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A PROJECTION-BASED ERROR ANALYSIS
OF HDG METHODS

BERNARDO COCKBURN, JAYADEEP GOPALAKRISHNAN, AND FRANCISCO-JAVIER SAYAS

Abstract. We introduce a new technique for the error analysis of hybridizable discontin-
uous Galerkin (HDG) methods. The technique relies on the use of a new projection whose
design is inspired by the form of the numerical traces of the methods. This renders the
analysis of the projections of the discretization errors simple and concise. By showing that
these projections of the errors are bounded in terms of the distance between the solution
and its projection, our studies of influence of the stabilization parameter are reduced to
local analyses of approximation by the projection. We illustrate the technique on a specific
HDG method applied to a model second-order elliptic problem.

1. Introduction

This paper is dedicated to presenting a new technique for the error analysis of an emerging
class of numerical methods called hybridizable discontinuous Galerkin (HDG) methods [11].
The main idea is to devise a projection that matches the form of the numerical traces of the
HDG method. The analysis of the projection of the error then becomes simple, concise and
independent of the particular choice of the stabilization parameters.

We do not aim for maximal generality, but rather to convey the advantages of our technique
compared to other DG analyses. Hence we only consider one specific HDG method, namely,
the LDG-hybridizable (LDG-H) method [11] for the model problem

c q + ∇u = 0 in Ω,(1.1a)

∇ · q = f in Ω,(1.1b)

u = g on ∂Ω,(1.1c)

where Ω is a Lipschitz polyhedral domain in Rn (n ≥ 2). Here c : Ω 7→ Rn×n is a variable
matrix-valued coefficient, which we assume to be symmetric and uniformly positive definite,
f is in L2(Ω) and g in H1/2(∂Ω).

Let us put our result in historical perspective. To do that, we begin by describing the
HDG method. Consider a partitioning of the domain Ω into elements K forming a mesh Th
satisfying the standard finite element conditions [7]; the faces of K are going to be denoted
by F . The method yields a scalar approximation uh to u, a vector approximation qh to q,
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and a scalar approximation ûh to the trace of u on element boundaries, in spaces of the form

V h = {v : for all mesh elements K,v|K ∈ V (K)},(1.2a)

Wh = {w : for all mesh elements K,w|K ∈ W (K)},(1.2b)

Mh = {µ : for all mesh faces F, µ|F ∈M(F )},(1.2c)

respectively, where V (K), W (K), and M(F ) are finite dimensional spaces. The HDG ap-
proximations uh in Wh, qh in V h, and the numerical trace ûh in Mh, are determined by
requiring that

(c qh, r)Th − (uh,∇ · r)Th + 〈ûh, r · n〉∂Th = 0,(1.3a)

−(qh,∇w)Th + 〈q̂h · n, w〉∂Th = (f, w)Th ,(1.3b)

〈ûh, µ〉∂Ω = 〈g, µ〉∂Ω,(1.3c)

〈q̂h · n, µ〉∂Th\∂Ω = 0,(1.3d)

hold for all r in V h, w ∈ Wh, and µ ∈ Mh, with a specific q̂h defined on ∂Th = {∂K : K ∈
Th}; see [11]. Above and throughout, we use the notation

(v, w)Th =
∑
K∈Th

(v, w)K and 〈v, w〉∂Th =
∑
K∈Th

〈v, w〉∂K ,

where we write (u, v)D =
∫
D
uv dx whenever D is a domain of Rn, and 〈u, v〉D =

∫
D
uv dx

whenever D is a domain of Rn−1. For vector functions v and w, the notations are similarly
defined with the integrand being the dot product v ·w. For HDG methods ûh is taken to be
an unknown in Mh, while the numerical trace q̂h is prescribed on ∂Th in such a way that both
qh and uh can be eliminated from the above equations to give rise to a single equation for
ûh; see [11]. Thus the often made criticism that DG methods have too many unknowns does
not apply to HDG methods. Additional advantages of HDG methods include the ability to
postprocess to get higher order solutions as we shall see in Section 5.

In contrast, the DG methods of the last century for second-order elliptic problems use only
the first two equations (1.3a)–(1.3b), together with specific prescriptions of both ûh and q̂h
to define their approximations. For most such methods, the above mentioned elimination is
not feasible. Moreover, their analysis is also very different from ours, as it does not require
the use of any special projection. This can be seen in [2], where most of the then known DG
methods were analyzed in a single unifying framework. All of these methods were shown
to converge with order k + 1 in the scalar variable u and with order k in the flux q. The
order of convergence in u is optimal and that in q sub-optimal since the methods use as local
spaces V (K) and W (K) the sets Pk(K) and Pk(K), respectively, where Pk(K) := [Pk(K)]n

and Pk(K) is the space of polynomials of total degree at most k.
Two particular DG methods of the local discontinuous Galerkin (LDG) type, fitting in

the above-mentioned unifying framework, deserve special mention as they provide approxi-
mations to the flux which converge with better orders of convergence. Their analyses do use
special projections. The first is defined in the one-dimensional case and provides an order
of convergence for the approximate flux of k + 1, see [6]. The second is an extension of that
method to multiple dimensions. It uses Cartesian grids and takes as local spaces V (K) and
W (K) the sets Qk(K) and Qk(K), respectively, where Qk(K) := [Qk(K)]n and Qk(K) is the
space of polynomials of degree at most k in each variable. The order of convergence for the
approximate flux can be proven to be k+1/2, see [13]. In both cases, the special projections
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used in the analysis were carefully devised to capture the structure of the numerical fluxes
ûh and q̂h.

Another example of a method requiring a special projection to carry out its analysis
is the so-called minimal dissipation LDG method. This is a special LDG method whose
penalization parameter is identically zero in all the interior faces; as a consequence, it cannot
be analyzed as in [2]. However, by using a suitably defined projection, the lack of stabilization
can be overcome and sharp error estimates can be obtained. The flux can be shown to
converge with the sub-optimal but sharp order of k, see [8].

Now, let us consider the HDG methods for which

(1.4) q̂h = qh + τ
(
uh − ûh

)
n, on ∂Th,

for some non-negative penalty function τ defined on ∂Th which we assume to be constant
on each face of the triangulation. As explained in [11], these methods are called the LDG-
hybridizable (LDG-H) methods because the above numerical trace is that of the LDG method
applied separately on each mesh element K. The well known hybridized versions of the
Raviart-Thomas (RT) [18] and the Brezzi-Douglas-Marini (BDM) [5] can be considered to
be HDG methods for which τ = 0; their analyses are carried out by using the celebrated RT
and BDM projections. The analysis of HDG methods for which τ is not identically equal to
zero, has been carried out in [12] also by using special projections. All of the above methods
were proven to provide approximations to the flux converging with the optimal order of k+1;
the first HDG method with this property was introduced in [9].

In this paper, we provide a new approach to the error analysis of HDG methods. It is
an alternative to the techniques in [12] for general HDG methods, and those in [9] for the
particular method treated therein. We recover all the results of [9, 12] and obtain new
superconverge results for the projection of the scalar variable with our new approach. The
novelty of our analysis is the use of new projections ΠV , ΠW which are fitted to the structure
of the numerical traces of scheme in the sense that

PM(q · n) = ΠV q · n+ τ(ΠWu− PMu) on ∂Th,

where PM is the L2-projection into Mh, cf. the expression for q̂h · n from (1.4).
Projections ΠV , ΠW tailored to the numerical traces have actually been widely used. In-

deed, beginning with the simplest example, notice that the projections used to analyze both
the RT and BDM methods capture the structure of its numerical fluxes by satisfying

PM(q · n) = ΠV q · n on ∂Th,

This should be compared with the definition of their numerical trace [11]

q̂h · n = qh · n on ∂Th.

Besides the projections used to carry out the analysis of the DG methods in [8], [6] and
[13], we have the projections used in [9] to analyze an HDG type method called single-face
hybridizable (SFH) method. The name arises due to the fact that for every simplex K, the
penalty function τ is nonzero just on a single face, say FK . The projections ΠV and ΠW

used there are such that for each simplex K ∈ Th,

PM(q · n) = ΠV q · n on ∂K \ FK ,
PMu = ΠWu on FK .
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This is in accordance with the numerical traces of the SFH method given by

q̂h · n = qh · n on ∂K \ FK ,
q̂h · n = qh · n+ τ(uh − ûh) on FK ,

The SFH method is also an HDG method of the LDG-H type, so our projection can also be
used to analyze the SFH method. It is interesting to point out that the component ΠV q of
the SFH projection introduced in [9] and ours do coincide when τ is as above, whereas the
component ΠWu does not, except when ∇·q is a polynomial of degree k− 1 on each simplex
K ∈ Th. The final estimates for the SFH method are the same with both approaches.

The remainder of this paper is organized as follows. In Section 2, we define the new
projection Πh and state its key properties. In Section 3, we use an energy argument to obtain
an optimal error estimate for the approximate flux qh and its numerical trace q̂h. In Section 4,
we use a duality argument to obtain a superconvergence estimate of the projection of the
error in uh and its numerical trace ûh. In Section 5 we discuss previously known element-
by-element postprocessing of the flux and the scalar variable. They will result in further
approximations q?h and u?h with interesting properties. Finally, we conclude in Section 6 by
summarizing our results and relating them to the previous work [12]. Proof of the properties
of the projection have been gathered in the Appendix.

2. The projection

The main ingredient of our error analysis is a new projection Πh into the product space
V h×Wh. In this section, we introduce it and establish its properties. From now on, we are
going to use the following local spaces:

V (K) = Pk(K), W (K) = Pk(K) and M(F ) = Pk(F ).

Also, we consider the stabilization function τ : ∂Th → R to be constant on each face.
The projected function is denoted by Πh(q, u) or by (ΠV q, ΠWu) where ΠV q and ΠWu are

the components of the projection in V h and Wh, respectively. The values of the projection
on any simplex K are fixed by requiring that the components satisfy the equations

(ΠV q,v)K = (q,v)K for all v ∈ Pk−1(K),(2.1a)

(ΠWu,w)K = (u,w)K for all w ∈ Pk−1(K),(2.1b)

〈ΠV q · n+ τΠWu, µ〉F = 〈q · n+ τu, µ〉F for all µ ∈ Pk(F ),(2.1c)

for all faces F of the simplex K. If k = 0, then (2.1a) and (2.1b) are vacuous and Πh is
defined solely by (2.1c). Note that although we denoted the first component of the projection
by ΠV q, it depends not just on q, but rather on both q and u, as we see from (2.1). The
same is true for ΠWu. Hence the notation (ΠV q, ΠWu) for Πh(q, u) is somewhat misleading,
but its convenience outweighs this disadvantage.

The domain of Πh is a subspace of L2(Ω)n×L2(Ω) on which the right hand sides of (2.1)
are well defined. Indeed, all functions q and u that are regular enough for their traces q ·n
and u to be in L2(∂K) are in the domain of Πh, for example, (q, u) ∈ H1(Th) × H1(Th),
where

H1(Th) =
∏
K∈Th

H1(K), H1(Th) = H1(Th)
n.

That the left hand sides of (2.1) uniquely determine ΠV q and ΠWu is proved as part of the
next theorem.
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To state the theorem, we need to introduce additional notation and conventions. We
use ‖ · ‖D to denote the L2(D)-norm for any D. More generally, we denote the norm and
seminorm on any Sobolev space X by ‖ · ‖X and | · |X , respectively. Also, as is usual in
finite element analysis, we restrict elements to have shape regularity, i.e., all mesh elements
K under consideration satisfy hK/ρK ≤ γ, where hK = diam(K), ρK is the diameter of the
largest ball contained in K, and γ is a fixed constant. We use C, with or without subscripts,
to denote a generic constant, independent of the elements and functions involved in our
inequalities (but it may depend on γ). The value of C at different occurrences may differ.
While we absorb dependencies on c into C, the dependencies on τ will always be explicitly
mentioned.

Our first result states that the projection Πh is well defined and has reasonable approxi-
mation properties. See Appendix A for a detailed proof.

Theorem 2.1. Suppose k ≥ 0, τ |∂K is nonnegative and τmax
K := max τ |∂K > 0. Then the

system (2.1) is uniquely solvable for ΠV qh and ΠWu. Furthermore, there is a constant CΠ
independent of K and τ such that

‖ΠV q − q ‖K ≤ C h
`q+1
K |q|H`q+1(K) + C h`u+1

K τ ∗K |u|H`u+1(K),

‖ΠWu− u‖K ≤ C h`u+1
K |u|H`u+1(K) + C

h
`q+1
K

τmax
K

|∇ · q|H`q (K),

for `u, `q in [0, k]. Here τ ∗K := max τ |∂K\F ∗, where F ∗ is a face of K at which τ |∂K is
maximum.

Note that if τ is of unit order, both approximation errors converge with the optimal order
of k + 1, when the functions q and u are smooth enough. If τ ≡ 1, or if τ is bounded above
and below uniformly by fixed constants, then a standard Bramble-Hilbert argument proves
the order k + 1 approximation estimates of the theorem. However, to track the dependence
of the constants on τ , and to compare with previous works, we need to perform a more
careful analysis. This is done in Appendix A in elaborate detail. To make an immediate
comparison, note that for the τ used in the SFH method [9], τ ∗K = 0 and the approximation
properties of ΠV q are independent of the stabilization function τ .

We conclude this section with a property of the projection that we use critically in the
error analysis of the method.

Proposition 2.1 (A weak commutativity property). For any w in Wh and any (Φ, Ψ) in
the domain of Πh, we have

(w,∇ ·Φ)K = (w,∇ ·ΠVΦ)K + 〈w, τ(ΠWΨ − Ψ)〉∂K .

Proof. For any w ∈ Wh,

(w,∇ ·Φ)K = −(∇w,Φ)K + 〈w,Φ · n〉∂K
= −(∇w,ΠVΦ)K + 〈w,Φ · n〉∂K by (2.1a),

= −(∇w,ΠVΦ)K + 〈w,ΠVΦ · n+ τ(ΠWΨ − Ψ)〉∂K by (2.1c),

= (w,∇ ·ΠVΦ)K + 〈w, τ(ΠWΨ − Ψ)〉∂K .

�
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3. Flux error estimates by an energy argument

The purpose of this section is to give error estimates under minimal regularity assumptions
on the solution. Since the projection Πh is designed to fit the structure of the numerical
trace, the equations satisfied by the projection of the errors have a form amenable to simple
analysis, as we see next. We will need the L2-orthogonal projection onto Mh, which we
denote by PM . Note that because τ is piecewise constant,

〈τ(PMu− u), µ〉∂Th = 0 for all µ ∈Mh,

a fact that we will use repeatedly without explicit mention. The projection of the errors
satisfy the following.

Lemma 3.1. Let ε qh = ΠV q − qh, εuh = ΠWu− uh, and εbu
h = PMu− ûh. Then

(c ε qh , r)Th − (εuh,∇ · r)Th + 〈εbu
h, r · n〉∂Th = (c (ΠV q − q), r )Th ,(3.1a)

−(ε qh ,∇w)Th + 〈ε̂h · n, w〉∂Th = 0,(3.1b)

〈εbu
h, µ〉∂Ω = 0,(3.1c)

〈ε̂h · n, µ〉∂Th\∂Ω = 0,(3.1d)

for all r ∈ V h, w ∈ Wh, and µ ∈Mh, where

ε̂h · n := ε qh · n+ τ(εuh − εbu
h) = PM(q · n)− q̂h · n on ∂Th \ ∂Ω.(3.1e)

Proof. Let us begin by noting that the exact solution q and u satisfies

(c q, r)Th − (u,∇ · r)Th + 〈u, r · n〉∂Th = 0,

−(q,∇w)Th + 〈q · n, w〉∂Th = (f, w)Th ,

for all r ∈ V h and w ∈ Wh. By the definition of Πh and PM , the above implies

(cΠV q, r)Th − (ΠWu,∇ · r)Th + 〈PMu, r · n〉∂Th = (c (ΠV q − q), r)Th ,

−(ΠV q,∇w)Th + 〈ΠV q · n− τ(u−ΠWu), w〉∂Th = (f, w)Th ,

for all r ∈ V h and w ∈ Wh. Subtracting (1.3a) and (1.3b) from the above two equations
respectively, we obtain (3.1a) and (3.1b). The equation (3.1c) follows directly from the
boundary condition (1.3c). To prove (3.1d) we proceed as follows:

〈µ, ε̂h · n〉∂Th\∂Ω = 〈(ΠV q − qh) · n+ τ(ΠWu− uh − PMu+ ûh), µ〉∂Th\∂Ω

= 〈(q − qh) · n+ τ(u− uh − u+ ûh), µ〉∂Th\∂Ω

= 〈q · n, µ〉∂Th\∂Ω − 〈q̂h · n, µ〉∂Th\∂Ω,

where we have used the definition of Πh. Note that this proves the identity (3.1e) because
q̂h ·n ∈Mh. Since q is in H(div,Ω) and since q̂h satisfies (1.3d), both terms above are zero.
This completes the proof. �

Lemma 3.2. We have

(c ε qh , ε
q
h )Th + 〈τ(εuh − εbu

h), (ε
u
h − εbu

h)〉∂Th = (c (ΠV q − q), ε qh )Th .

Proof. Taking r := ε qh in (3.1a), w = εuh in (3.1b), µ = −ε̂h · n in (3.1c) and µ = −εbu
h in

(3.1d), and adding the resulting four equations, we get

(c ε qh , ε
q
h )Th + Θh = (c (ΠV q − q), ε qh )Th ,
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where

Θh =− (εuh,∇ · ε
q
h )Th + 〈εbu

h, ε
q
h · n〉∂Th − (ε qh ,∇ εuh)Th

+ 〈ε̂h · n, εuh〉∂Th − 〈εbu
h, ε̂h · n〉∂Th .

But, by integration by parts,

Θh =− 〈εuh, ε
q
h · n〉Th + 〈εbu

h, ε
q
h · n〉∂Th + 〈ε̂h · n, εuh〉∂Th − 〈εbu

h, ε̂h · n〉∂Th

=− 〈ε qh · n, ε
u
h − εbu

h〉Th + 〈ε̂h · n, εuh − εbu
h〉∂Th

= 〈τ(εuh − εbu
h), (ε

u
h − εbu

h)〉∂Th ,

by the definition of ε̂h, namely (3.1e). This completes the proof. �

While Lemma 3.2 identifies an “energy” norm, Lemma 3.1 gives “consistency” relations.
These are enough to immediately prove an error estimate for the flux. To state it, we
need the norm ‖ · ‖h defined by ‖µ‖2

h =
∑

K∈Th
hK‖µ‖2

∂K for any function µ ∈ L2(∂Th) :=∏
K∈Th

L2(∂K), and the c-weighted L2(Ω)-norm ‖q‖c := (c q, q)
1/2
Th
.

Theorem 3.1 (Flux error estimates). Let qh, uh, and ûh solve the HDG equations (1.3)
and let the exact solution q, u be in the domain of Πh. Then, for k ≥ 0,

‖ΠV q − qh‖c ≤ ‖ΠV q − q‖c(3.2)

‖PM(q · n)− q̂h · n‖h ≤ C1,τ ‖ΠV q − q‖c,(3.3)

where C1,τ = C max{1, (hK τmax
K )1/2 : K ∈ Th}.

Proof. By the Cauchy-Schwarz inequality applied to the identity of Lemma 3.2,

(3.4) (c ε qh , ε
q
h )Th + 〈τ(εuh − εbu

h), (ε
u
h − εbu

h)〉∂Th ≤ ‖ΠV q − q ‖c ‖ε qh ‖c,

and (3.2) follows since τ ≥ 0. For (3.3), we start by using the identity (3.1e) to get

‖PM(q · n)− q̂h · n‖h ≤ ‖ε
q
h · n‖h + ‖τ(εuh − εbu

h)‖h
≤ C ‖ε qh ‖c + max

K∈Th
(hK τ

max
K )1/2 〈τ(εuh − εbu

h), (ε
u
h − εbu

h)〉
1/2
∂Th

where we used an inverse inequality and the fact that c−1 is uniformly bounded. Then (3.3)
follows from (3.4). �

4. Superconvergence of the scalar variable by a duality argument

In the previous section, we established an error estimate for qh that only requires that
the solution be as regular as required for the application of the projection. On domains
permitting higher regularity estimates, we can perform an analogue of the Aubin-Nitsche
duality argument [3, 17] to get higher rates of convergence. In particular, such arguments
will give us error estimates for uh and ûh.

We thus begin by introducing the dual problem for any given Θ in L2(Ω):

cΦ−∇Ψ = 0 on Ω,(4.1a)

∇ ·Φ = Θ on Ω,(4.1b)

Ψ = 0 on ∂Ω.(4.1c)
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We assume that this boundary value problem admits the regularity estimate

(4.2) ‖Φ ‖H1(Ω) + ‖Ψ‖H2(Ω) ≤ Creg‖Θ‖Ω

for all Θ in L2(Ω). This is well known to hold in several cases, e.g., if c ≡ 1 and Ω is a
convex polygon [16]. Recall that we have been tacitly assuming that (q, u) is in the domain
of Πh. By (4.2), (Φ, Ψ) is also regular enough to apply Πh, so we have the following lemma.

Lemma 4.1 (The duality argument). For any Ψh ∈ Wh, we have

(εuh, Θ)Th = (c (q − qh),ΠVΦ−Φ)Th + (q −ΠV q,∇Ψ −∇Ψh)Th .

Consequently,

‖ εuh ‖Th ≤ C H(Θ) ‖ΠV q − q ‖Th ,

where

H(Θ) := sup
Θ∈L2(Ω)\0

‖ΠVΦ−Φ‖Th
‖Θ‖Th

+ sup
Θ∈L2(Ω)\0

inf
Ψh∈Wh

‖∇Ψ −∇Ψh ‖Th
‖Θ‖Th

.

Proof. We have

(εuh, Θ)Th = (εuh,∇ ·Φ)Th by (4.1b),

= (εuh,∇ ·ΠVΦ) + 〈εuh, τ(ΠWΨ − Ψ)〉∂Th by Prop. 2.1,

= (c ε qh ,ΠVΦ)Th + 〈εbu
h,ΠVΦ · n〉∂Th

− (c (ΠV q − q),ΠVΦ)Th + 〈εuh, τ(ΠWΨ − Ψ)〉∂Th by (3.1a),

= (c (q − qh),ΠVΦ)Th + 〈εbu
h, (ΠVΦ−Φ) · n〉∂Th

+ 〈εuh, τ(ΠWΨ − Ψ)〉∂Th ,

by the continuity of Φ · n and the fact that εbu
h = 0 on ∂Ω by (3.1c). Then

(εuh, Θ)Th = (c (q − qh),ΠVΦ)Th + 〈εuh − εbu
h, τ(ΠWΨ − Ψ)〉∂Th by (2.1c),

= (c (q − qh),ΠVΦ)Th + 〈τ(εuh − εbu
h), ΠWΨ〉∂Th

− 〈εuh − εbu
h, τ PMΨ〉∂Th

= (c (q − qh),ΠVΦ)Th + 〈τ(εuh − εbu
h), ΠWΨ〉∂Th

− 〈ε qh · n, PMΨ〉∂Th by (3.1d),

= (c (q − qh),ΠVΦ)Th + 〈τ(εuh − εbu
h), ΠWΨ〉∂Th

− 〈ε qh · n, Ψ〉∂Th .

Moreover,

(εuh, Θ)Th = (c (q − qh),ΠVΦ)Th + (∇ · ε qh , ΠWΨ)Th − 〈ε
q
h · n, Ψ〉∂Th by (3.1b),

= (c (q − qh),ΠVΦ)Th + (∇ · ε qh , Ψ)Th − 〈ε
q
h · n, Ψ〉∂Th by (2.1b),

= (c (q − qh),ΠVΦ)Th − (ε qh ,∇Ψ)Th .



ERROR ESTIMATES FOR HDG METHOD 9

To bring this into the needed form, we continue:

(εuh, Θ)Th = (c (q − qh),ΠVΦ−Φ)Th + (c (q − qh),Φ)Th

− (ΠV q − qh,∇Ψ)Th

= (c (q − qh),ΠVΦ−Φ)Th + (q −ΠV q,∇Ψ)Th by (4.1a),

= (c (q − qh),ΠVΦ−Φ)Th + (q −ΠV q,∇Ψ −∇Ψh)Th by (2.1a).

Finally, the inequality of the lemma follows by applying the Cauchy-Schwarz inequality
to the identity and using the first estimate of Theorem 3.1. �

Theorem 4.1. Suppose the regularity assumption (4.2) holds. Then

‖ΠWu− uh‖Th ≤ C2,τ h
min{k,1} ‖ΠV q − q ‖Th for k ≥ 0,

‖PMu− ûh‖h ≤ C2,τ h ‖ΠV q − q ‖Th for k ≥ 1,

where h = max{hK : K ∈ Th} and C2,τ = C max{1, hKτ ∗K : K ∈ Th}.

Proof. Let us prove the first inequality. By the first estimate of Theorem 2.1 with `q set to
0 and `u = min{k, 1}, we get that

H(Θ) ≤ C hmin{k,1}C2,τ sup
Θ∈L2(Ω)\0

‖Φ‖H1(Ω) + ‖Ψ‖H`u+1(Ω)

‖Θ‖Ω

≤ C hmin{k,1}C2,τ Creg.

by the regularity estimate (4.2), and the first estimate follows.
The second estimate follows from the first from the same local argument used in [5] to

obtain a similar estimate for the BDM method. Indeed, when k ≥ 1, we can select a function

r ∈ Pk(K) such that r ·n = εbu
h on ∂K and ‖r‖K ≤ Ch

1/2
K ‖εbu

h‖∂K . Using hK r as test function
in (3.1a), and applying an inverse inequality, we find that

hK‖εbu
h‖2

∂K = hK(c (ΠV q − q), r)K + hK(εuh,∇ · r)K − hK(c ε qh , r )K

≤ ChK‖r‖K
(
‖ΠV q − q‖K + ‖ε qh ‖K

)
+ C‖r‖K‖εuh‖K .

Applying the first estimate of the theorem for εuh and the estimate in Theorem 3.1 for ε qh ,
we get the second inequality of the theorem. This completes the proof. �

5. Enhanced accuracy by postprocessing

In this section we describe a few techniques to postprocess the approximate solution and
flux.

5.1. Flux postprocessing. We can obtain a postprocessed flux q?h with better conserva-
tion properties. Although q?h converges at the same order as qh, it is in H(div,Ω) and its
divergence converges at one higher order than qh.

To define q?h, we use a slight modification of the Raviart-Thomas projection [18], as used
in the framework of Darcy flows [4], or for the Navier-Stokes equations [14], or for the
postprocessing of superconvergent DG methods for second order elliptic problems [12]. We
follow [12]. Thus, on each simplex K ∈ Th, we take q?h := qh + ηh where ηh is the only
element of Pk(K) + xPk(K) satisfying

(ηh,v)K = 0 for all v ∈ Pk−1(K),

〈ηh · n, µ〉F = 〈(q̂h − qh) · n, µ〉F for all µ ∈ Pk(F ) and all faces F of K.
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If L2(K)-orthogonal hierarchical basis functions are used, computation of ηh reduces to
solving, on each element, a linear system of size n + 1 times the dimension of the space of
homogeneous polynomials of degree k. It is instructive to compare the above definition to
that of the Raviart-Thomas projection, namely on each simplex K ∈ Th, we set ΠRT

k q as
the only element of Pk(K) + xPk(K) satisfying

(ΠRT

k q − q,v)K = 0 for all v ∈ Pk−1(K),

〈(ΠRT

k q − q) · n, µ〉F = 0, for all µ ∈ Pk(F ) and all faces F of K.

This comparison yields the following theorem. For a proof, see [12].

Theorem 5.1. For any k ≥ 0, we have that q?h ∈ H(div,Ω). Moreover,

‖ q − q?h‖Ω ≤ C‖ q −ΠRT

k q ‖Ω + C1,τ ‖ΠV q − q ‖Th ,
‖∇ · (q − q?h) ‖Ω = inf

fh∈Wh

‖ f − fh‖Th .

5.2. Postprocessing the approximate scalar variable. There are a few well known ways
to postprocess to obtain a new approximation u?h of enhanced accuracy.

As the first postprocessing method, we define u?h,1 in Pk+1(K) satisfying

(c−1 ∇u?h,1,∇w)K = (f, w)K − 〈qh · n, w〉∂K , for all w ∈ P0
k+1(K),(5.1a)

mK(u?h) = mK(uh),(5.1b)

where mK(v) = meas(K)−1(v, 1)K and P0
k+1(K) = {p ∈ Pk+1(K) : mK(p) = 0}. Clearly

u?h,1 satisfies a discrete Neumann problem on each element with the computed approximate
solution as data. This method was introduced in [15, 19, 20] in the framework of mixed
methods.

A variation of this postprocessing was proposed in [9, 12] for DG methods. It is obtained
simply by substituting q̂h in place of qh on the right hand side of (5.1a). This yields our
second postprocessing alternative. The solution so obtained is denoted by u?h,2.

As a third alternative, we define u?h,3 obtained by following [19, 20]. Let Wk+1(K) denote

the L2(K)-orthogonal complement of Pk−1(K) in Pk+1(K). The solution u?h,3 is of the form
uh + ηh where ηh is the unique function in Wk+1(K) satisfying

(∇ ηh,∇w)K =− (∇uh + c qh,∇w)K for all w ∈Wk+1(K).(5.2)

As in the case of the flux postprocessing, if we are using L2(K)-orthogonal hierarchical basis
to find ηh, we need only invert a symmetric, positive definite matrix whose order is the
dimension of Wk+1(K). Note also that to evaluate the right hand side of (5.2), we need only
use n− 1 dimensional quadratures, as

−(∇uh + c qh,∇w)Th = 〈ûh − uh,∇w · n〉∂Th\∂Ω + 〈g − uh,∇w · n〉∂Ω.

This follows by setting r = ∇w in (1.3a), the first equation of the HDG method.
All the above postprocessed solutions converge at a higher rate than uh (whenever k ≥ 1)

as stated in the next theorem. It can be proved using the superconvergence estimate of
Theorem 4.1 in a standard way (see [20]) so we omit it.

Theorem 5.2. Under the same assumption as Theorem 4.1, the result u?h,i of any of the
three above mentioned postprocessings satisfy

‖u− u?h,i ‖Th ≤ (C2,τ + δi2C1,τ )h
min{k,1}‖ΠV q − q ‖Th + C h`+2 ‖u ‖H`+2(Th),
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for any k ≥ 0 and i = 1, 2, 3, and any ` ∈ [0, k].

6. Concluding remarks

We have presented a technique for error analysis of HDG methods that is remarkable for
its brevity, especially in comparison with previous DG analyses [2, 9, 12]. We achieved this
through the use of a new projection Πh. While brevity and elegance is traditionally achieved
in the analysis of mixed methods, like RT and BDM methods, via the use of projections
with commutativity properties, in the case of DG methods, commutativity seems not to be
of paramount importance. Rather, what seems important is a projection tailored to fit the
structure of the DG method, such as our Πh.

Because Πh is adapted to the structure of our numerical traces, we found it easy to estimate
the projection of the errors. To summarize, we proved,

‖ΠV q − qh ‖c ≤ ‖ΠV q − q‖c,
‖PM(q · n)− q̂h · n‖h ≤ C1,τ‖ΠV q − q‖c,

‖ΠWu− uh‖Th ≤ C2,τ h
min{k,1} ‖ΠV q − q ‖Th ,

‖PMu− ûh‖h ≤ C2,τ h ‖ΠV q − q ‖Th ,

where the first three estimates hold for all k ≥ 0 and the last for k ≥ 1. Thus, by the
approximation properties of the projection Πh (Theorem 2.1), if the penalty function τ is
such that τmax

K is of order one on each K ∈ Th, we obtain the optimal order of convergence of
k+ 1 for the approximate flux and its numerical trace. Of course, by the triangle inequality,
the above estimates imply that the error of these variables converges to zero at the optimal
order. If k ≥ 1, the projection of the errors for u and its trace superconverge at order k+ 2.
This can be exploited to get locally postprocessed solutions of enhanced accuracy.

To end, note that the above estimates imply that

‖(q̂h − qh) · n‖h = O(hk+1).

According to the main result in [12], such an inequality implies optimal order of convergence
for the numerical flux qh and its postprocessing q?h for k ≥ 0. It also implies, for k ≥ 1, the
superconvergence of the orthogonal projection of the error in u into Pk−1(K), and furthermore
the superconvergence of ûh. This is in perfect agreement with our results.

The extension of our approach to other equations of practical interest appearing in, for
example, fluid flow and solid mechanics, can prove to be useful not only to analyze already
existing HDG methods but also to devise new ones. This constitutes the objective of ongoing
research.
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Appendix A. Proof of Theorem 2.1

We begin by observing that once we prove the approximation estimates of the theorem,
then the unisolvency of the equations defining the projection follows as a corollary. This is
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because the number of equations and unknowns in (2.1), namely

dim(Pk−1(K)) + dim(Pk−1(K)) + (n+ 1) dim(Pk(F )), and

dim(Pk(K)) + dim(Pk(K)),

respectively, coincide, i.e. (2.1) is a square linear system. Hence setting u = 0 and q = 0 in
the approximation estimates we find that the projection must vanish.

In view of this, in the remainder of this section, we develop estimates for anyΠV q and ΠWu
satisfying (2.1) without assuming uniqueness a priori (although it will follow a posteriori).
But first, we begin with two auxiliary lemmas.

A.1. Two estimates involving orthogonal polynomials. Let

P⊥k (K) := {w ∈ Pk(K) : (w, ζ)K = 0 ∀ ζ ∈ Pk−1(K)}.

Lemma A.1. Let F be any face of a simplex K. The trace map

γF : P⊥k (K) 7−→ Pk(F ) defined by γF (p) = p|F

is a bijection. Moreover,

‖p‖K ≤ Ch
1/2
K ‖p‖F for all p ∈ P⊥k (K).

Proof. We first prove that γF is injective. Suppose γF (p) = 0 for some p ∈ P⊥k (K). Then we
can write p = λF q, where λF denotes the barycentric coordinate function of K that vanishes
on F and q is some function in Pk−1(K). But since (p, w)K = 0 for all w ∈ Pk−1(K), we
then have (λF q, q)K = 0, so q = 0 and hence p = 0. The surjectivity of γF now follows by
counting dimensions and using the injectivity.

Finally the estimate of the lemma follows from the injectivity and a standard scaling
argument. �

Lemma A.2. Let η be a nonnegative function on ∂K, constant on each face of K, and such
that ηmax := max η > 0. Let p ∈ P⊥k (K) satisfy the equation

〈ηp, w〉∂K = b(w) for all w ∈ P⊥k (K),

where b : P⊥k (K)→ R is linear. Then

‖p‖K ≤ C
hK
ηmax

‖b‖,

where ‖b‖ := supw∈P⊥k (K)\0 b(w)/‖w‖K.

Proof. Let F be a face of K at which η = ηmax. Then, by Lemma A.1,

‖p‖2
K ≤ C hK ‖p‖2

F = C
hK
ηmax

〈ηp, p〉F ≤ C
hK
ηmax

〈ηp, p〉∂K , since η ≥ 0,

= C
hK
ηmax

b(p) ≤ C
hK
ηmax

‖b‖ ‖p‖K ,

and the wanted estimate follows. �
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A.2. Decoupling the projection component ΠWu. Now we characterize the second
(scalar) component of the projection Πh(q, u) ≡ (ΠV q, ΠWu), namely ΠWu, independently
of the first, and prove its approximation properties.

Proposition A.1. On each element K ∈ Th, the component ΠWu satisfies

(ΠWu, v)K = (u, v)K for all v ∈ Pk−1(K),(A.1a)

〈τΠWu,w〉∂K = (∇ · q, w)K + 〈τu, w〉∂K for all w ∈ P⊥k (K).(A.1b)

Proof. The first equation (A.1a) is the same as an equation defining the projection (2.1b).
For the second, note that (2.1c) implies

〈τΠWu,w〉∂K = 〈(q −ΠV q) · n+ τu, w〉∂K for all w ∈ P⊥k (K).

Simplifying the right hand side using

〈(q −ΠV q) · n, w〉∂K = (∇ · (q −ΠV q), w)K + (q −ΠV q,∇w)K

= (∇ · (q −ΠV q), w)K by (2.1a),

= (∇ · q, w)K as w ∈ P⊥k (K),

we finish the proof. �

Proposition A.1 permits comparison with the SFH method. Suppose τ is selected as in
the SFH method and suppose ∇ · q ∈ Pk−1(K). Then the system (A.1) becomes

(ΠWu, v)K = (u, v)K for all v ∈ Pk−1(K),

〈τΠWu, µ〉FK = 〈τu, µ〉FK for all µ ∈ Pk(FK).

Note that to obtain the last equation, we used the surjectivity of γF (Lemma A.1). Thus,
in this case, ΠW coincides with the projection used in the analysis of the SFH method [9]
(denoted there by P).

We are now ready to obtain the estimate of ΠWu− u in Theorem 2.1.

Proposition A.2. Suppose the assumptions on τ in Theorem 2.1 hold. Then,

‖ΠWu− u‖K ≤ C h`u+1
K |u|H`u+1(K) + C

h
`q+1
K

τmax
K

|∇ · q|H`q (K),

for `u, `q in [0, k] (and consequently, ΠWu is uniquely determined by (A.1)).

Proof. To prove the result, we set δu := ΠWu − uk, where uk is the L2(K)-orthogonal pro-
jection of u into Pk(K), and note that

‖ΠWu− u‖K ≤ ‖u− uk‖K + ‖δu‖K .
The first term can be readily estimated by using the standard approximation properties of
the L2-projection. Let us estimate the second term.

Equation (A.1a) shows that δu belongs to P⊥k (K), and (A.1b) implies

〈τ δu, w〉∂K = bq(w) + bu(w) for all w ∈ P⊥k (K),

where bq(w) := (∇ · q, w)K and bu(w) := 〈τ (u− uk), w〉∂K . By Lemma A.2 with η := τ ,
p := δu and b = bq + bu, this implies that

‖δu‖K ≤ C
hK
τmax
K

(
‖bq‖+ ‖bu‖

)
.
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Let us estimate ‖bq‖. Since w ∈ P⊥k (K), we have

bq(w) = (∇ · q − (∇ · q)k−1, w)K ,

where (∇ · q)k−1 is the L2(K)-projection of ∇ · q into Pk−1(K) when k ≥ 1. If k = 0, we set
(∇ · q)−1 ≡ 0. Hence,

‖bq‖ ≤ ‖∇ · q − (∇ · q)k−1‖K ≤ C h
`q
K |∇ · q|H`q (K),

for `q in [0, k], by the approximation properties of the L2-projection.
Finally, let us estimate ‖bu‖. By a scaling argument,

bu(w) ≤ τmax
K ‖u− uk‖∂K ‖w‖∂K ≤ C h

−1/2
K τmax

K ‖u− uk‖∂K ‖w‖K ,

A trace inequality and the approximation properties of the L2-projection imply

‖bu‖ ≤ C τmax
K h−1

K

(
‖u− uk‖K + hK |u− uk|H1(K)

)
≤ C τmax

K h`uK |u|H`u+1(K),

for any `u in [0, k]. This completes the proof. �

A.3. Properties of the flux component ΠV q. To study the flux component, we recall
another projection BV introduced and studied in [8] and later used in [9, 12]. Let F ∗ be
a face of K at which τ |∂K is a maximum. For any function q in the domain of ΠV , the
restriction of BV q to K is defined to be the unique element of Pk(K) satisfying

(BV q,v)K = (q,v)K ∀v ∈ Pk−1(K),(A.2a)

〈BV q · n, µ〉F =〈q · n, µ〉F ∀µ ∈ Pk(F ),(A.2b)

for all faces F of K different from F ∗. We use it to prove the following lemma. Clearly, the
proof of Theorem 2.1 would be complete once we prove the lemma.

Proposition A.3. Suppose the assumptions on τ in Theorem 2.1 hold. Then,

‖ΠV q − q‖K ≤ C h
`q+1
K |q|H`q+1(K) + C h`u+1

K τ ∗K |u|H`u+1(K),

for `u, `q in [0, k].

Proof. A basis for Rn is furnished by the set of unit normals nF for the n faces F 6= F ∗ of
K. Letting {ñF : F 6= F ∗} denote its dual basis, that is, ñF · nF ′ = δFF ′ , we can write
ΠV q−q =

∑
F 6=F ∗((ΠV q−q) ·nF )ñF . Hence, it is enough to estimate each of the functions

(ΠV q − q) · nF . Moreover, since we have

‖(ΠV q − q) · nF‖K ≤ ‖(BV q − q) · nF‖K + ‖(ΠV q −BV q) · nF‖K ,

by the approximation properties ofBV established in [8], it is enough to estimate the function
δq
F := (ΠV q −BV q) · nF .

From equations (2.1a) and (A.2a), we conclude that δq
F is in P⊥k (K). Subtracting (A.2b)

from (2.1c), we obtain

(A.3) 〈δq
F , µ〉F = 〈τ (u−ΠWu), µ〉F for all µ ∈ Pk(F ), and any F 6= F ∗.

By Lemma A.1, w = γF
−1(µ) is in P⊥k (K) and w = µ on F . Hence,

〈ηδq
F , w〉∂K = b(w) for all w ∈ P⊥k (K),
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where η is the characteristic function of F and b(w) := 〈τη (u−ΠWu), w〉∂K . By Lemma
A.2, this implies that

‖δq
F‖K ≤ C hK ‖b‖.

It only remains to estimate ‖b‖. But

|b(w)| ≤ C τ ∗K h
−1/2
K ‖u−ΠWu‖∂K ‖w‖K

≤ C τ ∗K h
−1/2
K ‖u− uk‖∂K ‖w‖K + C τ ∗K h

−1
K ‖uk −ΠWu‖K ‖w‖K ,

where uk is the L2-projection of u into Pk(K). Hence, since τ ?K ≤ τmax
K ,

‖b‖ ≤ C h
`q
K |∇ · q|H`q (K) + C τ ∗K h

`u
K |u|H`u+1(K),

for `u, `q in [0, k], by the approximation properties of the L2−projection and the estimates
of Proposition A.2. This proves the required estimate for δq

F and completes the proof. �

We have thus finished the proof of Theorem 2.1. Before closing, let us state one more
result that characterizes ΠV q and compare with the case of the SFH method.

Proposition A.4. Suppose that the assumptions on τ of Theorem 2.1 hold. Then, on each
simplex K ∈ Th, ΠV q is the only element of Pk(K) such that

(ΠV q,v)K = (q,v)K for all v ∈ Pk−1(K),(A.4a)

〈ΠV q · n, µ〉F = 〈q · n+ τ (u−ΠWu), µ〉F for all µ ∈ Pk(F ),(A.4b)

and all faces F of K except one arbitrarily chosen.

Note that for the SFH method, taking all faces F where τ = 0, we immediately see that
ΠV coincides with the projection in the analysis of that method in [9]. It was denoted therein
by Π and is nothing but the projection BV given by (A.2).

Proof. The componentΠV q obviously satisfies (A.4) as these equations are identical to (2.1a)
and (2.1c). Since the system (A.4) is square, we need only show uniqueness. So, let us set
the right-hand side equal to zero. For any face F , consider the function δF := ΠV q · nF .
Then by equation (A.4a) with v := nF v with v ∈ Pk−1(K), equation (A.4b), and Lemma
A.1, we get that δF = 0. Since this can be done for all faces but one, we readily obtain that
ΠV q = 0. This completes the proof. �
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