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Beam propagation in periodic quadratic-index waveguides

Lee W. Casperson

Several techniques are described for studying the propagation of off-axis polynomial Gaussian beams in
media having straight axes and periodic z variations of the quadratic refraction and loss coefficients. For
some periodic variations, exact analytical solutions of the paraxial equations are possible, and for sufficiently
slow variations, WKB solutions can always be obtained. All results are expressed in conventional beam

matrix form.

. Introduction

Dielectric waveguiding materials in which the index
of refraction and gain vary at most quadratically in the
transverse direction are generally referred to as lens-
like materials, and their ray and beam transmission
characteristics are closely related to those of ordinary
lenses. In two recent studies, the beam propagation
characteristics of tapered lenslike media have been
considered.l? Exact numerical and analytical solu-
tions of the paraxial wave equation were obtained for a
variety of potentially practical taper configurations.
Such tapers have found many applications in coupling
beams from one fiber (or other optical element) to
another. Inaddition to tapers, other types of z depen-
dence may occur accidentally or intentionally in the
manufacture of graded-index fibers and other lenslike
waveguiding media. Of particular interest in this
study are the beam propagation characteristics of lens-
like materials in which the index of refraction and loss
profiles vary periodically in the propagation direction.

The idea that light beams could be guided by se-
quences of lenses has long been known.34 The earliest
studies of periodic lenslike media related to the devel-
opment of gas lenses in which the waveguiding index
profiles were obtained by introducing periodic tem-
perature gradients in the gaseous propagation medi-
um.58 Gas lens waveguides are now largely obsolete
because of less expensive graded-index fiber-optic
waveguides, but interest in periodic lenslike structures
has continued.®1! Periodically perturbed graded-in-
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dex fibers are considered to be a possible consequence
of defective fiber manufacturing techniques or distor-
tions in multifiber cables. Intentionally introduced
periodic perturbations may also be of value for beam
couplers and mode filters.

For illustration, two specific types of periodic lens-
like medium are shown schematically in Fig. 1, and the
radius changes in the figure are meant to suggest
changes in the loss and refraction profiles. In the first
type, the parameters of the waveguide vary smoothly
and continuously with propagation distance, while in
the second type the waveguide is represented as a
composite structure made up of segments that individ-
ually are easier to study. Techniques are described
below for analyzing numerically the propagation of off-
axis Gaussian beams in arbitrary z-dependent lenslike
media. For a few types of continuously varying peri-
odic medium, exact analytical solutions of the paraxial
equations can be obtained. Since matrix representa-
tions are now available for many kinds of waveguide
segment, very general periodic media can be analyzed
exactly by a composite model of the type suggested in
Fig. 1(b). For sufficiently gradual profile changes,
WKB methods can also be applied. At the outset it
may be noted that the assumption of an ideal quadratic
lenslike profile can only be valid out to some finite
radius in a realizable medium. However, for simplic-
ity, it is assumed here as in previous studies that the
propagating modes are confined entirely within the
quadratic-profile region.

The fundamental beam equations and their inter-
pretation are reviewed briefly in Sec. II. It is found
that for periodic lenslike media, the most basic of the
beam equations is of the Hill equation type. In the
special case that the beam profile varies sinusoidally in
the z direction, the general Hill equation reduces to a
Mathieu equation, and solutions for beam propagation
in sinusoidally periodic lenslike media are discussed in
Sec. III. While the solutions of the Mathieu equation
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are most easily obtained numerically, very similar ex-
act solutions can be obtained analytically for a new
class of pseudosinusoidal variations discussed in Sec.
IV. A method for composite periodic functions is
presented in Sec. V, and an approximate WKB method
for arbitrary weak periodic variations is described in
Sec. VI. All the solutions are formulated in terms of
conventional beam matrices, and hence it is straight-
forward to analyze or design complex optical systems
which incorporate one or more segments of periodic
lenslike medium.

. Beam Equations

The reduction of Maxwell’s equations to the ordi-
nary differential equations of beam optics has been
given in many places, so it is possible to be brief. A
similar reduction may be found in Ref. 1 for the funda-
mental Gaussian mode and in Ref. 12 for higher-order
beam modes. For conciseness, several simplifying re-
strictions are imposed at the outset. By using the
results obtained here, together with the formulations
just referenced, it is possible to investigate much more
general beam and media configurations.

As in most previous studies, it is assumed that the
dominant transverse electric field components are gov-
erned by the wave equation

V2E + RE = 0, 1)

where the prime is a reminder that Eq. (1) applies to
the complex amplitude of the electric field. For the
simplified y-independent model of interest here, the
quadratically varying propagation constant can be
written

k¥x,2) = Ro(2)[ko(2) — ko(2)x?], (2)

where all the coefficients are in general complex. For
misaligned media one would need an additional term
linear in x, and similar terms in y could also be includ-
ed as appropriate.! Equation (2) corresponds to a 2-
dependent medium in which the quadratic gain and
index profiles may be independently specified. For a
wave propagating primarily in the z direction, a useful
substitution is

E/ = A(x,2) exp[—i r ko(z’)dz’] . (3)
0

Then Eq. (1) reduces to

2
%—:%—2;‘ 0%—i%A—kok2x2A=O, @)
where A is assumed to vary so slowly with z that its
second derivative can be neglected. This last assump-
tion is the familiar paraxial wave approximation, and
from this point onward all solutions (except the WKB
results of Sec. VI) will be exact.
Equation (4) is a partial differential equation, but it
may be reduced to a set of ordinary differential equa-
tions by means of the substitution

A(x,2) = expl—i(Qx%/2 + Sx + P)]. (5)

This substitution leads to a description of the propaga-
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Fig.1. Schematic representation of (a) a continuous periodic lens-

like medium and (b) a composite periodic medium consisting of

simpler uniform and tapered segments. The radius changes are
meant to suggest changes in the loss and refraction profiles.

tion of off-axis mismatched Gaussian beams, but with
a slightly more complex substitution higher-order
polynomial Gaussian beams can also be described.!2
The results in the present case are

d
Q+ky —d-g + koky = 0, (6)
ds _
QS + &y o 0, 7

L2, (8

In the more general situations additional terms and
additional equations would be obtained. It is impor-
tant to note, however, that Eq. (6), which must be
solved first, would not change its form.!? _

The complex beam parameter @ is related to the
phase front curvature B and the 1/e amplitude spot
size w by means of the familiar formula!3

Q_1_ 2 | 9)

The complex displacement parameter S is related to
the transverse displacement d, of the center of the
amplitude distribution and the displacement d, of the
center of the phase distribution according to the for-
mulas

d, = -5,/Q; (10)

dp = _Sr/Qr! L (11)
where the subscripts i and r refer respectively, to the
imaginary and real parts. The imaginary part of the
complex phase parameter P can be interpreted as a
correction to the on-axis field amplitude resulting
from the changing beam structure and position. Simi-
larly, the real part of P can be interpreted as a phase
correction.

Equations (6)—(8) may be solved in sequence and the
main emphasis here is on exact solutions of Eq. (6).
This is a Ricatti equation, and the first step in solving
it is to introduce the well-known variable change!4

ko dr

Q=_r_dz. - (12)



With this substitution the Ricatti equation is trans-
formed to a linear differential equation with noncon-
stant coefficients

d

— [ko(z) %] + Ro(2)r = 0,

dz (13)

where the z dependences of the coefficients are noted

explicitly for emphasis. 'This equation has been ob- -

tained here from an exact reduction of the paraxial
wave equation. The same equation may also be ob-
tained from the paraxial ray equation, and in that case
r would be interpreted as the z-dependent transverse
displacement of a propagating light ray. While &y and
ko may be allowed to be complex in wave optics studies,
special care would be required to apply Eq. (13) in aray
optics analysis of media having a gain or loss profile.

Solutions of Eq. (13) are much easier to obtain if kg is
a constant, and in that case one finds

2k
dr | =@
dz? kg

It is important to note, however, that with an appropri-
ate change of variables Eq. (13) can always be trans-
formed into Eq. (14), and this transformation is dis-
cussed in Appendix A. Hence, there is no loss of
generality in using Eq. (14) in place of Eq. (13).

When k; is a periodic function of 2z, Eq. (14) may be
recognized as a Hill equation. A more common nota-
tion for such an equation is

r=90. (14)

2

Sty =0, (1)
where f(x) is periodic. This type of equation was first
investigated by Hill in connection with the theory of
the moon’s motion,' and such equations arise com-
monly in many branches of physics and engineering.
Analytic solutions of the Hill equation are known for
only a few special forms of f(x), and the following
sections apply those solutions to the problem of peri-
odic graded-index waveguides.

Il. Sinusoidal Variations

The simplest appearing Hill equation is one in which
the periodic function f(x) varies sinusoidally as shown
schematically in Fig. 1(a). In this case the Hill equa-
tion reduces to the Mathieu equation

2
9_31 + (p — 2q cos2x)y = 0.

dx? (16)

This equation was introduced by Mathieu in his study
of the vibrational modes of a stretched membrane
having an elliptical boundary,!8 and it has been consid-
ered as a possible model for periodic graded-index
media.”?10 In spite of the simple form of the Mathieu
equation, the solutions are not easy to evaluate. For
most purposes they must still be obtained numerically
or from the various published graphs and tables.!”
Nevertheless, this equation may be used to indicate
schematically the solution procedure for rays and
beams propagating in arbitrary continuous periodic
media. A

The Mathieu equation possesses a variety of period-
ic, aperiodic, and unstable solutions depending on the
values of the parameters p and q. From a comparison
of Egs. (14) and (16), it may be seen that use of the
Mathieu equation is equivalent to assuming that the
quadratic term in the complex propagation parameter
has the periodic z dependence

ky(2)
kO

=p — 2q cos2z, 17
where p and q are in general complex constants. With
an obvious renormalization, the Mathieu equation
representation can, of course, apply for arbitrary spa-
tial modulation frequencies.

The Mathieu equation has been introduced here
because of its popularity and simplicity (apparent
rather than real) and also to illustrate the solution
procedures that for other periodic functions may be
quite straightforward. Since Eq. (14) is an ordinary
linear second-order differential equation, it follows
that for any given values of the parameters p and q the
general solution may be written in the form

r(z) = au(z) + bu(z), (18)

where u(z) and v(z) are imagined to be linearly inde-
pendent Mathieu functions and the coefficients ¢ and
b must be determined from initial conditions. Simi-
larly, the rate of change of the parameter r(z) is

r'(z) = au'(2) + bv'(z). 19)

If the values of r(2) and r/(z) at the plane z = zy are ry
and ry’, respectively, it follows from Eqs. (18) and (19)
that the general equations for r(z) and r/(z) can be
written in the usual matrix form:

rz)]_[AG) B n
[r’(z)] - [C(z) D(z)] [rl'] ’ (20)
where the matrix elements are
w(zv(z) = v'(z)u(z)
A = 1)
© = Wy —ueve) @D
v(z)u(z) — u(zv(z)
B@z) = )
@ v(zPu'(z)) = ulz))v'(z;) @2
_ w(z V' (2) — v'(z;u/(2)
&) = e —ueo Gy @3
D) = v(zPu'(2) — ulz)v'(2) (24)

- v(zu’(z)) — u(zv'(zy) )

To reduce these matrix elements further, one would
have to make use of any special properties of the func-
tions u(z) and v(z). However, for the Mathieu equa-
tion, the results remain somewhat complicated, and it
seems as easy to integrate the equation numerically.
In the case that the second-order paraxial equation
is understood to represent the propagation of light
rays, Eq. (20) describes completely the ray propaga-
tion process in periodic quadratic-index media. Simi-
larly, however, it follows from Egs. (12) and (20) that
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Fig. 2. Normalized beamwidth w(2)/w, as a function of distance

along a periodically modulated quadratic-index waveguide with the

modulation frequency (a) v = 0.5vg, (b) v = 1.07¢, and (c) v = 1.5vo
(after Ref. 18).

the propagation of the complex beam parameter @ is
governed by the Kogelnik transformation!3

Q@) _ C+ DQ(zl)/k0 (25)

kO A+ BQ(Zl)/kO

A transformation of the same sort applies to the com-
plex displacement parameter S(z). To see this, we
first write Eq. (7) in the form

dinS __Q
dz ko
(26)
_ C+DQGy)/k
A+BQG)/k,

where Eq. (25) has also been used. But it follows from
Egs. (21) to (24) that C is the derivative of A, and D is
the derivative of B. Hence, Eq. (26) can be written

d InS d [A+BQ(zl)].

(27)

@ - &n ko

Using the facts A(z1) = 1and B(zy) = b, Eq. (27) may be
integrated to obtain the displacement transformation

S(z) = S(z)A + BQ(z;)/ko] ™. (28)

Similarly, if the determinant of the beam matrix is
unity, Eq. (8) may be integrated to obtain the phase
transformation
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Sz(zl) B
2ky A+ BQ(zl)/ko
(29)

; B
PG) - Plz) = = 5 In [A + i(zl)]
0

The conditions in which the determinant is unity are
considered in Appendix B.

Equations (25), (28), and (29) provide a complete
description of the amplitude distribution, phase front
curvature, and displacement of Gaussian beams pro-
pagating in periodically varying lenslike materials. It
was suggested at the beginning of this section that for
the media of interest Eq. (14) might take the form of a
Mathieu equation. However, this suggestion was only
made for purposes of illustration, and the preceding
results apply for arbitrary z-dependent graded-index
media. When the paraxial equations actually take the
form of the Mathieu equation, it is most straightfor-
ward to obtain the solutions by direct numerical inte-
gration.

As an example, several numerical solutions will be
shown for the Mathieu equation

? +F (1 + é cos'yz) =0 (30)

in which the quadratic term in the index profile is
strongly modulated. The coefficient F in real (nonab-
sorbing or amplifying) graded-index media corre-
sponds to the unmodulated index ratio ns/ng, and for
consistency with previous experimental and theoreti-
cal studies the value adopted for this ratio is 25 mm™2.
If the waveguide were not modulated, it would follow
from Eqgs. (6) and (9) that the steady-state spot size can

be written
w. = —)—\_ @ 1/2711/2 . (31)
s Ty \Ng

With the values ng = 1.5 and A = 1 um, this steady-state
spot size is w; = 0.0065 mm, and this value will be the
basis for our normalization of the spot size in periodi-
cally modulated waveguides.

A propagatlng off-axis light ray or polynomial
Gaussian beam in an ordinary z—mdependent graded-
index medium oscillates about the z axis with the
spatial frequency

= (ny/ng)*?, (32)

and for these examples the oscillation frequency is yo =
5mm™!, The actual oscillation in a modulated wave-
guide are typically much more complicated than the
simple sinusoidal variations of frequency v, that
would be found in a z-independent waveguide. Nev-
ertheless, vg is a convenient reference frequency, and
resonance effects are found to occur when the modula-
tion frequency is close to vy.

Figure 2 shows the spot size oscillations that are
obtained for modulation frequencies of y = 0.5 yq, ¥ =
1.0 vq, and v = 1.5 yo. It is clear from this figure that
there is a resonance effect when v = 1.0 7o, and this
resonance causes the spot size fluctuations to increase
without limit. This type of instability has been noted
previously in a study of laser beam propagation in a
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periodically perturbed plasma waveguide.l? Similar
results are obtained for the beam displacement, and
plots of the displacement of the center of the ampli-
tude distribution away from the z axis are shown in Fig.
3. Again there is a resonance effect when v = 1.0 7.

IV. Pseudosinusoidal Variations

The previous section emphasized ray and beam
propagation in periodic media governed by the sim-
plest appearing paraxial equations. In particular the
complex Hill equation was considered to be reducible
to a Mathieu equation. However, except for some
initial general considerations the solutions for beam
propagation had to be obtained numerically. For this
discussion it is assumed that the paraxial equation, Eq.
(14), takes the specific form1®

2
ﬂJ,[ F

33
dz?2 [ (1 + G cosyz)? 33

2
Y?G cosyz r=o,
1+ G cosyz

where in general F, G, and v may be complex. While
this new equation appears slightly more complicated
than the similar Mathieu equation, it has the advan-
tage that the general solution can be written explicitly
in terms of elementary functions. In particular, the
solution of Eq. (33) is

1+ G cosyz Fl2 G sinyz
rz)=a cos
1+G (1 = G?) |1+ G cosyz

N 2 - 1- GZ)I/Z vz
1= )" tan [ ira tan( 9 )
1/2 :
b (1 +G cosyz) sin F { G sinyz
1+G v(1 = G? 1+ G cosyz

— 21/2
Ta- i;z)l/z tan™" [(1 1 f G) tan (?)]}) 39

where a and b are arbitrary constants. Various exten-
sions and special cases of Eq. (34) are considered in
Appendix C. The lenslike media governed by Eq. (33)
are only of interest if the periodic z dependences can
resemble the actual z dependences that one might
expect to encounter in practical waveguides. This
seems to be the case though, and the periodic term in
Eq. (33) may be nearly sinusoidal or it may have nar-
row maxima or minima, depending on the values cho-
sen for the parameters F and G. A more detailed
discussion of the possible forms of the periodic term is
included in Ref. 19.

The matrix elements corresponding to Eq. (34) can
be most easily obtained from a comparison with the
general results of the previous section. Thus, from a
comparison of Egs. (18) and (34) one finds that the
periodic functions u(z) and v(z) are

u(z)_<1+Gcos'yz (

P2 Gsinyz 2
v(1—=G% |1+ Gcosyz (1- G2

1+G

— 22
X tan™? [(1 : +G (,2 ]}> 5
_(1+G cosyz F12 G sinyz 2
v(z) = ( _
1+G ’Y(l -GY) |1+ Gcosyz (1— G2
a[@=6Y".  (vz } ,
X tan [ e tan(z) (36)

Using these formulas, the matrix elements are given by
Egs. (21)-(24). To actually evaluate the matrix ele-
ments, however, it is necessary to compute the deriva-
tives of u(z) and v(z). For this purpose it is helpful to
replace Eqs. (35) and (36) by the equivalent forms

u(z) = (1%(’;%7—2) [F”Z [0 aGd—z%W] 37

T [ e
Now the derivatives are found to be

W)=~ 7(13 iirgz (1= 1+ G)(lF-Il-/ZG cosyz)? sin( 1, (39)

vie) =~ 761; frgz inf ] a+ G)(1FZZG cosyz)? cosl . (40)

where the empty brackets correspond.to the bracketed
quantities in Egs. (37) and (38) or the equivalent quan-
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tities in Eqs. (85) and (36). Using Egs. (37)-(40) the
propagation matrix elements can now be obtained di-
rectly from Eqgs. (21) to (24). With these elements the
propagation characteristics of arbitrary off-axis rays
and polynomial Gaussian beams are completely char-
acterized by Eqgs. (20), (25), (28), and (29). While
these procedures may seem a bit cumbersome, the
results are exact and explicit, and they are much faster
to evaluate than the numerical solutions which would
otherwise be required.

In concluding this section it may be well to empha-
size that the solvable Hill equation with pseudosinu-
soidal coefficients is in many respects very similar to
the relatively unsolvable Mathieu equation. Thus, for
small values of G Eq. (33) reduces to

d’r

— + [F + (v% = 4F)G cosyz]r = 0. (41)
dz?
If v is set equal to 2, this is
d?r 42)

ﬁ + [F+ 4(1 = F)G cos2z]r = 0,
z

which is of the same form as the Mathieu equation
given above as Eq. (16).

V. Composite Periodic Profile Variations

In the previous sections it has been assumed that the
gain and index profiles of the periodic waveguiding
medium vary continuously along the waveguide axis.
While this kind of behavior would be expected for most
practical periodic media, it is important for complete-
ness to also consider the possibility of periodic media
in which the profiles alternate abruptly between ana-
lytically.characterizable segments as suggested in Fig.
1(b). In this case it is also possible to obtain analytic
solutions for the parameters of a propagating light ray
or polynomial Gaussian beam at any position along the
waveguide.

As the simplest possible illustration of these com-
ments, one may consider a waveguide which includes
segments of length d, and quadratic propagation coef-
ficient ko4 alternating with segments of length d, and
coefficient kop. The transformation matrix for one
complete period of this waveguide is

where 9 = cos™1[(A + D)/2]. From the known ray or
beam parameters at the boundaries between stages it is
straightforward to obtain these parameter values at
any intermediate points along the waveguide.

In the simplest possible illustration given above it
was assumed that the waveguide consisted of alternat-
ing segments of uniform guiding media. Itisapparent
though that more complex waveguides can be modeled
using the same techniques. For the example sketched
in Fig. 1(b), one stage of the waveguide may be repre-
sented by a product of four matrices, and the matrices
for2several types of tapered medium have been report-
ed.

VI. Approximate Solutions

Asnoted above, ray and beam propagation in contin-
uous media is governed by an equation of the form of
Eq. (15). Itis just for equations of this form that the
WEKB method provides approximate solutions, provid-
ed f(x) does not change too rapidly and does not pass
through zero. More specifically, it is essential that the
function f(x) must change negligibly in one wavelength
of the oscillatory solution. If this condition is satis-
fied2, the approximate solution of Eq. (15) can be writ-
ten

@) ~ [ {a cos [ ()2

+bsin j : [f(x’)]wdx’} , (45)
0
where as usual the coefficients a and b are determined
by initial conditions.
Using Eq. (45), it can be shown that the matrix form
of the solutions to Eq. (14) is?

ky(z) -1/4 2 [ ky(2') T2
A= = ’ ot
[k2(21)] cosL[ ™ ] dz/, (46)
[Ra@ky(z) 14 | 2 TRa 2
B= [T] sin LI: " ] dz’, 47)
(48)

ko(2)ko(2y) V4 (2 [ Ry(2") |12
=—|————]| sin j dz/,
k02 20 kg

(ho/op) 2 sin(kyy/kg) Wd,,]

Ccos (kZb/kO) 1/2db

(A B)_ cos(koy/ke)*d,,
CD "‘(kzb/ko)llz Sin(k2b/k0)1/2db

cos(k2a/k0)1/ %d, ’

c0s(kog/kg)2d,
—(Rgglko)V? sin(ky,/ky) V2d,

(Bolkog) 2 sin(koy/ko) I/Zd,,]

(43)

If the fundamental propagation constant kg also
changed between segments, it would be necessary to
incorporate in this result the transformation matrices
for the dielectric boundaries.

Once the transformation matrix for one stage of the
waveguide is known, it becomes straightforward to
obtain the transformation for an arbitrary number of
stages by means of the theorem?0

(A B>s __ 1 {A sin(s®¥) — sin[(s — 1)9] B sin(s®)
C D sind | C sin(s®) D sin(sd) — sin(s — 1)9]

4400 APPLIED OPTICS / Vol. 24, No. 24 / 15 December 1985
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kz(z) 1/4 2 kz(z’) 1/2
D= l:k2(zl):| cos L [——};:' dz (49)
Equations (46)—(49) are applicable to any slowly vary-
ing quadratic-index fiber guide. For example, with z-
dependent media governed by the Mathieu equation
as represented in Eqs. (14) and (17), the matrix ele-
ment A becomes

- -1/4 z
A= (M@) cos J (p — 2q cos22")2dz’,

0
P — 2q cos2z, 2 50

and similar results apply to the other elements. The
integrals in these matrix elements can be evaluated by
means of widely tabulated elliptic integrals.2!

VIl. Summary

Longitudinal variations of the refraction or loss pro-
files are often introduced intentionally in the manu-
facture of lenslike media, and sometimes they occur
accidentally during the fabrication process. In this
paper we have investigated several techniques for ana-
lyzing the propagation of polynomial Gaussian beams
in periodic lenslike media. Among these techniques
are (1) direct numerical solution of the beam equa-
tions, (2) identification with the widely studied Math-
ieu equation for media with sinusoidal perturbations,
(3) identification with a new analytically solvable Hill
equation, (4) decomposition of the periodic profile into
discrete solvable segments, and (5) approximate solu-
tion using a WKB method. All these methods lead to
ray or beam matrices of standard form, so that sections
of periodic media, once analyzed, may be easily includ-
ed as elements in more complex optical systems. Ex-
cept for the WKB method all the techniques listed
above yield exact solutions of the paraxial ray or beam
equations. We have also included as appendices brief
discussions on analytically eliminating any z depen-
dence of one of the propagation constants, on the uni-
modularity of the resulting matrices, and on solution
characteristics of the solvable Hill equation.

Appendix A: Equivalent Media

As noted in the text, it is most straightforward to
analyze quadratic-index waveguides in which the kg
term in the complex propagation constant is indepen-
dent of distance z. However, this is not a fundamental
restriction, because any lenslike medium having a z
dependent kg can be transformed into another lenslike
medium in which k&g is a constant.?2 The most funda-
mental equation governing beam propagation in lens-
like media is Eq. (14), which we write in more detailed
form as

d d
o [ko(z) ;(:)] + kyf)r(2) = 0.

(A1)

It is postulated here that the z dependence of the
complex variable r can be identical to the z’ depen-
dence of another variable 7 which is a solution of the
equation

d oo Ar'(2)
dz’ [ko @) dz’

:l + k) (2)r(2') = 0, (A2)

provided that the new coefficients ky'(2’) and ke'(2')
together with the new independent variable 2’ are suit-
ably defined. In particular, it is always possible to
transform the lenslike medium described by Eq. (A1)
to another medium in which k¢’ is independent of z’.

The transformation just described consists of the
relationships

dz’

ky'(2) = kolz(2))] s s (A3)
ky'(2') = kyl2(2)) did(:,'—) : (Ad)
r'() =rlz(z)], (A5)

where the function z(2’) is a completely arbitrary con-
tinuous monotonic function. The validity of this
transformation can be confirmed by direct substitu-
tion into Egs. (A1) and (A2) and use of the chain rule

d _dz d

& (46)
One thus concludes that there is an infinite set of
lenslike media that are equivalent in the sense that the
dependent variables transform in the same way be-
tween two reference planes.

Of special interest is the transformation which takes
a z dependent ky(2) and yields the arbitrarily specified
constant ky'(2’) = ky. From Eq. (A3) this constraint
yields

dz’ ky

PR (an

The integral of this equation is the length transforma-
tion

’

2=k

, [? dz .
0 L ko(z) (A8)
With Eq. (A4) the new quadratic term in the propaga-
tion constant is

ky(z') = kg(z)ko(z)/ko’.

Using these substitutions, Eq. (A2) can be written in
the simpler form

d2r/(z/) k2/(2') o
G TR e =0

(A9)

(A10)

This is the equation form included in the text as Eq.
(14) with the restriction that ko be independent of z,
and the same equation was also a basis of our recent
studies of tapered waveguides. In this Appendix it has
been shown that this form is actually general, since any
z dependence of kg can always be transformed away.

Appendix B: Unimodularity of the Beam Matrices

It is well known that many of the ray matrices and
beam matrices encountered in practical optical prob-
lems are unimodular. That is, they obey the relation-
ship

A B
detM = ]C D‘ =AD-BC=1. (B1)
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This result is never essential for analyzing an optical
system, but it may lead to simplifications of some of
the resulting formulas. In the present study, for ex-
ample, use of Eq. (B1) led to the simple phase transfor-
mation formula given in Eq. (29). Because of such
reductions it is always helpful to know whether the
matrices under study are unimodular. Thus it is rea-
sonable to examine the conditions in which the matri-
ces governing ray and beam propagation in z-depen-
dent graded-index media are unimodular.

As noted in the text, it follows from Eqgs. (21) to (24)
that the matrix elements for an arbitrary z-dependent
medium always obey the relationships

dA _

P (B2)
dB
o D. (B3)

But when Eq. (14) is applied to Eq. (20) one also
obtains

dC _ _ k(2
E‘ - k[) A; (B4)
dD _ kz(z)
&k (B5)
Using Eqs. (B2)-(B5), one finds
d _pdA, 4dD_pdC_ . dB
d—z(AD—-BC)—Ddz+Adz de Cdz
k k
—pc-"2® ap 59 4p_cp
kO k()
=0. (B6)

Therefore, the determinant of the beam matrix is con-
stant, even in a z-dependent medium. But from Eqgs.
(21) to (24) the initial value of the matrix elements at z
=2z isA=1,B=0,C=0,and D = 1. Since the
determinant is constant and has an initial value of
unity, it follows that the matrices for z-dependent
graded-index media governed by Eq. (14) are always
unimodular.

This work was supported in part by the National
Science Foundation.

Appendix C: Pseudosinusoidal Simplifications

The analysis in Sec. IV has been based on a certain
solvable Hill equation for which the solutions can be
obtained analytically. Although the general solution
of that equation has been given analytically in Eq. (34),
it may be worthwhile to consider explicitly some of the
nonobvious special cases and extensions of that result
for particular values of the parameters F, G, and 7.
First of all, it may be noted that, if G is a real number
greater than unity, Eq. (34) can be more conveniently
written:
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@) =a (1 G COS‘YZ) cos P2 Gsinyz 2
’ 1+G ¥(1—G? |1+ Gcosyz (G- 1)Y2

L[(@G* =12 vz 1+ G cosyz
X tanh [*—1+G tan ) +b ~T+c

X sin P2 Gsinyz 2
Y1 -G%) |1+ Gcosyz (G2-1)12

4 (G2 - 1)1/2 ﬁ) )
X tanh [——1 e tan( )

If G is equal to unity, Eq. (34) reduces to the form
{1+ cosyz V2 v\ 1, 3(v2
y(z)—a(————-2 )cos{z_y |:tan<2)+3tan<2>]
1+ cosyz\ . [FY2 vz2\, 1, 3(vz
+b (——2 )sm {—57 [tan (—?> + 3 tan ( 5 ):l .
(C2)

Similar modifications are helpful for special values
of the parameter F. For example, if F'is a negative real
number, Eq. (34) can be replaced by

(Cy

_ [1+ G cosyz
Y@= “( 1+G )
 cosh (~F)12 Gsinyz 2
v(1=G? |1+ Gcosyz (1-—GH2

Ja+en2 vz 1+ G cosyz
X ! Y - Y
tan [ I tan( 9 ) + b( I )

X sinh( 5" {
1 -GY

— 21/2
X tan™! [(—11—:%)— tan (7?2)]}) .

If F is set equal to zero the general solution becomes

Gsinyz 2
1+ Gcosyz (1—GH12

(C3)

_ {14+ G cosyz
oo (215

+b(1+Gcosyz> 1 Gsinyz 2
1+G Y1 -GH) |1+ Gcosyz (1-GH~2

- a- GZ)I/Z ¥z
X tan I:—_I+G tan(2) s

where the constant b has been replaced by bF-1/2,
In the limit that v goes to zero Eq. (34) reduces to

FI/ZZ FI/ZZ
= q Co! + b si ,
Y@ =a S[u n G)2] sm[u + G)2:|

where b has been replaced by minus b. In this limit
there is no reason not to also set G to zero since it adds
no generality to Eq. (33). Thus Eq. (C5) simplifies
further to

(C4)

(C5)

¥(z) = a cos(FY2z) + b sin(F2z), (C8)

and this is the standard result for a ray or beam propa-
gating in a z-independent lenslike medium.
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Patter continued from page 4394

Long-gain-length solar-pumped box laser

A new laser cavity configuration efficiently couples solar radiation to the
laser mode volume. C3Fl gas is optically pumped by two xenon-arc solar
simulators, creating a population inversion and subsequent lasing from atomic
iodine at 1.3 um. The laser cavity is a stainless-steel box with internal high-
reflectivity mirrors that guide the laser mode volume through the optically
excited C3F7I gas. Lasing output powers of ~300 mW have been achieved for
durations of 150 msec.

Previous solar-pumped gas laser systems have been limited to laser gain
lengths of less than 10 cm, requiring very high solar concentrations to achieve
lasing. This new system allows lasing at substantially lower solar simulator
intensities (150 suns) and much longer laser gain lengths (60 cm).

The laser was constructed using O-ring grooves to allow a vacuum seal with
the quartz glass plates on each side of the stainless-steel laser frame. Brewster
windows in the upper left-hand corner allow external laser cavity mirrors to be
mounted and easily aligned. The back cavity mirror has maximum reflectiv-
ity at 1.3 um, and the output mirror has a reflectivity of either 97 or 85%. In
each of the three internal corners of the laser cavity high-reflectivity dielectric
mirrors are placed. These mirrors allow the laser optical path (mode volume)
to be aligned with the incoming solar radiation pattern. The laser beam is
detected by a germanium linear-array detector, which is used to resolve the
laser beam profile. Two xenon solar simulators produce a maximum of 5 kW
each of light. A mechanical shutter is used to allow rapid excitation of the
laser cavity. The input simulator light is concentrated in the form of a
doughnut.

The system allows long gain lengths at much lower solar concentrations,
substantially increasing the practicality of solar pumping. The system was
originally developed for studies of power transmission over long distances
through space.

This work was done by Russell J. De Young of Langley Research Center.
No further documentation is available. 'This invention is owned by NASA,
and a patent application has been filed. Inquiries concerning license for its
commercial development should be addressed to the Patent Counsel, Langley
Research Center, Mail Code 279, Hampton, Va. 23665. Refer to LAR-13256.

Optical scanner for linear array

An optical scanner instantaneously reads contiguous lines forming a scene
or target in the object plane. The reading may be active or passive and the
scans continuous or discrete. The scans are essentially linear with scan angle
and are symmetric about the axial ray. A nominal focal error, resulting from a
curvature of the scan, is well within the Rayleigh limit. The scanner was
specifically designed to be fully compatible with the general requirements of
linear arays.

The essential elements of the optical system are shown in Fig.7. The corner
mirrors My, My, M3, and M, are perpendicularly oriented so that any ray
incident on the front surface of the scan mirror will be directed by the corner
mirrors along a parallelogrammic path arriving at the back surface of the scan
mirror where it will be reflected in a direction parallel to the incident ray.
Except for the imaging lens, all the optical elements are plane mirrors. The
rotation of the scan mirror is the only motion required.

SCANNING
MIRROR

LINEAR
ARRAY
Fig.7. Optical system and path followed by a fan of axial rays, L,

and some arbitrary fan of rays, L;, are shown.

Since the angle of incidence on the front and back surfaces of the scan mirror
is equal, it follows that the incident and emergent rays must be parallel.
Moreover, since each ray must pass through the center of the scan, there is a
lateral shifting of frames so that each ray leaves the system collinear with the
axial ray. Effectively then, the front surface of the scan mirror scans the
object plane frame by frame while the back surface of the scan mirror descans
each frame onto the image plane. All this indicates that each scan line could
be identified with a particular scan angle.

continued on page 4407
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