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PHYSICAL REVIEW A 81, 032107 (2010)

Gauge invariance and reciprocity in quantum mechanics

P. T. Leung (���)1,* and K. Young (���)2,†
1Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, Taiwan

2Department of Physics, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
(Received 20 December 2009; published 8 March 2010)

Reciprocity in wave propagation usually refers to the symmetry of the Green’s function under the interchange
of the source and the observer coordinates, but this condition is not gauge invariant in quantum mechanics, a
problem that is particularly significant in the presence of a vector potential. Several possible alternative criteria
are given and analyzed with reference to different examples with nonzero magnetic fields and/or vector potentials,
including the case of a multiply connected spatial domain. It is shown that the appropriate reciprocity criterion
allows for specific phase factors separable into functions of the source and observer coordinates and that this
condition is robust with respect to the addition of any scalar potential. In the Aharonov-Bohm effect, reciprocity
beyond monoenergetic experiments holds only because of subsidiary conditions satisfied in actual experiments:
the test charge is in units of e and the flux is produced by a condensate of particles with charge 2e.

DOI: 10.1103/PhysRevA.81.032107 PACS number(s): 02.20.Uw, 03.65.−w, 03.75.−b

I. INTRODUCTION

Reciprocity refers to the equivalence between the signals
when the source at �r ′ and the observer at �r are interchanged.
Although reciprocity is obvious in free space, it becomes
nontrivial when there is a material background. The notion
of reciprocity plays an important role for classical waves
in acoustics [1] and optics [2], and for matter waves in
quantum mechanics (QM) [3]. Interesting applications are
found in device design [2] and electron diffraction [4,5]. In the
latter, reciprocity explains the symmetry in images of crystals
with and without defects and provides a method to achieve
high-resolution dark-field microscopy [4].

An early theoretical formulation of the reciprocity principle
applied to optics in terms of the Lorentz lemma for electromag-
netic wave propagations [2]. Later, a useful asymptotic form
of this principle was worked out [6], and it was recognized
that reciprocity is best stated in terms of the symmetry
of the Green’s function for wave propagation [7]. In QM,
recent works have established reciprocal relations for different
transition probabilities of time-dependent Hamiltionians [8]
and extended previous Green’s function formulations [3] to
include nonlocal interactions [9]. In this latter work [9], the
well-known possible breakdown of reciprocity in the presence
of a magnetic field [10] was demonstrated by reformulating
the charge-field interaction in terms of an effective nonlocal
potential.

The present article considers reciprocity in QM with a time-
independent Hamiltonian for a charged particle in a vector
potential �A. There are two different proposals for the condition
of reciprocity in the literature. The stringent condition [3],
labeled later in this article as (C1), demands the two Green’s
functions (with source and observer reversed) to be equal; it
is obviously not gauge invariant and hence is inappropriate. A
more relaxed condition [5], labeled later in this article as (C4),
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only requires equality of the magnitudes (in the frequency
domain); we shall show that it is in general too loose. This
article analyzes in addition two intermediate proposals, labeled
as (C2) and (C3) later in this article, with special attention to the
question of gauge invariance. Gauge invariance, especially its
extension to non-Abelian groups [11], is central to the modern
concept of particle interactions.

The general concepts are of particular interest when applied
to spatial domains that are not simply connected, in particular
the Aharonov-Bohm (AB) effect [12], which is experimentally
verified in electron diffraction [13]. In this case, it turns out that
reciprocity beyond monoenergetic experiments holds only on
account of extra experimental conditions: the test charge is in
units of e and the flux is due to a superconducting condensate
with charges in units of 2e—neither of which is necessary as
an a priori condition.

II. FORMULATION

Reciprocity can be discussed in terms of the Green’s
function G(�r, �r ′, t) (or the Green’s dyadic [7,14] in the case of
vector fields) describing propagation from �r ′ to �r in time t . It
is convenient to consider the corresponding frequency-domain
functions [3] G̃(�r, �r ′, ω), in particular the ratio

T ≡ G̃(�r, �r ′, ω)

G̃(�r ′, �r, ω)
, (1)

in terms of which we shall consider four possible criteria,

T = 1 (C1), (2a)

T = exp 2i[θ (�r) − θ (�r ′)] (C2), (2b)

T = exp i� (�r, �r ′) (C3), (2c)

T = exp i�(�r, �r ′, ω), i.e., |T | = 1 (C4), (2d)

where θ and � are real phases. For (C1)–(C3) [but not
(C4)], the same ratio applies to the time-domain Green’s
functions G. The four conditions are decreasingly restrictive:
(C1) ⇒ (C2) ⇒ (C3) ⇒ (C4). Section III gives examples
illustrating each of these conditions. Section IV analyzes
key properties that support the adoption of (C2) as the
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general condition for reciprocity, with (C3) corresponding
to “accidental” reciprocity in the sense that the property is
destroyed by the addition of a local real potential, while
(C4) does not describe reciprocity except in the very special
case of monoenergetic experiments (understood, everywhere
in this article, to also include experiments with incoherent
superposition of monoenergetic states).

III. EXAMPLES

Several examples will be given, with particular attention
given to whether there is a nonzero magnetic field �B and/or a
nonzero vector potential �A; a key issue is that �B = 0 does not
guarantee �A = 0.

A. No magnetic field, no vector potential

The standard representation gives, for t > 0,

G (�r, �r ′, t) =
∑

n

un (�r)u∗
n (�r ′)exp(−iEnt/h̄), (3)

in terms of eigenfunctions un, their conjugates u∗
n, and eigen-

values En. In the absence of both �B and �A, the Hamiltonian
H (assumed to be Hermitian) is real, so the eigenfunctions
can be chosen to be real; therefore, G is symmetric under the
interchange of the two spatial variables, and (C1) is satisfied.

B. No magnetic field, nonzero vector potential, simply
connected region

Even when �B = 0, one can have a nonzero �A. Provided the
domain is simply connected, it is possible to remove �A by a
single-valued gauge transformation, under which

�A (�r) �→ �A (�r) + �∇ξ (�r) = 0, un(�r) �→ un(�r) exp [iθ (�r)],

(4)

with θ = (q/h̄)ξ . The transformed system with �A = 0 satisfies
(C1); hence, the original system satisfies (C2)—which is then
seen to be the appropriate gauge-invariant generalization of
the concept of reciprocity. Incidentally, this also explains the
conventional factor of 2 in the phase in (2b). For the sake of
completeness, a more general proof of these properties using
Green’s theorem is given in the Appendix.

C. Uniform magnetic field

An interesting example is a uniform �B field, say, �B ‖ ẑ. The
Green’s function can be obtained in closed form [15],

G̃(�r, �r ′, ω)

= ei(x ′y−y ′x)/2

(
− m

2πh̄2

)
π

cos (πε)

1

�
(
ε + 1

2

) Wε,0 (ρ)√
ρ

,

(5)

where ε = ω/ωL and ωL is the Larmor frequency, Wκ,µ the
Whittaker function, (x, y, z) and (x ′, y ′, z′) are the Cartesian
coordinates of the two position vectors, and ρ ≡ (�r − �r ′)2/2.
All lengths are dimensionless, in units of

√
h̄/mωL. It is clear

from (5) that (C2) is not satisfied, whereas (C3) is satisfied,

FIG. 1. The classical trajectory for a positive charge q (a) moving
from �r to �r ′ and (b) from �r ′ to �r , in a uniform magnetic field pointing
into the page. The two trajectories are different but equivalent.
However, the equivalence is obviously destroyed if the magnetic field
is not uniform. Therefore, reciprocity holds for a uniform field, but
only “accidentally” in that the property is destroyed by a perturbation.

with

� = x ′y − xy ′. (6)

The condition (C3) is “accidental” in the sense that a generic
perturbation would destroy it. To see this, consider the classical
limit: the trajectories �r → �r ′ and �r ′ → �r (Fig. 1) traverse
different regions in space, so if the magnetic field is made
nonuniform, or if an electrostatic potential is introduced
(which does not happen to be the same in the two regions),
the two trajectories would not be equivalent. The “accidental”
nature is in fact quite general for (C3), as discussed in Sec. IV.
In contrast, we shall see that (C2) is not “accidental” and is
robust against a broad class of perturbations.

D. Aharonov-Bohm effect

The intriguing case is that of zero magnetic field in a
multiply connected domain, for example, the AB effect [12].
Let there be a magnetic flux 
 confined to a tube (“solenoid”)
along the ẑ axis, from which a charge q is excluded; thus, the
charge experiences zero field �B , but the QM has to be described
by a nonzero vector potential �A, which moreover cannot be
written as �A = −�∇ξ (unless one introduces multivalued ξ

functions; see the Appendix). Reciprocity can be studied using
the explicit form of the Green’s function and it suffices to
do so for a simple case: the charge q is confined to a ring
with coordinates (r = R, ϕ) in the x-y plane, which already
captures the essential feature of the nontrivial topology;
inclusion of the variables r and z will not affect the argument.

The Green’s function is given in the literature [16,17], but
the key ideas are better exhibited through a simple argument.
Axial symmetry is preserved if the gauge is chosen to be

�A = A(r)êϕ = (
/2πr)êϕ. (7)
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The angular momentum must be quantized as Lz = Rp =
nh̄, where p is the azimuthal component of the conjugate
momentum and n is an integer. Since Lz = (−ih̄)(d/dϕ), it
follows that the eigenfunctions are

un(ϕ) = (2π )−1/2 exp(inϕ). (8)

The energy E = ( �p − q �A)2/(2m) is then quantized as

En = h̄2

2mR2
(n − σ )2, (9)

in which

σ = q


h
. (10)

A formal solution of Schrödinger’s equation will yield the
same results. Putting these into (3) then gives

G(ϕ, ϕ′, t) = (2π )−1
∑

n

exp [in(ϕ − ϕ′)]

× exp [−i(h̄2t/2mR2)(n − σ )2] (11)

for t > 0 and

G̃(ϕ, ϕ′, ω) = (2π )−1
∑

n

exp [in(ϕ − ϕ′)]

× i

ω − (n − σ )2(h̄/2mR2)
, (12)

with the usual iε prescription understood to render the function
causal. It is possible to adopt another approach in which �A is
removed at the cost of introducing multivalued wave functions
(Appendix).

First consider the case 2σ = integer. Upon interchange of
the two spatial coordinates ϕ ↔ ϕ′, if we also reverse the
dummy variable n �→ −n [thus keeping the phase factor in
(12) unchanged, but turning (n − σ )2 �→ (n + σ )2] and then
shift n �→ n − 2σ [which restores (n + σ )2 �→ (n − σ )2], then
it is readily seen that (C2) is satisfied.

However, for 2σ �= integer, the shift n �→ n − 2σ is not
allowed, and the above proof of (C2) fails. Nevertheless,
upon interchange of the two spatial coordinates ϕ ↔ ϕ′, if
the Green’s function is conjugated, the phase factor would be
unchanged, and it is easy to show that

G̃(ϕ, ϕ′, ω) = −G̃(ϕ′, ϕ, ω)∗ (C4∗), (13)

from which it follows that (C4) [but not (C3)] is satisfied. In
fact, (13) is an interesting special case of (C4), to be denoted
as (C4∗).

The examples are summarized in Table I.

TABLE I. Summary of examples.

Condition Example

(C1) No vector potential
(C2) but not (C1) No magnetic field in a simply-connected region,

but nonzero vector potential;
or AB effect with 2σ = integer

(C3) but not (C2) Uniform magnetic field
(C4) but not (C3) AB effect with 2σ �= integer

IV. EXPERIMENTAL MANIFESTATIONS

It is obvious that (C1) is not gauge invariant and cannot be
adopted as the condition of reciprocity when there is a vector
potential and/or if one allows gauge transformations. Noting
that gauge transformations alter phases and experiments only
measure the absolute square of the amplitudes, it was proposed
[5] that (C4) be adopted as the condition for reciprocity.
Indeed, it is true that for monoenergetic experiments, (C4) will
guarantee that no difference is observed when the source and
observation points are reversed. However, one can contemplate
experiments involving coherent superposition of different
energies with relative amplitudes ρ(ω), in which case the
amplitude is schematically∫

ρ(ω)G̃(�r, �r ′, ω)dω. (14)

[The case of the time-domain Green’s function is included
by taking ρ(ω) = exp (−iωt).] The absolute square of this
quantity is not invariant under the interchange of the two spatial
coordinates, if only (C4) is satisfied. Therefore, it is possible
to design an experiment that would in principle observe a
difference between the two situations; the AB effect with 2σ �=
integer falls into this category.

For (C3) [and a fortiori also for (C2)], an amplitude such
as (14) would have its absolute square preserved under the
interchange of the two spatial coordinates, so no experiment
can detect a difference between the two situations. A uniform
magnetic field and the AB effect with 2σ = integer fall into
this category; these examples would be physically reciprocal.

Yet there is an important difference between (C3) and
(C2). Start with a Hamiltonian H and embed it into a broader
class H ′ = H + V , where V is any local real potential energy
(e.g., an electrostatic potential energy). The Green’s function
becomes

G̃′ = G̃ + (ih̄)G̃V G̃ + (ih̄)2G̃V G̃V G̃ + · · · (15)

in which we adopt the obvious shorthand, for example,

(G̃V G̃)(�r, �r ′, ω) =
∫

G̃(�r, �r1, ω)V (�r1)G̃(�r1, �r ′, ω)d3r1.

(16)

It is easy to see that under H �→ H ′, (C2) would be preserved
but not (C3). In this sense, (C2) is said to be robust while
(C3) describes a kind of reciprocity that is “accidental” in
that the property is not shared by the broader class of systems
H ′ in which H is embedded, and a generic perturbation on
H would destroy the reciprocity. This is exactly the situation
for a uniform magnetic field, as was already discussed with
reference to the classical limit. Incidentally, (C4∗) [but not
(C4) in general] is also robust, that is, preserved under (15).
We therefore expect that the classification of the AB effect
as (C2) for 2σ = integer or as (C4) for 2σ �= integer should
survive the addition of an electrostatic potential; this will be
shown explicitly in the Appendix.

Returning to the AB effect, we see that reciprocity beyond
monoenergetic experiments depends critically on the value
of 2σ . If either q or 
 is allowed to take on continuous
values, then reciprocity does not hold; the early experiment by
Chambers [18] did not make use of a quantized flux, though its
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interpretation in terms of the indispensable role of the vector
potential was less convincing because the magnetic field was
not completely confined. It is more interesting to consider the
case where (i) q is quantized in units of q0 = αe (where −e is
the charge of the electron) and (ii) the confined flux is produced
by a supercurrent due to a Bose condensate of particles with
charge βe, so that 
 is quantized in units of 
0 = h/(βe) [19].
Then the condition for (C2) becomes

2α

β
= integer. (17)

In actual experiments [13] with electrons as test particles
and the flux produced by Cooper pairs, α = 1 and β = 2,
so reciprocity does hold. However, this result depends on sub-
sidiary conditions which are not required by the fundamental
principles of electromagnetism, since one can imagine free
quarks (α = 1/3) and/or a condensate of Cooper quadruplets
(β = 4).

V. CONCLUSION

Four possible proposals for reciprocity have been analyzed:
(C1) is not gauge invariant, and (C4) does not ensure
reciprocity except in monoenergetic experiments. Under both
(C2) and (C3), reversing the source and detection points would
lead to no detectable consequences, but only (C2) is robust,
that is, would preserve this property for the broader class of
Hamiltonians H ′ = H + V —so that reciprocity for H is not
“accidental.” In the case of the AB effect, the result other
than for monoenergetic experiments is different depending
on whether 2σ is an integer; in the most convincing actual
experiments [13], 2σ is indeed an integer, but this is not
guaranteed by the laws of electromagnetism and QM. In
a hypothetical AB experiment with free quarks, say, one
would observe nonreciprocity in the probability. This would
be another manifestation of the effect of the vector potential
even when the charge never encounters a magnetic field.
A more realistic proposal is an experiment such as that of
Chambers [18], provided the complications due to the leaked
magnetic flux can be interpreted convincingly.
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APPENDIX: DERIVATION USING GREEN’S THEOREM

In this appendix, adopt the shorthand G ≡
G̃( �R, �r, ω),G′ ≡ G̃( �R, �r ′, ω). First consider the case �B = 0,
�A = 0, and use the relation

(H − E)G = ih̄δ( �R − �r), (H − E)G′ = ih̄δ( �R − �r ′),
(A1)

where H is understood to act on the first variable in G.
Multiply the first equation by G′ and the second by G, take the
difference, and integrate �R over the domain � of the problem,

say the annulus R1 < r < R2 in the x-y plane (inclusion of
the z coordinate is trivial); we obtain∫

�

{G[(H − E)G′] − G′[(H − E)G]}dV

= ih̄[G̃(�r ′, �r, ω) − G̃(�r, �r ′, ω)]. (A2)

All terms without derivatives cancel on the left-hand side, and
the only relevant term in H is H = −h̄2/(2m) �∇2, which upon
integration by parts gives [3]

h̄2/(2m)
∫

S

[G(∂G′/∂n) − G′(∂G/∂n)]dS

= ih̄[G̃(�r ′, �r, ω) − G̃(�r, �r ′, ω)], (A3)

where S is the boundary of � (in this case, the circles at R1

and R2) and n is the coordinate along the outward normal. If
the boundary condition for the first variable in G is [3]

αG + β(∂G/∂n) = 0, (A4)

on these circles, then the left-hand side of (A3) vanishes and
we prove (C1) in this case. This derivation [in contrast to
the one based on (3) and eigenfunctions being real] remains
valid even for a non-Hermitian Hamiltonian with a complex
scalar potential. Next, consider the case �B = 0, �A �= 0 in a
simply connected domain. We transform to a new gauge with
�A = 0, in which (C1) is established as shown previously; upon

transforming back, we prove (C2) in the original gauge.
The much more interesting case is �B = 0, �A �= 0 in a

multiply connected domain, say the AB effect as discussed
in Sec. III D. If the vector potential (7) is to be removed by the
gauge transformation (4), we need ξ = −(
/2π )ϕ, θ = −σϕ.
To avoid the wave functions becoming multivalued, we need
to impose a cut C, say at ϕ = 2π , across which the wave
functions are discontinuous,

ψ(r, 2π ) = exp (−2iπσ )ψ(r, 0), (A5)

and likewise for the first argument in the Green’s function, say,

G̃(R, 2π ; r, ϕ; ω) = exp (−2iπσ )G̃(R, 0; r, ϕ; ω). (A6)

Now the boundary S consists of not just the circles at R1 and
R2, but also the two sides of the cut. The contribution from the
former to (A3) vanishes as before, while the latter gives

h̄2/(2m)
∫

C

�[G(∂G′/∂y) − G′(∂G/∂y)]d2R

= ih̄[G̃(�r ′, �r, ω) − G̃(�r, �r ′, ω)], (A7)

where n = ∓y on the two sides of the cut (i.e., ϕ = 0 and
ϕ = 2π ) and � denotes the discontinuity across it. Because
there are two factors of G in each term of the surface integral,
this discontinuity is proportional to

exp (−4iπσ ) − 1, (A8)

which then establishes (C2) if 2σ = integer. This derivation
lumps all the complications into the cut in a way that does
not require knowledge of the wave function or Green’s
function [except in the relative phase as in (A5) or (A6)]
and consequently has the advantage that it remains valid for
(i) a generalized (i.e., noncircular) annulus, R1(ϕ) < r <

R2(ϕ), provided that the magnetic field remains axially
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symmetric; (ii) inclusion of the third dimension; (iii) addition
of an electrostatic potential [since potential energy terms
obviously cancel in (A2)]; and (iv) likewise the addition of
an imaginary part to the scalar potential. Incidentally, this
provides another proof that in this case (C2) is robust; that is,
it survives the addition of a potential V. These generalizations
are important for application to the Chambers experiment [18],
in which an electric field is involved.

If 2σ �= integer, (A8) is nonzero and (C2) cannot be proved.
However, we can do something different: in the derivation,
replace G with its conjugate, in which case (A7) becomes, for

a Hermitian Hamiltonian H,

h̄2/(2m)
∫

C

�[G∗(∂G′/∂n) − G′(∂G∗/∂n)]d2R

= ih̄[G̃(�r ′, �r, ω)∗ + G̃(�r, �r ′, ω)]. (A9)

Note the relative plus sign on the right-hand side. Since G and
G∗ have opposite phase discontinuities, the left-hand side of
(A9) does not contain a discontinuity, so we prove (C4∗) as in
(14). Again, this proof survives the generalizations (i), (ii), and
(iii) [but not (iv)] cited at the end of the preceding paragraph.
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