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a b s t r a c t

The ability to separate liquid and gas phases in the absence of a gravitational acceleration has proven a
challenge to engineers since the inception of space exploration. Due to our singular experience with ter-
restrial systems, artificial body forces are often imparted in multiphase fluid systems aboard spacecraft to
reproduce the buoyancy effect. This approach tends to be inefficient, adding complexity, resources, and
failure modes. Ever present in multiphase phenomena, the forces of surface tension can be exploited
to aid passive phase separations where performance characteristics are determined solely by geometric
design and system wettability. Said systems may be readily designed as demonstrated herein where a
regulated bubbly flow is drawn through an open triangular sectioned duct. The bubbles passively migrate
toward the free surface where they coalesce and leave the flow. The tests clearly show container aspect
ratios required for passive phase separations for various liquid and gas flow rates. Preliminary data are
presented as regime maps demarking complete phase separation. Long duration microgravity experi-
ments are performed aboard the International Space Station. Supplementary experiments are conducted
using a drop tower.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Separation of bubbles from a liquid medium is a critical, but
non-trivial task aboard spacecraft due to the absence of a net grav-
itational force that precludes using buoyancy as a strong separa-
tion mechanism. Without gravity-induced buoyancy, alternate
methods such as artificial body forces must be utilized to achieve
partial or complete phase separation. Artificial accelerations may
be imparted by onboard centrifuges (Ozbolt, 1996), thruster firings
(Chato and Martin, 2006), or by designing vortical flow paths in
pumped loops (Chahine and Kalumuck, 2001; Barbu et al., 2006;
Hoyt et al., 2011). Body or surface forces generated by electric,
magnetic, acoustic, and other forces are also considerable (Feng
and Seyed-Yagoobi, 2004; Marchetta et al., 2004; Oeftering et al.,
2002; Clark, 1992; Shoemaker and Schrage, 1997), but no approach
has been met with wide acceptance and implementation. This is
primarily the result of the extremely limited exposure to long

duration low-g environments where a sense of routine is difficult
to establish and where inferior methods are only slowly removed
from consideration.

An additional and ever-present force in spacecraft fluids
systems is the capillary force which exploits the combination of
surface tension, wetting characteristics, and system geometry as
the primary mechanism for fluid control, including phase separa-
tions. In ideal situations, a ‘capillary solution’ can provide the
driving force for the flow as well as all fluids management opera-
tions including phase separation and recirculation. The modern
heat pipe provides an ideal case in point (Ku, 1999). At the other
end of the spectrum, capillary forces may be perceived as an
annoyance and design workarounds may be considered rendering
the system ‘capillary-free’ and therefore ground-testable. An excel-
lent example of this approach is the single phase liquid cooling
loop of the International Space Station (ISS) (Thurman and
McCall, 1992). But the capillary force is unavoidable when fluid
interfaces are present and experience to date suggests their likeli-
hood is inevitable, as discovered for the same ISS cooling loop
where gas leaks into the system over time create an inadvertent
two-phase system (Orlando and Ferrara, 1992). Even systems
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designed with non-capillary solutions should consider capillarity
at all levels to enhance the reliability of the overall system.

For spacecraft, we consider every sub-system such as a con-
denser, evaporator, or packed bed, and every sub-element, such
as a valve, fitting, filter, accumulator, or manifold as a potential
multiphase flow generator or separator. By careful selection of
component geometry one might distribute passive phase separa-
tion, collection, and control operations throughout the system,
greatly improving reliability—even if the system is not considering
capillarity as the central motive force for the flow or flow separa-
tion function. In this paper we consider a wedge geometry that
provides a passive capillary means for separating gas bubbles from
a liquid flow. With special consideration for applications in low-g
environments, the simple flow mechanism is briefly reviewed via
drop tower experiments and an expedient scale analysis. A descrip-
tion of ISS space experiments is then provided along with a narra-
tive of the experimental procedure, breadth of experiments
conducted, and follow-on tests planned. Sample images of the
flight data are provided along with reduced data presented as
regime maps for the tests completed to date. Much is learned from
simple inspection of the data, but the foundational message here is
the ease with which certain two-phase flows may be passively
separated using a simple asymmetric conduit.

2. Mechanism for low-g bubble migration in a wedge

In the microgravity environment buoyancy forces are often neg-
ligible and in the absence of significant imposed inertial forces,
fluid interfacial configurations are determined entirely by capillary
forces. The relative strength of body forces to surface tension forces
is characterized by the Bond number Bo = DqaR2/r, where Dq is
the density difference between the two fluid phases, a is the local
acceleration often represented by compensated gravity g, R is a
characteristic surface length scale, and r is the surface tension.
When Bo� 1, surface forces overpower gravity and capillary flu-
idic phenomena predominate. Such conditions occur over small
length scales in a terrestrial environment, but over unusually large
length scales in a microgravity environment.

A confined bubble in a narrow wedge consisting of two plane
walls filled with a quiescent liquid is sketched in Fig. 1. Body forces
are neglected; i.e., Bo� 1. For a known bubble volume Vb, lengths
R1, R2, and R3 provide characterizations of the various radii of
curvature of the bubble surface. The local interface curvature is
highest at the narrower side of the bubble (� –1/R1 to 1/R3) and
the liquid pressure is lowest there (Fig. 1c). Increasingly higher
pressure liquid toward the wider side of the bubble (� –1/R2 to
1/R3) flows circumferentially around the bubble to the narrower
side displacing the bubble away from the vertex until it is at least
fully inscribed within the wedge cross section. In terms of the
driving pressure difference, the impact of the 1/R3 curvature
approximately cancels.

Metz et al. (2010) and Reyssat (2014) study confined bubble
migration analytically assuming a wetting quiescent liquid.
Reyssat adds useful solutions for similarly migrating wetting
drops, which travel in the opposite direction toward the vertex.
It is not difficult to imagine how such conduit geometries might
be exploited to provide a passive means of bubble manipulation
in terrestrial microfluidics systems (Zhao et al., 2001; Melin
et al., 2005; Skelleya and Voldmana, 2008; Xu et al., 2010) as well
as systems in the near weightless environment of orbiting space-
craft (Jaekle, 1991; Chato and Martin, 2006; Weislogel et al.,
2009; Pettit et al., 2011). In keeping with an example of the latter,
a liquid bearing enclosure with an acute isosceles triangular cross
section is presented in Fig. 2. A gas bubble of known volume is
introduced into the wetting liquid. The highly acute vertex points

upwards such that under normal gravity conditions the confined
gas bubble elongates along the z-axis with a capillary height
Hb � (r/qg)1/2. Provided the Concus–Finn wetting condition h < p/
2 � a is satisfied, where h is the contact angle and a is the acute
vertex half-angle (Concus and Finn, 1969), upon step reduction of
gravity as occurs during a typical drop tower test, corner flows
wick further into and along the corner by well-established means
displacing the bubble away from the vertex (see Weislogel et al.
(2011) and references cited therein). The predominately 1-D corner
flow mechanism gives way quickly to a 2-D disc-like flow prior to
an eventual more 3-D flow as the bubble becomes increasingly
spherical, ultimately coming to rest to various degrees inscribed
by the container cross section. The dynamics of this process are
sketched in perspective in Fig. 2a with a sample drop tower exper-
iment shown in profile in Fig. 2b. The drop tower experiment is
performed for a 40 ll air bubble in a 52 mm long, 16.5 mm tall
acrylic container with vertex half-angle a = 7.75� in perfectly wet-
ting 5 cSt polydimethylsiloxane (PDMS).

To clarify the bubble separation characteristics of this geometry,
a similar acute wedge-sectioned conduit is sketched in Fig. 3 ori-
ented again such that the highly acute vertex points upward. In
this case the conduit is open along the lower face where a free sur-
face serves as a stable containing surface for the flow. Terrestrial
demonstrations of such a flow are possible provided Bo 6 2.74
(Concus, 1964). For a similar experiment to the drop tower test
shown in Fig. 2, the confined gas bubble of Fig. 3a passively
migrates downward in the initially quiescent liquid, and, being
large enough not to fully inscribe within the section before the free
surface is reached, the bubble is forced against the free surface
where it coalesces and leaves the liquid. In the case of Fig. 3b, when
the liquid is driven left to right through such a conduit by a pump
(a ‘non-zero’ base state liquid flow) bubbles emanating from the
upstream vertex region are swept downstream while they simulta-
neously migrate away from the vertex as described in Figs. 1–3a.
Provided the bubble volume is large enough and the liquid flow
rate is low enough, the bubbles reach the free surface within the
available duct length L, where they coalesce and leave the liquid
stream. What is of interest for the purposes of design in such cases
might be the length l of the open conduit section required to collect
the bubbles for various liquid–gas flow rate ratios, bubble size and
frequency, conduit size, geometry, and fluid properties.
Experimentation in the low-g environment provides a rare
opportunity to investigate such buoyancy-free, large length scale,
inertial-capillary flows that often only occur therein.

3. Bubble migration with and without base liquid flow

3.1. Scales for zero base flow

Due to the many variables of the flow and the experimental nat-
ure of this presentation, a scale analysis is quickly performed such
that useful dimensionless groups might be identified providing a
basis for comparisons of terrestrial, drop tower, and space flight
experiments. A more thorough analytical and numerical analysis
of the fluid mechanics of the problem is also underway and will
be reported separately.

Referring to Fig. 1, the steady x-component momentum equa-
tion qð�u � rÞu ¼ �Px þ lr2u, where �u ¼ ðu;v ;wÞ � U, may be writ-
ten as the characteristic x-velocity scale equation

qU2

2Ls
� r

RsLs
;
lU
y2

s
ð1Þ

where Ls, Rs, and ys are characteristic scale lengths for the flow, cap-
illary radius of curvature, and viscous resistance, respectively.
Employing the length dimensions identified in Fig. 1, and for brevity
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Fig. 1. Schematic of confined bubble migration in a wedge with zero-velocity liquid base state (quiescent liquid): (a) isometric view, (b) top view, and (c) profile view. R3

characterizes the radius of curvature in the x–z plane while R1 and R2 characterize local radii of curvature in the x–y plane. The leftward arrows in (b) indicate the liquid flow
direction largely resulting in the displacement of the bubble rightward. Depending on the wettability and speed of the bubble migration, thin liquid films may exist between
the bubble and the planar walls. Such layers are not shown in c., though they are always present in the experiments reported herein due to the choice of perfectly wetting
liquids.

Fig. 2. (a) Schematic perspective view for a time sequence of spontaneous bubble migration out of the interior corner of an acute triangular enclosure upon step reduction in
gravity level during a typical drop tower test. (b) Dynamic bubble profile imaged at times identified for a 40 ll air bubble in perfectly wetting 5 cSt PDMS, and an enclosure
with vertex half-angle a = 7.75�. The leading bubble meniscus location xb(t) is identified with a dot and residual wake vortical flows for Su+� 1 are sketched using dashed
lines at the lower right. At t = 0.3 s the bubble remains confined, pressed against the lower surface of the enclosure by capillary forces.

Fig. 3. (a) Time series of low-g capillary-dominated bubble migration in the presence of a free surface in an acute wedge-sectioned conduit of length L (zero base flow). If the
bubble is large enough, it is forced against the free surface where it coalesces and leaves the conduit. (b) The similar process as in (a), but superimposed on a forced liquid flow
through the duct (non-zero base flow). The bubble is swept downstream as it migrates away from the vertex leaving the conduit through the free surface a distance l from its
initial location.
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here, assuming z1� z2, tana� 1, and h� 1, by choosing Rs � ys

� z2 tana and Ls � z2, where z2 � (Vb/tana)1/3, Eq. (1) may be solved
algebraically for the characteristic x-component bubble migration
velocity U � Ub from

qU2
b

2Ls
þ lUb

y2
s
� r

RsLs
� 0:

The physically meaningful root is

Ub ¼
1

Suþ
ry2

s

lLsRs

� �
ðð1þ 2SuþÞ1=2 � 1Þ; ð2Þ

where, under the above length scale restrictions,

Suþ � Su � y3
s

RsL
2
s

� qrys

l2

� �
� y3

s

RsL
2
s

� qr
l2 V1=3

b tan8=3 a:

Su is the Suratman number—a so-called capillary Reynolds num-
ber—measuring the strength of inertial to viscous resistance in an
otherwise capillarity-driven flow. From Eq. (2), for visco-capillary
flows Su+� 1, and Eq. (2) reduces to

Ub ¼
ry2

s

lLsRs
¼ r

l tan a: ð3Þ

For inertial-capillary flows Su+� 1, and Eq. (2) reduces to

Ub ¼
2r
qRs

� �1=2

¼ 2r
qV1=3

b tan2=3 a

 !1=2

: ð4Þ

Eqs. (3) and (4) provide characteristic steady velocities for the
bubble motion away from the corner in a host fluid which is our
short term analytical goal. In the narrow wedge limit, and with
broader regard for the changing length scales of the problem,
Reyssat (2014) identifies the viscous scaling of Eq. (3), but also
an additional scale when z1 � z2, which addresses an intermediate
time- and volume-dependent regime dominated by losses at

moving contact lines, where Ub � rV3=4
b =l

� �4=13
t�9=13. For both

visco- and inertial-capillary flows, further complexities are
expected for various initial conditions, increasingly spherical bub-
bles, large wedge angles, large bubble volumes, liquid films,
increasingly inertial flows, and others, but the regimes of Eqs. (3)
and (4) are treated here as preliminary design guides.

3.2. Drop tower experiments

Select transient results of bubble migration experiments con-
ducted using a 2.1 s drop tower are provided in Fig. 4a, with repre-
sentative images provided in Fig. 2b. In Fig. 4 only the leading
bubble meniscus locations (xb, Fig. 2b) are plotted in time for clar-
ity. Details of the drop tower employed may be found in Wollman
(2012) and nominal thermophysical properties and important
dimensionless parameters are listed in Appendix A. In Fig. 4a,
and for brevity here, a limited variety of viscous PDMS fluids are
shown along with tests using fluid HFE-7500 for a fixed wedge
half-angle a = 7.75�. Hash marks are used to indicate x-coordinate
bubble center elevations defined as xi, where an assumed spherical
bubble of volume Vb is first inscribed within the planar walls of the
wedge section. For the initially quiescent liquid drop tower tests,
the bubbles in the under-damped low viscosity HFE-7500 fluid
(Su+ � 200) clearly overshoot their inscribed elevations, whereas
the bubbles in the over-damped high viscosity PDMS liquids
(Su+ � 0.1) approach such elevations gradually from below. The
overshoot concerning the former is significant and appears to be
driven by vortical flows induced in the liquid whose inertia contin-
ues to carry the bubbles beyond the inscribed location xi as
sketched in Fig. 2b. Such recirculation cells are observed by Metz
et al. (2010) as well. In Fig. 4a, for the inertial HFE-7500 tests a
common initial capillary migration velocity is observed that is
weakly, if not at all, dependent on bubble volume (from Eq. (4),
Ub � Vb

1/6). In Fig. 4b, select tests using HFE-7500 are compared
to similar data collected from bubble injections during the Capillary
Channel Flow (CCF) spaceflight experiments with non-zero base
liquid flows and a = 7.9�, which will be described shortly. The com-
mon initial migration velocity is maintained for both zero and non-
zero base state flows, and semi-quantitative agreement in Eq. (4) is
approximated by Ub � 0.334 (2r/qVb

1/3 tan2/3 a)1/2 � 0.0375 m/s.
At present, viscous dominated behavior from Eq. (3) is roughly
approximated by Ub � 0.03(r/l) tana � 0.002 m/s despite the
clear but weak bubble volume dependence observed in Fig. 4a. A
wealth of both drop tower and microscale terrestrial data have
been collected along these lines and is expected to be presented
along with a formal analysis in a subsequent publication.

3.3. Scales for non-zero base flow

Observations from Fig. 4b suggest that inertial bubble
migrations with Su+� 1 appear to possess a common initial
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Fig. 4. Select leading meniscus bubble elevations xb(t) for (a) drop tower tests with in quiescent liquid and (b) said drop tower tests compared to CCF ISS space experiment
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and by the over/under-shoot of the ideal inscribed spherical bubble elevations identified by the xiVb tick marks. Here, Su+ = (qr Vb
1/3/l2) tan8/3 a. The common slope for the

large Su+ tests is identified by the triangle where Ub = 37.5 mm/s. Note also that H P 30 mm for all of the wedge vessels tested.

R.M. Jenson et al. / International Journal of Multiphase Flow 65 (2014) 68–81 71



migration velocity that is fairly independent of bubble volume and
base liquid flow condition and that a base flow dramatically
reduces the impact of the inscribed elevation overshoot mecha-
nism described above, observed in Fig. 4 for the HFE-7500 fluid,
and sketched generically in Fig. 2b. Thus, when forced convective
liquid flows are present the bubbles achieve elevations near to
the inscribed conditions xi as shown in Fig. 4b. This observation
serves as a guide to the design of systems expecting to exploit such
phenomena for passive fluid control. The weak dependence of the
bubble migration velocity on the base flow adds credibility to an
argument for the superposition of the migration rate and the liquid
velocity profile to estimate bubble paths ultimately leading to
characteristic channel length predictions for bubble separation as
is attempted in this section.

Treating the bubble as a particle, the bubble velocity may be
approximated vectorially as �u ¼ ðu;v;wÞ � ðu;0;wÞ � ðUb;0;wÞ.
The x-component u � Ub may be estimated from Eqs. (2)–(4). Any
y-averaged streamwise velocity profile might then be invoked to
serve as an x-dependent z-component of velocity hwi. As a preli-
minary demonstration, three such profiles are employed here to
generate quick guides for system design: fully developed, linear,
and plug forced liquid velocity profiles. The primary objective of
this exercise is to develop an estimate for bubble exit length l for
the extremes in conditions possible in the wedge conduit
geometry.

For a narrow corner half-angle a� 1, it may be shown for a
fully developed forced flow along an open wedge conduit
(Weislogel and Lichter, 1998) that average z-component velocities
hwi in y–z-planes may be expressed as

hwi ¼ � Pzx2 sin2 a
3l cos 2a

; ð5Þ

where Pz is the imposed pressure gradient along the open triangular
duct. Steady x-component bubble velocities such as Eqs. (2)–(4)
may be substituted into Eq. (5) to parameterize w in terms of time
where x = Ubt + xo. The time-dependent z-axis bubble location l(t)
may then be determined via

lðtÞ ¼
Z t

0
hwidt̂ ¼ � Pz sin2 a

9Ubl cos 2a
ðUbt þ xoÞ3 � x3

o

h i
: ð6Þ

Evaluated at the free surface where tH = (H � xo)/Ub, Eq. (6) gives

lðtHÞ ¼ �
PzH3 sin2 a

9lUb cos 2a
1� xo

H

� �3
� �

: ð7Þ

The flow rate may be determined by integrating Eq. (5) over the
section area to find Q l ¼

R
hwidA ¼

R H
0 hwi2x tan adx ¼ �PzH

4

sin2 a tan a=ð6l cos 2aÞ, from which Pz may be written in terms of
Ql. Substituting this relationship into Eq. (7) yields,

lðtHÞ ¼
2Q l

3UbH tan a
1� xo

H

� �3
� �

; ð8Þ

which serves as a characteristic length within which bubbles might
be expected to migrate to the free surface, coalesce, and leave the
flow.

Experimental observations suggest that linear profiles may be
present at moderate to high liquid flow rates in developing flows.
A model for such flow might assume

hwi ¼ �C1Pzx tan a
l ; ð9Þ

from which it is found that

lðtHÞ ¼
3Q l

4UbH tan a
1� xo

H

� �2
� �

: ð10Þ

At even higher flow rates, a uniform plug flow might be expected
where

hwi ¼ Q l

H2 tan a
; ð11Þ

and

lðtHÞ ¼
Q l

UbH tan a
1� xo

H

h i
: ð12Þ

From Eqs. (8), (10), and (12), for xo/H� 1, l(tH)� lH� Ql/(UbH tana)
regardless of the base state liquid velocity profile. Employing such
relationships, Table 1 summarizes the scaling results for Ub, lH, and
tH for respective visco- and inertial-capillary bubble migration,
where tH is the characteristic time required for the bubble to
first reach the free surface a distance l(t) downstream from the
initial bubble location. Dimensions including l and H are identi-
fied in Fig. 3b. The experiments employing HFE-7500 achieve
Su+ � O(100) for the bubble migration while the forced free stream
flows, to be introduced shortly, are laminar with Re � O(100).
Under such conditions inertial-capillary bubble migrations within
developing laminar forced conduit flows are expected. In this case,
Table 1 figure of merit is lH for Su+� 1 which is only weakly depen-
dent on bubble volume � V1=6

b .

4. The capillary channel flow experiment aboard ISS

The Capillary Channel Flow (CCF) experiment is a fully remote
controlled space flight experiment that was conceived at the ZARM
scientific institute of the University of Bremen, designed and built by
Astrium (an EADS company), and flown to the ISS by NASA on the
Space Shuttle STS 131, 5 April, 2010. The hardware development is
funded by the German Aerospace Center (DLR) while integration,
launch and flight operations are funded by NASA. To operate CCF
on ISS the hardware must be installed in the Microgravity Science
Glovebox by an astronaut (MSG, Spivey et al., 2008). The equipment
is then connected for remote commanding from ground stations in
Germany and the USA. The experiment can operate without inter-
ruption for months and to date three operations have been com-
pleted providing over 140 days of continuous run time.

The CCF experiment primarily focuses on the investigation of
steady limiting flow rates in open channel inertial-capillary flows
in the long-term microgravity environment of the ISS. Though
not the subject of this paper, these single-phase flow rate limita-
tions have been explored in general by Rosendahl et al. (2004)
and Rosendahl and Dreyer (2007) and specifically for the wedge
section by Klatte et al. (2008) and Klatte (2011). Representative
results as well as a detailed description of the CCF flight experi-
ment components and performance characteristics are addressed
by Canfield et al. (2013). It is thoroughly demonstrated that the
liquid flow rate through such open ducts is limited by a choking
mechanism caused by an excessive under-pressure that develops
in the liquid leading to gas ingestion at the interface nearest the
liquid exit. This phenomenon is shown in Fig. 5 for the open wedge
conduit at two slider positions; i.e., two free surface lengths L. In
the present study we are interested in the ability of open capillary
channels to separate bubbly flows not generate them. Thus, our
focus is on channel flows that are subcritical when compared to
the choking or ingestion limit. For brevity, unless otherwise spec-
ified, all data to be presented will be for fixed channel length
L = 48 mm, where the critical choking flow rate, here denoted as
the liquid flow ingestion limit, Qling = 2.69 ml/s.

4.1. Overview of CCF experiment hardware and test procedure

The CCF hardware is complicated by subsystems required to
enable remote commanding of the experiment. The Optical

72 R.M. Jenson et al. / International Journal of Multiphase Flow 65 (2014) 68–81



Diagnostic Unit (ODU), Electrical Subsystem (ESS), and an Experi-
ment Unit (EU2) are identified in Fig. 6 which displays the hardware
as installed in the MSG on ISS. The EU2 contains a variety of plung-
ers, liquid and gas reservoirs, phase separation and liquid flow prep-
aration chambers, valves, a pump, a flow meter, the test section
containing the test channel, and numerous temperature, pressure,
and conductivity sensors to manipulate and monitor the distribu-
tion of liquid and gas throughout the two-phase capillary system.

A representative solid model of the EU2 is provided in Fig. 7 with
key components identified. Further details of the transparent wedge
channel test section are depicted schematically in Fig. 8 along with
the optical elements. Only the functions of the open wedge test sec-
tion (EU2) and essential plumbing in Fig. 9 will be described in
detail. Refer to Canfield et al. (2013) for further information.

The illustration of Fig. 8 displays the open wedge channel with
acute vertex upward. The transparent channel is L = 48 mm long,

Table 1
Summary of scale quantities for xo/H� 1, lH � Ql/(UbH tana), and Su+ � (qr Vb

1/3/l2) tan8/3 a. Coefficients determined from experiments performed
herein provide semi-quantitative relationships for use in preliminary design calculations. Note that bubbles must satisfy Vb J (4p/3)(H sin a/
(1 + sin a))3 to reach the free surface with the likelihood of escaping the flow.

Domain/quantity Ub (m/s) lH (m) tH (s)

Viscous, Su+� 1 0:03 r
l tan a lQl

0:03rH tan2 a
lH

0:03r tan a

Convective, Su+� 1
0:334 2r

qV1=3
b

tan2=3 a

� �1=2
3:51

0:334
Ql
H

qV1=3
b

2r tan4=3 a

� �1=2
H

0:334
qV1=3

b
tan2=3a

2r

� �1=2

Mixed mode, Su+ � 1 Eq. (2) Ql
Ub H tan a

H
Ub

LaSlider

Vertex

Slider 
Surface

Free 
Surface

Slider Lb

B
B

a

b

Fig. 5. Choking (ingestion limit) phenomenon in a wedge-sectioned conduit when pressure gradients in the pumped liquid exceed capillary pressure gradients at the free
surface. (a) Section at left depicts free surface while section at right shows the closed conduit downstream. The wedge vertex is identified by the dashed line and BB identifies
the first of many bubbles pinched off periodically by the instability. Images shown at 1.2 Hz during the CCF flight experiments aboard ISS are for base flow Qling = 3.93 ml/s in
the direction identified by arrow with slider open length La = 10 mm (a = 7.9�, fluid HFE-7500, WE1433). (b) Images at 1.2 Hz for Qling = 3.65 ml/s with Lb = 20 mm (WE1291).
For the majority of results presented herein, L = 48 mm, where Qling = 2.69 ml/s.

Microgravity Science 
Glovebox (MSG)

Experiment Unit - 2
(EU2)

Electrical Subsystem
(ESS)

Optical Diagnostic Unit
(ODU)

Fig. 6. Sketch of the CCF hardware as installed in the Microgravity Science Glovebox (MSG) aboard the International Space Station with key subsystems identified. The two
MSG cameras are not shown.
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H = 30 mm high at the vertex, with vertex half-angle a = 7.9�. The
translating slider shown in both Figs. 8 and 9 is used to vary the
length of the free surface between 0 and 48 mm. The flow is drawn
through the channel by a Micropump GB-P25 magnetic gear pump
(0–20 ml/s) and the flow rate is determined by a Kobold DPM-
1520-G2 flow meter (0.5–20 ml/s calibrated to ±0.1 ml/s such that
Ql = 0.987Qlpump � 0.11 ml/s with goodness of fit v2 = 0.999). Bub-
bles are introduced into the channel through a cannula with 0.6/
0.8 mm ID/OD. The cannula exit is located at the entrance of the
transparent channel section with its centerline 3.6 mm distant
from the channel vertex. As suggested in Fig. 9, gas bubbles are
injected by use of a solenoid valve C2 via control of frequency
0 6 f 6 10 Hz, duty cycle 0 6 d 6 10 s, and gas supply conditions
in the gas reservoir K3. There are at least three highly variable
methods employed to generate bubbles: (1) bubble generator valve
C2 wide open varying gas reservoir K3 pressure and/or K3 piston
travel, (2) constant gas reservoir piston travel rate varying bubble
valve C2 frequency and duty cycle, and (3) constant gas volume
(constant K3 piston position) varying bubble valve C2 frequency
and duty cycle. Only data recorded for the latter will be reported
in detail here with approximate bubble volumes 0.004 6 Vb

6 2.14 ml and typical frequencies of 0.2 6 f 6 2 Hz achieved. Gas
bubbles that pass through the test channel also pass through the
pump and corrupt the flow meter before being filtered and

captured in the Phase Separation Chamber (PSC, see Figs. 7 and 9).
Each experiment is terminated before such bubbles reach the
pump.

The gas injection procedure first develops a differential pressure
of approximately 85 mbar between the approximately 356 ml gas
reservoir K3 and the Flow Preparation Chamber (FPC). (The total
upstream volume is comprised of K3, nominally 273 ml plus
78 ml K3 and 5 ml additional tubing dead volume). Average gas
volumes upstream of the bubble valve C2 for K3 at 50% establish
V1 � 220 ml with average gas volumes downstream of C2 of
V2 � 1110 ml, the latter including all gas volumes in the PSC, CT,
and EU2 enclosure. Next, the slider position and steady liquid flow
conditions are established. The bubble injection valve C2 is then
operated for any variety of frequencies and duty cycles provided
the pressure in K3 does not drop below a differential pressure of
68 mbar. Thus the ‘Constant Gas Volume Method’ provides a ‘con-
stant gas supply pressure’ to within ±10%. In the worst case, for the
largest bubbles studied, this approach results in weakly diminish-
ing bubble volumes during the bubble injection process—of less
than 8% when the first bubble is considered, but less than 3% when
the first bubble is not considered, the first bubble of a series being
up to 5% larger in volume than subsequent bubbles. Though a
decreasing bubble volume trend is expected and observed for the
worst case largest bubbles, the majority of tests achieve standard

pump 

flow preparation chamber
gas reservoir and plunger

liquid reservoir and 
plunger

phase separation chamber

wedge channel

capillary pressure regulator
and accumulator

(CT)

Fig. 7. Representative model of the internal components of the Experiment Unit (EU2) identified in Fig. 6.
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Fig. 8. Annotated schematic of the CCF-EU2 open wedge test channel with optical elements.
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deviations in sequential bubble volumes of ±1%, which is below our
measurement uncertainty limit.

As a guide to correlation development, the simplified model
sketched in Fig. 10 for N2, treated as an isothermal weakly com-
pressible viscous ideal gas, is used to derive the dimensionless
pressures

dP	1
dt	
¼ j2 � 2/jP	1 � ð1� /2ÞP	21 ð13Þ

and

P	2 ¼ j� /P	1; ð14Þ

subject to P	1ðt	 ¼ 0Þ ¼ 1. The pressures are nondimensionalized by
P1i � P1(0) such that P	1 ¼ P1=P1i and P	2 ¼ P2=P1i and

j � Xþ /; k � 1�X
1þX

; X � P2i

P1i
; / � V1

V2
; t	 � CP1i

2V1
t; C � A2

c

�8pllc
;

where l here is the N2 gas dynamic viscosity and eJ 1 is an empir-
ical coefficient that accounts for additional bubble valve resistance.
Refer to Fig. 10 for additional notation. The visco-inertial time scale
in the cannula is tl KqR2

c =l � 0:006 s, where Rc = 0.3 mm and
q = 1.224 kg/m3 and l = 18 � 10�6 kg/m s for N2 at 30 �C—much
smaller than the average duty cycle of the bubble valve C2
d = 0.05 s, and significantly lower than the largest value of
d = 0.21 s. Thus, the gas flow is dominated by viscous resistance in
the cannula and may be approximated therein as this quasi-steady
fully-developed viscous flow model with decreasing accuracy for
decreasing d. Solution to Eq. (13) yields

P	1 ¼ j
1þ k exp½�2jt	


1þ /� ð1� /Þk exp½�2jt	


� �
; ð15Þ

from which the dimensional cannula exit volumetric flow rate may
be determined

Q 2 � Q gtheo ¼ CP1i

P	21 � P	22

� �
2P	2

: ð16Þ

For the experiments reported herein: /K 0:2 and X � 0:93, and
for such characteristic values, for small time t⁄� 1, Eq. (16) is used
to help establish the zeroth order correlation

Qg ¼ Vbf � ðQ2dÞf ; ð17Þ

where f (Hz) is the bubble injection frequency through valve C2.
Sequential measurements of spherical bubbles for a variety of
pressures P1i, volumes V1, and duty cycles d > 0.005 s establishes
Vb � 4.0 � d + 0.012 (ml) with a 0.996 goodness of fit in Eq. (17). A
flow resistance coefficient of e � 1:6 equates experimental and ana-
lytical forms in Eq. (17). Eq. (17) thus provides a means for which to
compute the gas flow rate given C2 valve duty cycle and frequency
for the fixed volume gas delivery approach.

Via remote commanding, passive bubble separation tests
employing the constant volume method of bubble injection could
be conducted in approximately 2 min and over 2000 data sets
are represented in this paper. Among other housekeeping mea-
sures, each data set includes the system values for the pump set-
ting, liquid flow rate, slider location, C2 valve frequency and duty
cycle, K3 piston position, and time dependent gas supply pressure
in K3. Two of four video files are also available for each run: (1) Full
image sequences using the High Speed High Resolution (HSHR
raw) Motion BLITZ Cube 26H camera from Mikrotron, which can
record up to 250 fps at a resolution of 1280 � 1024 px per frame
camera, (2) processed HSHR video to improve telemetry efficiency,
(3) a Hitachi HV-C20 MSG camera (MSG-1, 12 mm lens) for general
surveillance, and (4) a second Hitachi MSG camera (MSG-2, 6 mm
lens) for a more magnified view of the test section. The MSG cam-
era sensors are 720 � 480 px at 30 fps.

The HSHR camera and Sill Optics Parallel Light Source (PLS) are
the primary components of the Optical Diagnostics Unit (ODU) as
shown in Figs. 6 and 8. The MSG cameras are shown in Fig. 6 posi-
tioned moderately askew to the optical axis of the HSHR camera.
Sample images from these different devices are provided in
Fig. 11. High image quality is provided by the HSHR camera,
Fig. 11a. These 1.3 MB/frame images require substantial periods
for downlink and are reserved for special test cases. Higher telem-
etry rates are achieved via onboard image processing as shown in
Fig. 11b resulting in 0.16 MB/frame images that are wieldier for
subsequent downlink to the ground in batch mode and are
employed for highly quantitative data reduction without further
optical corrections.

The MSG-2 image shown in Fig. 11c is clearly of lower quality to
that of the HSHR camera due to lighting choices made to optimize
the HSHR image, but this selectable MSG camera can be recorded
on the ground in real time as low as approximately 8 fps.
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Regulator/Accumulator
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Free Surface
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Flow Preparation 
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Phase Separator
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Gas reservoir and
delivery (K3)

Bubble
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Valve
(C2)

cannula flow 
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Fig. 9. Flow path of CCF-EU2 open wedge test channel with key plumbing and bubble injection elements. Abbreviations identified.

Bubble valve (C2)
P2, V2P1, V1

lc

Cannula
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Fig. 10. Model of ideal viscous gas delivery through the cannula, where valve
actuation is considered instantaneous. P and V refer to pressure and volume,
respectively. Ac is the cannula cross section area and lc is the cannula length.
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Furthermore, by quantitatively comparing images of static bubble
positions from both HSHR and MSG-2 camera images the lower
resolution lower rate keystone images of the latter could be
mapped onto the planar undistorted image plane of the former.
This process is illustrated in Fig. 12, which shows a selection of
approximately 80 known spherical bubble centroids that are used
to construct a 3-dimensional scale factor field map via orthogonal
regression to correct for distortions when the MSG-2 camera is
employed. We determine that the MSG-2 images, despite moder-
ate distortion and low resolution, can be used to effectively track
bubble centroid locations for regime mapping with errors less than
3%. This level of uncertainly is acceptable to this end as it allows an
order of magnitude increase in the amount of data collected and
transmitted during the spaceflight experiments.

4.2. CCF experiments

A selection of MSG-2 camera images is provided in Fig. 13 sug-
gesting the variety of phenomena to be discussed herein: In
Fig. 13a a stable train of inscribed bubbles results if the bubble vol-
ume and frequency are small and the liquid flow rate is high. In
Fig. 13b, if the bubble frequency is increased and/or the liquid flow
rate is reduced, bubbles in the train can merge forming new bubbles
large enough to migrate further, reach the free surface, coalesce, and
escape the channel. In Fig. 13c, if the bubble volume is large and fre-
quency is low, single bubbles do not leave the channel within the
free surface length L if the liquid flow rate is over a threshold value.
However, such bubbles would leave the flow through the free sur-
face provided either the bubble injection location was further
upstream, further away from the vertex, or the free surface was
longer. In Fig. 13d the bubble volume, frequency, and liquid flow rate
are such that 100% of the bubbles escape through the free surface
within the channel length, l < L. The two-phase mass balance is sim-
plified under such conditions as all gas entering the channel leaves
within the field of view and the liquid flow rate is essentially the
pump flow rate with estimated losses less than 3% due to splashing,

leakage, and slight accumulation throughout the system due to
transient pressure changes during the bubble injections. This is for-
tunate for our study making the 100% separation condition our most
quantitative condition.

Experiments are conducted by varying channel length L (mm),
liquid flow rate Ql (ml/s), bubble volume Vb, and bubble frequency
f. The latter two control variables effectively vary the gas flow rate
Qg (ml/s) and are controlled via gas supply valve duty cycle and
actuation frequency, respectively. Bubble volumes in the range
0.004–2.14 ml are produced using this approach. A sample regime
map is provided in Fig. 14a for a low, fixed bubble injection fre-
quency of f = 0.2 Hz, where the state of the flow is identified as a
function of Ql and spherical bubble diameter Db = (6Vb/p)1/3 for
fixed free surface length L = 48 mm. A subjective scale is applied
to all intermediate conditions, but the demarcation between com-
plete and partial separation is clear as identified in Fig. 14b, where
only such points are shown. Thus, only bubble diameters that leave
the channel within the channel length L for the specified liquid
flow rate are shown in Fig. 14b. From the regime boundary curve,
for fixed Ql any increase in Db is nearly certain to achieve 100% bub-
ble separation in the channel. This data is collected at the lowest
gas bubble frequency f = 0.2 Hz achievable which assures negligi-
ble bubble-to-bubble interaction. Only single non-merging bubbles
larger than Dbmin = 7.2 mm (Vbmin = 0.2 ml) are certain to escape by
capillary migration. However, bubbles with diameters as low as
6 mm can be observed to escape through the free surface at
zero-to-low liquid flow rates. It is a point of this investigation to
predict if there is sufficient channel length for escape of bubble
diameters >7.2 mm for prescribed liquid flow rates—with and
without bubble mergers. Again, only data for the full channel
length L = 48 mm will be reported here.

Addressing conditions where bubble interactions are signifi-
cant, the breadth of data presented is collected using regime maps
that hold bubble frequency f constant while varying bubble volume
Vb and liquid flow rate Ql. The gas flow rate is in turn determined
by Qg = f�Vb, and since the minimum single bubble escape volume
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Fig. 11. Various annotated camera images and Fields of View: (a) HSHR (raw), (b) HSHR (processed), (c) MSG-2 (12 mm lens), and (d) MSG-1 (6 mm lens) (refer to Fig. 8). Flow
direction is left to right except in (d), where flow is top to bottom. In d. the HSHR camera lens, capillary pressure regulator and reservoir (CT, refer to Fig. 9), and spherical cap
meniscus are identified. Thin liquid films on the test channel exterior are visible in (a) and (b), but do not interfere with measurements.
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Vbmin is known, Qgmin = f�Vbmin. The extremes of outcomes for the
fixed test cell dimensions are either when all bubbles remain in
the test channel, 0% separation, or all bubbles leave the test chan-
nel, 100% separation. But many mixed modes are observed where
any number of bubbles might remain or leave the channel. A typ-
ical experimental run fixes all parameters except the solenoid C2
duty cycle which is incremented or decremented until the point
of complete phase separation is found. Four datasets are provided
in Fig. 15. The 0% separation state is identified by open symbols
and the 100% separation state is identified by solid symbols. Single
bubble states are identified by black symbols and merged bubble
states by red1 symbols. Approximately 250 data points are required
to construct each map and only completed maps are shown in Fig. 15
for f = 0.2, 0.5, 1, and 2 Hz with others to be finished during subse-
quent operations of the experiment on ISS. Significant data was also
collected for bubble injection frequencies f = 0.1, 1.5, 3, 4, and 6 Hz.
The maps become more complex as f increases due to bubble-to-

bubble interactions, mergers, and turbulence as illustrated in
Fig. 15d for f = 2.0 Hz.

Experimental data identifying the limits of complete separation
are provided in Fig. 16 for the special case of bubble valve C2 held
open and piston K3 moved at steady speeds with the gas flow rate
determined by the piston travel rate. These tests are conducted by
choosing a large value for the duty cycle (i.e., d = 10 s) and recording
the bubble behavior. During the gas flow, upstream pressure differ-
entials remain nominally above the 68 mbar threshold enabling
loose comparisons with the constant volume tests. Bubble volumes
are determined not by valve actuations but by the wedge geometry
and liquid drag and shear forces. Nearly all bubbles merge prior to
coalescing with the free surface and leaving the flow.

5. Discussion

In general, along the 100% separation boundary, the gas flow
rate Qg = f�Vb increases with liquid flow rate Ql because larger bub-
bles are able to migrate toward the free surface in the shorter time
available in part because they have a shorter distance to travel.
Local plateaus in the Qg versus Ql behavior are observed in the
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Fig. 12. Mapping of MSG-2 image to undistorted HSHR (raw) image. (a) HSHR image with two stationary bubbles. The bubble centroid is compared to that of the identical
bubble in the MSG-2 camera view of (b) The diamond symbols in (a) identify the bubble centroids of similar tests used in the mapping. These points also appear as circle
symbols in (b). The transform developed to map the MSG-2 positions in (b) to those of the HSHR camera in (a) establishes position uncertainties on average <3%.
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Fig. 13. Selection of CCF EU2 bubble separation phenomena for fixed Ql = 1.75 ml/s: (a) non-separating low volume single bubble trains (d = 0.01 s, f = 2 Hz, Vb = 0.264 ml; File
2011-10-15-15h01m59s), (b) high frequency bubbles that merge with each other and then coalesce with the free surface a distance l 6 L downstream (d = 0.05 s, f = 4 Hz,
Vb = 1.25 ml; File 2011-10-03-22h06m29s), (c) large volume single bubbles that do not reach free surface within distance L downstream (d = 0.048 s, f = 1.5 Hz, Vb = 1.21 ml;
2011-10-16-15h08m57s), and (d) larger volume single bubbles that coalesce with the free surface a distance l 6 L downstream (d = 0.6 s, f = 1.5 Hz, Vb = 1.46 ml; 2011-10-16-
15h05m12s).

1 (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 15a–c curves. Despite the ragged appearance of the 100% sep-
aration conditions, the data is highly repeatable with changes in Qg

of less than 4% identifying boundaries between complete and
partial separation. ‘Near 100%’ separations are identified for both
single and merged bubble conditions that reveal how abrupt the
regime transition is defined by the experimental method.

In Figs. 14b and 15a–c 100% separation conditions are observed
for bubble volumes smaller than the minimum inscribed bubble
volume in the range 0.137 < Vb < Vbmin = 0.20 ml identified by the
dashed oval region where 6.4 < Db < Dbmin = 7.2 mm. Such separa-
tions are possible due to the inertial-capillary overshoot phenom-
enon that can propel the bubbles beyond their ideally inscribed
elevations into and through the free surface (Fig. 4). The phenom-
enon is suppressed with increases in Ql.

As Qg increases due to increases in f, for low Ql, bubble mergers
produce bubbles of sufficient size to successfully migrate out of the
channel as identified in Fig. 15 using red symbols. The plots form
curves where when Ql is fixed, decreases in Qg lead to bubbles that
remain in the flow while increases in Qg simply lead to more gas
completely separating from the flow—albeit with increasing vio-
lence. Similarly, but conversely, for fixed Qg, decreases in Ql lead
to only more certain bubble separation while increases in Ql lead
to partial and finally no bubble escape until Qling is reached.

The nature of the Ql versus Qg relationship can depend on
bubble and wedge channel free surface natural frequencies. This
is typified in Fig. 15c where at Ql � 1.9 ml/s the 100% separation
condition could not be achieved for any value of Qg. In this case
traveling capillary waves along the channel free surface match
bubble injection frequencies at least inhibiting if not preventing
coalescence. An obvious inflection in the data of Figs. 15a-c is
apparent beginning at Ql � 1.8 ml/s. Precise explanations for such
behavior require further study, but at present we conjecture that
such inflections are due to inward deflection of the free surface
as bubbles coalesce with it, further enhancing contact, coalescence,
and separation.

As Ql approaches the ingestion limit Qling = 2.69 ml/s the free
surface deflects up to approximately 7 mm into the 30 mm tall
channel effectively shortening the bubble migration distance
required to impact and coalesce with the free surface. This pro-
duces the hook observed in the Ql versus Qg curves near the Qling

limit (refer Fig. 15a–c). For the case of Fig. 15d, local turbulence
caused by numerous bubble mergers blurs the regime boundary.
It is also observed from such tests that above the 100% separation
condition the merged bubble regime can give way to the single
bubble regime as Qg is increased by increasing Vb, as shown in
Fig. 15d with Ql � 0.85 ml/s (see arrows in Fig. 15c and d).

For L fixed, the data of Figs. 15 and 16 are overlaid in Fig. 17 for
only 100% separation conditions. Presented in this manner, it
appears that the 100% separation condition is relatively weakly
dependent on Ql until bubble mergers become dominant for f
between 1 and 2 Hz. For conditions f 6 0.5 Hz in Fig. 17a the sepa-
rations are free of bubble mergers though it is expected in all cases
for small bubbles that mergers dominate the separation behavior
as Ql approaches 0. Our data is limited to Ql = 0 and 0.38 6
Ql 6 2.69 ml/s.

For conditions f = 0.2 Hz and L = 48 mm, the bubble escape
length lH is plotted in Fig. 18 as a function of liquid flow rate Ql

for the data of Fig. 14b. With Su+� 1, lH � Ql/(UbH tana), which
is quantified in Table 1 under these conditions and calculated for
each of the experimental points represented on the figure. The
O(1) fit coefficient does well to describe the trend, but a breakdown
in the predictions is observed at the approximate location of the
inflection point in the 100% separation curve of Fig. 14b,
Ql � 1.75 ml/s. Larger bubble volumes are required to escape
within the free surface length L = 48 mm above this flow rate. As
mentioned above, these bubbles have shorter distances to travel
to reach the free surface, the latter which is also deflected further
into the channel due to the approaching ingestion limit Qling. For
these 100% bubble separation states, the x-component migration
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velocity is approximately constant as shown in Fig. 4b, which is
used to determine the 0.334 fit coefficient in Table 1 to find
Ub � 37.5 ± 1.5 mm/s for 0.14 6 Vb 6 0.328 ml for the 68 data
points represented in Fig. 18. This coefficient alone should be ade-
quate to predict lH, but coalescence of the bubbles with the free
surface requires thinning films prior to rupture which apparently
delays the coalescence and escape phenomena by approximately
a factor of 3.51. This factor is required for the level of agreement
observed in Fig. 18—the slope of the line may be repeated for the
nonconforming data above �2 ml/s.

Data reduction efforts are continuing on the large data set
which is expected to be made publically available on the internet.
Additional supplementary and complimentary investigations are
pending, such as the impact of bubble frequency on Ub and lH. Stud-
ies concerning turbulent transitions, developing boundary layers,
the impact of longitudinal free surface waves arising from natural
frequencies and bubble coalescence frequencies, Magnus effects,
Saffman lift, bubble merge phenomena, droplet ejections during
coalescence, and others are readily conducted using the video
archive collected during the CCF ISS experiments and now serving
as a database. Numerical and theoretical methods can proceed
with a wealth of supporting data for benchmarking as is and will
continue to be pursued in subsequent work.

6. Summary

It is clear that the wedge conduit geometry serves well as a pas-
sive bubble phase separating device. For a broad range of flow con-
ditions, bubbles within the flow are driven away from the conduit
vertex by capillary forces. Depending on the gas and liquid flow
rates, characteristic bubble volumes, and vertex included angle,
the migrating bubbles collect and merge in the widest region of
the conduit section. If a free surface is present, as in the case of
the CCF experiments performed aboard the ISS, the merged
bubbles may escape through the liquid free surface achieving a
desirable 100% passive separation function. The following consid-
erations can serve to guide the design process when exploiting
laminar flow along acute polygonal conduits such as the open
asymmetric wedge channel of this investigation:

1. Bubble volumes Vb with spherical bubble diameters Db smaller
than the maximum inscribed circle diameter of the wedge sec-
tion Dbmin (or Vbmin) are unlikely to contact the free surface,
Vb < ð4p=3ÞðH sin a=ð1þ sin aÞÞ3. Such bubbles do not exit the
flow, but rather migrate to certain elevations from the conduit
vertex �Db/2sina and are convected more or less linearly
downstream (Fig. 13a and c). In general, these bubbles tend to
travel at approximately inscribed elevations.

2. At low Ql � Qgmin = f Vbmin, a range of bubbles with volumes
smaller than Vbmin can exit the free surface due to inertial-
capillary effects. In such cases the capillarity-driven bubble
migration creates wake vortices that propel the bubbles beyond
their ideally inscribed elevations and into and through the free
surface.

3. When Vb > Vbmin all bubbles will eventually separate provided Ql

is low enough and the channel length L is long enough—the
100% separation condition. For the inertial-capillary bubble
migration conditions presented herein, separations occur
when lH � 10:5ðQ l=HÞðqV1=3

b =2r tan4=3 aÞ
1=2

< L; the time for the
bubble to migrate across the channel height H is approximately
3.5 times shorter than the time to convect along the channel
length L.

4. For small bubble volumes at high gas flow rates Qg (i.e., high
bubble injection frequency f), provided Ql is low enough, bubble
mergers readily increase bubble volumes to the point of 100%
separation (Figs. 13b, 15c and d).

5. Characteristic bubble migration velocities are identified for
both viscous- and inertia-dominated conditions (Eqs. (2)–(4)).
Further details of the viscous regime are addressed by Reyssat
(2014). As a zeroth order approximation, such velocities may
be superposed onto a known velocity profile caused by the
forced liquid flow through the duct to construct bubble trajec-
tories from which the conduit length lH for 100% separation
may be estimated (Table 1).

The 100% phase separation maps of Fig. 15 may be used in con-
junction with the semi-quantitative scale quantities of Table 1 to
determine the necessary channel dimensions to achieve 100% sep-
aration for required or specified flow rate ranges and ratios. Such
tools are useful for engineering designs with applications in
macro-scale systems aboard orbiting spacecraft as well as micro-
scale systems on Earth. Concerning the CCF ISS experiments, fur-
ther experiments have been conducted and are being planned.
Reduction efforts are continuing on the large data set which is
expected to be made publically available on the internet.
Numerical and theoretical methods can proceed with a wealth of
supporting data for benchmarking.
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Appendix A

For the experimental results presented herein, Tables A1 and A2
provide maximum values for certain dimensionless groups and the
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nominal thermophysical properties used to compute them, respec-
tively. Inertial forces are compared to surface tension forces invok-
ing the Weber number We = qU2R/r, where U characterizes the
free stream velocity normal to the interface and l is the dynamic
viscosity of the liquid. The Reynolds number is Re = qUR/l. As gath-
ered from Table A1, the flows studied are laminar (Re 6 200) and
dominated by surface tension (Bo� 1) with expectations of
significant interface deflections and possible instability due to
non-negligible inertia at free surfaces (We 6 0.81).
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Table A1
Representative maximum values of experimentally determined dimensionless groups
of this investigation. Microgravity conditions are g � 10�6go on ISS and g 6 10�4go in
the drop tower (DT), where go = 9.81 m/s2. In this table the characteristic length
R = 0.4 cm is the maximum half-width of the CCF channel and maximum measured
capillary and forced flow velocities for HFE-7500 are approximately 4.5 and 3.0 cm/s,
respectively. The maximum capillary velocities for the 10 and 50 cSt drop tower tests
are 4 mm/s and 2 mm/s, respectively. (Su+ � Su�((3/4p)tan8 a)1/3 with aISS = 7.9� and
aDT = 7.75�.)

Parameter HFE-7500 HFE-7500 10 cSt PDMS 50 cSt PDMS
ISS DT DT DT

Bo 1.6(10�4) 1.6(10�3) 7.3(10�4) 7.5(10�4)
Recap 242 242 1.6 0.16
Reforced 161 – – –
Wecap 0.81 0.81 3.0(10�3) 7.4(10�4)
Weforced 0.36 – – –
Su 6.7(104) 6.7(104) 860 33
Su+ 214 203 2.6 0.11

Table A2
Nominal fluid properties at 25 �C with surface tensions with air assumed
(1100 mbar).

Fluid q (kg/m3) l (10�3 kg/m s) r (10�3 kg/s2)

Novec HFE-7500 1614 1.25 16.2
PDMS, 5 cSt 913 4.56 19.7
PDMS, 10 cSt 927 9.27 20.1
PDMS, 50 cSt 960 48.0 20.8
Nitrogen, N2 1.24 0.018 �
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