. ( 79 ) —( 81 ) can be eliminated by
means of the exponential substitutions

3
1/2 1/3

+ d(r —1) d (r —1)2 d3

27
(97)

I'(g)=I" exp( sg),

I* '(g) =I*"exp(sg),

U,'(g) = U,"exp(sg) .

(82)

(83)

(84)

Thus the linear differential equations reduce to the linear
algebraic equations

Thus s1 is always a negative real number, while s2 and s3
form a complex-conjugate pair. It is significant already
that the conjugate pair always has a positive real part,
and hence one-directional propagation in this laser
amplifier is always unstable against the type of rejections
that have been discussed more fully in Ref. [1]. In view
of these results it is convenient to introduce the three
length definitions

2ZQsJ"=—
(y+zo)r

(y+zo)
zo

sI* "=—25(y+zo) 1+ 2g

5(y+zo)

1/2

(85) gd
= —1/(F+6),

gg
= 2/(F+G —),

g =4~/[3'~ (F G)], —

(98)

(99)

(100)

r

+ 25(y +zo ) +2y 1+ (1+y )(y+zo)r U,",

(86)

s U,
"= —25(y +zo )I* " (87)

sI"= ——(r —1)U,",
r

sI "=—25z I"+25z U,",
(88)

(89)

These equations can be combined to obtain a cubic equa-
tion for the complex frequencies s.

As a final simplification, it is assumed that the laser is
tuned to the center frequency of the transition (y =0).
Then Eqs. (85)—(87) reduce to

where gd is the damping length of the decaying solution,
is the gain length of the unstable solutions, and g„ is

the oscillation period of the unstable solutions.
The lengths gd and gg are plotted in Fig las fu. nctions

of the threshold parameter r for various values of the nor-
malized frequency parameter d. It is clear from this
figure that gd and gs vary little with d, but vary substan-
tially with r for small values of r. The oscillation period

is plotted in Fig. 2 as a function of r for various values
of d. The period is evidently almost independent of r but
decreases steadily for increasing values of d. In applying
these results to actual laser amplifiers, further
simplifications would often be possible.

In some practical lasers the parameter d would be
much larger than 27 (r —1) /r . If one makes the corre-
sponding simplification of the square-root terms in Eqs.
(96) and (97), the results are

sU,"= —25ZQI* " F=+ [(d/3) d(r —1)/r ]'— (101)

s +45 zos+85 zo(r —1)/r=0 . (91)

With the definition d =45 zQ, this equation can be writ-
ten in the more compact form

s +ds+2d(r —1)/r =0 . (92)

These equations may be combined to obtain the relatively
elementary cubic equation

6= —[(d/3) ~ +d(r —1)/r]' (102)

A first-order expansion of these remaining terms yields

F=+(d/3)' [1—(3/d)' (r —1)/r],
G = —(d /3)'~ [1+(3/d )' (r —1)/r ] .

(103)

(104)

In this approximation the roots of the cubic equation
given in Eqs. (93)—(95) become

Equation (92) has three roots, and techniques for ex- s, = —2(r —1)/r, (105)
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3

0 8 10
0

s2=(r —1)lr+d'~ i,
s3=(r —1)lr —d'~ i,

(106)

(107)

Thus the gain length gs
= r /(r —1) is now independent of

d, and the oscillation period g~ =2'/d'~ is independent
of r.

The exponentially decaying solution corresponding to

FIR. l. Damping length gd for the decaying solution and the
gain length gg for the oscillatory solution for perturbations of
the steady-state loss-limited intensity in a laser amplifier. The
length constants are plotted as functions of the threshold pa-
rameter r for the frequency parameter values (a) d=1, (b)
d=2. 5, (c) d=10, and (d) d=ao. The damping lengths vary
strongly with r but are somewhat independent of d.

I' =+ [
—d+d(1+d /27)' ]'

G = —[+d+d(1+d /27)' ]'
(108)

(109)

Using these formulas in Eqs. (93)—(95), the various damp-
ing and gain lengths and oscillation periods are plotted in
Fig. 3. For large values of both r and d the roots given in
Eqs. (93)—(95) are simply

S]= 2

s2=1+d' i,
(110)

the root s& is not unique to the more exact solutions
developed here. It is shown in the Appendix that this
root is also obtained for the decay rate of perturbations
away from steady state for the familiar approximate
homogeneous laser model. On the other hand, the unsta-
ble complex-conjugate root pair does not occur in laser
models which include the derivative approximation.
These roots may, however, be compared with the oscilla-
tory instabilities revealed by the numerical solutions in
Ref. [1]. For example, with r =20 a perturbation should
grow by a factor of e in a normalized distance of about
gs=r/(r —1)=1.053, and this rate is in reasonable
agreement with the numerical results shown in Fig. 1 of
Ref. [1]. Similarly, with a decay-rate ratio of 5=0.3 and
various normalized frequencies zo, the predicted oscilla-
tion length g =m /5zo is in good agreement with the nu-
merically computed oscillations shown in Ref. [1].

Other approximate forms of the complex oscillation
roots may also be of interest. In most practical laser
amplifiers the unsaturated gain is much larger than the
distributed losses, and hence the parameter r is much
larger than unity. Thus Eqs. (96) and (97) could usually
be simplified to

S3 1 d l (112)

The calculations described here have emphasized the

100

0 8 10

FICr. 2. Oscillation period g~ for perturbations of the loss-
limited solution in a laser amplifier. The period is plotted as a
function of the threshold parameter r for the frequency parame-
ter values (a) d=1, (b) d=2. 5, (c) d=10, and (d) d=100. The
oscillation period varies strongly with d but is somewhat in-
dependent of r.

0 8 10

Fl&. 3. Damping length gd, gain length g, and oscillation
period p~ as functions of the frequency parameter d for large
values of the threshold parameter r.
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simplest case of homogeneous line broadening. It is also
possible to carry out a stability analysis of laser amplifiers
in the inhomogeneous limit using the method introduced
in Ref. [3]. However, the resulting eigenvalue equations
would be much more complicated than for the homo-
geneous limit.

V. CONCLUSION

In Ref. [1] numerical amplifier models have been
developed which avoid the usual approximation in the
field equations that the field amplitudes vary negligibly in
a wavelength. The improved models revealed striking in-
stability and reAection effects that are not present in the
simpler models. In the present study several analytic
transformations and simplifications of the amplifier mod-
els have been explored. It has been shown that the basic
four-equation model for the field amplitudes can be re-
placed by simpler three equation sets for the intensities
and energy densities, and in appropriate limits these sets
reduce to the conventional equations for one-directional
and two-directional laser amplifiers. Stability analyses
can also be carried out analytically, and as an illustration
the stability of the one-directional amplifier equations has
been examined in detail. It is found that one-directional
amplification may be unstable, and the growth of small
perturbations of a propagating steady-state loss-limited
signal can also be interpreted in terms of growth of a
backward-propagating wave.

It is of interest to see whether the effects described here
might have significance for practical laser amplifiers, and
the analytical results make such an evaluation straight-
forward. First of all, one may enquire as to the expected
size of the relevant parameters in the model. The fre-
quency parameter may be written d =46 zQ =4mQ/y,
and thus is a quantity on the order of the squared re-
ciprocal of the fractional energy loss per optical cycle. In
most laser amplifiers the loss per cycle would be small, so
d would be a large number. It follows from Eqs. (106)
and (107) that for large values of d the growth constant
for the instability is g =r /(r —1) and thus is a number
on the order of unity. But the parameter gg is normal-
ized to the decay length associated with background
losses, and in many lasers this length is comparable to the
overall amplifier length. In dye lasers, for example, there
may be substantial absorption of the laser signal due to
other nonlasing transitions; and in semiconductor diode
lasers band-to-band absorption is sometimes not much
less than the laser gain. In such lasers significant
rejections and substantial growth of any perturbations
should occur within a single pass, and experiments to
demonstrate some of the effects described here should be
straightforward.
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APPENDIX: APPROXIMATE AMPLIFIER MODELS

XDo(U, ()dU

gI*(g) I (g)+I* (g) —U, (g)

(A 1)

2(y+zo) U, (g)

zQ

y —U

1+(y —U) + U, (g)

XD0( U, g)dU (A2)

dU, (g)
d

= —2[2fI(g)+5(y+zo)I*(g)] . (A3)

The limit of large zQ corresponds to the derivative ap-
proximation, and in this limit the simplified form of Eqs.
(Al) —(A3) is

dI(g) 2(1 f ) U (g)+2f I (g)+I* (g)
dg U, (g)

—2U(g) f"
1+(y —U) + U, (g)

In the preceding text an analytic model has been
developed for the propagation of the intensities and ener-

gy densities in a laser amplifier. In one formulation an in-
tensity variable corresponding to one-directional propa-
gation appears explicitly, while in a closely related formu-
lation two intensity variables appear representing the
plus and minus waves in a two-directional amplifier. We
have not obtained general analytic solutions for these
models, but it is useful to see how they reduce to known
results for the limits corresponding to the usual deriva-
tive approximation.

The three-equation form of the amplifier model struc-
tured for one-directional propagation is give in Eqs.
(44)—(46), and for reference that set is reproduced here:

dI(g) 2(l f)U (g)+2f I (g)+I* (g)
dg U, (g)

2(y+zo) U, (g)

zo

QO 1

1+(y —U) + U, (g)
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X Do( U, g)d U, (A4)

(A5)
yI+(g) I (g)+I* (g) —U, (g)

dg U, (g)
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dU, (g) = —25zoI*(g) . (A6)
dI(g) 2I(() 1

p( —'y')

In order for the derivative of U, (g) to remain finite for
large values of zo, it follows from Eq. (A6) that I*(g)
must approach zero for all values of g. In the same limit
Eq. (A5) then yields I(g) = U, (g). Finally, with this sub-
stitution the limiting form of Eq. (A4) is

X dU1+ y —U +I
2 2r exp( e—y )

[1+I(g) ]'~ (A12)

" (~) = —2I(g) 1— 1

—~ 1+(y —U) +I(g)

This equation can be arranged into the form2dg=, dI .
I[r exp( —e y ) —(1+I)' ]

(A13)

XDO( U, g)dU . (A7) Integrating yields
I

& 2

dI( )

dg
= —2I(g) 1—

1+y +I(g)
(AS)

This equation can be arranged into the form

1+y +I
I(r —1 y I)——

Integrating yields

2(r —1 —y )
02

—
Pi1+y

Thus, in this approximation the intensity is governed by a
single equation, and in special cases this equation can be
solved analytically.

The simplest special case of Eq. (A7) relates to the lim-
its of homogeneous line broadening and constant purnp-
ing. In these limits the inversion function Do(U, g) can
be replaced by a 6 function in frequency times the thresh-
olds parameter, and Eq. (A7) reduces to

(1+I )' —1 (1+I,)' +1
=ln

(1+I )'~ + 1 (1+I,)'~ —1

1 I2+—,lnr' Il
—2r'ln

r' —(1+I )'

( 1+I )i/z
(A14)

I=r —1 —y2 . (A15)

As in the text, the g-dependent perturbation away from
steady-state is defined by the equation

I(g)=I+I'(() .

where the frequency-corrected threshold parameter
r'=r exp( —e y ) has been introduced. For the limit of
line-center operation Eq. (A14) reduces to Eq. (11) of Rig-
rod [4].

It is also of interest to consider the stability of the
steady-state loss-limited solutions to the approximate
laser models, such as that described by Eq. (AS). The
steady-state solution of Eq. (AS) is

I2=ln
II

r
ln

1+y
r —1 —y —I2

r —1 —y —I,
(A10) When Eq. (A16) is substituted into Eq. (AS) and the re-

sults linearized, one obtains the linear equation

where ln is the natural logarithm. This result can be re-
garded as an implicit equation for the intensity as a func-
tion of distance in the laser amplifier. For the limit of
line-center operation (y =0), Eq. (A10) reduces to Eq. (5)
of Rigrod [4].

Another limit of special interest concerns inhomogene-
ously broadened laser amplifiers. Inhomogeneous line-
shape functions can often be approximated by a Gaussian
distribution such as

dI'(g) 2(r —1 —y ) I,
dg r

(A17)

where the steady-state intensity has been eliminated using
Eq. (A15).

The derivative in Eq. (A17) can be eliminated by means
of the exponential substitution

I'(g) =I"exp(sg) . (A18)

Thus the oscillation frequency is given by the negative
real number

Do(U, ()=r exp( —e U )l~, (Al 1) 2(r —1 —y ) (A19)

where the natural damping ratio e=hvh(»2)'"/&v; is a
measure of the relative widths of the homogeneous and
inhomogeneous broadening functions, and in the inhomo-
geneous limit r is the threshold parameter. If e(1+I)'~
is much less than unity, Eq. (A7) can be written

and one finds that the steady-state solution of the approx-
imate amplifier equation is always stable against small
perturbations. For line-center tuning (y =0) the frequen-
cy is
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2(r —1)
(A20)

and this result is the same as the real root s, of the more
exact model as given in Eq. (105).

Approximate analytical formulas can also be obtained
for the two-directional amplifiers governed by Eqs.
(62)—(66), but for brevity such reductions are omitted
here. Most studies of two-directional amplifiers have
been somewhat restricted in generality and have had the

primary purpose of calculating the output of two-
directional laser oscillators. Using both the derivative
approximation and a low-gain-per-pass approximation,
the two-directional model given here reduces to one
which has been solved previously for homogeneously and
inhomogeneously broadened laser oscillators [5]. Partial
solutions for the homogeneously broadened high-gain os-
cillator case were given by Scott [6—8] and more com-
pletely but omitting longitudinal spatial hole burning by
Rigrod [9,10] and others.
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