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ABSTRACT 

The building block hypothesis implies that genetic algorithm effectiveness is influenced by the relative location of epistatic 

genes on the chromosome. We find that this influence exists, but depends on the generation in which it is measured. Early in 

the search process it may be more effective to have epistatic genes widely separated. Late in the search process, effectiveness 

is improved when they are close together. The early search effect is weak but still statistically significant; the late search 

effect is much stronger and plainly visible. We demonstrate both effects with a set of simple problems, and show that 

infonnation-theoretic reconstructability analysis can be used to decide on optimal gene ordering. 

I. INTRODUCTION 

Holland's schema theorem and the building block hypothesis suggest that the performance ofa genetic algorithm (GA) will 

be influenced by the relative location on the chromosome of genes exhibiting epistasis, i.e., genes having a strong interaction 

effect in their effect on fitness. At first glance, the theory implies that epistatic genes should be placed close together. Genes 

that are close are less likely to be separated by the crossover operator, and alleles that have high fitness can constitute a 

building block for further evolution. An alternative hypothesis, however, might be that epistatic genes should be located 

distant from one another on the chromosome, precisely because they then are more likely to be separated by the crossover 

operator, since this will allow the GA to explore a wider region of the search space. Epistasis may thus imply the existence 

of an optimal gene order for a GA but does not tell us what it is, if it is a single order, or even if it is constant. 
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This paper extends the study first presented by Zwick and Shervais in 2002. Here, after describing the schema and 

building block hypotheses and their relevance to epistasis (Section II), we further demonstrate the existence of a gene order 

effect in a set of simple problems, and show that the effect depends on the stage of the search process (Section HT). We then 

show that the methodology of reconstructability analysis can be used to discover preferred gene orders from data obtained by 

sampling the fitness function (Section TV). Finally, we discuss the results of these preliminary experiments and point to areas 

for future exploration (Section V). 

II. SCHEMA THEOREM, BUILDING BLOCKS, AND EPIST ASIS 

The schema theorem was first pr~posed by Holland ( 1975) as a description of how adaptive systems "persistently test and 

incorporate structural properties associated with better performance (p. 66)." Although there is now some doubt as to how 

well it describes the dynamics of the GA search process (Thornton, 1997; Mitchell, 1995), it is still useful as a conceptual 

device, and we use it that way here. According to the schema theorem, GAs work by parallel testing of multiple 

combinations of bit strings made up of the available alleles. In the typical binary chromosome, the alleles may be represented 

as l, 0, and * (don't care). Thus, 110*** 11 is a schema (call it SI) of defining length eight and cardinality five. Note that S 1 

contains a shorter schema (S2), 11 O** *"'*, with a defining length and cardinality of three, and a third schema (S3), ******I I, 

with a defining length and cardinality of two. In fact, a schema of defining length eight has 38 possible schemata embedded 

in it, but we here discuss just these three. 

If strings containing S2 have a higher-than-average fitness, they will be preferentially selected, and S2 will act as a 

building block that can be assembled with other building blocks to create longer schemata and higher fitness bitstrings. Since 

the ratio of the defining length to the cardinality is low, S2 is not likely to be broken up by the crossover operator. The same 

argument applies to S3. Now consider SI. Ifbitstrings containing this schema have a higher than average fitness, they will 

be preferentially selected as well. However, since the defining length of SI is large relative to its cardinality, it also stands a 

higher chance of being broken up during crossover. IfS2 and S3 are both important to the fitness of SI, we would be better 

off changing the representation so that S2 and S3 are close together. In other words, if SI has high fitness, it would be more 

likely to survive recombination if we had some good reason to move the 11 alleles over to be adjacent to the 110 alleles, i.e., 

to recode the genome so that this schema was 11011 "'**. Note that this will be the case even if the fitness contribution of the 
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S2 and S3 schemas are independent of each other, but it will be especially true if the fitnesses of S2 and S3 interact in some 

way, that is, are epistatic. This paper confines its arguments to epistatic genes, which are discussed further, below. 

Although the usefulness of short building blocks has long been understood, only a few researchers have addressed 

the issue of how changing gene order might facilitate reaching enhanced fitness. Barbara McClintock is credited with 

discovering the importance of gene transposition in nature (McClintock, 1987). Transposition is thus available as a possible 

genetic operator available for use by GA researchers. Simoes and Costa (1999) examined the usefulness ofMcClintock's 

transposons as a replacement for the crossover operator. In their work, randomly selected runs ofbitstrings were moved 

about on the chromosome. While the study displayed the effectiveness of the transposition operator, the experimenters 

reported no data that would allow identification of the most effective bitstring orders .. 

Goldberg, et al. ( 1993) developed the "fast messy" GA, which, among other things, allows the GA to evolve gene 

locations on the chromosome. They did this by coding stretches of the chromosome with a gene identifier, which specified 

the gene which that part of the chromosome represents. A given gene might start out over-expressed in a chromosome, 

because its identification code appears at two different locations. The program selects the first instance of the gene and 

ignores the rest. Alternatively, a gene might be under-expressed if it does not appear in the bitstring at all. The program then 

applies a default template to supply the missing gene values. As evolution proceeds, and the length of the GA is allowed to 

change from long to short and back to long again, those bitstrings with efficient gene orders will be preferentially selected. 

The difficulty with this approach is that the search for an efficient gene order proceeds in parallel with the search for an 

optimal solution. 

In a much different approach, Beasley et al. (1993) used a priori knowledge to code interactive genes into sub-

problems, which are subject to separate evolutionary processes and are recombined each generation. This requires that some 

exogenous process identify the sub-problems. 

The impact of one gene on the fitness contribution of another is called epistasis. (In other contexts, this might be 

called an "interaction effect'' or might be said to exemplify "synergy.") In the schema Sl discussed above, assume that the 

high fitness of S l derives from an epistatic interaction between S2 and S3, and not merely from the separate high fitnesses of 

these two schemas. This would be all the more reason for S2 and $3 to be adjacent to one another and constitute a compact 

building block. The matter might be more complex, however. While the tight coupling of high epistatic genes into building 

blocks might seem at first glance to be an unalloyed good, further reflection shows the advantage of repositioning genes on 
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our illustrative chromosome accrues only after the good 110 and 11 alleles first occur on the genome, after which 

preservation of these alleles as a building block becomes advantageous. A diffe,rent, indeed opposite, argurpent might apply 

to the process of searching for high fitness schemata. During the early generations, the GA is still searching for good 

combinations of alleles, and crossover is the primary tool for searching out novel combinations. If the 110 and 11 alleles 

exist on two different parental chromosomes, they are more likely to be recombined as the result of crossover if the genes are 

distant from one another. 

We thus have an argument for epistatic genes being close together, and a second argument for their being far apart. 

III. DEMONSTRATING GENE ORDER EFFECTS IN A GENETIC ALGORITHM 

In Zwick and Shervais (2002) we demonstrate the possibility of a gene order effect by using an extremely simple fitness 

function, namely the function (to be maximized) specified by the equation 

F min( A/B, BIA)* C, 

where A, B, and C take on values between 0 and 3.0. The minimization operation constrains the min( A/B, BIA) expression 

to values less than or equal to 1.0 and fitness, F, to the range 0.0 to 3.0. The epistatic nature of the problem arises from the 

fact that the AB term is maximized (at 1.0) only if A and B are equal. The C variable has no impact on the AB term, and 

contributes to overall fitness in simple proportion to its value. 

For the current paper, we looked at additional problems of slightly greater complexity: 

Maximize 

Maximize 

Minimize 

Minimize 

F1 =min( A/B, BIA)+ min( CfD, DIC) 

F2 min( A!B, Bl A ) * min( CID, DIC ) 

F3 =IOO(A2-B)2 + (l-A)2 + 100(C2-D)2 + (1-C)2, 

F4 =100(A2-B)2 + (l-A}2 * IOO(C2-D)2 + (l-C)2 

(1+) 

{I*) 

(2+) 

(2*}. 

The two variants of equation ( l ), which we will abbreviate as the AB+CD and AB*CD problems, are a simple extension of 

the original problem wherein the variable pair AB and the variable C were to be optimized independently of each other. 

These are maximization problems, since minimization only requires that A and C go to zero. The problem presented in 

equation (2) is a set oflinked DeJong F2 functions (for a summary of GA benchmark functions, see Digalakis and Margaritis, 
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2000), The DeJong F2 function is also known as Rosenbrock's valley and the Banana Function. The last name comes 

because the two-dimensional minimum lies in a narrow, banana-shaped fitness valley. Our experiments in this series linked 

two of the F2 functions with the addition operator and with the multiplication operator, so that variables AB optimized the 

first function, and CD optimized the second. again requiring that variable pairs AB and CD be optimized independently of 

each other. The two problems are abbreviated as F2+F2 and F2*F2, and this time the GA is seeking the minimum. The 

equations are numbered to indicate plainly that in (l+) and (2+), the independence of A, Band C, Dis additive, while in (l *) 

and (2 *) it is multiplicative. The common denominator of these two different types of independence is the separability of the 

fitness function. 

Focusing exclusively on the imperative ofretaining (as opposed to finding) good building blocks, one would expect 

that, for all of the above fitness functions, a chromosome where A and B were side by side in one place and C and D were 

side by side in another, would allow the GA to perform more effectively than one where the variables were separated with A 

and B separated by some combination of C and D. Table 1. shows the twelve different ways (ignoring reflections, e.g. 

ACBD includes also DBCA) of ordering the four variables on the chromosome. There are four orders where both pairs are 

adjacent. The four orders where no pairs are adjacent, and the four with one pair adjacent and one pair separate, have been 

designated as separated. The question is, which is more efficient, the chromosomes with epistatic genes being adjacent, or 

the chromosomes where they are separated. 

TABLE 1. POSSIBLE GENE ORDERINGS FOR FOUR VARIABLES. 

Adjacent 
ABCD 
ABDC 
BACD 
BADC 

Separated 
ACBD ACDB 
CADB CABD 
BCAD BCDA 
CBDA CBAD 

In the orderings labeled Adjacent, both pairs of epistatic genes are next to each other. In the Separated orderings, there is at 
least one gene pair that is not adjacent to one another. Note that each of the above orders includes also its inverse, e.g., 
ABCD includes also DCBA and ACBD includes also DBCA. 

Our hypotheses are: 

Hypothesis 0: Gene position has no impact on the effectiveness of the GA search, that is, there is no difference in average 

effectiveness between the adjacent and separated orders. 

Hypothesis I: For the early phases of GA search, the separated orders will be more effective. 

Hypothesis II: For the late phases of GA search the adjacent orders will be more effective. 
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The Genetic Algorithm we used employed standard binary encoding, with 8-bit genes. The GA parameters for all 

experiments included: breeding population 30, generations 30, mutation rate 0.01, crossover rate 1.0, and repetitions 100, 

with a new random seed for each repetition. Crossover was single point, and occurred at any place on the chromosome. 

Results of GA runs with the different orders follow. First we show these results graphically, and the graphs visually 

confirm Hypothesis II very clearly, but support Hypothesis I only weakly. We then report statistical tests which show that 

the support for Hypothesis I, however weak, is usually statistically significant. 

AB+CD 

.. .... ... .. .......... .. .. 

1.92 +-----------------------------

1.66 +---'J--------------------------

1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 26 29 30 

Generation 

FIGURE 1. EFFECTIVENESS OF THE GA ON THE AB+CD PROBLEM: Effectiveness of adjacent orders, where 
linked genes AB and CD are adjacent, is compared to effectiveness of separated orders, where no linked genes are adjacent, 
for equation (1 + ). 
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AB*CD 

... .. ..... ... .... .. 

0.92 +------+~----------------------

066+-~r---------------------------

1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 26 29 30 

Generation 

--Adjacent 
- - - Separated 

FIGURE 2. GA EFFECTIVENESS ON THE AB*CD PROBLEM. Effectiveness of adjacent orders, where linked genes 
AB and CD are adjacent, is compared to effectiveness of separated orders, where no linked genes are adjacent, for equation 
(1 *). . 
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FIGURE 3. PERFORMANCE OF THE GA ON THE F2+F2 PROBLEM. Effectiveness of adjacent orders, where 
linked genes AB and CD are adjacent, is compared to effectiveness of separated orders, where no linked genes are adjacent, 
for equation (2+). 

Shervais, S. and Zwick, M. (2003). "Ordering Genetic Algorithm Genomes With Reconstructability 
Analysis." International Journal of General Systems, Vol. 32(5), pp. 491-502 



30 
' • 
• 
• 
' 
' 24 
' 
' 

6 

'\ 
\ 
\ 
·~ 

. . ...... 

16 

--Adjacent 
- - - Separated 

12 

0 
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Generations 

FIGURE 4. PERFORMANCE OF THE GA ON THE F2*F2 PROBLEM. Effectiveness of adjacent orders, where 
linked genes AB and CD are adjacent, is compared to effectiveness of separated orders, where no linked genes are adjacent, 
for equation (2*). 

The figures all display similar characteristics. With such simple problems, the GA approaches the solutions quite 

rapidly. Visually, the separated orders appear to perfonn better than the adjacent orders in the very early generations. The 

perfonnance curves cross somewhere around generations three to five, and from then on, the adjacent orders show a better 

perfonnance than the separated orders. Since we are predicting the direction of the difference, we can test our hypotheses 

using a single-tailed t-test to compare the means. The details of this performance difference for generation I are shown in 

Table 2, and those for generation 30 are shown in Table 3. 
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TABLE 2. GENE ORDER PERFORMANCE AT GENERATION l 

AB+CD AB*CD F2+F2 F2*F2 
Mean 1.83 0.843 22.28 43.47 
Adjacent 
(n = 400) 
Mean 1.84 0.845 20.97 37.48 
Sep<trated 
(n=800) 
Std Dev 0.086 0.077 16.87 77.61 
Adiacent 
Std Dev 0.081 0.08 17.73 53.14 
Separated 
t-value -1.55 -0.45 1.23 1.57 
p-value 0.0606 0.3247 0.1096 0.058 

Performance of adjacent vs. separated gene orders at the start of the experimental run. In every case, the separated 
orders perform better than the adjacent orders (recall that the left two functions are being maximized while the right 
two functions are being minimized). This performance is statistically significant at a better than 0.10 level in two 
cases, almost reaches that level of significance in one case, and fails the significance test in the fourth. 

TABLE 3. GENE ORDER PERFORMANCE AT GENERATION 30. 

AB+CD AB*CD F2+F2 F2*F2 
Mean 2.00 1.00 0.71 0.032 
Adjacent 
Mean 1.99 0.99 1.02 0.045 
Separated 
Std Dev 0.005 0.004 0.81 0. JO 
Adjacent 
Std Dev 0.007 0.008 0.97 0.11 
Separated 
t-value 8.61 8.12 -4.41 -2.31 
p-value <0.0001 <0.0001 <0.0001 0.0105 

Performance of adjacent vs. separated gene orders at the end of the experimental run. In every case, the separated 
orders were more efficient than the adjacent orders, significant at a 0.0 I level or better. 

The experiments described above provide good support for Hypothesis II, and weak support for Hypothesis I. In 

generation l, in every case, the separated orders perform better than the adjacent orders. This performance is statistically 

significant at a better than 0.10 level in two cases, almost reaches that level of significance in one case, and fails the 

significance test in the fourth. The most we can say is that there is weak support for Hypothesis I. Late in the search process, 

the separated orders outperform the adjacent orders in all experiments, and at generation 30 this difference is statistically 

significant; in three cases at the 0.0001 level, and in one case at the 0.0 I level, providing strong support for Hypothesis II. 
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IV. DETECTING OPTIMAL GENE ORDER BY RECONSTRUCT ABILITY ANALYSIS 

If gene order matters, it should be useful to find out what the optimum gene order is. In this section we show that this 

determination is achievable, at least for the cases examined here, using the methods ofreconstructability analysis .. 

Reconstructability Analysis 

Reconstructability analysis (RA) derives from Ashby (1964), and was developed by Broekstra, Cavallo, Cellier, Conant, 

Jones, Klir, Krippendorff, and others; an extensive bibliography is available in (Klir, l 986), and a compact summary of RA is 

available in (Zwick, 2001a; Zwick, 2002) .. RA resembles log-linear (LL) methods (Bishop et al, 1978: Knoke & Burke, 

1980), used widely in the social sciences, and where RA and LL methodologies overlap they are equivalent (Knoke & Burke, 

1980; Krippendorff, 1986). In RA (Klir, 1985), a probability or frequency distribution or a set-theoretic relation is 

decomposed (compressed, simplified) into component distributions or relations. The most common approach is typically the 

decomposition of frequency or probability distributions, where RA does statistical analysis. RA can model problems both 

where "independent variables" (inputs) and "dependent variables" (outputs) are distinguished (directed systems) and where 

this distinction is not made (neutral systems). 

In the present case, we have a directed system, with inputs A, B, C and D, and output the fitness value, F. Consider 

an observed frequency distribution g(A, B, C, D, F) which we write more simply as ABCDF. RA decomposes such 

distributions into sets of projections such as ABCD:ABF:CDF and these models are assessed for statistical significance, 

usually with the Chi-square distribution. Taken together, the linked projections constitute a model of the data which is less 

complex (has fewer degrees of freedom) than the data. By maximum-entropy (uncertainty) composition of these projections, 

the model yields a calculated distribution ABCDF ABCDABFCDF (the subscripts show the model used) which may differ from 

the observed ABCDF. The difference (error) represents loss of information in the model. By definition, the data itself, 

ABCDF, which asserts that A,B,C,D predict F, has 100% information (0% error). The "independence model," ABCD:F, 

which asserts that nothing predicts F, has 0% information. 

One can distinguish between different classes of RA models Here we consider two classes: "disjoint models" and 

"chain models" (Krippendorff, 1986). Models are defined as a set of components, a "non-predicting" component which 

involves only the inputs (IVs), and one or more "predicting components" involving the DY. For simplicity, the non-
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predicting component (in the present case, ABCD) will from now on be omitted from the model specification. In disjoint 

models, which Krippendorf calls regression models, the inputs in different predicting components do not overlap, as in 

ABF:CDF, while in chain models, every component overlaps the next component in one variable, as in ABF:BCF:CDF. The 

disjoint model ABF:CDF means that A and B together predict F, and C and D also together predict F, and that these two 

predicting components are merged via the maximum entropy formalism of RA. The chain model ABF:BCF:CDF means that 

A and B predict F, as do B and C, as do C and D, and that the three predicting components are merged via the maximum 

entropy formalism. 

We will use these disjoint and chain models to decompose the fitness function, and the information content of the 

various models will reveal the relative merits of adjacent versus separated orders of the GA chromosome. To connect model 

specification and gene order, note that the sequence of the components in the model specification is arbitrary and that the 

sequence of variables in a component is also arbitrary. Thus the disjoint model, ABF:CDF, is consistent with gene orders 

ABCD, ABDC, BACD, and BADC (and their inverses), i.e., with all four adjacent orders. This disjoint model is also 

inconsistent with all eight separated orders. By contrast the disjoint model ABCF:DF is consistent both with ABCD and 

DABC, and thus cannot be used to evaluate the relative merits of adjacent vs. separated orders. Chain models are more 

specific: every chain model is consistent with only one gene order (and its inverse). For example, the chain model 

ABF:BCF:CDF is consistent only with ABCD (and DCBA). 

RA Calculations 

Calculations were made using the RA software programs developed at Portland State University, now integrated into the 

package OCCAM (for the principle of parsimony and as an acronym for "Qrganizational homplexity hOmputation And 

Modeling"). The earliest of these programs was developed by Zwick and Hosseini (Hosseini, Hannon, & Zwick, 1986); a 
\ 

review of RA methodology is offered in (Zwick, 200la; Zwick, 2002); a list of recent RA papers in the PSU group is given in 

(Zwick, 200lb). A description of the OCCAM architecture is given in (Willett & Zwick, 2002). 

For this paper, the reconstructability analysis was conducted on datasets generated by random sampling of the search 

space. We uniformly sampled the continuous values of the four variables A, B, C, and D, over an appropriate range, and 

used the resulting sets of independent variables to calculate the dependent variable, F(A,B,C,D). Approximately 7200 unique 
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combinations of A, B, C, D, and F were created. All five variables were then each binned into four bins. The datasets were 

analyzed by the OCCAM software package and the results are shown in Table 4. 

TABLE 4. RECONSTRUCTABILITY ANALYSIS OF THE FOUR FITNESS FUNCTIONS 

AB+CD ABxCD F2+F2 F2xF2 

MODEL INF. MODEL INF. MODEL INF. MODEL INF. 

DISJOINT DISJOINT DISJOINT DISJOINT 
ABF:CDF a 0.672 ABF:CDF a 0.631 AF:BCDF 0.845 ABF:CDF a 0.736 

ACDF:BF 0.540 ABDF:CF 0.556 ABDF:CF 0.809 ABDF:CF 0.700 

ABDF:CF 0.527 ABCF:DF 0.551 ABF:CDF a 0.786 AF:BCDF 0.662 

AF:BCDF 0.526 AF:BCDF 0.528 ACDF:BF 0.768 ABCF:DF 0.625 
ABCF:DF 0.518 ACDF:BF 0.526 ABCF:DF 0.732 ACDF:BF 0.605 

AF:BF:CDF 0.416 ABF:CF:DF 0.424 AF:BF:CDF 0.710 ABF:CF:DF 0.555 
ABF:CF:DF 0.407 AF:BF:CDF 0.401 ABF:CF:DF 0.683 AF:BF:CDF 0.521 

ADF:BCF s 0.255 ACF:BDF s 0.290 ADF:BCF s 0.671 ADF:BCF s 0.441 
ACF:BDF s 0.243 ADF:BCF s 0.284 ACF:BDF s 0.654 ACF:BDF s 0.438 
ADF:BF:CF 0.233 AF:BDF:CF 0.268 ADF:BF:CF 0.653 AF:BDF:CF 0.421 
AF:BDF:CF 0.229 ACF:BF:DF 0.263 AF:BDF:CF 0.637 ADF:BF:CF 0.418 
AF:BCF:DF 0.228 AF:BCF:DF 0.262 AF:BCF:DF 0.636 AF:BCF:DF 0.417 

ACF:BF:DF 0.221 ADF:BF:CF 0.262 ACF:BF:DF 0.629 ACF:BF:DF 0.407 

AF:BF:CF:DF 0.205 AF:BF:CF:DF 0.237 AF:BF:CF:DF 0.613 AF:BF:CF:DF 0.389 
CHAIN CHAIN CHAIN CHAIN 

ABF:BCF:CDF a 0.695 ABF:BCF:CDF a 0.662 ABF:ADF:CDF a 0.811 ABF:ADF:CDF a 0.778 
ABF:ADF:CDF a 0.693 ABF:BDF:CDF a 0.658 ABF:BCF:CDF a 0.809 ABF:BDF:CDF a 0.757 
ABF:ACF:CDF a 0.687 ABF:ACF:CDF a 0.657 ABF:BDF:CDF a 0.806 ABF:BCF:CDF a 0.756 
ABF:BDF:CDF a 0.686 ABF:ADF:CDF a 0.656 ABF:ACF:CDF a 0.802 ABF:ACF:CDF a 0.754 
ADF:BCF:CDF s 0.462 ABF:ACF:BDF s 0.475 ADF:BCF:CDF s 0.758 ABF:ADF:BCF s 0.605 
ACF:BDF:CDF s 0.452 ABF:ADF:BCF s 0.469 ACF:BDF:CDF s 0.751 ABF:ACF:BDF s 0.604 
ABF:ADF:BCF s 0.449 ACF:BDF:CDF s 0.449 ABF:ADF:BCF s 0.743 ADF:BCF:CDF s 0.585 
ABF:ACF:BDF s 0.444 ADF:BCF:CDF s 0.448 ABF:ACF:BDF s 0.720 ACF:BDF:CDF s 0.570 
ADF:BCF:BDF s 0.281 ACF:ADF:BDF s 0.319 ACF:ADF:BCF s 0.699 ADF:BCF:BDF s 0.474 

ACF:ADF:BDF s 0.276 ADF:BCF:BDF s 0.316 ACF:ADF:BDF s 0.695 ACF:ADF:BDF s 0.472 
ACF:ADF:BCF s 0.273 ACF:BCF:BDF s 0.315 ADF:BCF:BDF s 0.692 ACF:ADF:BCF s 0.467 
ACF:BCF:BDF s 0.266 ACF:ADF:BCF s 0.310 ACF:BCF:BDF s 0.679 ACF:BCF:BDF s 0.466 

Shown are the information content (INF) for all disjoint models which include all inputs and for all chain models. Next to 
the models, "a" is written if the model is consistent only with an adjacent order, and "s" is written if the model is consistent 
only with a separated order. If neither "a" nor "s" is indicated, the model is compatible with both adjacent and separated 
orders, and thus cannot be used to discriminate between the two. The table omits (for simplicity) the ABCD component 
(present in all these models) from the name of the model, e.g., disjoint model ABF:CDF is really model ABCD:ABF:CDF 

The OCCAM computations are essentially as follows. For each sample we have an observation ofa four-input, one-

output directed system (Ai, Bi, Ck. Di. Fm). The information in a given model is calculated as 
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INF (test model),= 1 - [T(test model)/T(independence model)] (3), 

where I is information content, T is transmission, the independence model is ABCD:F, and the test model is a disjoint or 

chain model, as indicated in Table 4. The transmission calculation is 

T(test model) = Lijklm Pijklm log (Piiklm I q(test model)ijklm) (4) 

N = sample size, 

fobs= observed frequency, and 

f0010(test model)= calculated frequency. 

The f0010 for a test model is obtained by iteratively applying the iterative proportional fitting (TPF) algorithm using 

the projections specified by the model. For example, the f0010 for disjoint model ABCD:ABF:CDF is obtained by iteratively 

imposing, via IPF, the ABCD, ABF, and CDF fobs projections on an initially uniform fcatc distribution. 

Table 4 shows that, for the fitness functions used in this study, RA can unambiguously ascertain how these fitness 

functions depend on the four input variables and clearly identifies the AB and CD building blocks of these dependencies. For 

all four fitness functions, the best chain models favor the adjacent orders. For three out of four fitness functions, the model 

ABF:CDF was the best disjoint model, again showing that the adjacent rather than the separated orders reflect the functional 

dependence of fitness on the inputs; for the fourth fitness function, ABF:CDF was not the best disjoint model but was plainly 

superior to other disjoint models which favor a separated order. In summary, knowing that a GA will perform better with 

adjacent rather than separated orders, and given sampled data on the fitness function, RA can tell us how to optimally order 

the input variables on the GA chromosome, at least for the fitness functions examined in this study. 

V. DISCUSSION 

For the simple test problems shown, constructed to depend on the interaction of epistatic genes, the adjacent orders (those 

that kept epistatic genes together) ultimately found better solutions faster than did orders that separated the epistatic genes. 

The gene order effect was small, but in more complex problems, it may become more substantial. The relative effectiveness 

of the two sets oforders changed throughout the experiments. At the beginning -- roughly the first five generations -- the 

separated orders p!Jrformed as well or better than the good ones. For the next twenty generations the adjacent orders . 
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performed better. In the end game, when both were approaching the solution asymptotically, the separated orders slowly 

caught up, but were still behind the performance of the adjacent orders at the end. 

This behavior of the GA is comprehensible. Specifically, one expects that in the early phases of a GA run, 

epistatically linked genes should best be located far from one another, since at the beginning of the search it may be useful for 

all genes to be mixed as much as possible by the crossover operator. If two epistatic genes are side-by-side from the 

beginning, then crossover would have less chance of improving them, and the GA would have to depend upon a good 

initialization and fortunate mutations to create the best gene pair possible. If, on the other hand, two epistatic genes start out 

well separated, the crossover operation might more easily assemble a larger selection of allele patterns in the two genes. The 

early-separated effect is exhibited in all the experiments (Table 2), but the effect is small. One might speculate that its impact 

is problem-dependent. 

Reconstructability analysis allows one to find the models that retain high information about the data. Using both 

disjoint and chain models, one can obtain an indication of how to order the variables on the GA chromosome. Both chain 

and disjoint models suggested that the adjacent orders would be better than the separated orders. Moreover the use of disjoint 

models might be a way to solve Beasley et al.'s problem of a priori identification of subproblems for expansive coding. The 

top model, ABCDF, includes interactions among all variables, but Table 4 shows that ABF:CDF has 70-80% of the 

information, so solving the ABF and CDF subproblems separately and merging the answers would probably give a good 

result. Using RA to decompose optimization problems into subproblems might of course also be useful for optimization 

methods other than the GA. 

Future Research 

The primary reason for obtaining an optimum gene order is to improve the effectiveness of the GA: either to allow it to find a 

good solution faster, or to find a better solution in the same time. The examples considered here are too simple for RA to 

yield a gain in GA efficiency in any practical sense. This paper is just a demonstration of concept. It remains for future work 

to show a practical benefit from RA preprocessing. This may arise in GA analyses of more complex problems which require 

much longer runs, where RA analysis of a sample of the fitness function might be repaid by superior GA performance. It 

may even be possible to restructure the genome ofa GA based on data that the GA itself generates. This might speed up 

processing in a particular GA run, if the optimum order can be detected early enough for the GA to gain an advantage from 
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gene reordering. It may also be possible to generalize the structure of a GA so that it is optimized for a wide range of 

problems of the same specific class. To use a real-world example, one of the authors recently stuqied the use ofa GA to 

solve an inventory and distribution problem (Shervais, 2000a, 2000b). One would expect that any set of such problems with 

the identical number and structure ofnodes and stocks could use information generated by the first specific problem to be 

addressed. These topics are subjects for future research. 
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