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Beam deflection in a pulsed chemical laser amplifier

J. Munch, L. W. Casperson, and E. C. Rea

Analyses and experiments have been performed to investigate deflection of a Gaussian beam propagating
through an amplifying medium possessing a strong transverse gain gradient. The analysis includes effects
due to dispersion and gain steering. The experiments were performed in a high power pulsed chemical laser
amplifier using a cw frequency stabilized laser as a source. Time dependent beam deflection due to the in-
teraction of the gain gradient with the finite radius of curvature of the propagating beam was observed.

I. Introduction

The output beam from a laser amplifier may be de-
flected due to the transverse gain gradients necessarily
present in every real laser medium. Such a deflection
may have important consequences in applications re-
quiring high spatial coherence and pointing accuracy.
In the case of a pulsed laser amplifier, the deflection will
be time dependent and cannot be corrected by subse-
quent beam pointing optics since the slew rate of such
devices is slow compared with the pulse length of typical
lasers. It is therefore important that the nature and
magnitude of the deflection be properly understood so
that its effects can be minimized. :

The present work arose from the possibility of using
the chemical laser in a laser radar application, where a
pointing accuracy of 50 urad, or better, is required.
During the initial theoretical work, we found that under
certain conditions, the deflection was dominated by gain
steering rather than by dispersion effects, and in sub-
sequent experimental measurements, this prediction
was verified. In the following paragraphs we shall
present the theory of beam deflection and the experi-
mental verifications of some of the predictions.

Il. Theory

The theory governing the propagation of a beam in
an inhomogeneous laser medium has been developed
in detail by several authors.!-3 For a real laser it is often
a good approximation to describe the distribution of
gain and index of refraction by functions which are at
most linear and quadratic in space. In this case the
propagation of the beam can be described in terms of
Hermite-Gaussian or Laguerre-Gaussian eigenmodes,
and an analytical solution can be found.4
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Specifically, we assume that the complex propagation
constant k& has the spatial dependence

k(@) Riy(2)y _ ko:(2)x?  kay(2)y?
2 2 2

k(x,y,2) = ko(z) — (1)
and the components of & can be separated into their real
and imaginary parts according tok = 8 + ie. Iname-
dium described by Eq. (1) the electric field amplitude
of the fundamental Gaussian mode can be written

E(x,y,2) = Egexp [—i [fko(z)dz + % + _%)_yf

2
4 5@ (22) xSy (22)y + P(z)”, » @)

where Q,(z) is related to the phase front curvature
R, (z) and the 1/e amplitude spot size w, (z) by

Q:(2) = ko/Ry(2) — 2i/w?(2). 3)

The parameter S, (z) is related to the displacement of
the amplitude and phase centers of the beam by

dya(2) = — Sxi(z)/Qxi (2), 4
dxp(z) == xr(z)/er(z)y (5)

where the subscripts i and r denote, respectively, the
imaginary and real parts of the parameters. The
complex phase is characterized by P(z). ‘

The deflection angle can be found as the normal to
the phase fronts evaluated at the displacement d,,, and
the result is®

er(z)] = dya(z) — dxp(z).
Qui(2)] R(z)
Thus the displacement and deflection angle of the beam
would be completely characterized if the z dependences
of the @ and S parameters were known. When Eq. (2)
is substituted into the wave equation with the propa-
gation constant of Eq. (1), one obtains a set of ordinary
differential equations in the variable z.4 If the propa-
gation constant is independent of z these equations may
be solved to yield

bu(2) = =[S, (2) = Sui(2) ©
27| ™
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Q:(2) _ —(Rae/ko)'/? sin[(koe/k0)/%2] + [Q:(0)/ko] cos[(ko:/ko)"/%]

Ko cos[(ko/ko) 2] + [Qx(0)/ko) (ko/kax) /2 sin[(kac/ko)/%2]

_ S,(0)
" cosl(kas/ko) V%] + [Qx(0)/ko] (ko/kax) 2 sin[(kay/ko)22]

S:(z)

where we have substituted S, = S; — k1:Qx/2R2s.
Similar results hold for the y parameters. With the
definitions of Eq. (3), Eq. (7) is an explicit expression
for the propagation of the spot size and phase front
curvature. Also, Egs. (4)-(8) describe completely the
propagation of the beam center and deflection angle.

For practical applications the remaining problem is
to determine the real and imaginary parts of the com-
ponents of the propagation constant indicated in Eq.
(1). In short amplifiers, where beam distortion and
deflection effects are not severe, the gain profile can be
most easily determined by scanning the amplifier with
a probe laser beam. The index of refraction may also
have a spatial profile, and this profile may in general
have two components. The first component is due to
spatial variations of the background permittivity of the
host material caused by imperfections, strain and
thermal effects in solid lasers, or plasma nonuniformity
and turbulence in gas lasers. The other, more inter-
esting component of the index of refraction in the
present study is due to the intrinsic dispersion of the
amplifying atoms themselves.

The dispersion of a laser medium can be obtained
from a semiclassical analysis, and the results are well
known. These results are particularly simple for un-
saturated lasers, and one finds that the index of re-
fraction of a homogeneously broadened medium is

cgh u

n=ng+——
‘ T drv 1+ u?

)]

where ng is the background index of refraction, ¢ is the
speed of light, g5 is the line center incremental gain
coefficient, v is the frequency, and u = 2(v — vo)/Avy, is
the frequency shift from line center normalized in units
of the homogeneous linewidth Avp. Similarly, for an
inhomogeneously broadened gas laser medium the
index of refraction is

n = no+ [(cgp)/(2x¥%)|F(v), (10)

where gp is the line center incremental gain coefficient
of the Doppler profile, v = 2(v — vo) (In2)Y/2/Avp is the
frequency shift normalized in units of the Doppler width
Avp, and F(v) is Dawson’s integral

F(v) = exp(~v?) j;  expl(t2)dt. (11)

From Egs. (9) or (10) it is clear that spatial variations
in the gain will always be accompanied by spatial vari-
ations in the index of refraction. The amount of the
index variations depends on the laser frequency with
respect to line center, and at v = vy dispersion effects
vanish. In the following section the implications of
these results are explored using numbers appropriate
to our experiments with HF lasers.

870 Applied Optics / Vol. 18, No. 6 / 15 March 1979

(M

®)

ll. Simplification to Linear Gain Gradient

The above theory predicts the behavior of a beam
propagating through an inhomogeneous laser medium.
Different parts of the beam will experience different
deflections depending on the local gain gradient and
frequency of the beam, and the output beam will be
deflected and defocused in a complex manner, which
does not lend itself to simple measurements for exper-
imental verification of the theory. However, if the
transverse dimensions of the probing beam are small
compared with those of the gain region, it may be rea-
sonable to approximate the gain gradient by a local
linear function. In this case the beam would be ex-
pected to deflect, rather than defocus, and a simple
experiment can be conducted to test the predictions.

In a medium with only linear gain and index profiles
(kax = 0), Egs. (7) and (8) simplify to

Qx (2) - Qx (0)/k0
ko 1+Q:(0)z/ko

S:(0) — klex(o)z2/4k0 — k1.2/2

1+ Q. (0)z/ko )
For small gain per wavelength (ko =~ o) and an incident
beam along the 2 axis [S,-(0) = S,;(0) = 0], Egs. (12)
and (13) may be separated into their real and imaginary
parts:

L (2)

Se(2) =

(13)

0.8 1

ANGULAR DEFLECTION IN mr
0.6 +

RADIUS IN METERS

FREQUENCY u ! -100

;6
7100 (x10)

Fig. 1. Theoretical prediction of the laser beam deflection angle in

milliradians, calculated as a function of frequency u and the radius

of curvature of the wavefront at the entrance to the amplifier, For
the exact value of the parameters chosen, see text.



er(z) = 60er(0) + [Q%r(o) + Q,z,,(O)]z . (14
Bo  [fo+ Qu(0):P+ QEO):2 )
Qui (2) B0Qxi (0) 15
Bo [130 + er(0)2]2 + Qxl(o)zz ’ (15)
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Equations (14)—(17) can be substituted directly into
Eq. (5) to obtain the beam displacement or into Eq. (6)
to obtain an explicit expression for the deflection angle
0,(z). It only remains to summarize the formulas for
the parameters that enter into these regults. If the gain
and background index of refraction vary linearly in the
x direction, they may be expressed in the form

n(x) = no— n1:x/2, (18)
&(x) = go — g12%/2. (19)

Now the linear components of the propagation constant,
including frequency effects, for a homogeneously
broadened medium are

@ =ﬁ"‘—u)—2- (21)

For a Doppler broadened medium they are
1= e + 22 R )] (22)
oy = £k @3)

The other parameters include the propagation constant
Bo = 2xno/\ and the input values Q..(0) = Bo/R(0),
Qi (0) = —2/wZ(0).

If the above substitutions are used in Eq. (6), the
deflection angle for a laser amplifier exhibiting a linear
gain gradient can be evaluated. Itis only necessary to
introduce the properties of the amplifier and input
beam.

The amplifier will be described in detail in the next
chapter, but for the purpose of this preliminary calcu-
lation, we shall briefly state some of its characteristics.
The medium is approximately homogeneously broad-
ened at the pressure of 125 Torr used in the experi-
ment.6 With this approximation the gain profile is
Lorentzian, and the index of refraction is given by Eq.
(9). The experiments are done on P32(5) and P3(6)
where a gain of g = 10 m~! has been measured at line
center.” The length of the gain medium is 0.4 m, and
the input spot size is w, (0p) = 3 X 103 m

In previous interferometric measurements, it has
been shown that the background index of refraction is
nearly uniform,” so we assume ny, = 0. For the purpose
of this initial calculation we assume the gain to vary
linearly from its maximum value of 10 m~! to zeroin a
distance of 0.02 m across the amplifier aperture, re-
sulting in the linear gain coefficient gn1, = 103 m~2
The actual experimental measurement of the gain

profile is described later. Using these values, we have
calculated the deflection angle, and the results are
shown in Fig. 1. An interesting consequence of these
results is the strong dependence of the deflection angle
on the radius of curvature of the input phase fronts. If
the phase front curvature is positive (convex in the di-
rection of propagation), the beam tends to be deflected
in the negative x direction toward the region of highest
gain. If the phase front curvature is negative, the beam
is deflected away from the region with the highest gain.
This behavior can be understood intuitively by con-
sidering the array of vectors or light rays normal to the
wave surface. These rays have slightly different
propagation directions, and the gain profile tends to
augment the rays on the negative x side of the beam.
With a convex wave surface these rays tend toward the
negative x direction, and the opposite behavior results
for a concave surface.

Another consequence of Fig. 5 is that the asymmetric
dispersion effects are negligible for most reasonable
values of the input phase front curvature. Only if the
phase fronts are extremely flat at the input (R ~ 100 m)
does the deflection due to the gradient of the real index
of refraction (dispersion) become comparable to the
deflection caused by the gain profile.

IV. Experiment

A. Description of Equipment

In this section we shall describe the laser amplifier
and the measurements performed on it. The amplifier
is a double discharge uv preionized HF laser, similar in
design to the CO; laser of Judd.8 It uses premixed
hydrogen and fluorine gas as fuel, with helium diluent,

3
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UPPER ELECTRODE

RN
§ ]

TEFLON INSULATOR

SPARK PLUG

LOCATION LOWER ELECTRODE

TUBE O.D,
FLANGE

Fig. 2. Cross section of laser amplifier.
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Fig. 3. Experimental arrangement. Beam deflection is measured

on the quadrant detector. The gain is measured both by a heterodyne

system making use of a Mach-Zehnder interferometer and by com-

paring the output and input intensities. By translating mirrors M1

and M2 the gain at different positions is measured. By moving the

beam focusing mirror, the radius of curvature of the beam at the
amplifier is changed.

and a trace of oxygen to inhibit premature reaction of
the Ho with Fo. The detailed performance of this laser
medium, both as an oscillator and as an amplifier, has
been described elsewhere.” However, we include a di-
agram of the cross section of the laser, Fig. 2, to help
clarify the presence of the gain gradient.

The laser is filled with gas in the following ratio:
Fo:Ho:He:09 = 5%, 2.5%, 92%, %% at 125 Torr. The
capacitors are charged to 12 kV. When the trigger is
activated, the discharge current first flows to the spark
plugs, which have the lowest initial impedance. When
these fire, they ionize the gas mixture in the laser by the
uv radiation emitted, and this lowers the impedance of
the main gap, causing it to discharge. During this dis-
charge the fluorine molecules are dissociated, and the
free F atoms react with the hydrogen to produce the
lasing species:

Fo + hy — 2F,
F + Hy — HF* + H,
H+ F;— HF* +F.

However, since the spark plugs are situated along one
side of the laser, the deposition of uv radiation is
strongly nonuniform, resulting in a nonuniform Fy
dissociation fraction and hence a transverse gain gra-
dient (see below).

The apparatus was arranged as shown in Fig. 3. A
beam from a frequency stabilized HF probe laser® was
passed through the amplifier and the output beam an-
alyzed with a number of detectors. Figure 3 is a com-
posite diagram, showing all the measurements'done,
even though not all of them were done simultaneous-

ly.
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B. Measurement of the Gain Gradient

The transverse gain profile was measured by passing
the probe beam through the amplifier and observing the
input and output intensities at detectors D1 and D3 as
functions of time. As a check we also measured the gain
as an amplitude modulation of the beat frequency
produced by the interference of the output beam with
part of the frequency shifted input beam in a Mach-
Zehnder interferometer. The purpose of this check was
also to observe the beam deflection interferometrically,
but this was unsuccessful due to the significant defor-
mation of the wavefront of the reference beam by the
acoustooptic modulator.

By translating the mirrors M1 and M5 as shown, the
probing beam was moved across the amplifier aperture,
and the gain as a function of time and transverse posi-
tion measured. Some typical results for three different
positions are shown in Fig. 4. For x = 0, the gain is
measured on the geometrical center axis of the ampli-
fier, and positive values of x are toward the side with the
spark plugs. It can be seen that close to the spark plugs,
very high values of the gain are reached, while the pulse
length is quite short. In this region, much uv preioni-
zation occurs, and as a result the initial Fs dissociation
rate is high. This leads to high gains and rapid reac-
tions, with the converse holding farther away from the
spark plugs.

If we assume the gain to be approximately linear in
between the measured values, we can reconstruct the
gain gradient as a function of time at x = +7.5 mm. At
this position, the gradient is initially toward the spark
plugs, as indicated by the dotted arrows in Fig. 4. At
7 usec, the gradient is zero since the gains at +10 mm
and +5 mm are the same at this instant; and for later
times, the gradient is away from the spark plugs. The
behavior of the gain gradient as a function of time was
measured from the data in Fig. 4 and plotted in Fig.
5.

X=+10 MM

SMALL SIGNAL
GAIN (W

! L
4 8 12 16 20 24 2
TIME (3:5)

Fig.4. Smallsignal gain on Py(5) as a function of time at three dif-

ferent transverse positions. X = 0is on the centerline, and positive

x is toward the preionizers. Dashed lines indicate direction of gain
gradient.
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Fig.5. Transverse gain gradient as a function of time at the position
x = +5 mm, extracted from results in Fig. 4. The peak gain gradient
is1.1 X 103 m~2,

Fig. 6. Transverse beam deflection; vertical scale: 500 uR/cm;
horizontal scale: 5 usec/cm. The lower trace shows the deflection
first to one side and then to the other.

PEAK IN mr 1.0

T
= 5 10 RIN METERS

Fig.7. Comparison between measured values of beam deflection and
calculated predictions. The observed beam deflection angle is plotted
as a function of the radius of curvature of the beam.

C. Measurement of Beam Deflection

To confirm the theoretical calculations of Sec. ITI, it
is necessary to measure the beam deflection as a func-
tion of frequency and radius of curvature of the input
wavefront. The beam deflection was observed by
imaging the output beam on a quadrant detector with
opposing quadrants connected differentially as shown
in Fig. 3. In this arrangement a beam deflection will be
measurable as a deviation from a null balance of op-
posing quadrants, and this deviation can easily be cal-
ibrated as an angle by shifting the beam across the de-
tector a known distance. When the amplifier was fired,
a deflection was observed, with the beam first steering
in one direction, and then in the other, as expected from

- the measurement of the gain gradient. A typical result

is shown in Fig. 6.

The radius of curvature of the wavefront at the en-
trance to the amplifier was deduced from the following
measurement. From the length of the probe laser
cavity and the curvature of its mirrors, the beam spot
size could be calculated from the well known equa-
tionsl0

w§ = [M(2m)][d(2R ~ )], (24)
w2(z) = wi [1 + (A—:ﬂ (25)
W,

where wo is the 1/e radius of the spot size at the waist
of the laser, R is the radius of curvature of the out-
coupling mirrors, d is the separation of the mirrors, and
w(z) is the 1/e radius of the propagating beam at a dis-
tance z from the waist. Using a rotating mirror,
sweeping the beam across a small detector, we measured
w(z) as a function z and found it to be in excellent
agreement with the values calculated. We were
therefore confident that the propagating beam was well
characterized by this formalism for the propagation of
a Gaussian beam and felt justified in calculating the

radius of curvature of the beam from

2
R@) =z [1 + ”—‘”—9)2] (29
Az

To vary the radius of curvature of the beam propa-
gating through the amplifier, we simply varied the dis-
tance from the probe laser to the concave beam focusing
mirror, shown in Fig. 3 and the distance from this mirror
to the amplifier. After each change, we measured w(z)
for several values of z on either side of the amplifier, as
well as the value of z, to check on the continued agree-
ment. This measurement also provided the value of
w(0) at the entrance to the amplifier, required in the
calculation. The uncertainty in R(z) is still quite large
due to the difficulties in measuring w(z) accurately.
We measured 8(z ;) for several different values of R (0),
and the results are shown in Fig. 7 with the calculated
values of 0(z,y:). These measurements represent the
maximum values of 6(z,y¢) at line center of the laser.
The reversal of the deflection angle with radius of cur-
vature was observed as shown.

The frequency dependence of the deflection angle,
especially the predicted asymmetry due to anomalous
dispersion for large radii of curvature wavefronts, was
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not observed. This was due to a limitation to the
smallest deflection angle measurable: the probe laser
was on one optical table, the amplifier on another, and
the detectors on a third, in a shielded enclosure required
to protect the detectors from electrical noise due to the
laser discharge. With this arrangement, the individual
vibrations of the tables limited the minimum angle
measurable as beam deflection to 50 urad. For this
reason, effects due to anomalous dispersion could not
be seen. We verified this to be the case by observing the
same sign of 8(z) for two input frequencies at either side
of line center with R(z) sufficiently short to observe a
repeatable beam steering signal. This test confirms
that the deflection observed was due to gain deflection
rather than anomalous dispersion, as predicted in Fig.
3. From the comparison of experimental results with
the theoretical predictions shown in Fig. 7, we conclude
that the linear theory of beam deflection developed
above adequately describes the effects observed. The
agreement is semiquantitative since both the sign and
approximate magnitude predicted are close to the ob-
served values, but not quite within the experimental
eITors.

V. Conclusion

We have developed a theoretical description for beam
deflection in a chemical laser amplifier and have dem-
onstrated by experiments that the theory is semi-
quantitatively correct. With this understanding of
beam deflection, amplifier systems can be designed to
minimize the effect. Deflection can be minimized by
using plane waves and large Fresnel numbers, ensuring
that the radius of curvature of the wavefronts will re-
main large. Furthermore, in the saturated region of the
laser, the magnitude of the deflection will decrease with
the saturated gain. The effect of anomalous dispersion
is also very small in most laser amplifier designs.

The authors thank K. T. Yano for many helpful dis-
cussions, and for providing the laser amplifier, and E.
Hoover for excellent technical support with the exper-
iments.

This work was supported by TRW IR&D funds.

References

. H. Kogelnik, Appl. Opt. 4, 1562 (1965).

. L. W. Casperson and A. Yariv, Appl. Opt. 11, 462 (1972).

. H. Maeda, J. Appl. Phys. 47, 3566 (1976).

. L. W. Casperson, J. Opt. Soc. Am. 66, 1373 (1976).

. L. W. Casperson and S. J. Sheldrake, Opt. Commun. 12, 349
(1974).

6. At 125 Torr the pressure broadened linewidth is twice the width
of the Doppler profile.

7. G. Clark, M. Kolpin, J. Munch, T. Thompson, and K. Yano,
“Lader Device Characterization Final Technical Report,” TRW
Report 27186-6002-R4-00.

8. 0. P. Judd, Appl. Phys. Lett. 22, 95 (1973).

9. J. Munch, M. A. Kolpin, and J. Levine, IEEE J. Quantum Elec-
tron. QE-14, 17 (1978).

10. H. Kogelnik and T. Lee, Appl. Opt. 5, 1550 (1966).

ury

[S 0 N I U

874 Applied Optics / Vol. 18, No. 6 / 15 March 1979

Meetings Schedule
OPTICAL SOCIETY OF AMERICA
2000 L Street N.W., Washington D.C. 20036

15-16 May 1979 GRADIENT-INDEX OPTICAL IMAGING TOP-
ICAL MEETING, Rochester Information: J. W. Quinn at OSA
_or CIRCLE NO. 57 ON READER SERVICE CARD

30 May-1June 1979 CONFERENCE ON LASER ENGINEERING
AND APPLICATIONS, Washington, D.G. Information: J. W.
Quinn at OSA or CIRCLE NO. 58 ON READER SERVICE
CARD

18-20 June 1979 DYNAMICAL PROCESSES OF THE EXCITED
STATE OF IONS AND MOLECULES IN SOLIDS TOPICAL
MEETING, Madison Information: J. W. Quinn at OSA above
or CIRCLE NO. 56 ON READER SERVICE CARD

2-6 July 1979 NINTH INTERNATIONAL LASER RADAR CON-
FERENCE, Munich, West Germany Information: J. W. Quinn
at OSA or CIRCLE NO. 64 ON READER SERVICE CARD

1-3 August 1979 PHOTOACOUSTIC SPECTROSCOPY TOPI-
CAL MEETING, lowa State University Information: J. W.

Quinn at OSA or CIRCLE NO. 55 ON READER SERVICE
CARD

11-13 September 1979 EXCIMER LASERS, Charleston, S.C.
Information: J. W. Quinn at OSA or CIRCLE NO. 53 ON
READER SERVICE CARD

19-21 September 1979 SECOND INTERNATIONAL CON-
FERENCE ON INTEGRATED OPTICS AND OPTICAL COM-
MUNICATION, Amsterdam Information: J. W. Quinn at OSA
or CIRCLE NO. 59 ON READER SERVICE CARD

8-12 October 1979 ANNUAL MEETING OPTICAL SOCIETY OF
AMERICA, Rochester, New York Information: J. W. Quinn
at OSA or CIRCLE NO. 54 ON READER SERVICE CARD

26-28 February 1980 CONFERENCE ON LASER AND ELEC-
TROOPTICAL SYSTEMS, San Diego Information: J. W.

Quinn at OSA or CIRCLE NO. 60 ON READER SERVICE
CARD

20-24 October 1980 ANNUAL MEETING OPTICAL SOCIETY
OF AMERICA, New Orleans Information: J. W. Quinn at
OSA or CIRCLE NO. 61 ON READER SERVICE CARD



	Beam Deflection in a Pulsed Chemical Laser Amplifier
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1373475965.pdf.n9MAU

