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Gravitational synchrotron radiation from cosmic strings

Alan Cresswell
Physics Department, Portland State University, Portland, Oregon 97201

Robert L. Zimmerman
Institute nf Theoretical Science and Department of Physics, Uniuersity of Oregon, Eugene, Oregon 97403

(Received 6 June 1990)

This work studies the gravitational synchrotron radiation emitted from arbitrary cusps of cosmic
strings. The results are expressed in terms of four parameters describing the motion of such a cusp.
The power spectrum is derived for cusps moving at unit velocity. By using a phenomenological ap-

proach we also derive the power emitted when the radiation reaction on the cusps is taken into ac-
count. In both cases, the synchrotron nature of the radiation produces a power spectrum emitted in

a narrow forward cone. If cosmic strings do exist, the radiation emitted by their cusps would seem

to be a potential candidate for gravitational-wave detectors.

I. INTRODUCTION

Most grand unified theories predict the formation of
cosmic strings' during phase transitions in the early
universe. These cosmic strings are one-dimensional ob-
jects of the false vacuum of the more symmetric grand
unified phase, in an otherwise homogeneous spacetime.
Networks of strings intercommute, thus forming a distri-
bution of loops of all sizes. These oscillating loops will
lose their energy predominantly by gravitational radia-
tion. A large class of string loops develop cusps during
their cycle. The purpose of our work is to compute the
beamed gravitational synchrotron radiation emitted by
arbitrary cusps.

The strongest argument thus far in support of cosmic
strings was that loops of string could provide a seed for
galaxy formation and explain the observed galaxy corre-
lation function. Recent numerical work, however,
questions the plasusibilty of this scenario but does not
rule out the importance of cosmic strings in galaxy for-
mation. Whether or not cosmic strings prove to be the
trigger for galaxy formation, their existence has great
cosmological importance. The present work shows that
cosmic strings could as well be reasonable candidates for
gravitational-radiation detection.

Several authors have calculated the average gravita-
tional radiation emitted by oscillating loops featuring
cusps. ' (Similar calculations also have been performed
for loops with kinks; we are not concerned with those
here. ) These calculations considered only a few simple
classes of periodic string solutions. Such solutions are
characterized by a single time scale that is of the order of
the size of the loop. Therefore, the average radiation fre-
quency is proportional to the oscillation frequency and
thus lies, in general, outside the range of gravitationa1-
wave detectors. On the other hand, more generic loops
may have many time scales in which case the frequency
of occurrence of the cusps need not be related to the fre-
quency of oscillation of the loop. In fact most of the
high-frequency power emitted by a loop will be radiated

by the cusps. Moreover the synchrotron nature of this
radiation will beam the power in a narrow forward cone.
These considerations make arbitrary cusps good candi-
dates for observation by gravitational-wave detectors.

In Sec. II, we calculate the spectral distribution of the
synchrotron gravitational radiation coming from the
most general cusp. As in the electromagnetic case, the
result can be expressed in terms of parameters describing
the instantaneous circular motion. In Sec. III we use the
general expressions obtained in Sec. II to study the case
of a cusp moving at the speed of light. In that section we
also study the influence of radiation reaction on the result
by phenomenologically constraining the cusp to move at
a finite Lorentz factor. In both cases we derive the total
power emitted per unit solid angle and compute the
cutoff frequencies and the half-width of the beam.

II. SPECTRAL ENERGY RADIATED BY A CUSP

In this section we develop a formalism that allows us to
compute the energy radiated by an arbitrary cusp. This
formalism parallels the procedure followed in elec-
tromagnetism for the treatment of synchrotron radiation
emitted by accelerated charges. We obtain the spectrum
of radiation in terms of a few arbitrary parameters
characterizing the observer's position and the motion of
the cusp.

Letting x"=x"(o,w) represent the string's config-
uration where 0. and ~ parameters on the string, the
string's dynamics are derived' from the constraints

g„~ "x""=0, g„,(x "x +x'"x")=0,
and the wave equations

x"—x""=0,
which are obtained from varying the string s action func-
tional which was first proposed by Nambu in the context
of hadronic physics. In Eqs. (1) and (2), g„, represents
the space-time metric (

—1, 1, 1, 1). The dot and the
prime indicate derivatives with respect to the timelike
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and spacelike parameters ~ and o. of the string's world
sheet.

The parameter v. can be chosen as the time coordinate
x, in which case Eqs. (1) and (2) take the form

x.x =0, x +x =1,I 2 &2 (3)

where boldface indicates the space part of the string's po-
sition four-vector.

A general solution to Eq. (3) is written as

x'(o, t ) = —,'[.a(g)+b(g)],

where we have defined the null parameters

(=a —t and tr=o+t .

The conditions (3) thus read

a(g) = —gve, + —,'g a"(0)+—,'g a"'(0)+

b(g) =tjve, + —,'rj b"(0)+—,'g b"'(0)+
(10)

cosf,
a"(0)= —vco, sinf,

0

0,
a'"(0)= —v g,"sinf, +2co,f,'cosf,

COg
2

and

where the derivatives of a and b, evaluated at the cusp,
are given by the equations

a' =b' =1 (6)

where the prime now indicates a derivative with respect
to the argument of the function. Thus the three-vectors
a' and b' can be thought of as describing trajectories on a
unit sphere, the so-called Kibble-Turok sphere. Whenev-
er the two trajectories intersect, a cusp, moving at unit
velocity, develops at that instant.

Equations (6) do not include the effect of the
gravitational-radiation reaction back on the string. This
effect could be significant at the location of the cusp but
is very difficult to compute. For our purpose here, we in-
troduce radiation damping phenomenologically by con-
straining the cusp to move at a finite Lorentz factor. '

Taking v (where v (1) to be the speed of the cusp, we
thus impose on the cusp the constraints

cosfb
b"(0)= v cob slnfb

0

Q~
b"'(0)= v gb'sinfb+2cob fbcosfb

2
COb

(12)

We have defined the constants

fl, =g,"cosf, —2co,f,'sinf„ co, =g,'(0), g,
"=g,"(0):—0,

Qb =gb cosfb 2cobf bsin—fb, co'b =gb(0), gb'=gb'(0): 0, —
(13)

g, =g, (0)—:0, f, =f, (0), P,
' =f,'(0),

gb =gb(0) =0, ft =ft (0), fb =ft'(0) .

&2 Qt2 2
7 (7)

which are to replace Eq. (6). Since our attention is fo-
cused on the cusp, this constraint is only needed in the
neighborhood of the cusp and thus does not impose any
unphysical requirement to the whole extent of the loop.
Equations (7) reduce the size of the Kibble-Turok sphere
around the cusp and result in a smoothing of the cusp.

We assume that the cusp develops at the origin of coor-
dinates and moves with a positive velocity U along the z
axis. Thus

a(0) =b(0) =0,
a'(0)= —b'(0)= —ve, .

The most general solutions a' and b' to Eqs. (7), can be
written as

cosf, (g)sing, (g)
a'(g) = —v sinf, (g)sing, (g)

cosg, (g)

cosf&(g)singb(q)
b'(rt) = v sinfb(rI)singb(g)

cosgb ( 7) )

where f„g„fb, and gb are smooth but otherwise arbi-
trary functions (See Fig. 1). The functions a and b an be
expanded around the cusp (g=rI=O). We have

Written in terms of the angular frequencies of a and b,
given by co, and cob in Eq. (13), the expression for the ra-
dius of curvature takes the form

2U

[co-, + cob 2co, cob cos(fg
—fb)]'—(15)

where f, fb is the angle be—tween the planes tangent to
the motions of a and b, respectively (See Fig. 1). We no-
tice that when co, =cob and f, =fb, the motion of the
cusp is linear along the z axis.

The power per solid ang1e, emitted by the cusp in the
direction N=(sinOcosg, sin8sing, cos8) of an observer, is
given in the local inertial frame by

dI' 2~i( tiO)
dQ

(16)

As in the electromagnetic case, the emitted gravitation-
al synchrotron radiation will be determined completely
by the parameters describing the instantaneous circular
motion of the emitter, namely, the radius of curvature,
the velocity of that motion and the position of the ob-
server with respect to that motion. For arbitrary cusps,
the radius of curvature of the motion will be given by the
square of the velocity divided by the acceleration at t =0:
namely,

R =2v'i~a"(0)+b"(0)~ .
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where (t"") is the average, over several wavelengths, of
the stress-energy tensor of the gravitational waves. We
choose a common form' of t„given by

1
t& (Rpv prI g ~Rk ) (17)

where f"=x"(o,t) represents the string configuration.
Performing the change to the null string parameters of
Eq. (5) and then computing the Fourier transform of Eq.
(21) we obtain

where R„' ' is the second-order part of the Ricci tensor.
Following a development that parallels Ref. 9 one obtains
the energy radiated over all times in a solid angle d0 by
performing a time integration of Eq. (16). The result is

f cv dcu[T""(cv,k)T„' (cv, k)
dQ 2~~ 0

T(J"(Ic )
—K f dye

—(co(g+N. a)/2

2 Qo

X f d rI e im(g —N b)/2f Pv( g ~ )

where F"' is given by

F =1 [F 'I —=F= —,'(b' —a'),

(22)

(23)

where

k=a)N .

—
—,'T (cv, k)], (18)

(19)

[F'JI =F= ——
—,
' [a'xb'+b'xa') .

Since our purpose is to focus on the radiation emitted
at the cusp we expand the arguments of the exponentials
around the origin to obtain

Clearly, the result is valid only because gravity is weak
everywhere.

The Fourier transform of the stress-energy tensor of
the string is given by

T&"(k)=+f '"dye'"""""'"'
2 oc

+ ~ i[b~ q+b2~ +b3r] ~ vX drt e '
Ff,'„",

T„„(k)=fd x T„„(x)e (20)
(24)

(21)

For a string loop of length L and mass per unit length p
the stress energy is given by

T""(t,x)=p f do 5"'(x—f)[f"f" f'"f'")), —
0

where the coefficients a; and b; are given in the Appen-
dix. Terms of fourth and higher orders have been
neglected in the exponentials. Fl;„ is the first-order ex-
pansion of F around the origin and is given by

F;„=1,lin

0 cosf, cosfb
F„„=u 0 + ,'u gcv, sinf—, + ,'uricvb s—infb

F);"„=u'cv,cvbcosf, cosfbrig, F"„»= ,'u'cv, cub»n(f—, +fb )rtp,

F»)» =u cv, cvbsinf, sinfbrtg, F)";„=,'v [cvbcosfbrt+—cv,cosf, g),
Ff„=u, F»)„= ,'v [cvbsinfbrt+—co, sinf, gI .

(25)

('=g+b~l3b3, rI'=rI+a~l3a3 . (26)

In order to express Eqs. (24) in terms of modified
Bessel functions we perform the following change of in-

tegration variables:

T = I me'~I Ib T"=Up 00
2 a b&

Tzz U 2T
7

T""=,'me' v cv, cvbcosf—,cosfbH, Hb,
T»»= ,'me' v cv, cvbsinf, —sinfbH,Hb,
T"»= ,'me' u cv,—cvbsin(f, +fb)H, Hb,

(27)

This change of variables is consistent with the g and rt ex-
pansions appearing in (24) if the new variables defined in

(26) remain small. This condition is verified in the case
we shall consider, namely, the forward direction, where X
lies in a narrow cone along the z axis thus having 8=0.
The majority of the radiation, as in the analog elec-
tromagnetic case, is emitted in that direction.

After we perform the integration of Eq. (21) we obtain

T "=,'me' u(cvbcosfbI, H—b+co,cosf, IbH, ),
T =

—,'me' v(cub sinfbI, Hb+ co, sin f, IbH, ) .

4 is a phase factor and we have defined the following in-

tegrals
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i ( A lx+ A2x )I, = dxe

i( A ~x+ A2x )

H, = dx xe

i(Blx+B2x )Ib= dx eb
~ d

~

I 2
3

7

Hb= f dx xe'

where

co,cos P, sin 8
A, = —

—,'co(1 —u cos8) —
—,'eau

0,sin& —co, cosg

cobcos (()bsin 8
Bi =

—,'co(1 —u cos8)+ —,'cpu
Ab sin0 —co~b cos0

(28)
[T" (co, k)T„*,(co,k) —,'T—(co,k)] .

den dQ
(32)

At high frequency, the dominant contribution to (32)
comes from the product of H integrals that represent
K2/3 functions. Thus, when neglecting the I integrals
contributions to Eq. (32), the expression for the spectral
energy takes the simple form

2 2 2

a ~bHa Hb
dE G~p, 4

dc@ dO
(33)

After writing out the expressions for H in Eq. (33), we ob-
tain

The spectral energy radiated is given by the integrand
of Eq. (18); namely,

( Qa sin8 —ru, cos8),
12

(29) d E
dc' dO

G 2
'2

A1B1

A2B2

B = — (0 sin8 —~ cos8) .
COU

2 12 b b

1/2
2 1I =—
3 A2

Ki/3(ka»

2iA,
H = — K2/3(g )

3 332
' 1/2

2 1

b
= K—i/3(gb )

3 B2

2iB1
K2/3((b ) ~

3 3B2

where

(30)

The co's and 0's are defined in Eq. (13). p, =f, —
i)) and

pb
=fb —p are the angles that the observer makes with,

respectively, the planes of motion of a and b (see Fig. 1).
The integrals in Eqs. (28) are expressed in terms of
modified Bessel functions:

Bi =— +8 sin Pb
—Pcos pb8 +O(8 )

4 y2

2

[1—a8 ——'8 +O(8 )],2 12 2

(35)

XK2/3(ka )K2/3(kb ) ~ (34)

where the coefficients A „A2, B1, and B2 are given in
(29).

Expression (34) represents the spectral energy radiated
by a cusp moving at velocity U ~1. The answer depends
on cusp parameters but not on the overall string
configuration. Thus it allows us to study gravitational ra-
diation from the most general cusp of string. These re-
sults are reminiscent of the electromagnetic case."

Since we are interested in the forward radiation, we
can expand the coefficients of Eqs. (29) for small 8. After
setting v = 1 whenever possible, we obtain

T

2
+8 sin i)), —a cos $,8 + O(84)" . y'

1 1

3+3g i/2 ' ~" 3v/3B i/2 (31) B = [1—p8 ——'8 +O(83)],
12 2

where

a=—Q, l~, and P=Qblmb

Thus Eq. (34) becomes
b'

d E
dc' dO

16Gp co
g(8, u)K2/3(g )K2/3(gb), (36)

9'' Cc)~ COb

where

g(8, u)= I(1—u) [(1—u) +O(8)]

and

+ —,', 8 sin p, sin pb[1+O(8)]I (37)

FIG. 1. String velocity {b',a') in terms of g„g&, F„and Fb. with

=Pi)/CO, gb
—COICd b (38)
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co„=6', + +8 sin ((), + +-~0 2 . 2 1 2~2
ca a 2 3 2 t2

' —3/2

+O(8') '

(39)

ICz&3(g)- I ( —')/(2' g )

The energy then takes the form

d E 2

(iv~cob ) co

G'=(1/rr )I ( —') 12 G .

(43)

(44)

cub 6cob' + &+8 sin pb+ +1+p8 2 . i 1 2p 1

y2 3y2
—3/2

+O(8 )
'

ea = 6',
y [1+O(8)]—a 8 [1+O(8)]

6a)b

y [1+O(8)]—P ~ 8 ~2[1+0(8)]

(40)

In Eq. (37), g(v, 8) has been written in order to study the
cases v =1 and v@1 separately. y represents the usual
Lorentz factor (1—v )'~ and we assumed v =1 wherever
possible. Since the modified Bessel functions drop ex-
ponentially when their argernent becomes greater than
one, ~„and co,b represent cutoff frequencies for the radi-
ation.

When the observer lies in the plane of motion of a or b
then ((), or pb vanish and the cutoff frequencies take a
different form: namely,

Next obtain the power in the beam by multiplying the
above expression by v /R where we can assume that v = 1;
R is given by Eq. (15). The total power radiated, per
solid angle, up to the cutoff frequency co, is derived by in-

tegrating the resulting expression. The result is

3 2
=G' co,'~ [1+O(8)] .

R (co, cob )
(45)

6cob6cog 1

sinPb

1

sing,
' (46)8, =Inf

Thus in the limiting case of cusps moving at unit veloci-
ties the power radiated per unit solid angle becomes arbi-
trarily large as 8 goes to zero since the cutoff frequencies
[Eqs. (42}] in the forward direction are infinite. However
this singularity is integrable since co,' ~ 0 ' and thus the
total power is finite.

We can estimate the angular half-width of the beam at
a given frequency by setting the arguments of the
modified Bessel functions equal to unity. Namely, impos-
ing g, = 1 and gb

= 1 in Eqs. (38) and (42), we obtain
' 1/3 ' 1/3

In. DISCUSSIO~

In this section we study the preceding results in the
case where the radiation reaction effect on the string can
be neglected (v =1) as well as the more realistic case
where this effect is taken into account. We find that in all
cases a strong beaming of the radiation in the forward
direction can be expected.

A. Case u=l

and thus we find that the beaming increases with frequen-

cy as expected. In Eq. (45} it is assumed that sing, and
sinpb remain strictly positive. If either vanish, Eq. (40) is
used instead in order to compute the half width of the
beam and we obtain qualitatively the same result.

In the case of the simple periodic loops considered by
Vachaspati and Vilenkin, for instance, the cusp frequen-
cies are given by co, =coo, and cob =coo where coo is the fun-

damental frequency of the loop, namely coo=4'/I. . For.
such loops, we recover their result and obtain for the to-
tal power radiated in the nth Fourier harmonic directly
from Eq. (45):

Neglecting radiation reaction we find that Eq. (37) be-
comes

dP 3G~ 2n 1/3

dQ
(47)

g(8, 1)= —,', 8 sin p, sin pb [1+O(8)] .

The cutoff frequencies [Eqs. (39)] take the form

(41) where n, is the critical harmonic above which there is lit-
tle radiation.

667' 6')b
3 3

and coQb 3 38 sin P, 8 sin Pb
(42)

In the limit of vanishing 8 (i.e., when the observer is in
line with the motion of the cusp), the cutoff frequencies
are infinite and thus all frequencies participate to the
spectrum of radiation. For cusps having p, or pb vanish-
ing, the corresponding cutoff frequencies are derived
from Eqs. (40).

We can write an approximate expression for the spec-
tral energy radiated by using the asymptotic expressions
for the modified Bessel functions in (36). The asymptotic
form of E2/3(g) for g ((1 is given by

B. v &1 case

Assuming that the radiation reaction has a significant
effect on the characteristics of the cusp as observed in the
forward direction, we find from Eq. (37) that

g(8, v)=(1 —v) [1+O(8)] . (48)

Equation (48) reflects the assumption that the angle 8 at
which the cusp is observed remains small enough in order
for the second term in the expression of g(o, u ), given by
(37), to remain small. From the approximate expressions
for the Bessel functions in expression (37) and the value
of g(8, v ) given by (48},we express the spectral energy as
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=G' 1[1+0(8)].d E p 1

CO Qi (Qj Qjb ) QP

(49)

Notice that the expression for the energy per unit fre-
quency is, to lowest order, independent of the effects of
the radiation reaction on the cusp [compare to Eq (44)].
Thus the expression for the power in the beam given by
Eq. (45) relnains valid for the u &1 case. However the
cutoff frequencies for the energy radiated do depend on
the radiation effects. We have

Once again we see that for frequencies of the order of the
critical frequencies the radiation is very strongly beamed
forward if p, and pb are nonvanishing [when p, and/or

pb vanish a result similar to Eq. (51) is derived from Eq.
(40)].

APPENDIX

The expansion coefficients in Eq. (21) are given by
=6~ y ~ b =6~by (50)

which is obviously bounded at I9=0 for all cusps, unlike
the v=1 case. However since y can be expected to be
large although not infinite, the cutoff frequencies will
remain very high.

Lastly we derive the beam width. We must realize that
when u =1, we are dealing with two expansions (in 1 —u

and in 8) whose terms cannot always be compared (e.g. , a
8 and a (1 —u )8 term). It is thus important to keep the
physics in mind when we neglect terms. Since y can be
assumed to be very large although finite, we make the as-
sumption, in Eq. (39), that for most strings the half-
width 8, of the beam will satisfy the following inequali-
ties: a/y «sin $,8, and p/y «sin pb8, . In that
case, defining the half-width to be the angle for which
g(8, ) =g(0 )+ 1, we obtain from Eq. (39)

1

tt =iiit tio2 into) ' . ;(stab
Y Sill 'Y S111 b

a, = ——(1 —u cos8),CO

2

a2 =
—,'couto, sin8 cosg, ,

a, =
—,', alu [sin8(g,"cosg, —2ol, f,'si nP, )

—to, cos8],

b, = —(1—u cos8),
2

b2 —couNbs1 8coskb

b 1
= —

—,', cou [sin 8(gb'cospb 2tob fb si n—8b )
—

cob cos8],

where

N = ( sin8 costI), sin8 sing, cos8),

(51) 4.=f.—0 4b =fb
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