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ENVIRONMENTAL CONTROLS ON THE LANDSCAPE-SCALE
BIOGEOGRAPHY OF STREAM BACTERIAL COMMUNITIES
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3,4

1Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
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Abstract. We determined the biogeographical distributions of stream bacteria and the
biogeochemical factors that best explained heterogeneity for 23 locations within the Hubbard
Brook watershed, a 3000-ha forested watershed in New Hampshire, USA. Our goal was to
assess the factor, or set of factors, responsible for generating the biogeographical patterns
exhibited by microorganisms at the landscape scale. We used DNA fingerprinting to
characterize bacteria inhabiting fine benthic organic matter (FBOM) because of their
important influence on stream nutrient dynamics. Across the watershed, streams of similar pH
had similar FBOM bacterial communities. Streamwater pH was the single variable most
strongly correlated with the relative distance between communities (Spearman’s q¼ 0.66, P ,
0.001) although there were other contributing factors, including the quality of the fine benthic
organic matter and the amount of dissolved organic carbon and nitrogen in the stream water
(P , 0.05 for each). There was no evidence of an effect of geographic distance on bacterial
community composition, suggesting that dispersal limitation has little influence on the
observed biogeographical patterns in streams across this landscape. Cloning and sequencing of
small-subunit rRNA genes confirmed the DNA fingerprinting results and revealed strong
shifts among bacterial groups along the pH gradient. With an increase in streamwater pH, the
abundance of acidobacteria in the FBOM bacterial community decreased (from 71% to 38%),
and the abundance of proteobacteria increased (from 11% to 47%). Together these results
suggest that microorganisms, like ‘‘macro’’-organisms, do exhibit biogeographical patterns at
the landscape scale and that these patterns may be predictable based on biogeochemical
factors.

Key words: 16S rRNA genes; bacteria; Hubbard Brook, New Hampshire, USA; microbial
biogeography; microbial diversity; pH; stream benthic organic matter; terminal-restriction fragment length
polymorphism; T-RFLP.

INTRODUCTION

For centuries scientists have known that microorgan-

isms are abundant and ubiquitous on Earth. More

recently we have learned that many natural environ-

ments host a remarkable diversity of microorganisms,

the vast majority of which have not been cultivated in

the laboratory (Floyd et al. 2005). With molecular

methods of microbial community analysis, we are now

able to survey the full extent of microbial diversity in

individual environments and we can study microbial

biogeography, the distribution of this microbial diversity

across space. Microorganisms often exhibit predictable

biogeographical patterns (Hughes-Martiny et al. 2006),

but these patterns are not necessarily the same as those

observed in better-studied taxa such as plants and

animals (Fierer and Jackson 2006).

In the early 20th century, microbial biogeography was

summarized by the statement ‘‘everything is everywhere,

the environment selects,’’ also known as the ‘‘Baas-

Becking hypothesis’’ (Beijerinck 1913, Baas-Becking

1934). We now know that microbial communities can

exhibit spatial variability at scales ranging from

millimeters to thousands of kilometers (Hughes-Martiny

et al. 2006), and we know that a large number of biotic

and abiotic environmental characteristics are capable of

influencing microbial community composition in natural

environments (Horner-Devine et al. 2004b). However,

we do not know if ‘‘everything’’ really is ‘‘everywhere’’

nor do we know the factor, or set of factors, responsible

for generating the biogeographical patterns exhibited by

microorganisms. In other words, we often lack specific

information on which aspect of ‘‘the environment’’ is

responsible for the spatial patterns.

For this study, we focused on the bacterial commu-

nities inhabiting fine benthic organic matter (FBOM) in

headwater streams of the Hubbard Brook watershed

(New Hampshire, USA), a site that provides large

gradients in biogeochemical properties. We have chosen

Manuscript received 18 October 2006; revised 8 February
2007; accepted 23 February 2007. Corresponding Editor: S.
Findlay.
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to focus on FBOM communities because FBOM is the

primary reservoir of organic nutrients (C, N, and P) in

forested headwater streams and because the microbial

processing of FBOM largely controls the carbon and

nutrient budgets within these streams (Sinsabaugh et al.

1992, Webster and Meyer 1997, Bonin et al. 2000).

Although fungi are the dominant microorganisms on

submerged wood and leaves (Baldy et al. 1995, Hieber

and Gessner 2002, Gulis and Suberkropp 2003), bacteria

are the most abundant microorganisms on FBOM, and

bacteria are likely to mediate the release of soluble

nutrients from FBOM into the stream channel (Ellis et

al. 1998, Findlay et al. 2002). Previous studies of

microbial communities on benthic organic matter have

largely focused on total bacterial or fungal biomass

levels and general microbial processes (Sinsabaugh et al.

1992, Bonin et al. 2000, Findlay et al. 2002, Gulis and

Suberkropp 2003, Stelzer et al. 2003). Only a few studies

(e.g., Fazi et al. 2005) have directly examined the

structure and composition of FBOM bacterial commu-

nities. The importance of ‘‘macro’’-bial biodiversity in

the functioning of benthic ecosystems is well recognized

(Covich et al. 2004, Solan et al. 2004) and we expect that

the same holds true for microbial biodiversity. If this is

the case, the characterization of FBOM microbial

communities is likely to enhance our understanding of

within-stream heterotrophic activity and its effects on

stream metabolism.

We assess FBOM bacterial communities in forested

streams, describe the landscape-level spatial heterogene-

ity in these communities, and identify the environmental

factor, or factors, that best explain the observed

biogeographical patterns. From previous research on

aquatic microbial communities, we expected stream-

water chemistry and the characteristics of the organic-

matter inputs to have the most important influence on

the composition of FBOM bacterial communities (van

Hannen et al. 1999, Crump et al. 2003, Eiler et al. 2003,

Fazi et al. 2005, Yannarell and Triplett 2005, Findlay

and Sinsabaugh 2006, Judd et al. 2006, Mille-Lindblom

et al. 2006). For this reason, we chose to conduct this

study at Hubbard Brook, a well-characterized watershed

that is relatively small (;3000 ha), but contains streams

with a range of water chemistries receiving different

types and quantities of organic matter (Likens and

Bormann 1995, Likens and Buso 2006). We combined

several molecular approaches to survey FBOM bacterial

communities throughout the Hubbard Brook drainage

and measured streamwater and FBOM chemistry to

examine the watershed-scale biogeography of FBOM

bacterial communities and its likely causes.

METHODS

Sample collection

We collected fine benthic organic matter (FBOM)

from 23 sites distributed across 17 streams within the

Hubbard Brook watershed (Fig. 1) located in the White

FIG. 1. Map of the Hubbard Brook watershed (New Hampshire, USA) with the sampling sites indicated (map adapted from
figures presented in Likens and Buso [2006]).
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Mountains of central New Hampshire, USA. Sites were

selected to span a broad range of characteristics

including streamwater chemistries, elevations, and

catchment vegetation types (see also Likens and Buso

2006). We restricted our sampling to first- or second-

order streams; locations and descriptions of the sam-

pling sites can be found in Table 1 and Fig. 1.

All samples were collected within a three-day period

at the end of September 2005. At each site, we sampled

FBOM from depositional areas in the stream channel by

collecting the top 3 cm of the FBOM using a plastic

corer 3 cm in diameter. We collected 20–30 cores within

a single 25-m reach of stream at each sampling site.

Undecomposed leaves, wood, and other types of large

organic detritus were uncommon in the FBOM samples

and, when found, were manually removed from the

samples. Samples were stored in sterile Whirlpak bags

(Nasco, Fort Atkinson, Wisconsin, USA) and kept on

ice during transport back to the laboratory. All cores

from a site were homogenized together, and subsamples

were stored at �808C and 48C for different analyses. A

water sample (125 mL) was collected at the top of each

stream reach at the time of FBOM sample collection.

The streamwater sample was filtered on site through a

Whatman GF/F filter for subsequent analysis of pH,

dissolved organic carbon (DOC), total dissolved nitro-

gen (TDN), and dissolved inorganic ions (ammonium,

nitrate, and phosphate).

Analyses of FBOM and streamwater samples

All FBOM analyses were conducted in triplicate

within 10 days of sample collection and all samples

were stored at 48C prior to analysis. Total carbon and

nitrogen concentrations of FBOM samples were deter-

mined using a Carlo Erba Elantech Model NC2100

elemental analyzer (ThermoQuest Italia, Milan, Italy)

with combustion at 9008C after drying samples for 48 h

at 1108C. Extractable NH4
þ and NO3

� concentrations

were measured by extracting FBOM samples with

2mol/L KCl, filtering through KCl-rinsed Whatman

number-1 filters, and analyzing the extracts on a Lachat

QuikChem 8500 flow-injection analyzer (Hach Compa-

ny, Loveland, Colorado, USA). We measured C

mineralization rates (abbreviated as Cmin rates) over a

10-d period in order to compare the potential rates of

microbial activity between samples. FBOM samples (4–5

g wet mass) were adjusted to 3 g H2O/g dry FBOM and

incubated in 20-mL borosilicate-glass vials equipped

with 0.125-cm Teflon-silicone septa at 228C in a dark

growth chamber. In order to avoid anaerobiosis,

samples were left uncapped, and air was constantly

circulated in the chamber. CO2 production rates were

estimated by conducting a series of 24-h sealed, static

incubations at regular intervals during the 10-d period.

Headspace CO2 concentrations were measured with a

LI-COR 6262 CO2 gas analyzer (LI-COR, Lincoln,

Nebraska, USA) with a 1-mL sample loop and a manual

TABLE 1. Stream and fine benthic organic matter (FBOM) characteristics at each of the sampling sites.

Sampling site�
Site elevation
(m a.s.l.)�

FBOM§
C mineralization rate
(lg C-CO2�g�1�hr�1)

Microbial biomass
(lg C-CO2�g�1�hr�1)jj%N %C

A 506 0.18 (0.01) 3.3 (0.16) 1.5 (0.22) 26 (2.0)
B 534 0.25 (0.02) 4.2 (0.32) 2.0 (0.08) 63 (4.4)
C 555 0.34 (0.02) 6.5 (0.29) 2.5 (0.46) 67 (17)
D 474 0.14 (0.02) 3.0 (0.44) 1.9 (0.04) 35 (3.5)
E 573 0.30 (0.01) 5.5 (0.40) 2.3 (0.40) 52 (6.7)
F 820 0.81 (0.03) 14 (0.85) 3.7 (0.22) 46 (4.4)
G 485 0.16 (0.01) 3.0 (0.07) 1.2 (0.09) 14 (0.33)
H 602 0.22 (0.01) 4.9 (0.35) 2.2 (0.24) 22 (0.59)
I 285 0.23 (0.01) 4.7 (0.24) 4.2 (0.39) 44 (14)
J 270 0.30 (0.03) 5.7 (0.58) 3.2 (0.42) 33 (2.9)
K 383 0.13 (0.02) 2.5 (0.31) 0.90 (0.13) 12 (2.1)
L 389 0.20 (0.02) 3.9 (0.27) 2.6 (0.12) 22 (2.2)
M 389 0.21 (0.01) 3.5 (0.08) 1.4 (0.16) 22 (6.5)
N 561 0.30 (0.07) 5.9 (1.6) 1.7 (0.55) 51 (12)
O 569 0.24 (0.01) 5.2 (0.29) 2.0 (0.08) 33 (3.7)
P 537 0.21 (0.01) 3.7 (0.02) 1.3 (0.04) 17 (4.4)
Q 555 0.44 (0.01) 7.0 (0.22) 1.2 (0.39) 36 (5.8)
R 596 0.14 (0.01) 2.7 (0.22) 1.4 (0.19) 25 (4.9)
S 760 0.68 (0.05) 13 (1.4) 2.4 (0.24) 55 (4.2)
T 791 0.53 (0.05) 11 (1.1) 2.0 (0.26) 49 (12)
U 851 0.29 (0.01) 6.1 (0.18) 1.5 (0.16) 28 (2.1)
V 688 0.38 (0.02) 7.0 (0.5) 1.9 (0.14) 41 (6.9)
W 653 0.35 (0.03) 5.4 (0.53) 2.1 (0.06) 36 (4.9)

Note: Standard errors are indicated in parentheses.
� Site letters correspond to the site letters on Fig. 1.
� Meters above sea level.
§ All FBOM measurements are expressed per gram dry FBOM.
jjMicrobial biomass was measured using the substrate induced respiration technique; hence, biomass is reported in terms of

respiration rates.
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injection valve, using CO2-free air as the carrier gas.

During the course of the incubation, headspace CO2

concentrations never exceeded 2%. Microbial biomass

was measured using the substrate induced-respiration

method described in Fierer et al. (2003). Briefly, FBOM

samples were amended with an autolyzed yeast-extract

solution and CO2 production rates were measured over

a 4-h period. Since the substrate supply is essentially

unlimited and the incubations are of short duration, the

amount of microbial biomass in the FBOM samples

should be directly related to the measured rates of CO2

production (Stenstrom et al. 1998).

Streamwater pH was measured in the laboratory on a

Thermo Electron Orion 250Aplus portable pH meter

(ThermoElectron Corporation, Waltham, Massachu-

setts, USA). Dissolved organic carbon (DOC) and total

dissolved nitrogen concentrations in the streamwater

samples were measured on a Shimadzu TOC-V total

carbon analyzer with a TNM-1 nitrogen module

(Shimadzu Scientific Instruments, Columbia, Maryland,

USA). Streamwater NO3
� and PO4

3� concentrations

were measured using a Dionex ICS-2000 ion chromato-

graph with an AS-18 column (Dionex Corporation,

Sunnyvale, California, USA). PO4
3� concentrations are

not reported here because they were below the limit of

detection in all stream samples. Streamwater NH4
þ

concentrations were determined fluorometrically using a

Turner Designs 10-AU field fluorometer with NH4
þ

optical kit (Turner Designs, Sunnyvale, California,

USA) following the method described by Holmes et al.

(1999).

Microbial community analyses

All FBOM samples were stored at �808C prior to
DNA extraction. DNA was extracted from triplicate 2–3

g (wet mass) subsamples of each FBOM sample using
the MoBio PowerSoil DNA extraction kit (MO BIO

Laboratories, Carlsbad, California, USA). DNA con-
centrations were quantified by PicoGreen fluorometry

(Invitrogen, Carlsbad, California, USA).
In order to compare bacterial communities from all 23

FBOM samples, we analyzed terminal restriction
fragment length polymorphisms (T-RFLPs) from am-

plified bacterial 16S rRNA genes. When applied to
complex communities, this fingerprinting approach

underestimates total diversity and does not permit the
phylogenetic identification of specific bacteria because

species can share similar phylotypes (restriction frag-
ments) and only a limited number of bands can be

resolved per gel (Dunbar et al. 2001). However, the
technique is appropriate for comparing overall levels of

similarity between bacterial communities (Liu et al.
1997, Lukow et al. 2000, Osborn et al. 2000, Fierer and

Jackson 2006).
The T-RFLP procedure followed the protocol de-

scribed in Fierer and Jackson (2006). Briefly, we
amplified bacterial 16S rRNA genes with the universal
bacter ia l pr imer set Bac8f (5 0-AGAGTTT-

GATCCTGGCTCAG-3 0, HEX labeled) and Univ1492r
(5 0-GGTTACCTTGTTACGACTT-3 0) (Reysenbach

and Pace 1995) using the HotStarTaq Master Mix
(Qiagen, Valencia, California, USA). Each of the 35

PCR (polymerase chain reaction) cycles consisted of 60 s
at 948C, 30 s at 508C, and 60 s at 728C. Triplicate DNA

subsamples were amplified independently (four 50-lL
reactions per subsample) and the amplicons from all 12

reactions were pooled together and purified using a
Qiaquick PCR purification kit (Qiagen). After size

verification by agarose gel electrophoresis, PCR prod-
ucts were digested in separate reactions using HhaI and

RsaI restriction enzymes (New England Biolabs, Ips-
wich, Massachusetts, USA) with fragments separated by

electrophoresis on an ABI Prism 3100 genetic analyzer
using GeneScan analysis software (Applied Biosystems,
Foster City, California, USA). The analysis and

standardization of the T-RFLP profiles was conducted
as described in Dunbar et al. (2001). Only those

restriction fragments in a particular sequencing run
between 50 and 600 bp in length that had a standardized

fluorescence .1% of the total fluorescence for that
sample were included in the analyses. Any fragment

unique to only one FBOM sample was not included in
the analyses.

Based on the T-RFLP results, we identified three
major types of FBOM bacterial communities and

selected one FBOM sample that was representative of
each community type for more detailed phylogenetic

analyses (samples from sites E, G, and K, Fig. 1). We
used a cloning and sequencing approach to characterize

the bacterial communities in each of these three FBOM

TABLE 1. Extended.

Streamwater

pH
Dissolved organic C

(mg C/L)
Total dissolved N

(mg N/L)

5.9 2.0 0.13
5.5 1.5 0.15
5.9 2.0 0.10
5.9 1.6 0.16
5.3 1.8 0.17
4.0 19 0.35
4.4 9.9 0.23
5.6 4.4 0.22
6.0 3.9 0.19
5.2 4.1 0.13
6.2 3.1 0.16
6.1 2.8 0.16
5.3 2.3 0.12
5.1 4.8 0.12
5.0 3.8 0.18
5.6 2.4 0.10
4.3 11 0.38
6.3 2.7 0.11
5.3 2.0 0.08
4.9 2.2 0.16
4.3 12 0.43
4.8 4.2 0.16
5.2 2.2 0.15
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samples and to identify which bacterial groups are likely

to account for the differences between the three major

categories of FBOM bacterial communities. For each of

the three FBOM samples, triplicate DNA subsamples
were amplified (four 25-lL reactions per subsample)

using the primers and PCR conditions described above.

Amplicons from each sample were pooled together,

cleaned using the Qiaquick PCR purification kit

(Qiagen), and one clone library was constructed per
sample using the TOPO TA Cloning for Sequencing kit

(Invitrogen). Clones were picked and unidirectionally

sequenced following standard protocols (Agencourt

Bioscience Corporation, Beverly, Massachusetts, USA).

Sequences were trimmed at conserved motifs,

screened for chimeras with the Ribosomal Database
Project ChimeraCheck program (available online),6 and

aligned against the Greengenes database (DeSantis et al.

2006b) using the NAST aligner (DeSantis et al. 2006a).

Sequences were classified into taxonomic groups using

the Greengenes ‘‘classify’’ utility (available online).7 Only
those sequences sharing .85% similarity to reference

sequences over a 500 bp (base-pair) region were

classified. We used the phylogenetic test (Martin 2002)

with pairwise neighbor-joining trees constructed in

PAUP version 4.0 (Swofford 2002) to determine if the
three bacterial communities were significantly different

from one another based on the clone-library results.

Distances between communities (D, where D ¼ 0

indicates that two communities are identical) were

estimated by measuring the pairwise minimum evolution
scores between phylogenies (Nemergut et al. 2005). To

compare bacterial richness and evenness qualitatively

between communities, we used FastGroupII (Yu et al.

2006) to perform rarefaction analyses with libraries

dereplicated at the �97% sequence similarity level (the
‘‘species’’ level as per convention (Rossello-Mora and

Amann 2001).

Statistical analyses

All multivariate analyses were conducted using
PRIMER version 5 (Primer-E 2005). For ordination of

the T-RFLP data, we used a nonmetric multidimen-

sional scaling (NMDS) approach with phylotype length

and log-transformed proportional abundance from both

restriction enzymes as the input data. Our results were
very similar if we used presence–absence data instead of

the proportional abundances of phylotypes (data not

shown). The NMDS ordination technique is well-suited

for T-RFLP data since it makes few assumptions about

the form of the data (Rees et al. 2004). Similarities
between samples were calculated using the Bray-Curtis

distance metric (Legendre and Legendre 1998), which

has been recommended for T-RFLP data sets (Rees et

al. 2004). We performed Mantel tests (the RELATE or

BIO-ENV routines in PRIMER [Primer-E 2005]) to

determine which sample or site characteristics were most

closely associated with the patterns of similarity between
bacterial communities (Clarke and Warwick 2001). All

Mantel tests were conducted with Monte Carlo tests
(1000 randomized runs) to determine significance with a

Pearson correction for multiple comparisons. For the
environmental variables included in the Mantel tests

(with the exception of geographic distance), similarity
matrices were calculated from normalized Euclidean
distances (Clarke and Warwick 2001). We used partial

Mantel tests to examine the influence of geographic
distance (straight-line distance between sampling sites)

and stream distance (estimated distance along a stream
channel) on community composition with variation in

environmental attributes held constant. To examine
correlations between individual environmental charac-

teristics and diversity indices we used SYSTAT (Systat
Software 2004).

RESULTS

Streamwater and FBOM characteristics

Sampling sites encompassed a wide range of stream
and FBOM (fine benthic organic matter) characteristics
across the 3000-ha watershed, although the streams were

all fairly oligotrophic and acidic. Streamwater pHs
ranged from 4 to 6.3, streamwater DOC (dissolved

organic carbon) concentrations ranged from 1.5 to 19
mg/L, with FBOM C mineralization rates and microbial

biomass varying by factors of 4 and 6, respectively,
across all samples (Table 1). Sites at higher elevations

generally had higher organic-carbon concentrations in
FBOM than sites at lower elevations (Table 1) but

FBOM C:N ratios were relatively invariant across the
sites (19 6 2 [mean 6 SE]). Streamwater DOC and

dissolved organic nitrogen (DON) concentrations were
strongly correlated (Table 2) and the majority of the

dissolved N was organic with inorganic N accounting
for only 10–20% of the total dissolved nitrogen (data not

shown). Streamwater pH was significantly correlated
with streamwater DOC and DON concentrations (Table

2); those sites with pH ,4.5 (sites F, G, Q, and U) had
particularly high DOC and total dissolved nitrogen

(TDN) concentrations (Table 1). Likewise, streamwater
pH was inversely related to FBOM C and N concen-
trations, but these correlations were weak and not

statistically significant (Table 2). Mantel tests show that
the geographic distance between sites was not signifi-

cantly correlated with the degree of similarity in any of
the measured environmental variables listed in Table 2

(Spearman’s q ¼�0.2 to 0.1, P . 0.3 in all cases).

Comparison of FBOM bacterial communities

with T-RFLP

Based on the T-RFLP (terminal-restriction fragment
length polymorphism) analysis of similarity, the 23

FBOM communities fell into at least three general
clusters (Fig. 2). These three clusters were evident when

between-sample differences in bacterial community

6 hhttp://rdp.cme.msu.edui
7 hhttp://greengenes.lbl.gov/cgi-bin/nph-classify.cgii
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composition were visualized by either NMDS ordina-

tion (Fig. 2) or hierarchical clustering (results not

shown). Using an analysis of similarity procedure

(ANOSIM in PRIMER [Clarke and Warwick 2001]),

we observed that the three clusters of samples shown in

Fig. 2 are significantly different from one another

(Global R ¼ 0.92; P , 0.02 for all three pairwise

comparisons). The three clusters closely correspond to

groups of FBOM samples from sites with similar

streamwater pH values. However, because pH is

correlated with other variables (Table 2), streamwater

pH could be either directly or indirectly related to the

observed clustering.

We used Mantel tests (see Methods: Statistical

analyses, above) to determine which of the measured

FBOM, streamwater, or site characteristics had the most

important influence on patterns of bacterial community

composition. The qualitative observation that stream-

water pH was closely related to the structure of FBOM

bacterial communities (see Fig. 2) was confirmed by the

TABLE 2. Correlations (Pearson’s r) between the 10 measured fine benthic organic matter (FBOM) and streamwater characteristics
across all 23 sites.

Streamwater
characteristics

Stream-
water pH

Site
elevation %Nlt %Clt C:N

Cmin

rate
Microbial
biomass

Extractable
Ninorganic

Streamwater
DOClt

Streamwater
DONlt

Site elevation �0.56
%Nlt �0.63 0.62
%Clt �0.60 0.65

0.08 �0.98,0.01

C:N 0.19 0.06 �0.21 0.00
Cmin rate �0.01 �0.10 0.43 0.47 0.17
Microbial biomass �0.11 0.31 0.62 0.62 �0.07 0.45
Extractable Ninorganic 0.14 �0.10 0.37 0.35 �0.15 0.52 0.40
Streamwater DOClt �0.730.01 0.27 0.30 0.30 �0.01 0.12 �0.23 �0.26
Streamwater DONlt �0.670.05 0.26 0.29 0.25 �0.05 0.09 �0.12 �0.28 0.88,0.01

Streamwater DIN �0.36 0.54 0.04 0.10 0.38 �0.13 �0.11 �0.20 0.33 0.41

Notes: DOC, DON, DIN, and pH measurements were measured on streamwater samples collected at the sampling site; all other
characteristics were measured on the collected FBOM samples. Variables with superscript ‘‘lt’’ were log-transformed prior to
determining correlations. Values in boldface type indicate correlations with Bonferonni-corrected probabilities ,0.1, with P values
indicated in superscript. Abbreviations: Cmin rate, C mineralization rate measured with incubated FBOM samples; DOC, dissolved
organic carbon; DON, dissolved organic nitrogen; DIN, dissolved inorganic N (NH4

þþNO3
�).

FIG. 2. NMDS (nonmetric multidimensional scaling) ordination of FBOM (fine benthic organic matter) bacterial communities;
letters correspond to the sampling sites listed in Table 1 and Fig. 1. Points that are close together represent FBOM samples with
similar bacterial community composition (based on the T-RFLP [terminal restriction fragment length polymorphism] method).
Each symbol shape represents samples from sites with similar streamwater pH, and the dashed ovals show the three clusters of
bacterial community types (see Results: Comparison of FBOM bacterial communities with T-RFLP). The stress value of this
ordination is 0.1, which indicates that the ordination provides a good representation of the overall structure of the data set (Clarke
and Warwick 2001). No scales are shown on the axes because there are no meaningful absolute units for the axes of MDS plots
(Clarke and Warwick 2001); the relative distances between points represent the rank order of dissimilarities between samples.
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Mantel tests, where pH was the single variable most

strongly associated with bacterial community composi-

tion. As mentioned above, streamwater pH was also

correlated with streamwater DON and DOC and both

of these variables were also correlated with bacterial

community composition, but not as strongly as stream-

water pH (Table 3). FBOM C mineralization rate, a

measure of potential microbial activity, was also

significantly correlated with bacterial community com-

position. FBOM C mineralization is independent of

streamwater pH (Table 2), but the consideration of both

C mineralization and streamwater pH provides only a

marginal improvement in the ability to predict the

degree of similarity in FBOM bacterial communities

(Table 3).

The number of phylotypes (restriction fragments) per

sample ranged from 32 to 69 (mean: 55), but there was

no significant correlation between the phylotype richness

and any of the measured variables listed in Table 3

(Bonferroni-corrected P . 0.5 in all cases). Likewise,

there was no correlation between the values for

Simpson’s diversity index (Magurran 2004) and any of

the measured variables (P . 0.5 in all cases).

Comparison of FBOM bacterial communities

with clone libraries

Based on the T-RFLP results, we chose one commu-

nity from each general group (Fig. 2) for cloning and

sequencing in order to characterize FBOM bacterial

communities and identify which specific phylogenetic

groups may have been responsible for the observed

shifts in overall bacterial community composition.

Clone libraries were constructed for samples E (pH

5.3), G (pH 4.4), and K (pH 6.2) with 75–85 clones

sequenced per library. Analysis of the clone libraries

using the phylogenetic (P) test (Martin 2002) indicates

that the bacterial communities in samples G and K were

significantly different from one another (D ¼ 0.74, P ,

0.001), but sample E was not statistically different from

either sample G (D¼ 0.66, P ¼ 0.12) or sample K (D ¼
0.67, P ¼ 0.07). The relative differences in the distances

between libraries (D) were roughly proportional to the

relative distances between samples as determined by the

T-RFLP analyses (Fig. 2).

The rarefaction curves generated by dereplicating

libraries at the �97% sequence-similarity level were

nearly identical for all three libraries (data not shown)

suggesting that, at this level of phylogenetic resolution

(the ‘‘species’’ level), bacterial community richness and

evenness are similar across all three communities. Each

of the communities was highly species rich; the ratio of

unique species to the number of clones analyzed ranged

from 0.84 to 0.86 across the three libraries. Since the

rarefaction curves were nearly linear (data not shown),

we know that we did not sample the full extent of

bacterial species richness within each of the communi-

ties. In fact, we did not find the same species of bacteria

at more than one site, suggesting that, across the entire

watershed, the total species richness of bacteria inhab-

iting FBOM must be very high.

Acidobacteria were the most abundant group of

bacteria in the FBOM samples, accounting for 71%,

58%, and 38% of the identified clones in samples G, E, and

K, respectively (Fig. 3). The FBOM Acidobacteria were

not monophyletic; in each of the three samples we found

clones similar to representative sequences from most of

the major subdivisions of Acidobacteria (Hugenholtz et

al. 1998, DeSantis et al. 2006b). Proteobacteria (which

includes the a, b, c, and d subgroups) were also abundant,

accounting for 11%, 18%, and 47% of the identified clones

in samples G, E, and K, respectively (Fig. 3). Each of the

other identified bacterial groups accounted for ,6% of the

clones in any given sample (Fig. 3). There were marked

differences in the relative abundances of the bacterial

groups between samples. In particular, sample G (the low-

pH FBOM sample) had more Acidobacteria and fewer

Proteobacteria than samples E or K. The b and c
subgroups of Proteobacteria accounted for 21% and

10%, respectively, of the clones in Sample K (the high-pH

FBOM sample) but b-proteobacteria were absent and c-
proteobacteria were rare (only 1% relative abundance) in

sample G (Fig. 3).

TABLE 3. Correlations between bacterial community compo-
sition, as measured by T-RFLP (terminal restriction
fragment length polymorphism), and measured FBOM (fine
benthic organic matter), streamwater, and site characteris-
tics.

Variable� q�

Single variable

Streamwater pH 0.66***
FBOM C mineralization rate, Cmin 0.42*
Streamwater DON 0.41*
Streamwater DOC 0.36*
Site elevation 0.16
FBOM %C 0.09
SIR biomass 0.08
FBOM %N 0.08
FBOM extractable Ninorganic 0.06
Site location§ 0.05
Streamwater DIN �0.06
FBOM C:N ratio �0.14

Multiple variables

pH þ Cmin 0.72***
pH þ Cmin þ DOC 0.71***
pH þ Cmin þ streamwater DON 0.69***

* P , 0.05; *** P , 0.001.
� Abbreviations: DIN, dissolved inorganic nitrogen; DOC,

dissolved organic carbon; DON, dissolved organic nitrogen;
SIR, substrate-induced respiration.

� The Spearmen rank q values indicate rank correlation
between the matrix of bacterial community similarity and the
similarity matrix generated from a single variable or multiple
variables together. Asterisks indicate those correlations that are
statistically significant based on 1000 random permutations. We
only show the q values for those combinations of variables that
yielded q values greater than that of pH alone.

§ Site location represents a matrix of geographic distance
between sites generated by calculating rectangular coordinates
from measured latitude and longitude values for each sampling
location.
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DISCUSSION

Bacterial communities and pH

Recent literature has focused on the overwhelming

complexity of microbial communities, highlighting the

incredible diversity of microorganisms in individual

samples and the high degree of temporal and spatial

variability in microbial community composition (Morris

et al. 2002, Horner-Devine et al. 2004b, Tringe et al.

2005). Therefore, the appearance of predictable patterns

in microbial biogeography, even in an environment as

heterogeneous as the stream benthos, suggests strong

regulatory factors. Although bacterial communities can

be influenced by a wide variety of biotic and abiotic

factors, we found that a single variable, streamwater pH,

could predict much of the variability in fine benthic

organic matter (FBOM) bacterial community composi-

tion across the Hubbard Brook watershed. Of course,

we cannot conclude that pH, as an independent variable,

drives bacterial community composition. Streamwater

pH can be influenced by, and is associated with, a

number of factors, including watershed geology, vege-

tation, hydrology, and soil (Likens and Bormann 1995,

Likens and Buso 2006). Stream pH may simply be one

variable that effectively integrates a number of measured

and unmeasured stream attributes that influence bacte-

rial community composition. For example, we observed

a significant correlation between streamwater pH and

dissolved organic carbon (DOC) levels (Table 2), and

previous work (Eiler et al. 2003) has shown that DOC

concentrations can also have an important influence on

bacterial community composition. Likewise, it is possi-

ble that bacterial communities themselves are unaffected

by differences in streamwater pH, and the observed

changes are a result of pH-induced changes in other

stream biota or processes that may have an indirect

influence on bacterial community composition. With a

biogeographical study such as this, we cannot identify

with certainty the mechanism(s) responsible for produc-

ing the relationship between pH and the observed

biogeographical patterns.

These caveats aside, we do know that pH often has a

direct influence on bacterial communities (Madigan et

al. 1997) and FBOM bacterial communities are not

unique in appearing to be structured by pH. A strong

link between pH and aquatic microbial communities has

been observed in a number of other studies (Methé and

Zehr 1999, Hornstrom 2002, Lindström et al. 2005,

Yannarell and Triplett 2005, Telford et al. 2006).

Significant correlations between microbial community

composition and pH have also been observed in non-

aquatic habitats (Pennanen et al. 1998, Bååth and

Anderson 2003, Kennedy et al. 2004, Fierer and Jackson

2006), suggesting that pH can often be a good predictor

of bacterial community composition within a given

habitat. Even though all of the sampled streams are

fairly acidic (Table 1), the results presented here lend

support to the universality of pH as one of the primary

factors associated with, and perhaps directly causing,

the biogeographical patterns exhibited by microorgan-

isms.

FIG. 3. Relative abundances of major groups of bacteria in each of the three samples from which clone libraries were constructed.
In the key, N is the number of sequences included in the analyses (see Results: Comparison of FBOM bacterial communities with T-
RFLP). The ‘‘miscellaneous’’ category largely consisted of clones identified as either Verrucomicrobia or Ktedobacteria.
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The diversity and composition of FBOM communities

We know of no previous studies that have compre-
hensively characterized FBOM bacterial communities.

However, we expected FBOM bacterial communities,
like communities in other aquatic benthic environments,

to be highly diverse. This hypothesis was confirmed by
the clone-library results; very few species were observed

more than once in a given clone library (indicating a
high local, or a, diversity), no species was observed in

more than one library (indicating a high landscape-level,
or b, diversity), and a variety of distinct, major bacterial

lineages were found in each community (Fig. 3).
Without more sampling, we can not use the clone-

library results to compare total levels of species richness
between samples. Likewise, the T-RFLP (terminal-

restriction fragment length polymorphism) method does
not provide an absolute measure of bacterial diversity

(Dunbar et al. 2001), but it can be used to compare
relative levels of diversity between samples by looking at
the number and abundances of distinct phylotypes (Liu

et al. 1997, Fierer and Jackson 2006). We observed no
correlations between T-RFLP diversity and any of the

measured environmental variables, a finding in direct
contrast to other studies, which have observed changes

in overall bacterial diversity across environmental
gradients (Horner-Devine et al. 2004b, Fierer and

Jackson 2006). Either we have not measured the
appropriate environmental variables, diversity is a

function of a suite of interacting variables, or bacterial
diversity in FBOM is driven by stochastic factors that

are not directly related to environmental characteristics
of the habitat.

Due to a paucity of similar studies, we cannot directly
compare our clone-library results with previous results.

Fazi et al. (2005) examined FBOM bacterial communi-
ties with a probe-based technique, quantifying the

abundances of four different groups of bacteria (a-, b-,
c-proteobacteria, and Cytophaga-Flavobacterium). Al-

though differences in methodologies make direct com-
parisons difficult, Fazi et al. (2005) also found that
Proteobacteria are not the dominant group of bacteria

in FBOM communities, confirming our results (Fig. 3).
There are a number of lines of evidence suggesting that

the FBOM bacterial communities are distinct from other
stream bacterial communities that have been surveyed to

date, but the streams included in our study do not
represent the full spectrum of aquatic environments, as

all of the streams are relatively oligotrophic and acidic
(Table 1). The bacterial communities found in various

stream habitats (water column, biofilms, and sediments)
tend to be dominated by members of the Actinobacteria,

a-proteobacteria, b-proteobacteria, and Bacteroidetes
groups, with few, if any, Acidobacteria (Brummer et al.

2000, Sekiguchi et al. 2002, Zwart et al. 2002, Feris et al.
2003, Hullar et al. 2006). Acidobacteria were very
abundant in the FBOM samples (Fig. 3) but Acido-

bacteria appear to be rare in most aquatic environments
(Hugenholtz et al. 1998). In general, the Acidobacteria

group is most commonly associated with soil (Kuske et

al. 1997, Hugenholtz et al. 1998, Buckley and Schmidt

2002, Lipson and Schmidt 2004, Fierer et al. 2007) and

the majority of acidobacterial sequences deposited in

GenBank (available online)8 have originated from soil

samples. Based on this evidence, we can tentatively

conclude that FBOM bacterial communities are distinct

from the communities found in other aquatic habitats

and that FBOM communities appear to be similar, at a

coarse level of phylogenetic resolution, with the bacterial

communities found in soil. This similarity between

FBOM and soil communities may be a result of

convergence, or FBOM communities may be derived,

wholly or in part, from soil bacterial communities.

FBOM microbial communities and processes

Although changes in streamwater pH have been

shown to influence rates of microbial decomposition

within streams (Mulholland et al. 1992, Dangles et al.

2004), we observed no significant correlation between

microbial CO2 production (C mineralization rate) and

pH, or any of the other individual, measured variables

(Table 2). However, we did observe a significant

correlation between FBOM mineralization rates and

bacterial community composition (Table 3). Of course,

this does not suggest that bacterial community compo-

sition is the primary factor influencing rates of microbial

C mineralization. However, it does suggest that there are

direct or indirect linkages between bacterial community

composition and function in streams. A similar conclu-

sion was reached by Findlay and Sinsabaugh (2006) in

their study of stream biofilm communities. While

microbial community composition is likely to regulate

microbial processes at some level, we cannot assess the

direct linkages between bacterial community structure

and stream processes with observational studies and the

analyses of apparent correlations. Instead, understand-

ing the direct relationships between microbial commu-

nities and processes requires more detailed, experimental

studies, such as those described in Cavigelli and

Robertson (2000) and Fernandez et al. (2000).

Is ‘‘everything everywhere’’?

While this study was not designed to directly test the

Baas-Becking hypothesis (Beijerinck 1913, Baas-Becking

1934), our results do provide anecdotal evidence in

support of the hypothesis because there was no apparent

relationship between geographic distance and commu-

nity similarity at the landscape scale (Table 3). Even if

we controlled for the effect of environmental similarity

(with a partial Mantel test), we still failed to observe a

significant influence of geographic (straight-line) dis-

tance between sites on bacterial community composition

(P . 0.4). Likewise, if we only examine pairs of samples

collected at different locations within the same stream

8 hhttp://www.ncbi.nlm.nih.govi
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(Fig. 1) and control for the effect of environmental

similarity (using a partial Mantel test), there was no

significant correlation between stream distance (estimat-

ed distance between two sites along a stream channel)

and bacterial community composition (P . 0.5). FBOM

bacterial community composition is apparently best

predicted by environmental characteristics, not geo-

graphic distance or distance along an individual stream

channel.

In this landscape, dispersal rates do not seem to be an

important factor regulating bacterial community com-

position. While we cannot estimate specific rates of

microbial dispersal, our results do suggest that dispersal

rates are neither very high nor very low. If dispersal rates

were very high, all of the communities would be

relatively similar and we would not have observed the

apparent local adaptation of bacterial communities to

their environmental conditions. Likewise, if dispersal

rates were very low, we would expect a stronger

influence of geographic location on bacterial community

composition.

Green and Bohannan (2006) (see also Green et al.

[2004]) have argued that microorganisms are not

cosmopolitan and that geographic distance (even at

regional and landscape scales) often has an important

influence on microbial community composition. How-

ever, in this study, environmental factors, not distance

per se, appear to be the primary drivers of bacterial

community composition, a pattern also observed in

stream biofilm communities (Findlay and Sinsabaugh

2006) and in bacterial communities from other environ-

ments (Horner-Devine et al. 2004a, Fierer and Jackson

2006). We would argue that the apparent linkages

between geographic distance and community composi-

tion, as highlighted in Green and Bohannan (2006), may

often be related to an inherent (but unmeasured)

correlation between geographic distance and the envi-

ronmental ‘‘distance’’ between samples. For example,

Reche et al. (2005) conclude that the geographic distance

between lakes has a larger influence on lake bacterial

communities than the environmental attributes of the

lakes. However, their conclusion was based on the

measurement of only a handful of environmental

characteristics (not including lake pH). Likewise, Green

et al. (2004) based their conclusions on the inferred, but

unmeasured, environmental characteristics of the sam-

ples included in their analysis. A correlation between

geographic distance and community distance does not

disprove the Baas-Becking hypothesis unless differences

in the environmental attributes of the microbial habitats

have been thoroughly characterized and accounted for.

Conclusions

We found that FBOM bacterial communities exhib-

ited clear biogeographical patterns within the Hubbard

Brook watershed as streams with distinct pH levels had

distinct bacterial communities. Although proposed more

than a century ago, Baas-Becking’s hypothesis ‘‘every-

thing is everywhere, the environment selects’’ (Baas-

Becking 1934) remains a useful framework for studying

microbial biogeography. The composition of microbial

communities, like ‘‘macro’’-bial communities, is not

likely to be a product of random, stochastic events; if

environmental characteristics are appropriately mea-

sured, the spatial distribution of bacterial communities

can be predicted.
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