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Additions of copper were shown to affect cell 

morphology, growth rates and nutrient uptake in Closterium 

moniliferum. These parameters are interrelated in the total 

life cycle of the organism. It was found that the timing 

of events in the life cycle, including sexual reproduction, 

could be changed when copper was added. When increasing 

concentrations of copper were added to the growth medium, 

Closterium rnoniliferurn exhibited a stimulatory, inhibitory, 

or toxic dose-response typical of organisms to trace metals. 

The stimulatory effect, occurring at pCu* 14.4, was demon­

strated by an early increase in cell number, increased 

nitrate uptake, and early onset of sexual reproduction. 

The inhibitory effects of greater concentrations of copper 

(pCu* 12.1) were a longer lag phase, decreased nitrate 

uptake, and later onset of sexual reproduction. Light 

micrographs and scanning electron micrographs of normal 

and aberrant cells demonstrated the effect of copper on 

morphology. 

It was demonstrated that the sexual phase in some 

srains of Closteriurn moniliferurn could be triggered by 

changes in the amount of nitrogen in the medium. Although 

it was expected that each cell would have a minimal cell 

quota (Q nitrogen/cell) before sexual reproduction occurred, 

work here demonstrated that Q was not the critical factor 

2 

in the initiation of the process. Sexual reproduction 

occurred at Q = .05 micromoles nitrogen/cell up to .21 micro­

moles nitrogen/cell. Neither was cell density in batch 



cultures the critical factor. Sexual reproduction occurred 

in the range of 400 cells/ml up to 6100 cells/mI. 

Different nitrogen sources gave different responses in the 

onset of sexual reproduction. Nitrate depletion. not 

ammonia, appears to be the critical component in induction 

of sexual reproduction. 

The actual effect of metals like copper on the popula­

tion dynamics of Closterium moniliferum in natural 

environments is yet to be determined. The stimulatory 

effect on nitrate uptake by copper, and its accompanying 

earlier formation of zygotes, may have survival value for 

the organism since the zygotes become thick-walled and dre 

not as subject to environmental perturbations as vegetative 

cells. 
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CHAPTER I 

INTRODUCTION 

The purpose of this research was to determine the 

effects of copper as an agent of environmental stress on 

the life cycle of Closterium moniliferum. The effects 

studied were cell division, sexual reproduction, zygote 

germination, and nutrient uptake. 

Excess copper has been shown to have a toxic effect 

on growth and cell division (Sunda and Guillard, 1976; 

Anderson and Morel, 1978; Rueter, 1979; McKnight, 1981; 

and Petersen, 1982) and nutrient uptake (Rueter et al., 

1981) in algae. Dinoflagellates, diatoms, and some members 

of the Chlorophycophyta have been used in this recent 

research. Closterium moniliferum (Chlorophycophyta, 

Desmidiaceae) follows a more elaborate life cycle than other 

algae which have been studied. This allowed the additional 

dimension of the complete life cycle to be examined. As 

well as the previously studied aspects of growth, cell 

division, and nutrient uptake, onset of sexual reproduction 

and germination of zygotes were included. 

Closterium moniliferum is a member of the group of 

the green algae (Desmidiaceae) which is commonly found in 

unpolluted, pristine bodies of water and is less common 

in polluted or nutrient enriched water. This may indicate 
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that Closterium is an organism that is sensitive to excess 

pollutants, and it has been used in a rapid and reliable 

method for assessment of the trophic character of the plank­

ton community (Thunmark, 1945). However, no critical studies 

of the specific response of this alga to metal ions have 

ever been conducted. 

This alga offers a unique opportunity to study the 

effects of metal ions because of its elaborate life cycle. 

When exposed to metal ions, most cells show a typical dose­

response relationship. The presence of low concentrations 

will enhance a physiological process but at higher concen­

trations they become inhibitory and eventually toxic (Figure 

1). This research included a study of the total life cycle 

of Closterium, including sexual reproduction integrally 

tied to nutrient uptake and cell division in the presence 

of carefully selected concentrations of copper. 

Growth of populations of Closterium moniliferum were 

monitored to correlate increase in cell number with uptake 

of nutrients. Desmids begin sexual reproduction when nitro­

gen amounts are low in the medium (Biebel, 1964), therefore, 

nitrogen was monitored in cultures with increasing amounts 

of copper. The results suggest that copper may be acting 

on the assimilatory nitrogen metabolism (Figure 2) of 

Closterium by acting on nitrate uptake and/or nitrate reduc­

tion. The timing of sexual reproduction should be affected 

by copper: if nitrate uptake were stimulated, sexual 



Beneficial 

Inhibitory 
Concentration 

Toxic 

Figure 1. Schematic representation of the effect of metal ions on 
physiologic~l processes. These are frequently beneficial but become 
inhibitory and toxic at higher concentrations (based on Fra~sto da 
Silva and Williams, 1976). 
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Cell membrane 

1 

Cytoplasm 

Internal 
NO; -----II.t-----.~ NO; 

2 

.~-----------------~ 

NADPH 
~ • 3 

NADP 

Figure 2. Suggested sites of action of copper (cu 2+) on 
nitrate metabolism. The numbers 1, 2, 3 inctic~te specific 
sites where inhibition may be occurring: 
1) Copper inhibits nitrate uptake; 
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2) Copper inhibits nitrate reduction by acting on the enzyme 
nitrate reductase: 

3) Copper inhibits nitrate reduction by interferring with 
NAD(P) reduction. 



reproduction would occur earlier; if nitrate uptake were 

inhibited, sexual reproduction would be delayed. 

Besides the requirement for nitrogen depletion in 

the environment before sexual reproduction can occur, the 

vegetative cells must divide. Light microscopy and scanning 

electron microscopy were used to monitor quantitative and 

qualitative changes in cell morphology of dividing cells. 

The morphological studies add additional information 

to the growth studies and may provide a key to the inhibi­

tion of cell division exemplified by the increased lag 

phase. Inhibition of nitrate uptake by copper parallels 

the inhibition of cell division~ Because the nitrogen 

requirements of Closterium moniliferum are integrally tied 

to its sexual reproduction, it is seen that copper can be 

an effective tool in understanding the total life_cycle 

of this alga. 

THE LIFE CYCLE AND MORPHOLOGY OF CLOSTERIUM MONILIFERUM 
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The cells of Closterium moniliferum are elongate 

unicells, narrowed toward both poles, sometimes slightly 

tumid at the equator and slightly arcuate. A central nucleus 

lies between the two chloroplasts at the equator of the 

cell. After division, a cell has one semi-cell of the 

parent cell wall and one semi-cell which is formed by new 

cell wall secretions (Figure 3). When mature, the cells 

are symmetrical with both semi-cells of the same size 

(Figure 4). 



Cell Divi.rion 

First division 

Figure 3. Diagram showing two successive divisions 
of a Closterium cell to illustrate the distribution 
of the parent cell walls to the daughter cells. The 
walls of the 1st generation cell (la and lb) are 
drawn with heavy longitudinal striations: those of 
the 2nd generation (2a and 2b) with lighter stria­
tions; while those of the 3rd generation (3a and 3b) 
have striations shown as dotted lines. gp = girdle 
portion: ap = apical portion (Brook, 1981). 
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Figure 4. Mature cell of Closteriurn rnoniliferurn, 
strain #96. 430 x. 
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The cells themselves act as gametes when light is 

present (Ueno and Sasaki, 1978; Hogetsu and Yokoyama, 

1979) and when certain physiological conditions, such as 

low nitrogen concentrations, exist (Biebel, 1964). The 

cells divide and the immature daughter cells mate to form 

a single zygote in one homothallic strain (#96, Figure 5) 

or twin zygotes in another homothallic strain (#171, Figure 

6). Sexual reproduction occurs before the newly divided 

cells attain the symmetry characteristic of mature cells, 

a trait first observed in Closterium moniliferum by Fox 

(1957) and further elucidated by Lippert (1967). The cell 

contents from two cells travel through a conjugation tube 

and fuse to form a zygote, which is the only diploid stage 

in the life cycle. 

Zygotes require a maturation time of 1-2 months in 

the dark (Lippert, 1967). Mature zygotes will germinate 
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when they are exposed to light and are supplied with nutri­

ents and moisture. These new cells, released from the 

germinating zygotes, begin a new life cycle and can reproduce 

sexually or vegetatively, depending on conditions of growth. 

In strain 96, sexual reproduction begins when low nitrogen 

concentrations exist. This phenomenon was chosen as a point 

of interest in the overall hypothesis of this research. 

The interrelationship of nitrogen and copper could influence 

the total life cycle (e.g. delaying sexual reproduction, 

inhibiting nitrogen assimilation and/or inhibiting cell 

division). 
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Figure 5. Conjugation in Closterium: the C. moni­
liferum-ehrenbergii type. 1) The pairing of immature 
daughter cells and formation of conjugation papillae; 
2) Secretion of hyaline conjugation vesicle; 
3) Initiation of movement of gametes; 4) Final 
stages of gamete fusion; 5) Mature zygospore and 
empty cells showing conjugation pore. 
cv ~ conjugation vesicle; g= gametes; p = conjuga­
tion pore; pa = papillae (Brook, 1981). 



Figure 6. Type of sexual reproduction in strain 
171 (hornothallic) of Closteriurn rnoniliferum re­
sulting in the production of twin zygotes. 

10 
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THE TRACE METAL COPPER 

Copper is a required micronutrient (Price, 1970) yet 

is one of the trace metals that is most toxic to phyto-plank­

ton (Hollibaugh et al., 1980). Its toxic effect is in large 

part due to its affinity for sulfhydryl groups and its 

ability to displace metal ion cofactors or active metal 

centers from metal dependent enzymes (Passow et al., 1961). 

The action of copper on the sulfhydryl groups may inactivate 

physiologically crucial SH-dependent enzymes or alter their 

catalytic specificity or control. Reaction of copper with 

side chains or replacement of other metals may result in 

a change in the electrostatic charge and a shift in the 

ionization constant of the active center to give a change 

in catalytic ability (Passow et al., 1961). 

Mandelli (1969) suggested that copper is strongly 

bound in carboxyl, phosphate, amino, or sulfhydryl groups 

and thus its effect tends to be non-specific. Other evidence 

suggests, however, that copper may act more specifically 

on the SH groups. For example, Gurd and Wilcox (1956) found 

that copper oxidized SH groups forming S-S bridges and 

Fisher and Jones (1981) suggested a common action on SH 

groups for Hg, Cu, Zn, Pb, Cd, and Mn by showing the relative 

toxicities of the metals are correlated (r = 0.961) with 

the solubility products of the correlated metal sulfides. 

While copper does show specificity towards SH groups, sensi­

tive SH groups are so ubiquitous and of importance to so 



many different enzymes, that sites of action within a cell 

are multiple. 
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The addition of sulfhydryl reactants affects cell 

division. Hughes in 1950 reported that sulfhydryl reactants 

in general could block cells from entering prophase and 

Dustin had earlier (1947) suggested that mitotic poisons 

were enzyme inhibitors. Stern (1956) found that sulfhydryl 

groups were important in regulating plant cell division 

in developing anthers of the lily. Kanazawa and Kanazawa 

(1969) found that nuclear division in copper treated 

Chlorella cells was completed but cellular division did 

not occur. They assumed that the process suppressed by 

copper was probably concerned with some events related to 

the cell membrane rather than with those occurring inside 

the cell. It is probable that both events occur, with the 

membrane showing the primary effect since it is the location 

of first contact with the metal. 

Evidence indicates that the membrane may include 

sites of action for metals. Rothstein (1959) saw a rapid 

reversibility of some of the effects of metal toxicity 

indicating the membrane as one target. Although photosyn­

thesis inhibition and potassium excretion induced by copper 

and mercury followed similar dose-response curves in the 

green alga Chlorella pyrenoidosa, Kamp-Nielsen (1971) con­

cluded that the primary effect of bound metals (copper and 

mercury) was to cause some destruction of a diffusion barrier 

causing an out-flow of potassion. Overnell (1975), working 
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with dinoflagellates, found results consistent with the 

suggestion of McBrien and Hassall (1965) working with 

Chlorella, that the primary toxic effect of copper is to 

increase the permeability of the cell. He reported that 

with Cu2+, K+ release occurred at a marginally lower concen­

tration than did inhibition of photosynthesis. The action 

of copper on permeability has not been confirmed since the 

work of deFilippis (1979) showed little effect on potassium 

loss from Chlorella. 

Using isolated chloroplasts, Cedeno-Maldonado et al.(1972) 

found that copper affected the photosynthetic process itself. 

Shioi et al. (1978 a and b) showed that copper inactivated 

the electron transport of photosystem II and Haberman (1969) 

showed that both the Hill and Mehler reactions were inhibited 

by copper. 

Copper As A Toxicant/Nutrient 

Since the investigations of Moore and Kellerman (1904) 

copper has been used extensively as an algicide in algal 

control programs. It has recently been established that 

the total amount of copper in natural waters is not the 

crucial factor in toxicity to organisms; rather, it is 

the speciation (chemical form) of copper and the equilibra­

tion of those species in the environment/medium that deter­

mines the activity and toxicity of ionic copper (Sunda and 

Guillard, 1976; Anderson and Morel, 1978; Jackson and Morgan, 

1978; Rueter et al., 1979; and Sunda and Gillespie, 1979). 



Different organisms respond to the activity of ionic copper 

with different sensitivities; the levels where copper is 

toxic varies (Erickson et a1., 1972). 
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Because the biological response is dependent on free 

ion activities, the effect of che1ators is very important. 

In the laboratory, Anderson and Morel (1978) found that 

pre-equilibration for 24 hours with the metal chelator, 

EDTA, was necessary to prevent a dramatic overestimate of 

copper sensitivity of the organisms. Sunda et al. (1981) 

found stimulation of phytoplankton growth by organic chela­

tors (EDTA and NTA) appeared to result directly from the 

ability of these che1ators to tightly complex copper without 

appreciably binding manganese. Fitzgerald and Faust (1963) 

reported that EDTA decreased algicidal effects of copper 

on an equivalent basis as naturally occurring metal com­

p1exing agents. Upwelling water is likely to have copper 

present in ionic and thus toxic form (Steemann Nielsen and 

Kamp-Nielsen, 1970). Sampling from upwelling seawater has 

shown that an emerging biological community may produce 

natural chelators which may act to increase phytoplankton 

growth similar to EDTA and NTA additions (Martin, 1967: 

Barber and Ryther, 1969: Murphy et a1., 1976: and Van der 

Berg et al., 1979). 

The effects of copper toxicity can be partially or 

completely reversed by appropriate iron, manganese, or 

chelator additions (Haberman, 1969; Gross et al., 1970: 

and Sunda et al., 1981). With the aid of thermodynamic 
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calculations, Sunda et al. interpreted the results as a 

physiological interaction between copper and manganese in 

which copper competes for manganese nutritional sites, there­

by interfering with manganese metabolism. Experimental 

results of Braek et al. (1976) with copper, zinc, and 

manganese indicate a common route for divalent metal ions 

in Phaeodactylum tricornutum. Anderson and Morel (1978), 

however, did not find the results of copper sensitivity 

altered with manganese concentrations varied over two orders 

of magnitude. In some cases, there is a synergistic effect 

between two metals (copper and silver) to produce greater 

toxicity (Young and Lisk, 1972) although Petersen (1982) 

found no clear evidence of interaction between copper ion 

and zinc ion in producing toxicity. 

It seems quite certain that the essentiality of copper 

to algae arises from its role as a prosthetic group in a 

number of vital enzymes and proteins, for example, being 

a component of the molecule plastocyanin of photosynthesis. 

Its ability to function depends on its intrinsic favorable 

chemical properties, including the ease of changing its 

oxidation state. As a transition metal, it has the capacity 

to complex effectively with a variety of proteins and porphy­

rins (Frieden, 1981) and with substances that are metal 

chelators. 

Besides being a required nutrient for algae (Myers, 

1962; Manahan and Smith, 1973), Rothstein (1959) suggests 



16 

a beneficial effect of copper in protecting active sites. 

Sato (1980) found that copper could bind with toxic compounds 

to return activity to the enzyme phenolase in spinach chloro­

plasts. Oxalate, usually toxic, acted as a chelator with 

the copper. 

Copper Acting on the Life Cycle of Closterium moniliferum 

Copper may act on the amount of nitrogen available 

to Closterium moniliferum and could be a factor in inducing 

sexual reproduction. Depleted nitrogen has been found to 

induce sexual reproduction in desmids (Biebel, 1964), and 

copper has been shown to inhibit nitrate uptake in some 

organisms (Harrison et al., 1977). Sexual reproduction 

may be tuned to environmental patterns and may be a mechanism 

of survival at a time of physiological stress. Although 

the organisms may reproduce by vegetative cell division 

only, it may be advantageous, when in the presence of added 

copper, to begin a different stage in the life cycle. 

Zygotes are thick walled and should be less susceptible 

to increases in metal concentration. This research showed 

that copper acted on the assimilatory process of nitrate 

uptake and was able to influence the onset of sexual reproduc­

tion. 

Adaptation of Organisms to Copper 

An organism must contend with the problem of main­

taining a minimal internal concentration of copper sufficient 

to meet its needs, but, at the same time, prevent the 
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occurrence of a toxic level of the metal. Genetic selec­

tion for higher tolerance has occurred in some algae 

(Russell and Morris, 1970; Foy and Guloff, 1972; and Stokes 

et al., 1973). Potential tolerance mechanisms for copper 

and algae include exclusion, extracellular binding, precipi­

tation on the outside of the cell membrane, utilization 

of nonsensitive intracellular sites, and metabolic shunts 

(Stokes, 1979). 

Secretion of algal exudates may ameliorate copper 

toxicity by extracellular binding (Swallow et al., 1978 

and Van der Berg et al., 1979) or changes in pH which would 

change the solubility and subsequently the toxicity of copper 

(Foy and Gerloff, 1972). 

Exclusion of copper (Foster, 1977; Hall et al., 1979) 

or differential uptake of copper ions (Jensen et al., 1976; 

Bentley-Mowat and Reid, 1977; Bowen and Gunatilaka, 1977; 

and Hogan and Rauser, 1981) have also been suggested as 

mechanisms for copper tolerance. 

There is increasing evidence in higher plants and 

fungi (Neurospora and Saccharomyces) that copper tolerance 

appears to be due in part to the presence of specific heavy 

metal binding proteins, metallothioneins (Rauser and 

Curvetto, 1980). These may act as depots for heavy metals 

and in addition, serve to bind, and thus sequester, the 

toxic metal (Lerch, 1981). Stokes et ale (1977) extracted 

a low-molecular-weight (8000 daltons) copper-binding protein 

from the cytosol of a copper-tolerant Scenedesmus. The 



amount of this protein increased in response to increased 

copper in the medium. In 1977 Nakajima et al. described 

a low-molecular-weight copper-binding compound from the 

cells of Chlorella regularis. Of the soluble intracellular 

copper, 49% was bound to two identifiable protein fractions. 

These copper metallothioneins may play a role in copper 

metabolism in absorption, transport, storage, and excretion 

of the metal. 

NITROGEN METABOLISM 

18 

Nitrogen metabolism is integrally tied to the cell 

cycle of Closterium. Because nitrogen depletion in the 

environment induces sexual reproduction (Biebel, 1964; 

Ichimura, 1971), the effect of copper on nitrogen metabolism, 

and in particular nitrogen uptake, is of great importance. 

Nitrate uptake kinetics depend on the species of algae, 

the concentration of nitrate in the environment and on the 

nitrogen cell quota (Eppley et al., 1969; Eppley and Renger, 

1974). Nitrate is transported into the cell and is very 

rapidly assimilated by being reduced to nitrite with further 

reduction occurring to produce ammonia, which is then 

incorporated into amino acids (Lehninger, 1975). 

Because of the requirement for an 8-electron reduction, 

the most generally accepted sequence for nitrate reduction 

was long believed to be: 

N03" N02 ~N202 -. NH 20H ~NH3 (Syrett, 1962). 



However, more recent work with algae (Zumft et al., 1969; 

Aparicio et al., 1971) suggests that only two enzymes 

catalyze the entire reduction of nitrate to ammonia. The 

first enzyme is nitrate reductase (NAD(P)H:nitrate oxido­

reductase) which catalyzes the reduction of nitrate to 

nitrite. This enzyme is a pyridine nucleotide-linked 

molybdoflavoprotein. The electrons are transferred from 

NAD(P)H to FAD, molybdenum being a required co-factor. 

The second enzyme is nitrite reductase (NAD(P)H:nitrite 

oxidoreductase) which catalyzes the reduction of nitrite 

to ammonia. 
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Nitrate reductase is believed to be readily accessible 

in unicellular organisms and nitrate uptake is considered 

to be closely correlated with nitrite assimilation. In 

most organisms, the enzyme is not constitutive and synthesis 

appears to be induced within a few hours when nitrate concen­

trations are increased in the medium (Harrison et al., 1977). 

Most algae will preferentially take up reduced forms 

of nitrogen such as ammonia or urea rather than nitrate. 

The suppression of nitrate uptake by ammonium has been 

reported for natural populations (MacIsaac and Dugdale, 

1969, 1972) and for laboratory cultures with Chlorella 

(Morris and Syrett, 1963; Syrett and Morris, 1963; Grant 

and Turner, 1969) and witn'marine phytoplankton (McCarthy 

and Eppley, 1972). Their work points to substantial 

suppression of nitrate uptake until ammonia falls below 

1 microgram-atom/liter. It is believed that the end 



products such as ammonia and amino acids are inhibiting the 

synthesis or the activity of nitrate reductase (Syrett, 

1981). 

In contrast, however, Harrison (1973), working with 

Peridinium and other dinoflagellates and diatoms from a 

bloom, and Topinka (1978), working with Fucus, found that 

under saturating nutrient conditions nitrate is utilized 

at significant rates even in the presence of high levels 
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of ammonia. Bienfang (1975) argues that under nutrient­

limiting conditions, with Dunaliella, the ambient ammonia 

never reaches concentrations high enough to inhibit an 

induced nitrate-utilization system. No information on use of 

nitrogen sources in Closterium has been Ieported. 

Nitrate reductase can undergo rapid changes in activity 

as a consequence of oxidation-reduction reactions in response 

to the ongoing metabolism in the cell (Hewitt, 1975). Copper 

has been found to inhibit the activity of nitrate reductase 

and the uptake of nitrate (Harrison et al., 1977). Shioi 

et ale (1978b), from their work with Ankistrodesmus, suggest 

that this may occur because copper inactivates the electron 

transport of photosystem II and there is not an adequate 

supply of reductants for nitrate reduction. 

Previous work has demonstrated that copper does 

decrease photosynthesis and chlorophyll content in Chlorella 

(McBrien and Hassall, 1965); Steemann Nielsen et al., 1969; 

Rosko and Rachlin, 1977) and in Dunaliella and Phaeodactylum 

(Overnell, 1975). In Chlorella, Hassal (1963) showed that 



photosynthesis was more sensitive to copper additions than 

was the specific growth rate. No previous work had been 

done on copper's effects on Closterium. 

Closterium is a slower growing organism than many 

unicellular algae and is not commonly used as a research 

organism. It has been used in this research because of 

its metabolic trigger for sexual reproduction. Whether 

copper directly affects nitrogen availability or indirectly 

affects photosynthesis, chlorophyll production, or cell 

division is a complex question. If the effect is mainly 

on nitrogen metabolism, copper as an environmental pollu­

tant is particularly significant in the life cycle of 

Closterium moniliferum. 

ENVIRONMENTAL SIGNIFICANCE 
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Since Closterium has been used as an indicator organism, 

the information on copper's effect gained in the laboratory 

may be helpful in assessing natural populations. 

Copper is one of the chemicals that man cycles more 

rapidly than nature. The recycling of copper occurs at 

a ratio of 12:1 (4460 X 10 3 metric tons man-induced rate: 

375 X 10 3 metric tons geological rate) (Ketchum, 1972). 

Anthropogenic effects can be noted in the significant in­

crease this century in the level of copper production and 

release of copper to the atmosphere (Table I). The level 

of copper in natural waters is approximately 10-7 M or less 



TABLE I 

HISTORICAL TRENDS IN GLOBAL COPPER PRODUCTION 
AND RELEASE OF COPPER TO THE ATMOSPHERE 

Copper 
Production Atmosphere 
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Consum~tion 
(X 10 2 g) 

Copper Emission 
(X 1010 g) Period 

Pre-1900 58 41.1 

1900-1910 7.5 5.3 

1910-1920 11. 3 8.0 

1920-1930 13.5 9.6 

1930-1940 16.3 11.7 

1940-1950 23.8 17.0 

1950-1960 32.4 23.0 

1960-1970 61.4 43.5 

1970-1980 82.5 58.5 

1980-1990 136 97.4 

Total, 3800 B.C.-A.D. 1980 307 315 

(from Nriagu, 1979) 



(6.4 microgram/lor less) (Bentley-Mowat and Reid, 

1977). 
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One of the effects of copper additions to natural 

waters is decreased growth and species shifts in the natural 

community. Sunda et ale (1981) showed a shift from diatoms 

to green flagellates and Thomas and Seibert (1977) showed 

a decrease in the proportion of centric diatoms and 

dinoflagellates. 

Some algae have been known to react to nonoptimal 

environmental conditions by beginning a different stage 

in their life cycles. An example of the effect of nonoptimal 

environmental conditions is the resting spore formed by 

Leptocylindrus denicus when nitrate level was reduced below 

0.5 micromoles in CEPEX experiments (Davis et al., 1980). 

Under conditions of copper stress, the marine dinoflagellate 

Gonyaulax tamarensis was found to become immotile with 

no increase in size or cell division (Anderson and Morel, 

1978). These cells were termed a "temporary resting stage 

in the life cycle" which could be revived if the stress 

due to copper had not been too severe and normal culture 

conditions were restored. 

This thesis shows that a different series of events 

occurs with the life cycle of Closterium moniliferum. The 

zygotes produced in the presence of copper do not differ 

from the zygotes produced without additional copper present. 

Copper does not affect the germination of the zygotes, which 
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are surrounded by a thick layered cell wall. Rather, copper 

stress is significant in the life cycle in the time of onset 

of sexual reproduction. The occurrence of earlier sexual 

reproduction as a result of added copper may allow the organ­

isms to survive pulses of toxicants in the environment by 

reducing the amount of time the cells spend in the vegetative 

state. This may, however, reduce the utility of Closterium 

moniliferum as an indicator organism of unpolluted waters. 

PURPOSE OF THE RESEARCH 

The purpose of this research was to study the sensi­

tivity of the life cycle of Closterium moniliferum to copper. 

Closterium has an elaborate life cycle which is dependent 

on environmental changes. Environmental changes for this 

study were effected by adding copper or by using different 

sources of nitrogen in the medium. 

The parameters of the life cycle that were measured 

were increase in cell number, onset of sexual reproduction, 

zygote germination, and uptake of nitrogen. The effect 

that copper had on each of these parameters was the essence 

of this research. 

Cell division is always critical in a population but 

it is especially critical here since the process of cell 

division must occur before sexual reproduction and is 

therefore closely tied to that stage in the life cycle. 

The uptake of the nutrient nitrogen is also closely 

tied to sexual reproduction; depletion of nitrogen in the 



medium, in the form of nitrate, appears to be a trigger 

for sexual reproduction. A stimulatory or inhibitory 

response of nitrate uptake or of cell division could alter 

the timing of the life cycle. 

The ultimate question, then, is if the timing of the 

life cycle can be changed by copper additions in the 

environment, can this lead to survival of Closterium in 

natural waters by production of resistant zygotes? The 

success of this laboratory study may give direction to 

field studies in which phytoplankton are able to survive 

pulses of toxicants in natural waters. 
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CHAPTER II 

MATERIALS AND METHODS 

THE ORGANISMS 

The organisms used in this study were strains 96 and 

171 of Closterium moniliferum from the Portland State 

University algal culture collection. Both strains are 

presently stored in the Culture Collection of Algae at the 

University of Texas (Starr, 1978). Strain 96 was used for 

all experiments; both strains were used for the scanning 

electron microscopy work to compare morphology and for the 

long term growth/uptake experiments to compare the time 

of onset of sexual reproduction. 

Strain 96 

Strain 96 is a homothallic strain that produces a 

single zygote in sexual reproduction. It was originally 

isolated by B.E. Lippert from a soil sample collected by 

Melvin Goldstein from a marshy area near Shulman's Equipment 

Co. Rt. 46 in New Jersey on August 21, 1959. The average 

size of a mature cell of strain 96 is 29 micrometers x 

147 micrometers; zygote measurement is 45 x 45 micrometers. 

It is stored in algal culture at the University of Texas 

at Austin as LB 2302 Closterium moniliferum (Bory) Ehr. 



Strain 171 

Strain 171 is a homothallic strain that produces twin 

zygotes in sexual reproduction. It was originally isolated 

and collected by B.E. Lippert from a farm pond, 2 miles 

south of a sewage disposal plant, on Fern Hill Road, south 

of Forest Grove, Oregon in August, 1959. The average size 
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of a mature cell of strain 171 is 43 micrometers x 214 micro­

meters; zygote measurement is 48 x 54 micrometers. It is 

stored in algal culture at the University of Texas at Austin 

as LB 2303 Closterium moniliferum (Bory) Ehr. 

ENVIRONMENTAL CONDITIONS 

Cultures were grown at 21° C in an Environator under 

continuous light (cool-white fluorescent) of 4000 lux 

measured with a GE Triple Range 214 Light Meter. Since 

Whitton (1968) reported that toxicity of metals, particularly 

copper, was decreased by light, the cultures were grown 

in continuous light to eliminate the variable of light/dark 

cycles. Cultures were manually swirled every 24 hours to 

facilitate the availability of nutrients to all cells and 

to prevent the cells from adhering continuously to the glass 

containers. Fitzger~ld (1975) found that continuous shaking 

of cultures of Scenedesmus resulted in no improved maximum 

rates of growth as long as relatively low volumes of liquid 

per flask were used. Also, Bentley-Mowat and Reid (1977) 

reported that there was not much difference in sensitivity 



of species to copper in batch cultures as compared with 

contin~ous culture. 

PREPARATION OF GLASSWARE AND SOLUTIONS 

Glassware 

Glassware used for all experimental work was washed 

in 95% dodecyl sodium sulfate, rinsed 5 times in tap water, 

and put in an acid wash of 10% HCl solution for 24 hours. 

After the acid wash, the glassware was rinsed 5 times with 

tap water and 5 times with deionized water from a Sybron/ 

Barnstead system (nanopure water). After air drying, the 

glassware was covered with parafilm for storage. 

Medium 

The organisms were grown in batch cultures in the 

defined medium FRAQUIL (Morel et al., 1979). (See 
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Appendix for quantities of components and method of prepara­

tion.) The water used in the medium (and in all solutions) 

was nanopure deionized water from a Sybron/Barnstead system. 

A supplement to FRAQUIL is a vitamin solution, including 

thiamine HCl, biotin, and B-12. Preliminary work demonstrated 

that there was no significant increase in growth or zygote 

production with the vitamins present so vitamins were not 

added to the growth medium for experimental work. The lack 

of a vitamin requirement may have been due to the fact that 

cultures were not continually axenic and the bacteria were 

supplying the growth factors. Cells were periodically 
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reisolated to eliminate any bacterial contamination, although 

axenic cultures were difficult to maintain. Moss (1973) 

however feels that exponentially growing cultures are prob­

ably not affected by bacterial interferences. In his work, 

he found that algae required the addition of vitamins even 

with bacteria present and therefore accepted growth measure­

ments obtained with vitamin utilization in non-axenic 

cultures as valid. Also, Tassigny (1971) considers the 

results with unialgal desmid cultures in mineral medium 

to be equally valid to those in axenic culture. 

Batch cultures of 150 ml in 250 ml flasks or 250 ml 

in 500 ml flasks were used to maintain a similar surface 

to volume ratio and prevent carbon limitation. For short 

term (2 days) nitrate uptake experiments, 1 liter of culture 

was maintained in a 2800 ml flask. 

To minimize contamination, the medium was filter 

sterilized. The autoclaving process may add metals and 

change the activity level of the copper so filtration was 

the sterilization method preferred. To obtain copper activity 

close to the predicted value, a Chelex column was eluted 

with FRAQUIL (without trace metals added) to remove con­

taminant trace metals (Morel et al., 1978). The trace metals 

required in FRAQUIL were then added and the medium was 

filter sterilized (0.45 micrometers Millipore filter). 

Glassware was not autoclaved due to metal contamination; 

some bacterial contamination may have occurred with the 



acid wash procedure but testing for bacterial growth showed 

it was minimal. 

Copper sulfate was added to FRAQUIL in the experimen­

tal flasks and the medium was allowed to equilibrate 24 

hours before the organisms were added (when EDTA was the 

buffer). When TRIS was used as a buffer in systems where 

copper was added, equilibration was considered to occur 

almost instantaneously and the organisms were added within 

a half hour after the copper had been added. 

Preparation of Copper Solution 

Copper sulfate (CUS04·S H20) was added to sterile 

deionized water to give a 10-1 M solution. This stock 

solution was stable and could be stored in the refrigerator 

indefinitely. 

COPPER CONCENTRATION AND SPECIATION 

The toxic effect of copper on organisms is determined 

by the amount of copper in the ionic form, Cu2 +, rather 
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than total concentration of all forms of copper (lab results 

of Sunda and Guillard, 1976; calculations of Jackson and 

Morgan, 1978; and field results of McKnight, 1981). EDTA 

acts as chelator for copper and was present in FRAQUIL at 

S x 10-6 M. If the total concentration of copper is less 

than the total concentration of EDTA there is a defined 

system with no problems of copper precipitation. 



The final dilutions of copper in the experimental 

flasks in the long term growth experiments were 1.3 x 

10-6 M, 10-7 M, and 10-8 M with EDTA as the buffer. When 

TRIS was added as a buffer in short term experiments, to 

a final concentration of 10-3 M, copper concentrations were 

increased to 10-5 M. 
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Copper activity (concentration of Cu2 +) was calculated 

by means of the MICROQL program using constants of components 

in the experimental medium FRAQUIL (Westall et al., 1976). 

Computed copper activity (expressed as pCu*, the negative 

log of cupric ion concentration) in long term experiments 

with EDTA as the buffer ranged from 12.1 to 15.4. (See 

Table II and Figure 7.) pCu* as referred to in this work 

is always calculated and not measured. When the medium 

was eluted through the Chelex column, the pCu actual values 

are assumed to be very close to the values calculated with 

MICROQL (pCu*). This calculation of copper activity does 

not include organic complexation that may occur during 

growth, therefore it represents maximum toxicity, i.e. 

minimum values of pCu* (Sunda et al., 1981). 

Swallow et ale (1978) used an ion electrode to measure 

the depression of cupric ion concentration by phytoplankton 

exudates and found that only one in 8 algal species excreted 

copper complexing materials. McKnight (1979) also measured 

organic products but earlier attempts to measure excretion 

products of algae in laboratory conditions were not success­

ful because of their low concentration (Fogg, 1977). Darling 



TABLE II 

CALCULATED COPPER ACTIVITITES 
IN FRAQUIL WITH EDTA 

Copper Molarity 

lE-3 

1E-5 

9E-6 

7.5E-6 

6E-6 

4E-6 

2E-6 

1.3E-6 

1E-6 

1E-7 

1E-8 

9.97E-IO 

[EDTA] = 5 X 10- 6 M 

pCu* 

3.6 

5.5 

5.5 

5.7 

6.0 

10.8 

11.8 

12.1 

12.3 

13.4 

14.4 

15.4 
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Figure 7. Negative log of copper concentration in 
the medium FRAQUIL vs. calculated copper activity. 
Arrow indicates EDT~concentration in the medium. 
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(1979) found extracellular release of organic products of 

Selenastrum capricornutum had a small but significant effect 

on ionic copper. 

pH MEASUREMENT 

pH was routinely measured with an Ionalyzer specific 

ion meter model 404. The beginning pH of autoclaved FRAQUIL 

and of Chelexed FRAQUIL with trace metals added was the 

same (7.05). When the various amounts of copper were added 

to the experimental flasks, the pH did not vary signifi­

cantly. The pH at the end of the experiments was not alka­

line indicating the flasks were not carbon limited. The 

effects seen in the experiments were considered to be the 

result of copper treatment, not of pH changes. 

The pH increased during zygote maturation (up to 7.87) 

and remained high during germination (7.94). 

The solubility diagram of copper (Figure 8) shows 

the cupric ion to be available at the experimental pH. 

MONITORING CELL GROWTH 

Cell Counts 

A Sedgwick-Rafter counting chamber was used for cell 

counts; the cells present in the total milliliter were counted 

so non-uniform distribution within the counting chamber 

would not contribute to counting error (McAlice, 1971). 

For long range (3 weeks) experiments, initial cell density 

ranged from 16 to 112 cells/ml; final cell density reached 
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Figure 8. Solubility diagram of copper. The solid 
line surrounding the shaded area gives the total 
solubility of Cu(II) which up to pH value of 6.96, is 
governed by the solubility of malachite, CU2(OH)~C03(s). 
In the low pH region azurite, CU3(OH)Z(C03)2(s) 1S 
metastable but may become stable at hLgher CT' Above 
pH 7 the solubility is controlled by the solubility of 
CuO (tenorite). The predominant species with increas­
ing pH are Cu2+, CuCO)(aq), CU(C03)22- and hydroxo 
copper(II) anions. CT = 10- 2 (Stumm and Morgan, 1970). 
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a maximum of 6100 cells/mI. Dilutions were made for counts 

when cell number exceeded 600 cells/mI. The counting chamber 

and cover glass were cleaned with water and rinsed in 95% 

ethanol after each count. 

Cell Morphology 

Quantitative assessment of changes of gross cell 

morphology was done during long term growth experiments 

by grouping the cells into three categories: those cells 

of normal size and shape (Figures 9 and 10); those of 

abnormal size and shape that completed cytokinesis (Figures 

11 and 12); and those incapable of completing cell division 

(Figures 13 and 14). Those cells incapable of finishing 

cell division were recognized when 2 mature symmetrical 

cells were contained within a continuous cell wall. The 

latter two categories of cells are considered to be under 

stress due to copper. 

Sexual Reproduction 

The onset of sexual reproduction in long term growth 

experiments was monitored. The frequency of sexual reproduc-

tion was determined by counting the number of zygotes and 

the number of potential zygotes (abortions) and comparing 

that number to the total number of cells with this equation: 

% Sexual Reproduction = 2(# Zygotes + Abortions) (2) 
# Cells + 2(# Zygotes + Abortions) 



Figures 9 and 10. Photomicrographs of strain #96 
(Top) and strain #171 (Bottom) without copper 
treatment. The cells shown here are immature cells 
pairing before sexual reproduction. LM 430 x. 
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Figures 11 and 12. Photomicrographs of abnormal 
cells of strain #96. LM 430 x. 
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Figures 13 and 14. Photomicrographs of strain #96 
that have not completed cytokinesis. LM 430 X. 
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Determination of Cell Chlorophyll 

The amount of chlorophyll was determined by the fluoro­

metric method of Strickland and Parsons (1972). There was 

no significant difference in chlorophyll amounts using the 

processes of filtration or centrifugation, so, for 

convenience, the pellet from a sample centrifuged for nitrate 

analysis was used. 

One capillary drop of saturated MgC03 was added to 

prevent acid conditions which would decompose the chloro­

phyll to give phaeophytin pigments. Ten ml of 90% acetone 

was the total amount used for extraction. In dim light, 

a few ml of 90% acetone were added to the pellet in the 

centrifuge tube; this was transferred to a grinding tube. 

The centrifuge tube was rinsed with more acetone and the 

rinse was added to the grinding tube. Cells were ground 

for 2 minutes at the highest speed on an Eberbach Power­

Stir. The ground cells were transferred back to the centri­

fuge tube for overnight extraction. The grinding tube and 

pestle were rinsed until the total 10 ml of 90% acetone 

was added. The tube was capped and covered with aluminum 

foil and refrigerated for 24 hours. 

The amount of chlorophyll was determined by use of 

a Turner fluorometer which was calibrated using a Bausch 

and Lomb Spectronic 100. On the Spectronic 100, readings 

were taken at wavelengths of 665, 645, and 630 nm for use 

in the Strickland and Parsons formula: 



chlorophyll a = 11.6E665 -1.31E645 -0.14E630 (3) 

where E = extinction at these wavelengths. 

Using this same sample, an F factor was determined 

on the fluorometer: 

F f tor = chlorophyl~ a (calculated from (3» (4) 
ac read~ng on fluorometer 

Using this F factor value, subsequent chlorophyll amounts 

were determined by a single reading on the fluorometer. 

The filters used in the fluorometer were # 478 as 

the primary filter and # 2A15 as the secondary filter 

(Turner). Cell counts were taken of the same samples so 

the amount of chlorophyll per cell could be calculated. 

Carbon Uptake as a Function of Copper 

The cultures contained TRIS so equilibration would 

occur quickly (within the first 5 minutes) when copper was 

added (Anderson and Morel, 1978). Copper was added to the 

test flasks to give a final concentration of 10-5 M. To 

the copper treated flask and a control flask (100 ml of 

culture) were added 100 microliter of 14carbon (1 micro-

curie/ml). For background count, a third flask without 

14carbon or copper added was run in parallel. Triplicate 

samples were taken at 16 hours and 40 hours. Ten ml of 

sample were filtered onto a Whatman GF/C glass microfibre 

filter (24 mm). The filter was placed in a grinding tube 

for chlorophyll extraction. The method for chlorophyll 

determination was the same as above. After overnight 

41 
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extraction, the samples were centrifuged and chlorophyll 

readings were done of the supernatants. The pellet and 

supernatant were then recombined in a scintillation vial 

and the acetone was allowed to evaporate under an intense 

light. When dry, 8 ml of scintillation liquid (Scinti Verse 

I, Fisher Scientific Company) were added. Radioactivity 

counts were taken for 5 minutes on a Beckman Scintillation 

Counter. 

The filtrates of the samples were analyzed for fixed 

l4carbon as an indicator of excreted organics. The pH of 

the filtrate was lowered to pH 2 by adding 2 drops concen­

trated HCl. Air was bubbled through the liquid continuously 

for a few hours, with an occasional shaking of the sample 

to wash the sides of the scintillation vial. Eight ml of 

scintillation liquid were added and samples were read as 

above. 

Gloves were used throughout the procedure and all 

materials were soaked after use for 24 hours in Count-off 

(New England Nuclear) and thoroughly rinsed with water. 

NITROGEN UPTAKE AS A FUNCTION OF COPPER 

Long Term Nitrate Uptake and Growth 

Growth experiments were run for three weeks to examine 

the relationship between nitrate taken up by the cells and 

the time of induction of sexual reproduction. Control and 

experimental flasks were run in duplicate. Experimental 

flasks had pCu* of 12.1 - 14.4. Control flasks had pCu* 
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of 15.4. Inocula were added to 250 ml of FRAQUIL containing 

100 micromoles/l nitrate. Cell counts and samples for 

nitrate determination were taken every 2 days until sexual 

reproduction or the stationary phase of growth occurred. 

Short Term Nitrate Uptake 

When cultures were depleted of nitrate, a spike of 

nitrate (final concentration of 10-20 micromoles/l) was 

added. Subcultures of 75 ml were taken and dispensed into 

flasks designated as controls and experimental flasks. 

A cell count was taken and pH was measured. To the experi­

mental flasks, copper concentrations were added. The flasks 

were swirled left to right and right to left for 15 minutes. 

The completion of this mixing was considered zero time and 

a sample was taken for nitrate amount. The amount of nitrate 

was found to be consistent in all flasks at 0 time. Samples 

were taken periodically for 48 hours (at 5, 19, 24, and 

48 hours) until nitrate was virtually depleted in the control 

flasks. 

Other short-term uptake experiments were done with 

the nitrate spike being added 5 hours before the copper 

was added. It was necessary to use TRIS as a buffer to 

provide rapid equilibrium. 

Long Term Ammonium Uptake and Growth 

To determine if copper more directly affected nitrate 

uptake than ammonia uptake, long term growth experiments 

were also done with ammonia as the nitrogen source. To 
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test for ammonia uptake, nitrate was not added to the media: 

NaN03 was replaced by the same molarity (10-4 M) solution 

of NH4Cl. The pH of both solutions were adjusted to 6.96. 

The final molarity of copper added was 1.35 x 10-6 which 

gives a pCu* in the nitrate media of 12.1. Less than 1 

micromole nitrate was present in the FRAQUIL with NH4Cl. 

The procedure here was the same as for long term nitrate 

uptake. 

Measurement of Nitrate 

Each time a sample was taken for nitrate determination, 

a cell count was also done. The sample for nitrate determina­

tion was centrifuged on a Universal Model U Centrifuge at 

approximately 750 g for 20 minutes. Nitrate determination 

of the supernatant was done immediately or it was frozen 

for later testing. Nitrate was measured using the method 

proposed by Strickland and Parsons (1972) and later modified 

by Eppley (1978). It is assumed that all nitrate not in 

the medium has been taken into the cells. 

A cadmium-copper reduction column was used to reduce 

the remaining nitrate in the supernatant to nitrite: nitrite 

was then measured spectrophotometrically. When a sample 

was reduced, part of it was sent through the column to act 

as a pre-wash to assure a more accurate reading. Although 

the nitrate reduction column used was a scaled down model 

for use with small samples (Rueter, 1979), a 5 ml wash was 

not adequate to completely wash out the previous sample. 
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Reducing samples of 0.1 micromole nitrate after a 100 micro­

mole sample gave readings of 25 x the expected value due 

to carryover. Washes of 20 ml with a 5 ml sample collected 

for nitrate testing resulted in consistent readings. 

All samples to be run through the column were made 

basic with concentrated ammonium chloride (100 microliters 

per 5 ml). This was done because basic solutions tend to 

clear the column more thoroughly (Strickland and Parsons, 

1972). As soon after reduction as possible, 100 microliters 

of sulfanilamide were added to the 5 ml sample to form a 

diazonium salt with the nitrite. After 3 minutes reaction 

time, 100 microliters of NEDA (N-l-napthyl-ethylene-diamine 

dihydrochloride) solution were added to form the red azodye. 

Complete color development occurred within 10 minutes and 

samples needed to be read within 2 hours. Samples were 

read at 543 nm on a Bausch and Lomb Spectronic 100. Dilu­

tions were made to read samples above 30 micromoles N03 

(extinction levels above 0.900). 

Because of the difference between columns, a standard 

curve (with standards of 1, 5, 12.5, 25, 50, and 100 micro­

moles nitrate/l) was run on each column each time (Figure 

15). 

FRAQUIL had 100 micromoles of nitrate present before 

inoculation of cells. The amount of nitrite in the medium 

was measured by testing for nitrite without the medium 

passing through the column. The amount of nitrite in FRAQUIL 

was negligible. 
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Figure 15. Absorbance (543 nrn) ~. concentration of 
nitrate. The two lines represent standard curves from 
two different nitrate reducing columns. 



An ideal rate of passing through the column was 5 

ml in less than 5 minutes. If a column became sluggish, 

moving the liquid through it by using forced air cleared 
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the column temporarily to obtain a faster rate. When slug­

gish, or after 100 samples were reduced, the columns were 

reactivated by placing the cadmium filings in 5% v/v HC1, 

rinsing them in distilled water until the pH was greater 

than 5, and then saturating the filings in a 2% copper solu­

tion. The column was then repacked (Strickland and Parsons, 

1972). 

A solution of dilute NH4Cl was used to pass through 

the column between samples that had great differences of 

nitrate concentration. The dilute NH4Cl was also used on 

the columns in storage; parafilm over the open top of the 

glass columns assured that the columns would not evaporate 

to dryness when not in use. 

Measurement of Ammonia 

The amount of ammonia present in the medium was 

measured with an Orion ammonia electrode (model 95-10). 

While being constantly stirred with a magnetic stirrer, 

a 25 ml sample was treated with 2.5 ml of 10 M NaOH. The 

reading was recorded when it became stable. 

Determination of Nitrate Reductase Activity 

The basic procedure for determining activity of nitrate 

reductase (ferrocytochrome:nitrate oxidoreductase EC. 

No. 1.9.6.1) was as follows. Samples were harvested by 



centrifugation at 2800 g for 20 minutes or by the process 

of filtration. The supernatant was discarded and the cells 

were homogenized with a glass homogenizer in ice in a homo­

genizing solution consisting of 3 ml 0.15 M KP04 buffer 

(pH 7.0), 0.6 ml sodium dithionite or dithiothreitol, and 
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20 mg polyvinylpyrrolidone. The sodium dithionite (or 

dithiothreitol) was used to maintain integrity of the enzyme 

(Lewis et al., 1982) and the polyvinylpyrrolidone was used 

to eliminate interference from phenols (Klepper and Hageman, 

1969; Stock and Lewis, 1982). 

The assay is that of Lowe and Evans (1964) wherein 

the reaction velocity was determined by measuring the pro­

duction of nitrite in a dithionite/methyl viologen system. 

One unit produces one micromole of nitrite/minute at 30° C 

and at pH 7.0 under specified conditions. 

Test tubes were placed in a 30° C bath. To these 

tubes were added 0.1 ml phosphate buffer, 0.1 ml 0.02% methyl 

viologen, 0.1 ml 23 mM sodium dithionite prepared in 48 mM 

sodium bicarbonate solution, 0.1 ml 0.10 M NaN03 and 0.1 ml 

0.05 M MgS04. One tenth of a milliliter of copper sulfate 

(10- 3 to 10-9 M) was added to the experimental tubes. After 

5 minutes of temperature equilibration, 0.1 ml enzyme or 

cell extract (0.1 ml H20 for blank) was added and incubated 

for 30 minutes. The reaction was stopped by vigorous aera­

tion until blue color was completely removed. 0.5 ml sul­

fanilamide (58 mM in 3N HCl) and 0.5 ml NEDA solution 

(0.39 mM N-l-napthyl-ethylene-diamine dihdrochloride) were 



quickly added to the test tube. 1.5 ml glass distilled 

water was added and 10 minutes time allowed for color 

development at room temperature. Samples were read at 

543 nanometers. 

Using the known activity of purified enzyme (~.coli) 

as a reference, the filtered sample yielded activity of 

2.9 x 10-5 units cell-l minute- l whereas the centrifuged 

sample yielded activity of 1.7 x 10-5 units cell- l 
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minute-I. When copper was added in preliminary experiments 

to give a final molarity of 10- 3 M copper, no enzyme activity 

was produced. This indicates that copper does directly 

affect the activity of nitrate reductase, which was indi­

cated in the long term and short term nitrate uptake 

experiments. 

Enzyme activity from cell extracts of Closterium 

moniliferum did not always occur, however, so modifications 

of the basic procedure above were tried. Assuming the lack 

of activity was due to the enzyme being attached to the 

membrane, drastic steps were taken to disrupt the cells. 

Besides homogenization, the French press, Triton X, and 

glass beads in a mortar and pestle in various combinations 

were used. To determine if the French press procedure was 

too harsh a procedure and was destroying the activity of 

the enzyme, purified enzyme (obtained from ~.coli, Sigma) 

was run through the French press twice. There was a loss 

of 44% of the activity. With the homogenization process, 

the purified enzyme activity decreased by 42%. 
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NADH was not an acceptable electron donor for purified 

enzyme or cell extract; both methyl viologen and benzyl 

viologen were suitable electron donors. The addition of 

FMN did not affect enzyme or extract activity. 

The solution of sodium dithionite needed to be pre­

pared fresh just before use. Its freshness was tested by 

observing a deep blue color formed when combined with methyl 

viologen which indicated a reducing environment. 

To determine if the experimental procedure was proper, 

tests with purified enzyme were always run when testing 

cell extract. 

Since copper was to be added to the test tubes to 

test its effect on enzyme activity, TRIS buffer was necessary 

for rapid equilibration. One-tenth of a milliliter of 

10- 3 TRIS buffer was added to the reaction tubes. This 

addition did not significantly decrease enzyme activity. 

Other variables that might have contributed to the 

inconsistency of the procedure were tested. These included 

temperature, time (from 1 minute up to 24 hours), excess 

and minimum sodium dithionite or dithiothreitol, and use 

of cultures that were nitrate depleted (with nitrate spike 

added to induce enzyme production) or cultures that were 

actively growing. Sodium salts were removed since Tischner 

(1976) reported that nitrate reductase activity did not 

occur in a K-Na-P04 buffer. These changes did not produce 

activity in the supernatant; often, some nitrate reductase 

activity was present in the cells. Supernatants were tested 



after each step in the procedure. Simple homogenization 

of a mixed algal culture produced enzyme activity however. 

This indicates that there is a special problem in releasing 

the enzyme from Closterium moniliferum cells or in main­

taining its activity. 

PHOTOGRAPHY 

Light Microscopy 
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Gross cell morphology was observed with a Zeiss micro­

scope and recorded with a Zeiss c35 camera. Film used was 

black and white Plus-X-Pan ASA 125/22 DIN. Magnification 

of the cells was 100 X or 430 X. 

Scanning Electron Microscopy (SEM) 

The cells were grown in liquid medium and therefore 

needed to be attached to a substrate for SEM work. Poly­

carbonate filters were chosen because they were not soluble 

in the ethanol used for dehydration purposes and they were 

able to survive the critical drying process. They were 

also found to be an unobtrusive background for the 

organisms as compared to glass filters. While the cells 

were filtered, they were rinsed with FRAQUIL and never were 

allowed to become completely dry. The filter, with cells 

attached, was placed in a fixative composed of 3-4% formalin, 

0.75% glutaraldehyde, and phosphate buffer of pH 7.0 

(Fahrenbach, personal communication). The preparation of 

the fixative and all manipulations with the fixative were 



done under a hood because of the toxicity of the formalin 

and glutaraldehyde. 
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After overnight fixation at room temperature, the 

samples were rinsed with buffer and sequentially dehydrated 

through 20%, 40%, 60%, and 80% ethanol solutions in 5 minute 

intervals. The samples were then transferred to absolute 

alcohol until they could be placed in the transitional 

fluid, Freon. The transitional fluid was necessary to 

prevent morphological changes in the cells by eliminating 

the liquid-gas interfaces as the samples were processed 

through the critical point drying. The critical point dryer 

used was a Model Hummer 1 by Technics. When dry, the filters 

were attached to SEM studs with double sticky tape and then 

coated with gold. Coating with gold makes the sample conduc­

tive for observation. Photographs were taken with Polaroid 

55 positive/negative film. Magnifications ranged from 

100 X to 5000 X on anAMR Model 1000 scanning electron 

microscope using 20 kv. 

PRESENTATION OF DATA 

Graphs were plotted on an interactive Digital Plotter 

using a Tektronix 4051 with a program for X-Y plot and the 

calibration curve for nitrate standards modified by Jim 

Sweet (personal communication). 



CHAPTER III 

INHIBITION OF GROWTH AND CELL 

DIVISION BY EXCESS COPPER 

INTRODUCTION 

Cell division was definitely inhibited by the addition 

of excess copper to batch cultures of Closterium moniliferum. 

There was an increased lag phase in long term experiments 

and delayed onset of sexual reproduction. The increased 

lag phase indicates the effect of copper is on the process 

of cell division j,tself. Chlorophyll measurements and 

14C uptake show, however, that these aspects of metabolism 

were also affected. 

A toxic sublethal amount of copper causes an increased 

lag phase, which can eventually be overcome with the culture 

reaching a normal growth rate. Smaller amounts of copper 

may be stimulatory to growth and beneficial to the organisms. 

The evidence for copper's effect is presented in this chapter 

as growth patterns, growth rate, cell division and morphology, 

chlorophyll content and 14carbon uptake. 

The effect of copper was examined by long term experi­

ments of 3 weeks duration where cell division, nitrogen 

(nitrate or ammonia) remaining in the medium, and onset 

of sexual reproduction were monitored. It was shown here 



that copper affected all of these processes. The first 

process is discussed in this chapter; the latter two are 

presented in Chapter IV. 

Micrographs were used to examine aberrant morphology 

to determine if there was a correlation between changes 

in cell number and morphological changes. Further study 

of morphology is presented in Chapter V. 

RESULTS AND DISCUSSION 

Growth Patterns 

When copper was added to batch cultures of Closterium 

moniliferum, initial cell division was inhibited and an 

increase in lag phase was observed at pCu* below 14.4 

(Figure 16). FRAQUIL medium, with no added copper, has 

a pCu* of 15.4. (pCu* is calculated activity of copper 

ion = -log [cuaq
2 +].) Cultures with lower beginning pCu* 

were able to overcome this increased lag phase and were 

able to attain high maximum cell number. In some cases, 
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the cultures with increased lag phase at pCu* 12.1, surpassed 

the maximum cell number of those cultures with no copper 

added (Strain 96, Figure 17). This suggests an adaptability 

of the cells with time with the effect of copper occurring 

during the lag phase. It is possible that the lag phase 

may be overcome by exudation from living cells or leaching 

from dead cells to render the heavy metal less toxic by 

chelation (Braek et al., 1976). 
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The stimulatory effect of pCu* 14.4 and the similar 

responses at pCu* 13.4 and 15.4 in strain 96 exemplify the 

typical dose response of biological organisms to a trace 

metal (See Figure 1). 
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In strain 171, the addition of small amounts of copper 

did not inhibit growth. The final cell density was highest 

in this instance at pCu* 14.4 (Figure 18). 

Figure 19 includes error bars on the growth curve; 

these may appear to be rather large in some instances but 

this is due to the fact that one of the duplicate cultures 

sometimes lagged a day behind the other but with the same 

pattern (as represented in Figure 20). 

Increasing the copper concentration from a pCu* of 

15.4 to 14.4 generally stimulated cells and gave an increase 

in cell division (Figure 21). Further increases in ionic 

copper above pCu* of 14.4 were inhibitory and decreased the 

rate of cell division. These effects are most apparent during 

the first week of growth and are particularly dramatic by 

day 7 (Figure 22). Figure 22 again demonstrates the typical 

dcse--response relationship mentioned in Chapter I (Figure 

1) where low concentration of a metal ion enhances a 

physiological process but a higher concentration becomes 

inhibitory and eventually toxic. 

Once sexual reproduction begins in a batch culture, 

the growth rate, defined in terms of cell number over time, 

slows as shown in Figure 17. This slow down is in part 

attributed to the stationary phase and in part to induction 
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Figure 18. Number of cells per ml of strain 171 of 
Closterium moniliferum vs. time. The addition of small 
amounts of copper did not inhibit growth; the final 
cell density was highest at pCu* 14.4. 
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Figure 21. Number of cells vs. time (days) in strain 96 of Closterium 
moniliferum. This demonstrates the typical dose-response of an organ­
ism to a trace metal. Cell growth was stimulated with the addition 
of small amount of copper but became inhibited at greater copper 
activities. 
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of sex precluding vegetative cell division in any given pair 

of cells. 

The stimulation of cell division at pCu* 14.4 varied 

in different experiments, (e.g. Figure 16 versus Figure 17), 

suggesting a narrow range where stimulation can occur or 

possible contamination of a sensitive system. The lengthen­

ing of the lag phase at pCu* 12.2 was reproducible in both 

strains however. When stimulation of cell division occurred, 

nitrate uptake increased and sexual reproduction occurred 

earlier. 

The longer lag phase evident at low pCu* is a result 

of fewer cell divisions, but it has not been determined if 

this occurs because copper is acting on the cell division 

process itself or because copper affects nutrient uptake. 

Nutrient uptake inhibition in turn slows growth since cells 

must reach a minimum size before cell division can occur. 

Conversely, slower growth could slow nutrient uptake. 

Growth Rate 

C10sterium moni1iferum cells are unicellular and are 

rather large (maximum size of one strain used was 214 

micrometers in length); therefore, they do not have a partic­

ularly rapid metabolism or growth rate. Calculating the 

growth rate is complicated because of the occurrence of 

sexual reproduction occurring. Once zygotes begin to be 

formed, those cells involved as gametes do not divide vege­

tatively so cell number decreases or at least cell number 

increase is slowed. 
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Within the first days of these growth experiments, 

no sexual reproduction is involved but the lag phase is 

included so growth rate would be low in all cases. Calcu­

lating the growth rate during different stages of the growth 

curve does show that cultures treated at pCu* 12.1 can reach 

an equivalent growth rate and maximum cell number as cultures 

at pCu* 15.4 (Table III). The specific growth rate was com­

puted using natural log (loge 2) so the rate corresponds 

to the number of divisions per day. 

The growth rate and final cell densities again suggest 

adaptability to the presence of added copper. Steemann 

Nielsen and Kamp-Nielsen (1970) reported that normal growth 

rates were re-established in Chlorella pyrenoidosa after 

extended lag phases due to sub-lethal doses of copper. Work 

with toxic metals has generally shown decreased growth of 

algae (Sunda, 1975; Sunda and Guillard, 1976; and Jensen 

et al., 1976). Sunda (1975) reported that the specific 

growth rate was a function of pCu and Morel et ale (1978) 

found a prolonged lag phase in their work with Skeletonema 

costatum. The work here shows the prolonged lag phase due 

to copper's effect as well as the re-establishment of the 

normal growth rate. 

In looking for a genetic change to copper tolerance, 

Darling (1979) expected that cells would grow better when 

subcultured at the same pCu. However, he found that sub­

cultures of Selenastrum capricornutum had a lower specific 
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TABLE III 

SPECIFIC GROWTH RATE (DAy-I) 

pCu* DAYS DAYS )A max 1-7 8-13 

15.4 .46 .32 .76 

14.4 .55 .08 1.4 

13.4 .44 .36 .80 

12.1 .35 .54 .75 



growth rate. He postulated, then, that the lower growth 

rate may have been due to an increase in internal copper 

concentration or the accumulation of copper on the outside 

of the cell wall preventing cell division as suggested by 

Steemann Nielsen and Wium-Andersen (1970). The lag phase 

shown here may be due to this action of copper. 

Cell Division and Morphology 
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In 1950, Hughes reported that copper interfered with 

the process of mitosis at prophase and the work of Kanazawa 

and Kanazawa with Chlorella (1969) showed that cell division 

was inhibited by copper at cytokinesis. Further research 

since then indicates that this effect of copper is a rather 

general phenomenon. The fact that copper affects cell 

division is particularly important here because cell division 

and sexual reproduction are closely linked in the strains 

of C. moniliferum studied. Sexual reproduction takes place 

before vegetative cells mature, so cell division must occur 

shortly before sexual reproduction begins. 

In Closterium moniliferum, cell division is definitely 

blocked by copper. In Closterium, cells normally separate 

when immature and non-symmetrical. Since sexual reproduction 

in these strains only occurs between immature cells, sexual 

reproduction is also blocked. When cells are exposed to 

copper, (pCu* 12) light micrographs (Figures 23-27) and 

scanning electronc micrographs (Figures 28-30) show mature 

cells still joined together. 



Figures 23 and 24. Strain 96 of Closterium 
moniliferum. Cells unseparated after treatment 
with copper. LM 430 x. 
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Figures 25 and 26. Strain 96 of Closterium 
moniliferum. Cells unseparated after treatment 
with copper. LM 430 x. 
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Figure 27. strain 96 of Closterium rnoniliferum. 
Englargment of un separated cells after treatment 
with copper. LM approximately 800 x. 
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Figure 28. Strain 96 of Closterium rnoniliferum. 
Cells un separated after treatment with copper. 
SEM 500 x. 
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Figure 29. Cells treated with copper. Cellon the 
bottom left did not divide after cell growth. Cell 
at middle right shows distortion at cell isthmus. 
SEM 300 x. 
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Figure 30. Strain 96 of Closterium moniliferum. 
Cells unseparated after treatment with copper. 
SEM 500 x. 
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Another morphological effect that results from 

uncoupling of cell growth and cell division is abnormal 

cells. It is improbable that these distorted aberrant cells 

(Figures 12 and 31-34) would be able to divide; if this 

is so, it would further decrease the growth rate and the 

ability to have sexual reproduction. The scanning electron 

micrograph of Figure 31 illustrates the old semi-cell that 

is normal and the new semi-cell that results from abnormal 

growth. The cell shown in Figure 32 indicates that the 

abnormal semi-cell may be able to divide to give a totally 

distorted cell with no normal morphology evident. This 

would also indicate that mitosis is not the process affected 

by excess copper. 

Kiermayer (1970) in his work with the desmids 

Cosmarium and Micrasterias found that cell wall deposition 

continued in the absence or interruption of cell expansion 

and most significantly, that the new wall material was 

deposited in a predetermined pattern. The accumulation 

of wall material at any ~egion may be related to whether 

that particular region of wall would have continued to expand 

under normal circumstances. 

Kiermayer also found that if cells were prevented 

from undergoing any expansion at all after cytokinesis, 

the septum itself developed a pattern of uneven wall thicken­

ing, again related to the potential form of the expanding 

semi-cell. This appears to be the effect (Figures 33 and 

34) in Closterium treated with copper. 



Figure 31. Strain 96 of Closterium ~oniliferum. 
Note how the new semi-cell is distorted and does 
not give a symmetrical appearance. SEM 500 X. 
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Figure 32. Abnormal cell of Closterium moniliferum. 
SEM 500 x. 
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Figures 33 an~~. Strain 96 of Closterium 
moniliferum. Cells that have been treated with 
copper. Note the distorted cell shape parti­
cularly the bulbous shape at the isthmus. LM 
430 X. 
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Chlorophyll Content as a Function of Copper 

The total amount of chlorophyll as produced by a 

population of cells was decreased when the cells were in 
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the presence of increased copper. Although the total amount 

of chlorophyll produced in 48 hours was less in those popula­

tions treated with more copper, the cells also did not 

divide so chlorophyll/cell was higher (Table IV). Copper 

may have affected cell division directly or the effect may 

have been indirect by less chlorophyll production and there­

fore less photosynthesis and energy production. 

14Carbon Uptake as a Function of Copper 

The amount of 14 carbon taken up per cell was 

decreased when cells were in the presence of increased 

copper (pCu* 5.5). Cells without excess copper had nearly 

twice the assimilation ratio minute- l mg chlorophyll-I. 

CONCLUSION 

A toxic sublethal amount of copper causes an increased 

lag phase, which can eventually be overcome with the culture 

reaching a normal growth rate. This suggests adaptability 

of the organisms to the presence of copper. Smaller amounts 

of copper may be stimulatory to growth and beneficial to 

the organisms as suggested by the dose-response of physiolog­

ical processes to metal ions. 

Cell division was definitely inhibited by the addition 

of excess copper to batch cultures of Closterium 



pCu* 

15.4 

14.4 

12.1 

TABLE IV 

AMOUNT OF CHLOROPHYLL/CELL 
AS A FUNCTION OF pCU* 

mg chlorophyll/cell 
before treatment 

6.2 x 10-4 

6.8 x 10-4 

6.3 x 10-4 

mg chlorophyll/cell 
48 hours after 

copper was added 

7.9 x 10-4 

12 

12 

x 10-4 

x 10-4 
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moniliferum. Evidence for this is the growth patterns at 

different pCu*, with the longest lag phase at pCu* 12.1. 

Light micrographs and scanning electron micrographs show 

distorted and unseparated cells which indicate copper affects 

cell wall deposition or mitosis. Inhibition of either of 

these processes would increase the lag phase. 

The evidence for adaptability is presented both in 

the growth patterns and in the specific growth rates. After 

an increased lag phase, the cultures growing at low pCu* 

were able to overcome the toxic effects and reach a growth 

rate equal to that at a higher pCu*. 

The initial decreased growth rate could be due to 

a number of processes. Nutrient uptake may be inhibited 

and therefore slow growth. It is unlikely that chlorophyll 

production is the limiting factor since chlorophyll/cell 

remains high with reduced cell division. The micrographs 

suggest uncoupling of growth and cell division. The effect 

could be on the cell's outer surface or on the cell membrane. 

Chapter IV addresses the uptake of nitrogen in growth experi­

ments and Chapter V addresses other morphological changes. 



CHAPTER IV 

INHIBITION OF NITROGEN METABOLISM BY EXCESS COPPER 

INTRODUCTION 

Growth rate has been shown to be a function of the 

intracellular concentration of the macronutrients of silicon 

(Paasche, 1973), phosphorus (Fuhs, 1969), and nitrogen 

(Caperon and Mayer, 1972a and b). The toxic effect of metals 

(in this work copper) and the limitation of macronutrients 

(in this work nitrogen) interact to affect the total meta­

bolism of the cell. 

The life cycle of Closterium moniliferum is influenced 

by its external environment in the media and in natural 

waters. Depletion of nitrate in the media caused popula­

tions of strain #96 of Closterium moniliferum to begin 

sexual reproduction. Thus, if the trace metal copper acts 

on the nitrogen metabolism of Closterium, it could have 

an ultimate effect on the inducement of the sexual stage 

of the life cycle. 

Since both cell division and nitrate depletion are 

necessary for sexual reproduction, the hypothesis proposed 

was that with fewer opportunities for cell division and 

inhibited nitrate uptake due to the effect of copper, there 

would be less or delayed sexual reproduction at a lower 



pCu. This hypothesis was generally found to be true. The 

exception was where copper appeared to be stimulatory in 
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its effect on cell division and nitrate uptake (pCu* = 14.4) 

which ultimately led to more frequent and earlier sexual 

reproduction. 

This chapter examines long term (3 week) and short 

term (48 hours) nitrate uptake and the timing of the onset 

of sexual reproduction as a result of changes in the rate 

of uptake due to added copper. Rate of zygote germination 

and abortions are also examined. 

RESULTS AND DISCUSSION 

In this work, copper inhibited uptake of nitrate. 

When this uptake was delayed, sexual reproduction was delayed. 

Previously, (1977) Harrison et al. showed that copper 

inhibited nitrate uptake and the activity of the assimila­

tory enzyme, nitrate reductase, in natural algal populations. 

This action of copper on the nitrogen metabolism could affect 

sexual reproduction here in Closterium, but it is also 

probable (Chapter III) that sexual reproduction may also 

be affected by copper acting on the process of cell division 

itself. 

Nitrate Uptake in Long Term Experiments 

Most evidence points to the membrane as the primary 

site of copper toxicity (Rothstein, 1959). This indicates 

that nutrient uptake could be the primary process affected. 



Although the uptake of many nutrients could be affected 

by added copper, nitrate was chosen to be the measured 

parameter because of its close relationship with sexual 

reproduction in desmids (which was demonstrated by Biebel 

in 1964) and shown in my early work with Closterium 

moniliferum. 

Nitrate uptake experiments confirmed the inhibition 

of nitrate at low pCu* and the stimulation at pCu* 14.4 

with strain #96. When pCu* = 14.4, uptake of nitrate 

(Figure 35) was more rapid than at pCu* of 12.1, 13.4, or 

15.4, resulting in a medium depleted of nitrate earlier 

in the experiment. This apparent stimulation of nitrate 

uptake and subsequent early sexual reproduction must be 

sensitive because not all repeat experiments showed these 

results. This may be due to a slight difference in pCu 

due to autoclaving of the media in the first experiments, 

to different general cell conditions, or to contamination 

of a sensitive system. Inhibited nitrate uptake at the 

lower pCu* was reproducible however. 

At pCu* 12.1, inhibition of nitrate uptake delayed 

the onset of sexual reproduction whereas stimulation at 

pCu* 14.4 caused early sexual reproduction in strain #96 

(Figure 36). The number of cells per milliliter at the 

time of onset of sexual reproduction was not a critical 

factor. 

Strain #171 did not display this expected nitrate 

depletion before sexual reproduction. Other researchers 
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working with Closterium ~. did not find it essential for 

the nutrient medium to be nitrogen-deficient for sexual 

reproduction to occur. Enhanced carbon dioxide supply 

induced conjugation (Starr, 1955; Dubois-Tylski and Lacoste, 

1970; and Lippert, 1973), although Lippert (1969) found 

greater C02 (10%) increased cell lysing and abortion rate. 

Although strains #171 and #96 are both in the C. 

moniliferum group, the reason that their responses may be 

different is that one of them (#171) may be mis-classified 

(Lippert, personal communication). 

Nitrate Quota 

This research was approached with the hypothesis that 

cells would enter the sexual reproduction phase of the life 

cycle when the nitrogen cell quota became critical (minimal) 

within the cell. It was thought that copper might inhibit 

nitrate uptake and thereby decrease the amount of nitrogen 

in each cell which would lead to sexual reproduction. This 

was not found to be the case. With sub-lethal concentra­

tions of copper added, nitrate uptake was not completely 

prevented. At pCu* 12.1 nitrate uptake in strain #96 was 

inhibited and sexual reproduction was delayed until nitrate 

was depleted in the medium. In the beginning of the 

experiment, cells at pCu* 12.1 had large nitrogen quotas 

because nitrate uptake continued while cell division was 

slowed. When sexual reproduction occurred, however, cell 

quota of nitrate was as low as those cells growing at pCu* 

15.4 (Table V). 
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TABLE V 

NITROGEN QUOTA AND ONSET OF SEXUAL 
REPRODUCTION AS A FUNCTION 

OF COPPER 

pCu* Day of Nitrate Day of Sexual N Quota 
Depletion Reproduction at time 

of sex 
(micromoles) 

15.4 12 14 .045 

14.4 6 8 .205 

13.4 11 13 .045 

12.1 13 14 .045 

*N Quota 
micromoles N03 taken from the medium 

= # of cells + 2 (# of zygotes + aborted cells) 



It is apparent, however, that minimum cell quota is 

not the factor affecting the onset of sexual reproduction 

since sexual reproduction occurred earlier when nitrate 

uptake was rapid (pCu* 14.4) and cell numbers were low; 

these cells had a high cell quota at the time of sexual 

reproduction. Also, in earlier experiments with strain 
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#96, sexual reproduction occurred sooner when beginning 

nitrate concentrations were less (Figure 37). Q, the nitrate 

quota, was high in these cells when early sexual reproduc­

tion occurred. 

Although Eppley (1978) reported nitrate uptake kinetics 

depend on the concentration of nitrate in the medium and 

nitrogen cell quota, this work with Closterium showed sexual 

reproduction to be a function of the depletion of nitrate 

in the medium, not nitrogen cell quota. 

Onset of Sexual Reproduction in Strain 96 

Sexual reproduction in this strain occurred shortly 

after nitrate depletion of the media (Table V) and was not 

dependent on cell number (Figures 36 and 37). When copper 

stimulated cell division and nitrate uptake (populations 

at pCu* 14.4), sexual reproduction occurred earlier than 

in populations without added copper. Both sexual reproduc­

tion and nitrate uptake were delayed at pCu* 12.1. 

It is reasonable to assume that if the FRAQUIL medium 

had less nitrogen, sexual reproduction would occur earlier. 

This was found to be true experimentally (Table VI). It 
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TABLE VI 

ONSET OF SEXUAL REPRODUCTION AS A FUNCTION 
OF BEGINNING NITRATE 

( pC u* = 15. 4 ) 

Nitrate Concentration Onset of Maximum 
At Beginning of Sexual Cell Number 

Growth Experiment Reproduction (per ml) 
(micrornoles/liter) (Days) 

25 7 430 

50 9 1000 

100 16 3230 

200 16 6100 
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is interesting to note that when sexual reproduction occurred 

early in a culture, due to beginning nitrogen limitation 

(Figure 37), the percent of culture undergoing sexual repro-

duction was greater than in those with larger cell number 

and later sex. The percent of culture undergoing sexual 

reproduction was calculated: 

% Sexual R d t
' 2(# Zygotes + # Abortions) (2) 

epro uc ~on = Cell # + 2(# Zygotes + # Abortions) 

Although the populations stimulated by copper (pCu* = 14.4) 

had higher frequency of sexual reproduction early in the 

growth curve (Figure 38), the populations at other pCu* 

values were able to achieve as high a frequency later. 

This again indicates the cells can adapt to the presence 

of copper and overcome its effects. 

Although it is difficult to quantify, an effect of 

copper on sexual reproduction, independent of nitrate, may 

be inferred by the morphology of copper treated cells. 

At day 7 of the long-term experiment, 11.2% of the cells 

in the population were aberrant at pCu* 12.1 compared to 

less than 1% at pCu* 15.4 (Table VII). Aberrant cells 

include cells that are distorted (Figures 31-34), unseparated 

in the process of cell division (Figures 23-30), with less 

chlorophyll than normal (Figures 39-42) or with many vacuoles 

(Figures 43 and 44». It is assumed that these aberrant 

cells are unlikely to be able to initiate or complete the 

process of cell division (which must precede sexual 

reproduction). 
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TABLE VII 

PERCENT ABERRANT CELLS 

pCu* Day 7 

15.4 0.95% 

14.4 1.5 % 

13.4 3.7 % 

12.1 11.2 % 



Figure 39. strain 96 of Closterium moniliferum. 
This scanning electron micrograph shows evidence 
of a shrunken protoplast inside the cell. SEM 
500 x. 

Figure 40. strain 96 of Closterium moniliferum. 
Cell with less than normal amount of chlorophyll 
and with protoplast pulled away from the cell 
wall. LM 430 X. 
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Figures 41 and 42. Strain 96 of Closterium 
moniliferum treated with copper. These cells are 
examples of cells that were treated with copper and 
had less chlorophyll per cell than those cells that 
did not have extra copper added to the medium. 
LM 200 X. 
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Figure 43. Strain 96 of Closterium moniliferum. 
This cell demonstrates the presence of large 
vacuoles formed throughout the cell when added 
copper is in the medium. p = pyrenoid: v = 
vacuole. LM 430 x. 

v 

Figure 44. Strain 96 of Closterium moniliferum. 
This result is seen in some cells in the presence 
of added copper. p = pyrenoid: v = vacuole. 
LM 600 X. 
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Onset of Sexual Reproduction in Strain 171 

Sexual reproduction was not correlated with nitrate 

depletion in this strain. Sexual reproduction began when 

nitrate was in adequate supply and cell numbers were very 

small (less than 100/ml). Other researchers have induced 

conjugation in Closterium without nitrogen depletion (Starr, 

1955; Dubois-Tylski and Lacoste, 1970; Lippert, 1973); they 

stressed the importance of an enchanced C02 supply. 

Pickett-Heaps and Fowke (1971), however, did not find an 

increased C02 supply a prerequisite for conjugation in 

Closterium littorale. As pointed out by Coesel (1974), 

conjugation would seem to occur most readily when illumina­

tion, temperature and C02 tension are at an optimum for 

mitotic activity. This would seem to be particularly true 

in these strains of Closterium moniliferum where sexual 

reproduction takes place between newly divided immature 

cells. 

Zygote Germination 

There was no significant difference in the percent 

germination in cultures at any pCu* when copper was added 

to cells when in their vegetative asexual stage. When copper 

was added to mature cultures at the same time as light and 

nutrients required for germination, again there was no signif­

icant difference in percent germination. 

It may be beneficial for populations to begin sexual 

reproduction when copper is present in the environment since 
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evidence shows growing cells are susceptible. The thick­

walled zygotes may act as a survival stage for the organism. 

During the maturation process, the zygote may provide pro­

tection. In a natural environment, the time needed for 

maturation may be enough time for dilution of the toxicants 

to occur so vegetative cells could survive. Research here 

has shown that toxic amounts of copper present do not prevent 

germination; newly formed vegetative cells are subject to 

the toxic effect. 

Added copper does not appear to have any effect on 

the germination of Closterium moniliferum. The germination 

process was not inhibited but the newly formed products 

of germination were killed by a low pCu*. 

Abortions 

Although preliminary experiments indicated that with 

increased zygote production, there was also increased abor­

tion rate, subsequent experiments did not substantiate this. 

The percent of abortions varied from I to 25% of the zygotes 

formed and did not correlate with pCu* or nitrate in the 

medium. 

Nitrate Uptake in Short Term Experiments 

The effects of copper on nitrate uptake were analyzed 

by nitrate depletion in cultures over short time intervals 

from 2 to 69 hours. In nearly all cases, nitrate uptake 

was most rapid when no added copper was present. The most 

rapid uptake occurred in the first 5 hours after nitrate 
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was added to the nitrogen-depleted cultures with an average 

uptake rate (without added copper present) of 7.27 x 10-4 

micromoles nitrate cell-l hour-I. The maximum during that 

five hour period without added copper in anyone experiment 

was 22 x 10-4 micromoles cell-l hour- l and the minimum was 

less than 1 x 10-4 micromole cell-l hour-I. 

The exception to the most rapid uptake occurring 

without copper being added was one experiment where added 

copper to give a final molarity of 10- 7 M caused a more 

rapid uptake of 5.1 x 10-4 micromole cell- l hour- l vs. 

4.7 micromole cell-l hour- l (with no added copper) at the 

end of 22 hours. However, early in the experiment (5 hour 

sampling) the nitrate uptake rate was not as great with 

copper as it was without it. In this same experiment, added 

copper to give a final molarity of 5 x 10-8 M caused inhibi­

tion in comparison to the 10-7 M. This concentration of 

copper (10- 7 M) could be analogous to the sensitive point 

(pCu* 14.4) in the long term experiments with strain 96 

where uptake rate was increased and sexual reproduction 

occurred earlier. Generally, the lesser concentrations 

of copper exerted less toxicity in terms of N03 uptake on 

the cells (Figure 45). 

It was generally found that a decrease in nitrate 

uptake rate occurred over time (Table VIII) when no copper 

was added. After a rapid uptake in the beginning, there 

is a decrease, followed by a slight increase. At the very 

end of the experiments, this decrease may be due to the 
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TABLE VIII 

-4 -1 -1 NITRATE UPTAKE RATE (Micromo1e x 10 cell hour ) 
(No copper added) 

TIME* NITRATE UPTAKE RATE 
(hours) Exp. 1 Exp. 2 Exp. 3 

5 7.1 7.8 6.8 

21 4.5 7.1 4.7 

28 5.0 7.4 4.9 

45 5.2 

51 5.3 

69 3.9n 

nNitrate may be limited at this sampling time. 
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lack of nitrate availability, but through most of the experi-

ment, nitrate was in adequate supply. In contrast, inhibi­

tion of nitrate uptake due to added copper generally lessened 

as the experiment proceeded (Table IX). Again, this demon­

strates the adaptability of the organisms to the presence 

of copper. 

The cells appear to be rapidly adaptable to the 

presence of copper since they are able to increase nitrate 

uptake rate after initial contact with the metal. Although 

lack of nitrate uptake sometimes occurred for up to 26 hours 

when sub-lethal concentrations of copper were added, these 

cells were subsequently able to take up nitrate. This 

adaptability may partially account for a lag in nitrate 

uptake rather than complete blockage. This may help explain 

why there is delayed nitrate depletion and delayed sexual 

reproduction characteristic of the effect of copper in long 

term experiments, rather than total blockage. 

Examining nitrate uptake is an indrect way of examining 

the synthesis and activity of nitrate reductase since uptake 

is closely linked to the presence of nitrate reductase. 

Nitrate reductase is an inducible enzyme produced in the 

presence of nitrate so it is assumed that there is little 

or no nitrate reductase present in nitrogen depleted cultures. 

When nitrate was added to these nitrogen depleted cultures, 

copper was added at zero time to some flasks and 5 hours 

later to other flasks. Differences in uptake were not 

significant so it is not possible to say if synthesis 
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TABLE IX 

NITRATE UPTAKE RATE -4 -1 (Micromo1e x 10 cell -1 hour ) 
AS A FUNCTION OF COPPER 

TIME (hour) FINAL MOLARITY OF COPPER 
9.9 x 10-10 10-6 3.5 x 10-6 7 x 10-6 

5 7.8 4.0 0.6 0.6 

24 7.1 5.7 2.8 0.9 

29 7.4 6.0 2.3 1.5 

*0 hour is the time nitrate and copper were added to nitrate 
depleted cultures. 



of nitrate reductase or activity is affected more by 

copper. 

Ammonia Uptake in Long Term Experiments 
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To determine if copper equally affected all aspects of 

the nitrogen metabolism of Closteriurn moniliferum or if 

copper was more toxic to the process of nitrate uptake, 

long term growth experiments were run with ammonia and with 

nitrate as separate nitrogen sources. 

A representation of nitrogen uptake and assimilation 

in unicellular organisms and possible sites of copper's 

action is shown in figure 46. Although nitrite is an 

intermediate in nitrate reduction, it is usually not consi­

dered to be a significant factor (Eppley and Rogers, 1970). 

If copper is acting on the uptake of nitrogen into 

the cell as well as cell division, the effects would be 

shown by different growth patterns when different nitrogen 

sources are used. If copper influences the amount of nitro­

gen taken into the cells, metabolism may be affected which 

may ultimately affect growth. Copper may have more than 

one site of action, acting both on cell division and nutrient 

uptake. Copper may specifically affect nitrate uptake which 

would slow the amount of nitrogen reduced to ammonia and 

ultimately available for incorporation, or copper may specifi­

cally affect ammonia uptake, directly affecting the amount 

of ammonia available. 
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Figure 46. Metabolic sites that may be blocked by 
the action of copper. Copper may be acting on any 
of the 7 sites shown with a • interrupting the 
arrow. 



With few exceptions, algae can apparently utilize 

either ammonium salts or nitrate when these are supplies 
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at a suitable concentration. Some Chlamydomonas and 

Gloeocystis species (Cain, 1965) and Haematococcus (Proctor, 

1957; Stross, 1963) prefer utilization of nitrate to 

ammonium. Nitrate reduction, however, requires energy, 

and if the energy supply is limited more growth will occur 

on ammonium-N (Lewin, 1962). In batch culture experiments, 

the presence of greater than micromolar levels of ammonium 

prevented the utilization of other nitrogen sources (Morris, 

1974). Ammonium is known to both inhibit the activity of 

and repress the synthesis of nitrate reductase, thus prevent­

ing assimilation of nitrate (Hattori, 1962a,b); Morris and 

Syrett, 1963; Syrett and Morris, 1963). 

The maximum inhibition by copper was seen when nitrate 

was the nitrogen source (Figure 47). The lag phase was 

prolonged and these cultures were never able to overcome 

the tOXicity and attain the maximum cell density. The cul­

tures with ammonium, with and without copper, were able 

to reach the same maximum cell number as those with nitrate 

and no copper. Cells grew slightly better (with the shortest 

lag phase) when nitrate was the nitrogen source and no added 

copper was present; this may have been due to the 

acclimatization of the cells since they had previously been 

grown in FRAQUIL with nitrate. 

The fact that copper inhibits nitrate uptake indicates 

that the site of copper's action may be the inducible enzyme 
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nitrate reductase. Copper has been found to inhibit the 

activity of nitrate reductase and the uptake of nitrate 

and ammonium uptake (Harrison et al., 1977). Shioi et ale -- --
(1978b), from their work with Ankistrodesmus suggest that 

this may occur because copper inactivates the electron 

transport of photosystem II and there is not an adequate 

supply of reductants for nitrate reduction. This would 

help explain why copper has more of an effect on nitrate 

uptake than on the reduced form of nitrogen, ammonia. 

Previous work has also demonstrated that copper does decrease 

photosynthesis and chlorophyll content (McBrien and Hassall, 

1965: Steemann Nielsen et al., 1969: Overnell, 1975: and 

Rosko and Rachlin, 1977). Nitrogen availability may be 

affected by the direct effect of copper as well as the 

indirect effects of photosynthesis in providing reductants. 

The form of nitrogen that is present becomes increasingly 

important to the cells when metals such as copper are in 

the environment to affect their availability. 

CONCLUSION 

The onset of sexual reproduction is linked to depletion 

of nitrate in the medium in one of the strains (#96) tested. 

When copper delayed nitrate uptake, sexual reproduction 

was delayed: when copper stimulated nitrate uptake, sexual 

reproduction occurred earlier. Copper did not have this 

effect when ammonia was the nitrogen source. The key to 

sexual reproduction in Closterium is not total nitrogen 



in the cell, but the supply outside the cell and this must 

be in the form of nitrate. 

Copper generally inhibited nitrate uptake in long 
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and short term experiments. The dosage response was demon­

strated also by the stimulation of nitrate uptake (and cell 

division) at pCu* 14.4. 

The increase in cell number parallels nitrate depletion 

in batch cultures. Although cells must make contact before 

sexual reproduction can occur, cell number is not critical 

in the process. The trigger is metabolic, from the depletion 

of nitrate. 

After sexual reproduction has occurred, the zygotes 

need maturation time in the dark. Upon being returned to 

light conditions and having nutrients added, germination 

occurs. The presence of added copper did not affect the 

percent germination. Abortion rate was not affected by 

copper. 

The following chapter (Chapter V) shows morphological 

effects due to excess copper. 



CHAPTER V 

EXCESS COPPER AFFECTS CELL MORPHOLOGY 

INTRODUCTION 

A commonly observed effect of heavy metal poisoning 

is changes in cell size and morphology (Thomas et al., 

1980). This phenomenon has been seen in Chlorophyceae 

(Rosko and Rachlin, 1977); Chrysophyceae (Davies, 1974); 

and Bacillariophyceae (Nuzzi, 1972; Sunda and Guillard, 

1976; Berland et al., 1977; and Morel et al., 1978). 

Morel et ale (1978) reported morphological aberrations 

in Skeletonema costatum at the same copper activities that 

began to increase the lag phase of growth in batch cultures. 

With Closterium, however, these aberrant forms, particularly 

the unseparated cells, can be found in nature and in un­

treated cultures. Ichimura and Watanabe (1976) reported 

morphological variation among three related species of 

Closterium. What is significant here is the increase in 

the number of aberrant cells. 

The effect of copper on morphology is probably not 

a direct effect but is due to its effect on the growth and 

metabolism of the cell. The uncoupling of cell growth and 

cell division by the action of trace metals has been 

suggested by Davies (1976) as an explanation of the 
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phenomenon of changes in morphology. When treated with 

trace metals, the cells may continue to grow but the normal 

separation does not occur. Favorable growth conditions 

may also cause this uncoupling as shown by Playfair (1910) 

when cell division in Closterium was accelerated and 

occurred before new semi-cells were completely formed. 

RESULTS AND DISCUSSION 

Closterium moniliferum displaying typical morphology 

is shown with light microscopy (Figures 4 and 48) and with 

the scanning electron microscope (SEM) (Figures 49 and 50). 

Pickett-Heaps (1973) suggests the use of SEM in taxonomic 

studies of desmids. SEM was used here not so much for an 

increase in magnification as for observation of changes 

that might occur with copper treatment. 

From the increased lag phase in growth of copper-treat­

ed cells, (See Chapter III) it is apparent that completion 

of cell division is inhibited by copper. The inability 

of the cells to complete cell division is confirmed with 

photomicrography (Figures 13, 14, 23-27) and with SEM 

(Figures 28-30). Irregularities and loss of symmetry of 

cells are evident in this stereo pair of photographs 

(Figures 51 and 52). 

Gross distortions occur as cells continue to grow 

and deposit cell wall without dividing or expanding (Figures 

29 and 30) or appear to repeatedly begin the division 

process (Figures 31, 32; 53 and 54). 



III 

Figure 48. Typical morphology strain 96 of Closterium 
moniliferum. Cell with typical morphology with one 
semi-cell that has not yet attained maximum size for 
the cell to be considered mature. LM 430 x. 
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Figure 49. Mature symmetrical healthy cells of strain 
96 of Closterium rnoniliferum. SEM 500 x. 



Figure 50. Dynamic focusing with the scanning 
electron microscope. Strain 96 of Closterium 
moniliferum. Mature symmetrical cells that have 
not been treated with copper. SEM 500 x. 
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Figures 51 and 52. Stereo pair of electron micrographs of strain 96 
of Closterium moniliferum treated with copper. Cells should be viewed 
through a stereo-viewer or by briefly staring cross-eyed at the two 
micrographs until the two images merge. SEM 500 x. ...... 

...... 
J:> 



Figure 53. Copper treated cell of strain 96 of 
Closterium moniliferum. SEM 500 x. 

Figure 54. Enlargement of rectangle in Figure 53. 
SEM 5000 X. 
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With added copper, the total amount of chlorophyll 

produced was decreased. When cells fail to divide, the 

amount of chlorophyll/cell may be higher (See Table IV) 

but shrunken protoplasts are visible with light microscopy 

(Figures 40-44) and with SEM, lack of vigor is indicated 

by the flaccid cell membrane (Figure 39). 

Another morphological effect observed in vegetative 

cells was the formation of large vacuoles throughout the 

cell (Figures 43 and 44). 
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In long term growth experiments, an increase in number 

of aberrant cells did not begin to appear until day 6 or 

7. Aberrant cells consist of those cells that did not 

complete separation (Figures 23~30), those with shrunken 

protoplasts (Figures 39-44) or vacuoles (Figures 43 and 

44), and those of distorted morphology (Figures 31-34). 

In the first days of the experiment the highest percent 

of aberrant cells occurred in the cultures with pCu* = 12.1 

(Table X). In cultures where sexual reproduction occurred 

earlier (pCu* = 14.4) with strain #96 the percent of aberrant 

cells increased greatly throughout the experiment with a 

high in one experimental flask of 56.7% of the total cell 

number aberrant. However, this was probably not due to 

copper's immediate effect, but due to senescence and/or 

nutrient depletion since those cells took up nitrate (and 

presumably other nutrients) more quickly. 

At pCu* = 5.5, cultures were not viable. In growing 

cultures, the number of cells counted as dead (Figures 55-
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TABLE X 

PERCENT ABERRANT CELLS 

pCu* Day 7 Average 
(3 weeks) 

15.4 0.95% 5.9% 

14.4 1.5 % 10.9% 

13.4 3.7 % 9.3% 

12.1 11.2 % 14.3% 
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57) when treated with sub-lethal concentrations of copper 

was not significantly different from that of cultures without 

added copper. In other words, although growth (cell number 

increase) was inhibited at sub-lethal concentrations of 

copper, it was due to less cell division, not death of 

individual cells. 

It is known that Closterium species produce mucilage; 

in fact, that is the mechanism for movement in this organism. 

Quantitative differences in mucilage production due to copper 

were not measured nor were differences obvious with SEM 

(Figures 58 and 59). 

The two strains of Closterium moniliferum studied 

differed in their sexual reproduction in that #171 produces 

twin zygotes (Figures 10 and 60-68), whereas #96 produces 

single zygotes (Figures 69-72). In 1963, Cook proposed 

that sexual morphology be an essential feature in identifi­

cation within Closterium species so it is important to 

continue to monitor both sexual and asexual phases for 

morphological changes due to copper. 

When the sexual process did not go to completion, 

the zygotes aborted (Figures 73-76). The difference in 

the number of abortions in populations treated with copper 

and those without was not significant. This indicates that 

although copper affects sexual reproduction by delaying 

its onset, once the process begins copper is not a factor 

in affecting it. 
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Figures 55 and 56. Lysed non-viable cells of 
Closterium moniliferum. LM 430 x. 
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Figure 57. Abnormal cell of strain 96 of 
Closterium moniliferum. Appearance of a cell 
in a culture treated with excess copper. SEM 
500 x. 
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Figure 58. Mucilage in strain 96 of Closterium 
moniliferum. Note the mucilage between two cells. 
pCu* = 15.4 SEM 1000 x. 

Figure 59. Mucilage in strain 96 of Closterium 
moniliferum. Mucilage when cells were grown at 
pCu* = 12.1. SEM 2000 x. 
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Figure 60. Papillae in strain 171 of C10sterium 
moni1iferum. This is the beginning of sexual re­
production. SEM 500 X. 

122 



Figure 61. Strain 171 of C10sterium moniliferum. 
Twin zygotes forming. LM 430 x. 

Figure 62. Twin zygotes of strain 171 of Closterium 
moniliferum with 4 empty cells. LM 430 x. 
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Figures 63 and 64. Twin zygotes of strain 171 of 
C10sterium moni1iferum. LM 600 X. 
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Figure 65. Zygotes of strain 171 of C10sterium 
moni1iferum. Twin zygotes in culture that had 
been treated with added copper. SEM 500 X. 

Figure 66. Zygotes of strain 171 of C10sterium 
moni1iferum. Twin zygotes in culture that had beep 
treated with added copper. SEM 1000 x. 
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Figure 67. Twin zygotes of strain 171 of Closterium 
moniliferum. Empty cells remain after sexual 
reproduction. SEM 500 x. 

Figure 68. Twin zygotes of strain 171 of Closterium 
moniliferum. Empty cells remain after sexual 
reproduction. SEM 500 X. 
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Figure 69. Two immature cells of strain 96 of 
Closterium moniliferum pairing before conjugation. 
LM 430 X. 

Figure 70. Scanning electron micrograph of zygote 
of strain 96 of Closterium moniliferum. Empty 
cells are nearby. SEM 500 X. 
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Figure 71. 
moniliferum 
muc ilagenous 
SEM 2000 X. 

Zygotes of strain 96 of Closterium 
that are still covered with the 
sheath from the conjugation vesicle. 

Figure 72. Zygote of strain 96 of Closterium 
moniliferum without mucilagenous material. 
SEM 2000 X. 
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Figures 73 and 74. Abortion in strain 96 of 
Closterium moniliferum. Cell contents are being 
released before the conjugation vesicle formed 
(Top); Non-simultaneous release of cell contents 
(Bottom). LM 430 X. 
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Figure 75. Abortion in strain 96 of Closterium 
moniliferum. On the right is a zygote formed; on 
the left and at the bottom of the micrograph are 
two abortions. SEM 500 X. 

Figure 76. 
figure 75. 

Enlargement of cell in upper left of 
SEM 2000 X. 
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CONCLUSION 

The typical symmetrical cell shape of Closterium is 

affected by additions of copper. After cell division, the 

cell gorws and re-establishes the symmetry lost when it 

divided. When copper disrupts this growth process or the 

deposition of cell wall, distorted cells may result. 
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Copper affects cell morphology by acting on the cell 

division (mitosis or cytokinesis) itself. Although growth 

was occurring, it is uncoupled from cell division and mature 

cells remained unseparated from each other. 

The unseparated cells, not being able to finish cell 

division, will not be involved in sexual reproduction since 

vegetative cell division is a prerequisite. It is improbable 

that the distorted cells could initiate or complete a normal 

conjugation. Thus, the main significance of copper's effect 

on morphology in regard to this work is the fact that 

frequency of sexual reproduction will be reduced due to 

lack of cell division. 



CHAPTER VI 

CONCLUSION 

This study examined the total life cycle of an organism 

and its response to copper. The growth of Closterium 

moniliferum with copper exemplifies the typical beneficial, 

inhibitory, and toxic dose-response to trace metals suggested 

in Chapter I. The stimulatory effect was demonstrated by 

an early increase in cell number, increased nitrate uptake, 

and early onset of sexual reproduction. The inhibitory 

effect, with greater concentrations of copper, was demon­

strated by a longer lag phase, decreased nitrate uptake, 

and later onset of sexual reproduction. Since these cells 

are adaptable with time, one of the final effects of sub­

lethal concentrations of copper within the medium was to 

affect the timing of the life cycle. 

The sexual phase in some strains of Closterium 

moniliferum can be triggered by nitrate depletion in the 

media. Although it was expected that each cell would have 

a minimal cell quota of nitrogen before sexual reproduction 

occurred, work with strain 96 demonstrated that Q (nitrogen/ 

cell) was not the critical factor in initiation of the 

process. It was also demonstrated the cell number in 

batch cultures was not the critical factor. When ammonia 

was the only nitrogen source and it became depleted in the 
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medium, sexual reproduction did not occur. Nitrate depletion 

appears to be the critical component in induction of sexual 

reproduction. 

When copper was added to batch cultures with different 

nitrogen sources, cells growing with nitrate were inhibited 

more than cells growing with ammonia. This information 

gives direction to further research in using copper as a 

tool in understanding nitrogen metabolism in microorganisms, 

particularly in desmids where sexual reproduction is inte­

grally tied to the nitrogen requirements of the cell. 

Figure 46 shows possible sites of action of copper on nitro­

gen metabolism. Further work should include an examination 

of any of these sites that may be blocked. For example, 

the action of copper on nitrate uptake could be directly 

on the enzyme nitrate reductase. Since nitrate reductase 

is an inducible enzyme, antibiotics inhibiting protein 

synthesis could be used in combination with copper to help 

understand whether copper affects synthesis or activity 

of nitrate reductase. 

The rate of germination of zygotes was not correlated 

with pCu*. After germination, however, the vegetative cells 

would again be susceptible to copper's effect. Abortion 

rate was not correlated with pCu*. It appears that the 

effect of copper occurs early in cell growth or on induc­

tion of sexual reproduction. Once the process of sexual 

reproduction is allowed to begin, copper's effect is not 

evident. 



In natural waters, conjugation in desmids is most 

frequent in very shallow waters which can absorb carbon 

dioxide from the atmosphere or possibly from respiration 

from bottom muds (Brook, 1981). Such conditions prevail 
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in bogs and temporary pools with changing water levels and 

where, clearly, the production of resistant zygospores would 

have considerable survival value. Similarly, the stimulatory 

effect of copper with its accompanying earlier sexual 

reproduction could have survival value for Closterium 

moniliferum. 
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(from Morel et al., 1979) 
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