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extreme summer heat events in the Ohio Valley. Physical 
interpretation of these patterns and identification of well-
simulated cases, such as for Chicago, boosts confidence in 
the ability of these models to simulate days in the tails of 
the temperature distribution. Results appear consistent with 
the expectation that the ability of an RCM to reproduce a 
realistically shaped frequency distribution for temperature, 
especially at the tails, is related to its fidelity in simulat-
ing LMSPs. Each ensemble member is ranked for its ability 
to reproduce LSMPs associated with observed warm and 
cold extremes, identifying systematically high performing 
RCMs and the GCMs that provide superior boundary forc-
ing. The methodology developed here provides a frame-
work for identifying regions where further process-based 
evaluation would improve the understanding of simulation 
error and help guide future model improvement and down-
scaling efforts.

Keywords Temperature extremes · Regional climate 
modeling · Large-scale meteorological patterns · North 
America · Model evaluation

1 Introduction

Temperature extremes are associated with severe impacts 
across a range of societal sectors including human health, 
agriculture, and energy production. Furthermore, antici-
pated changes in temperature extremes resulting from 
anthropogenic global warming are expected to have an 
increasingly severe impact on society (Seneviratne et al. 
2012). Several recent studies provide evidence that exter-
nally forced changes are already observable over many 
parts of the world (Coumou et al. 2013; Donat et al. 2013; 
Min et al. 2013; Morak et al. 2013; Peterson et al. 2013; 

Abstract Large-scale meteorological patterns (LSMPs) 
associated with temperature extremes are evaluated in a 
suite of regional climate model (RCM) simulations con-
tributing to the North American Regional Climate Change 
Assessment Program. LSMPs are characterized through 
composites of surface air temperature, sea level pressure, 
and 500 hPa geopotential height anomalies concurrent with 
extreme temperature days. Six of the seventeen RCM sim-
ulations are driven by boundary conditions from reanaly-
sis while the other eleven are driven by one of four global 
climate models (GCMs). Four illustrative case studies are 
analyzed in detail. Model fidelity in LSMP spatial repre-
sentation is high for cold winter extremes near Chicago. 
Winter warm extremes are captured by most RCMs in 
northern California, with some notable exceptions. Model 
fidelity is lower for cool summer days near Houston and 
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Zwiers et al. 2011) with more substantial changes antici-
pated for the future (Bindoff et al. 2013; Coumou and Rob-
inson 2013; Meehl and Tebaldi 2004; Sillmann et al. 2013). 
In light of this, it is crucial to carefully assess the ability 
of current-generation climate models to capture extreme 
events. Towards this goal, the present study evaluates the 
ability of a suite of dynamically downscaled regional cli-
mate models (RCMs) participating in the North American 
Regional Climate Change Assessment Program (NARC-
CAP; Mearns et al. 2012) to simulate key large-scale mete-
orological patterns (LSMPs) associated with extreme tem-
perature days over North America.

LSMPs associated with extreme warm temperatures 
have been characterized for individual events (Beniston 
and Diaz 2004; Dole et al. 2011; Meehl and Tebaldi 2004). 
Using cluster analysis, Stefanon et al. (2012) show anti-
cyclonic anomalies at 500 hPa associated with heatwave 
patterns over Europe. Similarly, using empirical orthogo-
nal function analysis, Lau and Nath (2012, 2014) isolated 
strong associations between anticyclonic anomalies and 
extreme heat for several regions of North America and 
Europe. Loikith and Broccoli (2012) developed several 
metrics using gridded observations to identify and describe 
LSMPs associated with daily warm and cold temperature 
extremes systematically over the North American domain, 
finding that most temperature extremes are associated with 
synoptic scale forcing. Loikith and Broccoli (2015) further 
evaluated the LSMPs in a suite of global climate models 
(GCMs) contributing to the Coupled Model Intercompari-
son Project Phase 5 and found that the ensemble generally 
reproduces the observed spatial patterns of LSMPs associ-
ated with temperature extremes.

While the focus of regional downscaling is often on 
improving the representation of small-scale features and 
extremes (e.g. heat waves in Vautard et al. (2013)), large-
scale patterns and their relation to temperature and tempera-
ture extremes have been analyzed in RCMs. Bowden et al. 
(2012) investigated the representation of weather regimes 
and their impacts on temperature in RCMs over North Amer-
ica and evaluated the benefits of interior nudging on the 
simulation of temperature and precipitation. Sanchez-Gomez 
et al. (2009) evaluated the ability of a suite of RCMs to sim-
ulate large-scale weather regimes over Europe and found that 
in some cases the RCMs degrade the representation of the 
driving large-scale patterns. Linking dynamics and extreme 
events, Clark and Brown (2013) evaluated the influence of 
LSMPs on European heat extremes using an ensemble of 
regionally downscaled model simulations.

At larger scales, recurrent modes of low frequency 
weather and climate variability, e.g. the Northern Annu-
lar Mode (NAM), El Niño Southern Oscillation (ENSO), 
Pacific North America Pattern (PNA), have been associated 
with extreme temperatures over North America (Gershunov 

and Barnett 1998; Griffiths and Bradley 2007; Kenyon and 
Hegerl 2008; Wettstein and Mearns 2002), often in con-
junction with synoptic scale LSMPs (Loikith and Broccoli 
2014). Westby et al. (2013) demonstrated the influence that 
these modes have on unusually cold and warm temperature 
events and suggest that current generation GCMs often 
have difficulty in reproducing these associations.

Because temperature extremes occur in the tails of the 
temperature probability distribution function (PDF), char-
acteristics of the PDF tails at a given location provide 
insight into the physical processes controlling or influenc-
ing extremes (Loikith et al. 2013). Moreover, the shape of 
the PDF has important implications for the vulnerability of 
a particular location to future changes in extremes (Ruff 
and Neelin 2012) making temperature PDFs an important 
target for model evaluation.

While the spatial scale of typical LSMPs associated 
with temperature extremes is large enough (~103 km) that 
model grid resolution is not expected to have much influ-
ence on model fidelity, the occurrence of extreme tempera-
ture events at particular times or locations may depend on 
local scale effects that are sensitive to resolution, such as 
topography or coastlines. Furthermore, the mechanisms 
associated with extreme daily temperatures for one loca-
tion may differ substantially from nearby locations, espe-
cially in regions of complex terrain or along coastlines. For 
example, the synoptic conditions associated with extreme 
warm temperatures in coastal Southern California promote 
local downslope winds commonly referred to as “Santa 
Ana’s” (Hughes and Hall 2009) while different conditions 
are associated with extreme warmth tens of km inland. In 
this sense, LSMPs should be viewed as proxies for pro-
cesses such as temperature or moisture advection or more 
local scale processes that influence local temperature. 
Therefore, data with high spatial resolution is desirable for 
both understanding the mechanisms associated with and 
predicting changes in extreme temperatures on scales that 
are relevant to society. To avoid the computation expense 
required to run GCMs at high resolution, RCMs are com-
monly used to downscale GCM output over a target region. 
Although downscaling does not guarantee improved model 
performance over GCMs, several studies (Di Luca et al. 
2011; Feser et al. 2011; Paeth and Mannig 2012) have dem-
onstrated added value for extreme events.

Biases in NARCCAP surface temperature have been 
previously documented (Kim et al. 2013; Mearns et al. 
2012; Rangwala et al. 2012). Motivating the current study 
(Loikith et al. 2015) comprehensively evaluated PDF mor-
phology in the NARCCAP hindcast RCM suite. While the 
NARCCAP RCMs reproduce temperature skewness with 
reasonable fidelity in the winter, larger model-observation 
disagreement is evident in summer. This illustrates the dif-
ficulty in simulating the tails of the temperature PDF and 
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consequently temperature extremes, at least in some sea-
sons. The present study builds mechanistically on (Loikith 
et al. 2015), with the overarching goal of identifying where 
and with which RCM–GCM configurations temperature 
extremes are simulated with the highest fidelity by plausi-
ble physical processes.

The rest of this paper is organized as follows. Section 2 
discusses the model and reference data, and Sect. 3 outlines 
the methodology. Section 4 focuses on four selected cases, 
with a domain-wide analysis described in Sect. 5. RCM 
simulation rankings and concluding remarks are presented 
in Sect. 6.

2  Data

2.1  Model data

This work evaluates a total of 17 simulations produced 
using six RCMs contributing to NARCCAP (Mearns et al. 
2009, 2012), (http://www.narccap.ucar.edu). Data are pro-
vided every 3 h on a 50 km horizontal grid. The National 
Center for Environmental Prediction (NCEP) Reanalysis 
II (Kanamitsu et al. 2002) provides the boundary condi-
tions for the hindcast experiment (six simulations) and 
four GCMs provide boundary conditions for the remain-
ing eleven historical simulations (Table 1). The NARC-
CAP domain covers all of the conterminous United States 
(US) and much of Canada and Northern Mexico. As model 
development progresses, higher resolution RCMs are 
becoming available over North America e.g. Wang and 
Kotamarthi (2013), however the coordinated, multi-RCM/
multi-GCM framework for NARCCAP allows for system-
atic evaluation of multiple RCMs and the influence from 
choice of boundary forcing.

The NCEP-driven simulations officially cover the 
years 1980–2004, however data for all variables was only 

available for the 23-year period of 1980–2002. The GCM-
driven simulations cover the years 1971–2000, however 
all datasets were not complete after 1998. Therefore, the 
years 1976–1998 are used to evaluate the GCM-driven sim-
ulations in an effort to have the same sample size as the 
hindcasts while maximizing temporal overlap. Surface air 
temperature (TAS), sea level pressure (SLP), and 500 hPa 
geopotential height (Z500) are used to compute LSMPs.

2.2  Reference data

Two reference datasets are employed. The Wang and Zeng 
(2014) 2-m temperature dataset, based on the National 
Aeronautics and Space Administration (NASA) Modern 
Era-Retrospective Analysis for Research and Applica-
tions (MERRA) reanalysis, is used to identify extreme 
temperature days and to compute TAS LSMPs. This data-
set, introduced in Wang and Zeng (2013) is produced by 
bias correcting MERRA (Rienecker et al. 2011) reanalysis 
hourly 2-m air temperature with monthly gridded in situ 
maximum and minimum 2-m air temperature from the Cli-
mate Research Unit Time Series version 3.10 (CRU 3.10; 
Mitchell and Jones (2005)). This dataset (MERRA–CRU 
from now on) is a global, land only, hourly TAS dataset 
on a 0.5° latitude/longitude grid mesh with substantially 
reduced uncertainty compared with standard MERRA rea-
nalysis. The NCEP North American Regional Reanalysis 
(NARR; Mesinger et al. (2006)) is used as reference for 
SLP and Z500. NARR is originally provided on a 32 km 
grid. NARR is not used to define TAS extremes because 
NARR does not assimilate TAS, introducing bias (Loikith 
et al. 2015; Mesinger et al. 2006).

2.3  Data processing

Daily means were computed from the NARCCAP 3-hourly 
and MERRA–CRU 1-hourly output. All NARCCAP TAS 

Table 1  Full names of RCMs and GCMs contributing to NARCCAP with associated references

RCMs Model name References

CRCM Canadian regional climate model Caya and Laprise (1999)

ECP2 NCEP regional spectral model Juang et al. (1997)

HRM3 Hadley regional model 3 Jones et al. (2004)

MM5I PSU/NCAR mesoscale model Grell et al. (1993)

RCM3 Regional climate model version 3 Pal et al. (2007)

WRFG Weather research and forecasting Shamarock et al. (2005)

GCMs

CCSM NCAR community climate system model, version 3 Collins et al. (2006)

GFDL GFDL climate model, version 2.1 Anderson et al. (2004)

HADCM3 Hadley centre climate model, version 3Q0 Gordon et al. (2000) and Pope et al. (2000)

CGCM3 Canadian global climate model, version 3 Flato et al. (2000)

http://www.narccap.ucar.edu
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data are regridded to a common 0.5° latitude/longitude grid 
mesh, the same as the MERRA–CRU grid, using a krig-
ing algorithm implemented with a thin plate spline (TPS) 
routine (Fields 2006). Surface elevation is provided as 
a covariate and interpolation is performed only over land 
grid points. NARR SLP and Z500 data are interpolated to 
the same grid using a more computationally efficient lin-
ear method based on Delaunay triangulation (Lee and 
Schachter 1980; Youn et al. 2006). Because it was not as 
crucial to reduce smoothing and preserve extremes for SLP 
and Z500, it was decided to use this more efficient interpo-
lation method over kriging. All reference data are subset to 
match the NCEP-driven time period of 1980–2003.

3  Methodology

All data are de-seasonalized by subtracting the daily clima-
tological mean from each day. Evaluation was performed 
for the seasons of summer (June, July, August; JJA) and 
winter (December, January, February; DJF) and warm and 
cold temperature extreme days are defined as those days 
falling within the lower (cold) and upper (warm) 5 % of 
the temperature anomaly distribution. For DJF (JJA) there 
are 90 (92) days per season for 23 years resulting in a total 
sample size of 2070 (2116) days. This results in about 104 
(106) extreme temperature days for each type of extreme 
(warm and cold). The exception is for the HRM3–HadCM3 
and MM5I–HadCM3 runs, which have a 360-day calendar 
resulting in 90-day JJA seasons.

LSMPs are constructed by computing the composite 
mean of the anomaly fields for each variable (TAS, SLP, 
and Z500) for all extreme warm or cold temperature days 
at a given grid point (see Figs. 2, 3, 4, 5, 6 for examples). 
TAS, SLP, and Z500 are chosen to represent the spatial 
extent of the anomalously warm/cold airmass, the near-sur-
face circulation and thermal advection, and the mid-trop-
ospheric circulation respectively. Ensemble-mean LSMPs 
are computed by averaging all six (eleven) LSMPs for the 
NCEP- (GCM-) driven suites of simulations.

There are other valid methods to defining extreme tem-
perature days, each with benefits and limitations. Here, the 
percentile threshold definition was chosen so that all loca-
tions had an equal frequency of extreme days, even in the 
case of a highly skewed frequency distribution. Addition-
ally, the choice of 5 % over a more lenient or stringent 
threshold limits the analysis to days that are relatively infre-
quent yet results in a relatively large sample size for com-
puting LSMPs. One limitation to this choice is that each 
extreme event is considered independent, even if it is part 
of a multi-day outbreak. This has the benefit of construct-
ing an LSMP that is necessarily associated with the most 
extreme days, but could impact the statistical robustness 

of the composite anomalies in the case of small number of 
independent samples. In the four cases discussed in Sect. 4, 
most of the days included are temporally separated from 
other extreme days (80 % of days for Chicago DJF, 81 % 
of days for California DJF, 66 % of days for Ohio JJA, and 
64 % of days for Houston JJA). The slower progression of 
summer synoptic systems likely results in a lower percent-
age of independent days in the JJA examples compared 
with DJF.

The comparison metrics are based on the root mean 
square error, normalized by the spatial standard devia-
tion of the reference pattern (RMSE hereafter), computed 
between the model and reference LSMPs. The data are 
area weighted by multiplying all grid cells by the square 
root of the cosine of latitude before summing the differ-
ence. Only data within a 4500 (4000) km radius of a target 
grid cell for which the LSMP is computed are included in 
the metric comparisons for DJF (JJA). Although the pre-
cise value of this radius is arbitrary, we suggest a value 
on the order of several 1000 km is reasonable for includ-
ing large-scale structure while at the same time excluding 
areas too far away to be relevant to the extreme tempera-
ture occurrence. A larger threshold is used for DJF than 
JJA because of the typically larger spatial scale of winter 
compared with summer LSMPs (Loikith and Broccoli 
2012).

4  Individual cases

Four individual cases are selected to evaluate and analyze 
the LSMPs associated with extreme temperature days in 
detail. The four cases were chosen to exemplify a range 
of model behaviors, dynamical conditions, and societal 
impacts. Temperature anomaly distributions are presented 
in Fig. 1 for each case to provide qualitative comparison 
of the distribution tails. Figures 2, 3, 4, 5 and 6 present the 
LSMPs while Fig. 7 summarizes the results of Figs. 2, 3, 
4, 5 and 6 in the form of a portrait diagram. Throughout 
this section, both Figs. 1 and 7 are referenced for each indi-
vidual case.

4.1  Chicago DJF cold extremes

Winter cold extremes near Chicago, as demonstrated dur-
ing the winter of 2013–2014, can have severe impacts on 
society including disruptions to transportation, increases 
in energy demand, and threats to human health and safety. 
The temperature distribution for Chicago (Fig. 1a, e) is 
characterized by a modest long cold tail in MERRA–CRU, 
consistent with the longer-than-Gaussian cold tail found in 
station data in Ruff and Neelin (2012). Most of the NCEP-
driven runs capture the overall distribution shape, as they 
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exhibit weak asymmetry with a slightly long cold tail 
and slightly short warm tail, while there is notably larger 
spread among the GCM-driven (Fig. 1e) simulations. Days 
in the cold tail occur as part of a large cold airmass cov-
ering much of North America (Fig. 2a). Strong positive 
SLP anomalies (Fig. 2d) associated with the cold airmass 
of Arctic origin are present locally, to the west and south, 
and extend upstream to the northwest while negative SLP 
anomalies associated with a cyclone along the strong baro-
clinic zone on the leading edge of the cold airmass are pre-
sent downstream. A deep Z500 trough (~200 m) is located 
overhead and slightly downstream (Fig. 2g).

Both the NCEP- and GCM-driven runs capture these 
features with the most notable difference being the weaker 
positive SLP anomalies to the west and southwest of Chi-
cago. The summary panel in Fig. 7a shows that the ensem-
ble mean reflects the performance of most of the individ-
ual ensemble members with RMSE values generally near 
or below 0.5, indicating error substantially lower than the 
spatial variability of the reference pattern. The largest disa-
greement is for SLP, consistent with Fig. 2d–f. LSMPs 

associated with extreme warm days (LSMPs not shown) 
are also well simulated albeit with slightly poorer agree-
ment for SLP. In most cases, the NCEP-driven simulations 
exhibit similarly high fidelity to their GCM-driven coun-
terparts, with the ensemble mean patterns showing nearly 
identical comparison metric values.

The dominant influence of synoptic-scale atmospheric 
circulation along with the lack of locally influential geo-
graphic or topographic features render this region and 
season one for which climate models may be expected to 
perform well in simulating extreme winter cold, regard-
less of horizontal resolution, which these results support. 
While the proximity of Lake Michigan to the east may 
affect local climate, the dominance of advection from the 
north and west makes it unlikely that the lake, and the way 
it is represented in the RCMs, would have a substantial 
influence on extreme cold winter temperatures. The strong 
performance at reproducing the conditions associated with 
extreme cold events here boosts confidence in the ability 
of these models to simulate temperature extremes in such 
regions.

Fig. 1  Daily temperature 
anomaly distributions for a–d 
NCEP- and e–h GCM-driven 
simulations at the four indi-
vidual grid cells as discussed 
in Sect. 4 and indicated on the 
maps in Figs. 2, 3, 4, 5 and 6. 
Bin widths are 0.5 °C and fre-
quencies are normalized by the 
maximum bin count and plotted 
on a log scale. Black X’s are 
MERRA–CRU and the dotted 
curves are the Gaussian fit to 
the core of the MERRA–CRU 
distribution. Bin counts are plot-
ted for each simulation based 
on the color and symbol in the 
legend on the right
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4.2  Northern California DJF warm extremes

The complex orography of California leads to multi-
ple climate zones across a relatively small horizontal 

distance making this region a model resolution challenge. 
MERRA–CRU shows a nearly Gaussian frequency distri-
bution in Fig. 1b, f; on the other hand, many of the mod-
els show long cold tails, especially for the ECP2, RCM3, 

Fig. 2  LSMPs for a–c TAS (°C), d–f SLP (hPa), and g–i Z500 (m) 
anomalies at the Chicago grid cell indicated by the white plus symbol. 
All results are for extreme cold DJF days. The left column is for the 
reference data, the middle for the NCEP-driven RCMs, and the right 
column for the GCM-driven RCMs. All model LSMPs are composite 
means of the individual ensemble member LSMPs. For the reference 

panels, only grid cells with anomalies significantly different from 
zero at the 5 % significance level according to a t test are shaded. For 
the model panels, only grid cells where at least half of the models 
contributing to the ensemble mean show statistical significance and 
have the same sign anomaly as the reference pattern are shaded. See 
Sect. 4.1 for discussion

Fig. 3  Same as in Fig. 2 except for extreme warm DJF days at the California example indicated by the plus symbol. See Sect. 4.2 for discussion
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and WRFG simulations, though the warm tails agree 
well.

The reference pattern in Fig. 3d shows that at this grid 
cell, the warmest days occur when SLP anomalies promote 
a strong southerly component to the low-level winds. The 

grid cell is located in the middle of a strong SLP gradient 
with large negative anomalies to the northwest, indicative 
of an upstream cyclone, and weak positive anomalies to the 
south and east. Strong warm anomalies encompass much of 
the domain (Fig. 3a), but the warmest anomalies appear to 

Fig. 4  SLP composite LSMPs 
(hPa) for the California grid 
cell for a the ECP2–NCEP and 
b HRM3–NCEP model runs, 
with extreme days defined 
based on the model climatol-
ogy. c, d Same as a, b except 
extreme days are defined in 
the MERRA–CRU reference 
dataset. e SLP LSMP for 
extreme warm days in NARR 
and f for extreme warm days 
in Ukiah station data. All 
SLP values are from NARR, 
while the source of the surface 
temperature anomalies used to 
identify extreme days differs. 
See Sect. 4.2 for discussion

Fig. 5  Same as in Fig. 2 except for extreme cold JJA days at the Houston grid cell indicated by the white plus symbol. See Sect. 4.3 for discus-
sion
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Fig. 6  Same as in Fig. 2 except for extreme warm JJA days at the Ohio Valley grid cell indicated by the white plus symbol. See Sect. 4.4 for 
discussion
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Fig. 7  The RMSE between the reference and simulated LSMPs, 
normalized by the spatial standard deviation of the reference LSMP 
for all NARCCAP runs and all variables for cold and warm tempera-
ture extremes. Results for a are discussed in Sect. 4.1, b Sect. 4.2, c 
Sect. 4.3, and d Sect. 4.4. Results for the NCEP-driven runs are repre-

sented with a white star. Model configurations using different RCMs 
are separated by vertical black lines. The bottom row is the mean 
value for the corresponding column and the column on the far right is 
the mean value for the corresponding row, excluding the ENS–NCEP 
and ENS–GCM values
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align with the maximum SLP gradient. At Z500, an ampli-
fied wave train pattern is clear with a downstream ridge 
and upstream trough associated with the upstream surface 
cyclone.

Overall, the NCEP- and GCM-driven TAS patterns show 
more widespread warm anomalies than observed, while 
the GCM-driven TAS pattern also shows widespread very 
warm anomalies (>6 °C). The synoptic setup of the SLP 
patterns is well reproduced by the models with the GCM-
driven ensemble showing better agreement than the NCEP-
driven simulations. The negative SLP anomalies to the 
north and west are substantially weaker than reference for 
the NCEP-driven simulations. Z500 shows similar behavior 
with the amplitude and orientation of the wave train better 
realized in the GCM-driven ensemble.

It is somewhat counterintuitive that simulations driven 
by reanalysis would resemble the reference pattern with 
less fidelity than simulations driven by GCMs. It is appar-
ent in Fig. 7b that ECP2–NCEP and HRM3–NCEP are the 
leading contributors to the larger error for the NCEP-driven 
ensemble mean LSMPs. To investigate further, Fig. 4a, b 
shows the SLP LSMPs for ECP2–NCEP and HRM3–
NCEP respectively. The most striking difference between 
these patterns and the reference pattern in Fig. 3d is the lack 
of strong negative SLP anomalies to the north and west of 
the grid cell. In ECP2–NCEP, the field is largely dominated 
by positive anomalies to the south with weak anomalies to 
the north and west while HRM3–NCEP shows a large area 
of strong positive SLP anomalies over much of the US. The 
HRM3–NCEP pattern is suggestive of an offshore com-
ponent to the low level winds. These patterns are robust at 
more restrictive extremes thresholds (not shown). Along 
coastal California, such conditions promote surface warm-
ing primarily by inhibiting the moderating influences of the 
predominant onshore flow. While these patterns are com-
pletely different than the reference pattern, it is not unrea-
sonable to expect anomalously warm temperatures under 
these synoptic conditions.

To investigate the role of boundary forcing, Fig. 4c, d 
depicts the SLP composites for ECP2–NCEP and HRM3–
NCEP produced using the same days contributing to the 
reference LSMP. Because these are hindcasts driven by 
reanalysis, it is expected that the RCMs strongly resemble 
observed conditions for a given day. For both RCMs, the 
SLP pattern is very similar to the reference pattern suggest-
ing the errors in Fig. 4a, b are not being introduced by the 
boundary forcing. The key difference is that the local sur-
face temperature anomalies for these days, while anoma-
lously warm, are not above the 95th percentile of the distri-
bution (not shown). This indicates that the RCMs are able 
to produce large-scale dynamics given realistic boundary 
forcing, but unable to realize extreme warm temperatures 
resulting from these dynamics. This may result in part from 

problems related to the simulation of the boundary layer 
or surface processes including the local influence of topo-
graphical features. If model evaluation was based solely on 
temperature in this case, ECP2 and HRM3 may be mislead-
ingly chosen as being well suited for making future projec-
tions of extremes, which highlights the value of analyzing 
LSMPs.

To rule out uncertainty in the reference dataset, the 
LSMPs are recomputed using days that are extremely warm 
in NARR TAS (processed the same way as the RCMs as 
described in Sect. 2.3). As in the other reference LSMPs, 
NARR SLP is used to compute the composites, but here 
NARR TAS rather than MERRA–CRU TAS determines 
which days contribute to the composite. The NARR SLP 
pattern shown in Fig. 4e is fundamentally different from the 
reference pattern in Fig. 3d but shows some resemblance to 
the ECP2–NCEP and HRM3–NCEP patterns. The NARR 
SLP gradient is highly suggestive of warming due to inhibi-
tion of onshore winds. Because NARR does not assimilate 
surface temperature (Mesinger et al. 2006), it is reasonable 
to suspect biases in the NARR TAS.

To reconcile the differences between the MERRA–
CRU and NARR-based results, station data from nearby 
Ukiah, California (39.1°N × 123.2°W), obtained from 
the National Climate Data Center’s Global Surface Sum-
mary of the day product, are used to identify extreme 
temperature days. The SLP composite pattern in Fig. 4d 
is computed using NARR SLP in the same manner as the 
reference pattern in Fig. 3d, but extreme days are defined 
with the Ukiah station data. The resulting LSMP strongly 
resembles the reference LSMP in Fig. 3d, obtained using 
the MERRA–CRU temperature climatology. Together this 
supports MERRA–CRU as a reliable TAS observational 
dataset for this grid cell, and suggests that NARR TAS is 
biased, and that despite being forced by reanalysis, ECP2–
NCEP and HRM3–NCEP reproduce the dynamics associ-
ated with extreme warm DJF temperatures with low fidelity 
at this grid cell.

While it is hard to definitively explain why GCM-driven 
simulations using these same RCMs perform better, it 
is possible that additional biases introduced by the GCM 
boundary conditions compensate for the inherent bias in 
the RCMs. While the LSMPs are not shown, it is inter-
esting to note in Fig. 7b that the RMSE is also higher for 
the NCEP-driven ECP2 and HRM3 for the SLP patterns 
associated with extreme cold days than the corresponding 
GCM-driven simulations suggesting problems with the 
simulation of the dynamics associated days in both tails of 
the temperature distribution. Furthermore, previous work 
has identified HRM3 as possessing an outstanding warm 
bias across much of the domain in winter and summer 
(Kim et al. 2013), potentially indicative of issues with the 
simulation of temperature in this run.
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4.3  Houston JJA cold extremes

Anomalously cold summertime temperatures in the Hou-
ston region are not associated with widespread climate 
impacts, however, Ruff and Neelin (2012) identified Hou-
ston as having a non-Gaussian long cold tail and Loikith 
et al. (2015) documented large uncertainty in temperature 
PDF tails in NARCCAP hindcasts. This suggests that cap-
turing realistic characteristics of extremes is challenging 
here with important implications for future projections. 
Figure 1c, g shows a long cold tail for MERRA–CRU, con-
sistent with Ruff and Neelin (2012). Overall, the RCMs 
show difficulty in reproducing this feature, with several 
members showing pronounced long warm tails, especially 
in the HRM3 and RCM3 configurations. The spread is also 
greater for the GCM-driven simulations than those forced 
by reanalysis.

Cold extremes in the Houston region occur as part of 
an area of negative temperature anomalies that radiate out-
ward from the Gulf of Mexico (Fig. 5a). Warm anomalies 
are present across the Rocky Mountains of the US and cen-
tral and western Canada. Significant positive SLP anoma-
lies are largely coincident with the region of negative TAS 
anomalies (Fig. 5d), suggestive of a continental airmass of 
high latitude origin with the SLP gradient suggestive of 
northeasterly anomalies in the surface wind. This pattern 
has commonalities with the synoptic mechanisms for Chi-
cago DJF extreme cold in Sect. 4.1, albeit with weaker and 
smaller scale anomalies. A negative Z500 anomaly center 
is located to the north of Houston with positive anoma-
lies over central Canada (Fig. 5g). While Houston is far 
removed from an active storm track and regions of large 
horizontal temperature gradients in the summer, the overall 
synoptic pattern is suggestive of a cool airmass originating 
from higher latitudes.

The TAS pattern for the NCEP-driven runs resembles 
the reference pattern (Fig. 5b). The GCM-driven simu-
lations also reproduce the TAS pattern well locally. The 
NCEP-driven SLP pattern shows stronger positive anoma-
lies than the reference (Fig. 5e) while the GCM-driven pos-
itive anomaly is spatially smaller (Fig. 5f). At Z500, both 
the NCEP- and GCM-driven RCMs capture the negative 
anomaly center near Houston, but the GCM-driven pattern 
resembles a more progressive wave-train than is apparent in 
the reference albeit without a statistically robust upstream 
ridge (Fig. 5h, i).

Figure 7c shows relatively strong model performance for 
TAS patterns with weaker performance for Z500 and even 
weaker performance for SLP patterns for extreme cold days 
near Houston. Similar to the California case, several RCMs 
manifest larger errors in SLP when forced by NCEP rea-
nalysis than a GCM (CRCM, ECP2, HRM3, RCM3) even 

though the resulting ensemble mean pattern shows similar 
RMSE for NCEP- and GCM-driven simulations. Inter-
estingly, TAS LSMPs associated with cold extremes are 
reproduced better than warm extremes at Houston. Warm 
extremes may be more difficult to capture in these LSMPs 
because of the likely influence from small-scale features 
or processes that influence the surface energy budget, such 
as anomalous soil moisture (Berg et al. 2014; Fischer et al. 
2007).

4.4  Ohio Valley JJA extreme warm days

Summer heatwaves are often associated with the most 
severe societal climate impacts and as such are arguably the 
most prominent research focus for future changes in tem-
perature extremes. Extreme summer heat in the Ohio Val-
ley region of the US often occurs in conjunction with high 
humidity levels, further exacerbating the health impacts of 
such conditions. The temperature distribution for the Ohio 
Valley grid cell in Fig. 1d, h shows a slightly short warm 
tail for MERRA–CRU with most simulations exhibiting a 
wider distribution at both tails. This points to issues in sim-
ulating the magnitude of extreme warm events. The short 
warm tail at this location would result in a relatively large 
increase in the number of extreme warm exceedances due 
to a simple shift in the temperature PDF (Ruff and Neelin 
2012), which underscores the importance of proper simula-
tion of warm extremes here.

Heatwaves in the Ohio Valley are part of an anomalously 
warm airmass encompassing much of the eastern half 
of North America (Fig. 6a) with the grid cell on the east-
ern edge of the warmest temperatures. The negative SLP 
anomalies to the north of the grid cell (Fig. 6d) promote 
southwesterly flow, suggesting ongoing neutral or warm air 
advection. The extent of the warm anomalies is captured 
well by the models (Fig. 6b, c) with some indication of a 
warm bias, consistent with the wider tails of the anomaly 
distribution in Fig. 1. The broad characteristics of observed 
SLP anomalies are evident in the models; however, both the 
NCEP- and GCM-driven runs show a more amplified SLP 
pattern (Fig. 6e, f). At Z500, both the position and extent of 
the positive anomalies centered over the Ohio Valley and 
Great Lakes are captured well by the models (Fig. 6g–i), 
except the anomalies are more positive in the simulations 
than in the reference, consistent with the warm bias.

Despite the qualitatively reasonable pattern agreement, 
the models typically exhibit high RMSE values, espe-
cially for SLP (Fig. 7d). Values greater than one indicate 
that the difference between the reference and model pat-
terns is larger than the spatial variability of the reference 
pattern. One contributing factor to this is the difference in 
SLP anomaly sign and strength in the northern portion of 
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the domain. While largely not statistically significant, the 
GCM-driven runs show negative anomalies over northern 
Canada while the NCEP RCMs and the reference show 
positive anomalies. The NCEP-driven runs generally per-
form better than the GCM-driven runs in this case. The 
LSMPs for days in the cold tail of the distribution show 
better agreement, possibly because there is a stronger syn-
optic component to unusually cool days while extreme heat 
is influenced by more local-scale processes such as land–
atmosphere coupling that may not be captured in these 
LSMPs.

The stronger agreement for the TAS and Z500 pat-
terns and weaker agreement for SLP suggests that tem-
perature extremes at this grid cell may be more influenced 
by anomalies at Z500 than the near-surface circulation. 
Because of the relatively weak horizontal temperature 
gradients present during the summer, it is reasonable that 
near-surface circulation is not as influential as subsidence 
under a large Z500 ridge allowing the models to capture 
the extent and magnitude of the warm airmass with rea-
sonable fidelity while exhibiting poor representation of 
the SLP pattern.

5  Evaluation of LSMPs over North America

Expanding on the cases presented in Sect. 4, RMSE is com-
puted for each LSMP at each continental grid cell. Each 
value plotted on the maps in Figs. 8, 9, 10 and 11 is the 
median RMSE value from the six (eleven) NCEP- (GCM-)
driven ensembles for that grid cell. The median RMSE is 
chosen over the mean to reduce the influence of outliers.

5.1  DJF cold extremes

Figure 8a–f shows the RMSE across the entire domain for 
LSMPs associated with extreme cold DJF days. Box-and-
whisker plots (Fig. 8g–i) show the RMSE value at every 
grid cell for each ensemble member grouped by RCM. 
In the box-and-whisker plots, the simulations are aligned 
so that all simulations with the same RCM are grouped 
together, with the NCEP-driven run on the left. TAS LSMPs 
for extreme cold DJF days (Fig. 8a, b) show low error over 
much of the domain for both the NCEP- and GCM-driven 
simulations with the only areas of elevated RMSE over 
the mountains of the western US and far northern Canada. 

Fig. 8  a–f Median RMSE computed between the reference LSMP 
and each of the (left) six NCEP- and (right) eleven GCM-driven sim-
ulated LSMPs for DJF cold extremes. All RMSE values are normal-
ized by the spatial standard deviation of the reference pattern before 
the median is computed. Maps are for a, b TAS, c, d SLP, and e, f 
Z500 LSMPs. Red plus symbol’s indicate the California and Chicago 
grid cells. g–i Box-and-whisker plots showing the RMSE value at 
every grid cell in the domain for all NARCCAP runs. The horizontal 

red lines indicates the median values while the blue boxes outline the 
25th and 75th percentiles and black dots are outliers. The RCM and 
driving boundary forcing is labeled along the x-axis and organized 
such that the NCEP-driven runs are always to the left of the GCM-
driven runs for that same RCM. The vertical blue lines delineate each 
of the RCMs, with the ensemble mean on the right. See Sect. 5 for 
discussion
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Fig. 9  Same as in Fig. 8, except for DJF warm extremes

Fig. 10  Same as in Fig. 8 except for JJA cold extremes, with the plus symbol’s representing the Ohio Valley and Houston grid cells
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Overall, RMSE is higher for GCM-driven simulations com-
pared with the NCEP-driven runs. Individual models tend 
to reflect similar behavior, as the median RMSE values are 
higher for the GCM-driven runs except for HRM3.

RMSE is higher for the SLP patterns (Fig. 8c, d), with 
high error over northern Canada and the southwestern por-
tion of the domain, amplified in the GCM–RCM simula-
tions. CRCM–NCEP, ECP2–NCEP and the ensemble 
means show the lowest RMSE overall, with relatively 
high values for many of the GCM-driven runs includ-
ing WRFG–CCSM, RCM3–GFDL, CRCM–CCSM, and 
MM5I–CCSM (Fig. 8h). In some cases there are very large 
differences between the NCEP- and GCM-driven simula-
tions. For example, CRCM–NCEP has notably low RMSE 
while CRCM–CCSM has relatively high values. MM5I–
NCEP compared with MM5I–CCSM shows similar behav-
ior. This suggests that substantial error is being introduced 
by the driving GCM, especially CCSM.

Z500 patterns (Fig. 8e, f) largely match the spatial pat-
terns of SLP RMSE but with lower error. The box plot in 
Fig. 8i also resembles the boxplot for SLP with CCSM 
configurations standing out as having relatively high error. 
Because TAS shows elevated RMSE in many of the same 
regions as SLP and Z500, it follows that proper simulation 
of the dynamics is important for reproducing the extent 
and strength of the anomalous airmasses associated with 
extreme cold DJF temperature events. In all cases, the 

Chicago example presented in Sect. 4 (Fig. 2) is regionally 
representative with low RMSE over much of the central 
and eastern portion of the domain.

5.2  DJF warm extremes

The maps of RMSE for extreme warm DJF days (Fig. 9a–
f) show elevated error in many of the same regions as for 
extreme cold DJF days (Fig. 8). TAS pattern agreement 
(Fig. 9a, b) is relatively weak over the western and cen-
tral US and stronger over the eastern and northern por-
tions of the domain. These values, as for DJF cold extreme 
LSMPs, are mostly less than one, indicating that error is 
smaller than the spatial variability of the reference pattern. 
Individual ensemble members vary with all NCEP-driven 
runs except HRM3 showing lower RMSE values than 
their GCM-driven counterparts (Fig. 9g). CRCM, ECP2, 
and RCM3 stand out as strong performers when driven 
by NCEP, while RCM3–CGCM3, CRCM–CGCM3, and 
HRM3–GFDL stand out as superior GCM-driven simula-
tions. The CCSM-driven simulations show elevated RMSE 
similar to the DJF extreme cold results.

SLP patterns (Fig. 9c, d) exhibit the highest error, espe-
cially in the GCM-driven runs. The southwestern US and 
northern Mexico along with far northern Canada exhibit 
the highest RMSE, with GCM-driven values substantially 
higher than the NCEP simulations. There are a number of 

Fig. 11  Same as in Fig. 8, except for JJA warm extremes, with the plus symbol’s representing the Ohio Valley and Houston grid cells
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likely sources contributing to the elevated error at high lati-
tudes. Observational uncertainty may be larger here, since 
in situ observations are sparser than at lower latitudes. 
Additionally, the RCMs may have difficulty in simulating 
the physics and dynamics of the very stable boundary layer. 
Lastly, the proximity of the high latitudes to the domain 
boundary may interfere with the spatial extent of the LSMP 
that is being evaluated, with the potential for important fea-
tures existing beyond the RCM boundary. The individual 
ensemble members (Fig. 9h) show similar relative behav-
ior as in TAS and for DJF extreme cold SLP (Fig. 8h) in 
most cases with CRCM–NCEP and ECP2-NCEP showing 
the lowest and the three CCSM configurations showing the 
highest RMSE overall. The California grid cell is within 
a local area of moderate RMSE, however as discussed in 
Sect. 3, error is slightly larger for the NCEP- compared 
with the GCM-driven simulations. This is not the case 
domain-wide.

At Z500 (Fig. 9e, f), RMSE is lower than for SLP 
although regions of elevated RMSE are generally coinci-
dent with SLP and TAS. In general, the simulations that 
perform well (poorly) for one variable also perform well 
(poorly) for the other variables. For example, CRCM–
NCEP and ECP2–NCEP exhibit notably low error for TAS, 
SLP, and Z500, while the opposite is true for the three 
CCSM-driven runs. This multi-variate consistency high-
lights the important role of large-scale dynamics on the 
occurrence of temperature extremes. This also suggests 
that there is considerable error being inherited from CCSM 
as the NCEP-driven runs of CRCM, MM5I, and WRFG 
have considerably lower RMSE than their CCSM-driven 
counterparts.

5.3  JJA cold extremes

For JJA cold extremes, the TAS RMSE (Fig. 10a, b) is low 
over much of the domain with elevated values from Mexico 
northward into the southwest US. Boundary forcing does 
not have a strong influence on the RMSE values domain 
wide, as RMSE is only slightly higher for RCMs driven by 
NCEP compared to GCMs. Similar to the DJF examples, 
RCMs forced with CCSM show elevated error relative to 
the corresponding hindcast results.

SLP RMSE (Fig. 10c, d) shows large values in some 
of the same regions as in TAS. RCM–NCEP configura-
tions show somewhat elevated RMSE along the Appala-
chian Mountains through the northeastern US with this area 
highly amplified and expanded in the GCM-driven simula-
tions. Mirroring the DJF behavior, the best RCM configu-
rations are CRCM–NCEP and ECP2–NCEP (Fig. 10h). 
MM5I–HADCM3 stands out as having the highest RMSE 
for SLP. Z500 shows relatively high RMSE (Fig. 10e, f) 
in the same areas as SLP. The area along the southwestern 

Great Plains and eastern Rocky Mountains shows consist-
ently high RMSE for all three variables, suggesting a sub-
stantial dynamical contribution to the error in simulating 
extreme temperatures there. CRCM–NCEP and ECP2–
NCEP also show the lowest RMSE for Z500 (Fig. 10i), 
while the MM5I configurations stand out as having the 
highest error overall, as for SLP. The Houston example 
is generally within a coherent region of low to moder-
ate RMSE for all three variables, suggesting the results in 
Sect. 4.3 are somewhat representative of the northwestern 
Gulf of Mexico coast.

5.4  JJA warm extremes

Of the four types of temperature extremes analyzed here, 
warm summertime extremes are associated with the most 
severe impacts and are often associated with other extreme 
conditions such as drought (Fischer et al. 2007) and air pol-
lution (Jacob and Winner 2009). Furthermore, it is antici-
pated that warm extremes will become more intense and 
persistent due to anthropogenic climate warming (Senevi-
ratne et al. 2012). The TAS patterns for warm summertime 
extremes (Fig. 11a, b) show low RMSE over the northern 
2/3 of the domain with elevated values over the southern 
third. Intra-ensemble variability is relatively low (Fig. 11g), 
however CRCM–NCEP and ECP2–NCEP stand out as 
having relatively low error while WRFG–CCSM shows 
the highest RMSE. In some cases the NCEP-driven error 
is larger than the GCM-driven simulations, but the ensem-
ble means reflect nearly identical error for either boundary 
forcing.

SLP pattern agreement shows relatively high RMSE 
domain wide with higher error in the GCM-driven runs. 
On the other hand, the Pacific coast of the US and Canada 
and portions of Northern Canada show relatively low error. 
Individual model error is often very large with median 
RMSE values near 1.0 for the MM5I–GCM simulations. 
Consistent with other cases, CRCM and ECP2 have supe-
rior skill when forced with NCEP although when forced by 
GCMs they produce substantially larger errors.

Circulation anomalies aloft are associated with lower 
RMSE than SLP, especially over the central US and the 
mountains of the western US and Canada (Fig. 11e, f). The 
geographic distribution of RMSE is qualitatively similar 
between TAS and Z500, while SLP is distinct. This sug-
gests that circulation at Z500 may be more important for 
the occurrence and magnitude of temperature extremes than 
SLP. The behavior described for the Ohio Valley case in 
Sect. 4.4 is consistent with this hypothesis, as it is located 
in a coherent region of low RMSE for TAS and Z500 and 
high RMSE for SLP. These results suggest the need for fur-
ther analysis of other key processes, such as the influence 
of low soil moisture on extreme heat, that may influence or 
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control NARCCAP RCM fidelity in simulation of extreme 
warm summer temperatures.

6  Discussion and conclusions

6.1  RCM–GCM configuration ranks

To provide an assessment of the relative merit of the 
RCMs and the driving GCMs, the simulations are ranked 
with respect to a single measure of RMSE (Fig. 12). This 
measure is derived by computing the spatial mean of the 
RMSE values for each model simulation and for each vari-
able (TAS, SLP, Z500). Then, the average of those values 
is computed to get the overall RMSE-based performance 
metric plotted in Fig. 12. This is performed separately for 
DJF and JJA.

CRCM and ECP2 show the lowest RMSE when driven 
by NCEP of any individual simulation configuration in both 
seasons. These are the only two RCMs that use spectral 
nudging in the domain interior, likely contributing to the 
superior performance when driven with reanalysis (Mearns 
et al. 2012). The NCEP-driven multi-model ensemble mean 
also has low RMSE, although higher than CRCM–NCEP, 
while the GCM-driven ensemble mean has lower RMSE 
than any individual GCM-driven run. The superior per-
formance of the GCM-driven ensemble mean indicates 
that intra-ensemble bias is not systematic, as averaging 
all eleven LSMPs reduces error relative to any individual 
run. Consistent with expectations, RCMs driven by NCEP 
show lower RMSE than when the same RCM is driven by 
a GCM, in most cases. Three exceptions are for HRM3 in 
DJF and WRFG and RCM3 in JJA. In these cases, it is pos-
sible that error introduced by the driving GCM compen-
sates for inherent biases in the RCM, resulting in an overall 
lower RMSE compared with the NCEP-driven hindcast.

Consistent with the findings in Sect. 5, CCSM boundary 
forcing tends to introduce larger error than other GCMs. 
For example, in DJF three of the four lowest ranked simu-
lations are driven by CCSM. The apparent effect of CCSM 
is particularly notable for CRCM, which when driven by 
NCEP ranks the highest and when driven by CCSM ranks 
the fourth lowest. MM5I falls from 7th with NCEP to 18th 
with CCSM and WRFG from 10th to 19th (last). Simi-
lar results are found for JJA where CRCM falls from 1st 
place when forced by NCEP to 9th when forced by CCSM. 
WRFG–CCSM also ranks 17th and MM5I–CCSM 19th. 
Simulations produced using CGCM3 and GFDL as bound-
ary forcing are generally ranked the highest both overall 
and compared with other boundary conditions for the same 
RCM. For DJF and JJA, GFDL and CGCM3 account for 
six out of the top 7 RCM–GCM. The two top performing 

RCMs when forced by NCEP, CRCM and ECP2, show rel-
atively small changes when forced by CGCM3 and GFDL 
respectively, suggesting these combinations are strong 
candidates for projecting future changes in temperature 
extremes in both seasons.

One caveat in using this overall RMSE score as a per-
formance metric is that some RCM configurations may 
perform well in some locations while performing poorly 
in others. For example, ECP2–NCEP ranks third highest 
overall in both seasons but performs with relatively low 
skill for the California example (Sect. 4.2; Fig. 4a). Thus, 
while Fig. 12 distills evaluation of these models into a sin-
gle generalized performance metric, if the goal is to project 
future changes in temperature extremes for a specific loca-
tion of interest, it is important to consider the RCM–GCM 
configuration rankings at that location. It is also important 
to note that this generalized metric only reflects model per-
formance for LSMPs associated with extreme temperature 
days, and does not provide a definitive ranking for overall 
simulation of the climate.
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Fig. 12  Simulation rankings for (top) DJF and (bottom) JJA for all 
simulations with each row representing an RCM and each column 
the driving boundary forcing. Colors indicate total mean RMSE 
(described in Sect. 6.1) and the numbers indicate the simulation rank-
ing, out of 19, relative to the other simulations based on the total 
RMSE. White areas are where no simulation is available with the 
indicated configuration
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6.2  Conclusions and future direction

This study comprehensively evaluates the LSMPs associ-
ated with extreme winter and summer temperature days 
in the NARCCAP hindcast and historical GCM-driven 
experiments. Regional downscaling aims to improve over 
coarser resolution models in areas with complex topogra-
phy or other features that necessitate finer resolution. In 
terms of extreme events, while the LSMPs themselves do 
not occur on such small scales, the temperature extremes 
may, and in areas of complex terrain or sharp climate zone 
gradients, starkly different LSMPs can be associated with 
extremes for neighboring locations. LSMPs can also be 
associated with processes, such as adiabatic warming due 
to downslope winds or convective precipitation that can 
influence temperature extremes at more local scales. There-
fore, the information provided by physically interpreting 
and comparing model simulated LSMPs to those derived 
from observations, can both boost confidence in the ability 
of a model to simulate temperature extremes and identify 
areas where models may be challenged. Furthermore, anal-
ysis and physical interpretation of LSMPs helps to identify 
areas for which models may simulate realistic extremes but 
with incorrect underlying mechanisms. The ECP2–NCEP 
and HRM3–NCEP hindcasts exemplify this for the Cali-
fornia example presented in Fig. 4. Here, evaluating model 
performance based solely on reproduction of temperature 
would yield misleading results.

Overall, LSMPs associated with temperature extremes 
are simulated with highest fidelity away from complex 
topography, where synoptic-scale dynamics are highly 
influential on local temperature, and during winter as 
compared with summer. In addition to LSMPs, summer 
extremes may be associated with other processes such as 
smaller scale and weaker circulation and land–atmosphere 
coupling related to soil moisture, resulting in lower model 
skill scores compared with winter. Focusing on four indi-
vidual cases, LSMPs were represented well for Chicago 
winter cold days, well for northern California winter warm 
days with some exceptions, and with less skill for Houston 
summer cold days and Ohio Valley summer hot days. In 
many cases examined, especially in DJF, areas of elevated 
error for TAS are coincident with areas of elevated error 
for SLP and Z500, indicative of the dynamical interplay 
among all three variables. This underscores the importance 
of evaluating LSMPs in relation to temperature extremes. 
The ability of the models to reproduce realistic temperature 
distributions for the four individual cases in Sect. 4 appears 
to have some relation to the simulation of LSMPs.

Based on the results of this analysis, CGCM3 and 
GFDL appear to be best suited in terms of boundary forc-
ing GCMs for future projections of temperature extremes. 
When driven by reanalysis, CRCM and ECP2 demonstrate 

superior skill at reproducing LSMPs, suggesting that these 
RCMs may be the best suited for making future projections 
of temperature extremes, especially when used in conjunc-
tion with CGCM3 and GFDL boundary forcing. CRCM 
and ECP2 are also the only two RCMs to use interior nudg-
ing, likely contributing to the superior performance when 
driven by reanalysis. CCSM consistently proves to be an 
inferior GCM for boundary forcing, with CCSM-forced 
simulations showing substantially higher error than the 
NCEP-driven hindcasts using the same RCM.

Future efforts should focus on process-based evaluation 
of the NARCCAP suite, as in Bukovsky et al. (2013) for 
the North American Monsoon, focusing on cases identified 
as having low model fidelity. Such improved understand-
ing of model error would provide a baseline for evaluating 
the efficacy of dynamical downscaling at higher resolutions 
versus other modeling efforts such as performing statistical 
downscaling, producing high resolution global simulations, 
or improving model physics. For example, the California 
case in Sect. 4 suggests that two of the RCMs analyzed 
may simulate local temperature extremes of proper ampli-
tude but in relationship to physical processes inconsistent 
with observations. Here, high resolution is expected to be 
crucial given the influence of topographical features. Inves-
tigation of the potential causes of errors in key processes 
may also improve understanding of why some RCMs show 
better skill at reproducing the LSMPs when forced by 
GCMs compared with NCEP.

The Houston case is also an illustrative example of a 
strong candidate for further process-oriented evaluation. 
Both warm and cold extremes show substantial differences 
from reference (Fig. 7c). For warm extremes, the effects of 
land–atmosphere coupling through soil moisture feedback 
or improper representation of the sea breeze front and con-
vective precipitation could contribute to the generally large 
model error. Furthermore, while high resolution is neces-
sary to capture many of these processes, this may be a situ-
ation for which improved model physics would stimulate 
the greatest improvement in model fidelity.

Results for the heat wave case in the Ohio Valley show 
that TAS and Z500 patterns are reasonably simulated, while 
SLP patterns have large errors. This is likely indicative of 
the relative importance of a Z500 ridge for the occurrence 
of extreme warm temperatures compared with near-surface 
circulation features. However, further analysis of the sur-
face energy budget as it relates to anomalous soil moisture 
and synoptic-scale subsidence under the Z500 ridge are 
reasonable targets for future process-based evaluation for 
this case.

The results of this work also identify places where 
future efforts would not be productively spent, as exem-
plified by Chicago in the winter. It is somewhat expected, 
but nonetheless encouraging, that the NARCCAP RCMs 
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realistically simulate the LSMPs associated with win-
ter temperature extremes here. This indicates that the key 
processes are well simulated in this region and further 
increases in resolution are unlikely to foster major improve-
ments in model fidelity.

Beyond these four examples, the domain-wide focus 
of this evaluation framework allows for systematic iden-
tification of all regions where further analysis and simu-
lation improvement efforts may be productively focused 
and where strong model performance lends confidence to 
future climate simulations. Additionally, the methodology 
employed here could extend to other extreme phenomena 
that are associated with characteristic LSMPS, such as pre-
cipitation extremes.

Ultimately it is the future aim for this work to develop a 
framework for generalized and systematic evaluation of the 
ability of RCMs to simulate temperature extremes based on 
several diagnostics and metrics. Combined with the evalua-
tion of temperature distributions in Loikith et al. (2015) and 
planned future process-based evaluation, we aim to develop 
a suite of generalized performance metrics, similar to that 
presented in Fig. 12, that can be used to rank RCM–GCM 
configurations. While this work has focused on NARCCAP, 
such metrics can be applied to any suite of simulations, 
providing readily interpretable information based on sta-
tistics, dynamics, and processes that are all key to extreme 
temperature simulation.
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